- Phoneme-Level BERT for Enhanced Prosody of Text-to-Speech with Grapheme Predictions Large-scale pre-trained language models have been shown to be helpful in improving the naturalness of text-to-speech (TTS) models by enabling them to produce more naturalistic prosodic patterns. However, these models are usually word-level or sup-phoneme-level and jointly trained with phonemes, making them inefficient for the downstream TTS task where only phonemes are needed. In this work, we propose a phoneme-level BERT (PL-BERT) with a pretext task of predicting the corresponding graphemes along with the regular masked phoneme predictions. Subjective evaluations show that our phoneme-level BERT encoder has significantly improved the mean opinion scores (MOS) of rated naturalness of synthesized speech compared with the state-of-the-art (SOTA) StyleTTS baseline on out-of-distribution (OOD) texts. 4 authors · Jan 20, 2023
8 BiPhone: Modeling Inter Language Phonetic Influences in Text A large number of people are forced to use the Web in a language they have low literacy in due to technology asymmetries. Written text in the second language (L2) from such users often contains a large number of errors that are influenced by their native language (L1). We propose a method to mine phoneme confusions (sounds in L2 that an L1 speaker is likely to conflate) for pairs of L1 and L2. These confusions are then plugged into a generative model (Bi-Phone) for synthetically producing corrupted L2 text. Through human evaluations, we show that Bi-Phone generates plausible corruptions that differ across L1s and also have widespread coverage on the Web. We also corrupt the popular language understanding benchmark SuperGLUE with our technique (FunGLUE for Phonetically Noised GLUE) and show that SoTA language understating models perform poorly. We also introduce a new phoneme prediction pre-training task which helps byte models to recover performance close to SuperGLUE. Finally, we also release the FunGLUE benchmark to promote further research in phonetically robust language models. To the best of our knowledge, FunGLUE is the first benchmark to introduce L1-L2 interactions in text. 8 authors · Jul 6, 2023 3
- REBORN: Reinforcement-Learned Boundary Segmentation with Iterative Training for Unsupervised ASR Unsupervised automatic speech recognition (ASR) aims to learn the mapping between the speech signal and its corresponding textual transcription without the supervision of paired speech-text data. A word/phoneme in the speech signal is represented by a segment of speech signal with variable length and unknown boundary, and this segmental structure makes learning the mapping between speech and text challenging, especially without paired data. In this paper, we propose REBORN, Reinforcement-Learned Boundary Segmentation with Iterative Training for Unsupervised ASR. REBORN alternates between (1) training a segmentation model that predicts the boundaries of the segmental structures in speech signals and (2) training the phoneme prediction model, whose input is a segmental structure segmented by the segmentation model, to predict a phoneme transcription. Since supervised data for training the segmentation model is not available, we use reinforcement learning to train the segmentation model to favor segmentations that yield phoneme sequence predictions with a lower perplexity. We conduct extensive experiments and find that under the same setting, REBORN outperforms all prior unsupervised ASR models on LibriSpeech, TIMIT, and five non-English languages in Multilingual LibriSpeech. We comprehensively analyze why the boundaries learned by REBORN improve the unsupervised ASR performance. 7 authors · Feb 6, 2024
3 BreezyVoice: Adapting TTS for Taiwanese Mandarin with Enhanced Polyphone Disambiguation -- Challenges and Insights We present BreezyVoice, a Text-to-Speech (TTS) system specifically adapted for Taiwanese Mandarin, highlighting phonetic control abilities to address the unique challenges of polyphone disambiguation in the language. Building upon CosyVoice, we incorporate a S^{3} tokenizer, a large language model (LLM), an optimal-transport conditional flow matching model (OT-CFM), and a grapheme to phoneme prediction model, to generate realistic speech that closely mimics human utterances. Our evaluation demonstrates BreezyVoice's superior performance in both general and code-switching contexts, highlighting its robustness and effectiveness in generating high-fidelity speech. Additionally, we address the challenges of generalizability in modeling long-tail speakers and polyphone disambiguation. Our approach significantly enhances performance and offers valuable insights into the workings of neural codec TTS systems. 13 authors · Jan 29
- FastSpeech: Fast, Robust and Controllable Text to Speech Neural network based end-to-end text to speech (TTS) has significantly improved the quality of synthesized speech. Prominent methods (e.g., Tacotron 2) usually first generate mel-spectrogram from text, and then synthesize speech from the mel-spectrogram using vocoder such as WaveNet. Compared with traditional concatenative and statistical parametric approaches, neural network based end-to-end models suffer from slow inference speed, and the synthesized speech is usually not robust (i.e., some words are skipped or repeated) and lack of controllability (voice speed or prosody control). In this work, we propose a novel feed-forward network based on Transformer to generate mel-spectrogram in parallel for TTS. Specifically, we extract attention alignments from an encoder-decoder based teacher model for phoneme duration prediction, which is used by a length regulator to expand the source phoneme sequence to match the length of the target mel-spectrogram sequence for parallel mel-spectrogram generation. Experiments on the LJSpeech dataset show that our parallel model matches autoregressive models in terms of speech quality, nearly eliminates the problem of word skipping and repeating in particularly hard cases, and can adjust voice speed smoothly. Most importantly, compared with autoregressive Transformer TTS, our model speeds up mel-spectrogram generation by 270x and the end-to-end speech synthesis by 38x. Therefore, we call our model FastSpeech. 7 authors · May 22, 2019 1
- ByT5 model for massively multilingual grapheme-to-phoneme conversion In this study, we tackle massively multilingual grapheme-to-phoneme conversion through implementing G2P models based on ByT5. We have curated a G2P dataset from various sources that covers around 100 languages and trained large-scale multilingual G2P models based on ByT5. We found that ByT5 operating on byte-level inputs significantly outperformed the token-based mT5 model in terms of multilingual G2P. Pairwise comparison with monolingual models in these languages suggests that multilingual ByT5 models generally lower the phone error rate by jointly learning from a variety of languages. The pretrained model can further benefit low resource G2P through zero-shot prediction on unseen languages or provides pretrained weights for finetuning, which helps the model converge to a lower phone error rate than randomly initialized weights. To facilitate future research on multilingual G2P, we make available our code and pretrained multilingual G2P models at: https://github.com/lingjzhu/CharsiuG2P. 3 authors · Apr 6, 2022
- Prediction of speech intelligibility with DNN-based performance measures This paper presents a speech intelligibility model based on automatic speech recognition (ASR), combining phoneme probabilities from deep neural networks (DNN) and a performance measure that estimates the word error rate from these probabilities. This model does not require the clean speech reference nor the word labels during testing as the ASR decoding step, which finds the most likely sequence of words given phoneme posterior probabilities, is omitted. The model is evaluated via the root-mean-squared error between the predicted and observed speech reception thresholds from eight normal-hearing listeners. The recognition task consists of identifying noisy words from a German matrix sentence test. The speech material was mixed with eight noise maskers covering different modulation types, from speech-shaped stationary noise to a single-talker masker. The prediction performance is compared to five established models and an ASR-model using word labels. Two combinations of features and networks were tested. Both include temporal information either at the feature level (amplitude modulation filterbanks and a feed-forward network) or captured by the architecture (mel-spectrograms and a time-delay deep neural network, TDNN). The TDNN model is on par with the DNN while reducing the number of parameters by a factor of 37; this optimization allows parallel streams on dedicated hearing aid hardware as a forward-pass can be computed within the 10ms of each frame. The proposed model performs almost as well as the label-based model and produces more accurate predictions than the baseline models. 5 authors · Mar 17, 2022
- A systematic comparison of grapheme-based vs. phoneme-based label units for encoder-decoder-attention models Following the rationale of end-to-end modeling, CTC, RNN-T or encoder-decoder-attention models for automatic speech recognition (ASR) use graphemes or grapheme-based subword units based on e.g. byte-pair encoding (BPE). The mapping from pronunciation to spelling is learned completely from data. In contrast to this, classical approaches to ASR employ secondary knowledge sources in the form of phoneme lists to define phonetic output labels and pronunciation lexica. In this work, we do a systematic comparison between grapheme- and phoneme-based output labels for an encoder-decoder-attention ASR model. We investigate the use of single phonemes as well as BPE-based phoneme groups as output labels of our model. To preserve a simplified and efficient decoder design, we also extend the phoneme set by auxiliary units to be able to distinguish homophones. Experiments performed on the Switchboard 300h and LibriSpeech benchmarks show that phoneme-based modeling is competitive to grapheme-based encoder-decoder-attention modeling. 6 authors · May 19, 2020
- From Babble to Words: Pre-Training Language Models on Continuous Streams of Phonemes Language models are typically trained on large corpora of text in their default orthographic form. However, this is not the only option; representing data as streams of phonemes can offer unique advantages, from deeper insights into phonological language acquisition to improved performance on sound-based tasks. The challenge lies in evaluating the impact of phoneme-based training, as most benchmarks are also orthographic. To address this, we develop a pipeline to convert text datasets into a continuous stream of phonemes. We apply this pipeline to the 100-million-word pre-training dataset from the BabyLM challenge, as well as to standard language and grammatical benchmarks, enabling us to pre-train and evaluate a model using phonemic input representations. Our results show that while phoneme-based training slightly reduces performance on traditional language understanding tasks, it offers valuable analytical and practical benefits. 5 authors · Oct 30, 2024
- SaMoye: Zero-shot Singing Voice Conversion Based on Feature Disentanglement and Synthesis Singing voice conversion (SVC) aims to convert a singer's voice in a given music piece to another singer while keeping the original content. We propose an end-to-end feature disentanglement-based model, which we named SaMoye, to enable zero-shot many-to-many singing voice conversion. SaMoye disentangles the features of the singing voice into content features, timbre features, and pitch features respectively. The content features are enhanced using a GPT-based model to perform cross-prediction with the phoneme of the lyrics. SaMoye can generate the music with converted voice by replacing the timbre features with the target singer. We also establish an unparalleled large-scale dataset to guarantee zero-shot performance. The dataset consists of 1500k pure singing vocal clips containing at least 10,000 singers. 4 authors · Jul 10, 2024
- Multi-Scale Accent Modeling with Disentangling for Multi-Speaker Multi-Accent TTS Synthesis Synthesizing speech across different accents while preserving the speaker identity is essential for various real-world customer applications. However, the individual and accurate modeling of accents and speakers in a text-to-speech (TTS) system is challenging due to the complexity of accent variations and the intrinsic entanglement between the accent and speaker identity. In this paper, we present a novel approach for multi-speaker multi-accent TTS synthesis, which aims to synthesize voices of multiple speakers, each with various accents. Our proposed approach employs a multi-scale accent modeling strategy to address accent variations at different levels. Specifically, we introduce both global (utterance level) and local (phoneme level) accent modeling, supervised by individual accent classifiers to capture the overall variation within accented utterances and fine-grained variations between phonemes, respectively. To control accents and speakers separately, speaker-independent accent modeling is necessary, which is achieved by adversarial training with speaker classifiers to disentangle speaker identity within the multi-scale accent modeling. Consequently, we obtain speaker-independent and accent-discriminative multi-scale embeddings as comprehensive accent features. Additionally, we propose a local accent prediction model that allows to generate accented speech directly from phoneme inputs. Extensive experiments are conducted on an accented English speech corpus. Both objective and subjective evaluations show the superiority of our proposed system compared to baselines systems. Detailed component analysis demonstrates the effectiveness of global and local accent modeling, and speaker disentanglement on multi-speaker multi-accent speech synthesis. 5 authors · Jun 16, 2024
- vq-wav2vec: Self-Supervised Learning of Discrete Speech Representations We propose vq-wav2vec to learn discrete representations of audio segments through a wav2vec-style self-supervised context prediction task. The algorithm uses either a gumbel softmax or online k-means clustering to quantize the dense representations. Discretization enables the direct application of algorithms from the NLP community which require discrete inputs. Experiments show that BERT pre-training achieves a new state of the art on TIMIT phoneme classification and WSJ speech recognition. 3 authors · Oct 11, 2019
- Interleaved Speech-Text Language Models are Simple Streaming Text to Speech Synthesizers This paper introduces Interleaved Speech-Text Language Model (IST-LM) for streaming zero-shot Text-to-Speech (TTS). Unlike many previous approaches, IST-LM is directly trained on interleaved sequences of text and speech tokens with a fixed ratio, eliminating the need for additional efforts in duration prediction and grapheme-to-phoneme alignment. The ratio of text chunk size to speech chunk size is crucial for the performance of IST-LM. To explore this, we conducted a comprehensive series of statistical analyses on the training data and performed correlation analysis with the final performance, uncovering several key factors: 1) the distance between speech tokens and their corresponding text tokens, 2) the number of future text tokens accessible to each speech token, and 3) the frequency of speech tokens precedes their corresponding text tokens. Experimental results demonstrate how to achieve an optimal streaming TTS system without complicated engineering optimization, which has a limited gap with the non-streaming system. IST-LM is conceptually simple and empirically powerful, paving the way for streaming TTS with minimal overhead while largely maintaining performance, showcasing broad prospects coupled with real-time text stream from LLMs. 13 authors · Dec 20, 2024
- Exploring the Benefits of Tokenization of Discrete Acoustic Units Tokenization algorithms that merge the units of a base vocabulary into larger, variable-rate units have become standard in natural language processing tasks. This idea, however, has been mostly overlooked when the vocabulary consists of phonemes or Discrete Acoustic Units (DAUs), an audio-based representation that is playing an increasingly important role due to the success of discrete language-modeling techniques. In this paper, we showcase the advantages of tokenization of phonetic units and of DAUs on three prediction tasks: grapheme-to-phoneme, grapheme-to-DAUs, and unsupervised speech generation using DAU language modeling. We demonstrate that tokenization yields significant improvements in terms of performance, as well as training and inference speed, across all three tasks. We also offer theoretical insights to provide some explanation for the superior performance observed. 2 authors · Jun 8, 2024
2 PWESuite: Phonetic Word Embeddings and Tasks They Facilitate Word embeddings that map words into a fixed-dimensional vector space are the backbone of modern NLP. Most word embedding methods encode semantic information. However, phonetic information, which is important for some tasks, is often overlooked. In this work, we develop several novel methods which leverage articulatory features to build phonetically informed word embeddings, and present a set of phonetic word embeddings to encourage their community development, evaluation and use. While several methods for learning phonetic word embeddings already exist, there is a lack of consistency in evaluating their effectiveness. Thus, we also proposes several ways to evaluate both intrinsic aspects of phonetic word embeddings, such as word retrieval and correlation with sound similarity, and extrinsic performances, such as rhyme and cognate detection and sound analogies. We hope that our suite of tasks will promote reproducibility and provide direction for future research on phonetic word embeddings. 7 authors · Apr 5, 2023
- Common Phone: A Multilingual Dataset for Robust Acoustic Modelling Current state of the art acoustic models can easily comprise more than 100 million parameters. This growing complexity demands larger training datasets to maintain a decent generalization of the final decision function. An ideal dataset is not necessarily large in size, but large with respect to the amount of unique speakers, utilized hardware and varying recording conditions. This enables a machine learning model to explore as much of the domain-specific input space as possible during parameter estimation. This work introduces Common Phone, a gender-balanced, multilingual corpus recorded from more than 11.000 contributors via Mozilla's Common Voice project. It comprises around 116 hours of speech enriched with automatically generated phonetic segmentation. A Wav2Vec 2.0 acoustic model was trained with the Common Phone to perform phonetic symbol recognition and validate the quality of the generated phonetic annotation. The architecture achieved a PER of 18.1 % on the entire test set, computed with all 101 unique phonetic symbols, showing slight differences between the individual languages. We conclude that Common Phone provides sufficient variability and reliable phonetic annotation to help bridging the gap between research and application of acoustic models. 5 authors · Jan 15, 2022
- Phoneme Boundary Detection using Learnable Segmental Features Phoneme boundary detection plays an essential first step for a variety of speech processing applications such as speaker diarization, speech science, keyword spotting, etc. In this work, we propose a neural architecture coupled with a parameterized structured loss function to learn segmental representations for the task of phoneme boundary detection. First, we evaluated our model when the spoken phonemes were not given as input. Results on the TIMIT and Buckeye corpora suggest that the proposed model is superior to the baseline models and reaches state-of-the-art performance in terms of F1 and R-value. We further explore the use of phonetic transcription as additional supervision and show this yields minor improvements in performance but substantially better convergence rates. We additionally evaluate the model on a Hebrew corpus and demonstrate such phonetic supervision can be beneficial in a multi-lingual setting. 4 authors · Feb 11, 2020
- BabyLM's First Words: Word Segmentation as a Phonological Probing Task Language models provide a key framework for studying linguistic theories based on prediction, but phonological analysis using large language models (LLMs) is difficult; there are few phonological benchmarks beyond English and the standard input representation used in LLMs (subwords of graphemes) is not suitable for analyzing the representation of phonemes. In this work, we demonstrate how word segmentation can be used as a phonological probing task, allowing us to study the representations learned by phoneme-based language models trained on child-directed speech across 31 languages. Following computational models of word segmentation, we present unsupervised methods for extracting word boundaries from a trained model using the observation that prediction-error peaks at the start of words. We also use linear probes to identify that these models implicitly track word boundaries, even when they do not appear in training. This cross-lingual work corroborates statistical learning theories of acquisition and empirically motivates new methods for training subword tokenizers. 1 authors · Apr 4
- Towards Unsupervised Speech Recognition and Synthesis with Quantized Speech Representation Learning In this paper we propose a Sequential Representation Quantization AutoEncoder (SeqRQ-AE) to learn from primarily unpaired audio data and produce sequences of representations very close to phoneme sequences of speech utterances. This is achieved by proper temporal segmentation to make the representations phoneme-synchronized, and proper phonetic clustering to have total number of distinct representations close to the number of phonemes. Mapping between the distinct representations and phonemes is learned from a small amount of annotated paired data. Preliminary experiments on LJSpeech demonstrated the learned representations for vowels have relative locations in latent space in good parallel to that shown in the IPA vowel chart defined by linguistics experts. With less than 20 minutes of annotated speech, our method outperformed existing methods on phoneme recognition and is able to synthesize intelligible speech that beats our baseline model. 4 authors · Oct 28, 2019
- XPhoneBERT: A Pre-trained Multilingual Model for Phoneme Representations for Text-to-Speech We present XPhoneBERT, the first multilingual model pre-trained to learn phoneme representations for the downstream text-to-speech (TTS) task. Our XPhoneBERT has the same model architecture as BERT-base, trained using the RoBERTa pre-training approach on 330M phoneme-level sentences from nearly 100 languages and locales. Experimental results show that employing XPhoneBERT as an input phoneme encoder significantly boosts the performance of a strong neural TTS model in terms of naturalness and prosody and also helps produce fairly high-quality speech with limited training data. We publicly release our pre-trained XPhoneBERT with the hope that it would facilitate future research and downstream TTS applications for multiple languages. Our XPhoneBERT model is available at https://github.com/VinAIResearch/XPhoneBERT 3 authors · May 31, 2023
- Small Language Models Also Work With Small Vocabularies: Probing the Linguistic Abilities of Grapheme- and Phoneme-Based Baby Llamas Recent work investigates whether LMs learn human-like linguistic generalizations and representations from developmentally plausible amounts of data. Yet, the basic linguistic units processed in these LMs are determined by subword-based tokenization, which limits their validity as models of learning at and below the word level. In this paper, we explore the potential of tokenization-free, phoneme- and grapheme-based language models. We demonstrate that small models based on the Llama architecture can achieve strong linguistic performance on standard syntactic and novel lexical/phonetic benchmarks when trained with character-level vocabularies. We further show that phoneme-based models almost match grapheme-based models in standard tasks and novel evaluations. Our findings suggest a promising direction for creating more linguistically plausible language models that are better suited for computational studies of language acquisition and processing. 4 authors · Oct 2, 2024
- Comparing phonemes and visemes with DNN-based lipreading There is debate if phoneme or viseme units are the most effective for a lipreading system. Some studies use phoneme units even though phonemes describe unique short sounds; other studies tried to improve lipreading accuracy by focusing on visemes with varying results. We compare the performance of a lipreading system by modeling visual speech using either 13 viseme or 38 phoneme units. We report the accuracy of our system at both word and unit levels. The evaluation task is large vocabulary continuous speech using the TCD-TIMIT corpus. We complete our visual speech modeling via hybrid DNN-HMMs and our visual speech decoder is a Weighted Finite-State Transducer (WFST). We use DCT and Eigenlips as a representation of mouth ROI image. The phoneme lipreading system word accuracy outperforms the viseme based system word accuracy. However, the phoneme system achieved lower accuracy at the unit level which shows the importance of the dictionary for decoding classification outputs into words. 3 authors · May 8, 2018
- Segmental Contrastive Predictive Coding for Unsupervised Word Segmentation Automatic detection of phoneme or word-like units is one of the core objectives in zero-resource speech processing. Recent attempts employ self-supervised training methods, such as contrastive predictive coding (CPC), where the next frame is predicted given past context. However, CPC only looks at the audio signal's frame-level structure. We overcome this limitation with a segmental contrastive predictive coding (SCPC) framework that can model the signal structure at a higher level e.g. at the phoneme level. In this framework, a convolutional neural network learns frame-level representation from the raw waveform via noise-contrastive estimation (NCE). A differentiable boundary detector finds variable-length segments, which are then used to optimize a segment encoder via NCE to learn segment representations. The differentiable boundary detector allows us to train frame-level and segment-level encoders jointly. Typically, phoneme and word segmentation are treated as separate tasks. We unify them and experimentally show that our single model outperforms existing phoneme and word segmentation methods on TIMIT and Buckeye datasets. We analyze the impact of boundary threshold and when is the right time to include the segmental loss in the learning process. 5 authors · Jun 3, 2021
- WaveNet: A Generative Model for Raw Audio This paper introduces WaveNet, a deep neural network for generating raw audio waveforms. The model is fully probabilistic and autoregressive, with the predictive distribution for each audio sample conditioned on all previous ones; nonetheless we show that it can be efficiently trained on data with tens of thousands of samples per second of audio. When applied to text-to-speech, it yields state-of-the-art performance, with human listeners rating it as significantly more natural sounding than the best parametric and concatenative systems for both English and Mandarin. A single WaveNet can capture the characteristics of many different speakers with equal fidelity, and can switch between them by conditioning on the speaker identity. When trained to model music, we find that it generates novel and often highly realistic musical fragments. We also show that it can be employed as a discriminative model, returning promising results for phoneme recognition. 9 authors · Sep 12, 2016
- IPA-CHILDES & G2P+: Feature-Rich Resources for Cross-Lingual Phonology and Phonemic Language Modeling In this paper, we introduce two resources: (i) G2P+, a tool for converting orthographic datasets to a consistent phonemic representation; and (ii) IPA CHILDES, a phonemic dataset of child-centered speech across 31 languages. Prior tools for grapheme-to-phoneme conversion result in phonemic vocabularies that are inconsistent with established phonemic inventories, an issue which G2P+ addresses by leveraging the inventories in the Phoible database. Using this tool, we augment CHILDES with phonemic transcriptions to produce IPA CHILDES. This new resource fills several gaps in existing phonemic datasets, which often lack multilingual coverage, spontaneous speech, and a focus on child-directed language. We demonstrate the utility of this dataset for phonological research by training phoneme language models on 11 languages and probing them for distinctive features, finding that the distributional properties of phonemes are sufficient to learn major class and place features cross-lingually. 2 authors · Apr 3
1 DelightfulTTS: The Microsoft Speech Synthesis System for Blizzard Challenge 2021 This paper describes the Microsoft end-to-end neural text to speech (TTS) system: DelightfulTTS for Blizzard Challenge 2021. The goal of this challenge is to synthesize natural and high-quality speech from text, and we approach this goal in two perspectives: The first is to directly model and generate waveform in 48 kHz sampling rate, which brings higher perception quality than previous systems with 16 kHz or 24 kHz sampling rate; The second is to model the variation information in speech through a systematic design, which improves the prosody and naturalness. Specifically, for 48 kHz modeling, we predict 16 kHz mel-spectrogram in acoustic model, and propose a vocoder called HiFiNet to directly generate 48 kHz waveform from predicted 16 kHz mel-spectrogram, which can better trade off training efficiency, modelling stability and voice quality. We model variation information systematically from both explicit (speaker ID, language ID, pitch and duration) and implicit (utterance-level and phoneme-level prosody) perspectives: 1) For speaker and language ID, we use lookup embedding in training and inference; 2) For pitch and duration, we extract the values from paired text-speech data in training and use two predictors to predict the values in inference; 3) For utterance-level and phoneme-level prosody, we use two reference encoders to extract the values in training, and use two separate predictors to predict the values in inference. Additionally, we introduce an improved Conformer block to better model the local and global dependency in acoustic model. For task SH1, DelightfulTTS achieves 4.17 mean score in MOS test and 4.35 in SMOS test, which indicates the effectiveness of our proposed system 9 authors · Oct 24, 2021
- Exploring Prediction Targets in Masked Pre-Training for Speech Foundation Models Speech foundation models, such as HuBERT and its variants, are pre-trained on large amounts of unlabeled speech data and then used for a range of downstream tasks. These models use a masked prediction objective, where the model learns to predict information about masked input segments from the unmasked context. The choice of prediction targets in this framework impacts their performance on downstream tasks. For instance, models pre-trained with targets that capture prosody learn representations suited for speaker-related tasks, while those pre-trained with targets that capture phonetics learn representations suited for content-related tasks. Moreover, prediction targets can differ in the level of detail they capture. Models pre-trained with targets that encode fine-grained acoustic features perform better on tasks like denoising, while those pre-trained with targets focused on higher-level abstractions are more effective for content-related tasks. Despite the importance of prediction targets, the design choices that affect them have not been thoroughly studied. This work explores the design choices and their impact on downstream task performance. Our results indicate that the commonly used design choices for HuBERT can be suboptimal. We propose approaches to create more informative prediction targets and demonstrate their effectiveness through improvements across various downstream tasks. 9 authors · Sep 16, 2024
- Improving Spoken Language Modeling with Phoneme Classification: A Simple Fine-tuning Approach Recent progress in Spoken Language Modeling has demonstrated the feasibility of learning language directly from speech. Generating speech through a pipeline that operates at the text level typically loses nuances, intonations, and non-verbal vocalizations. Modeling directly from speech opens up the path to more natural and expressive systems. On the other hand, speech-only systems tend to trail behind text-based language models in terms of their semantic abilities. We show that fine-tuning speech representation models on phoneme classification leads to more context-invariant representations, which in turn improve downstream language modeling performance. 3 authors · Sep 16, 2024
- VALLR: Visual ASR Language Model for Lip Reading Lip Reading, or Visual Automatic Speech Recognition (V-ASR), is a complex task requiring the interpretation of spoken language exclusively from visual cues, primarily lip movements and facial expressions. This task is especially challenging due to the absence of auditory information and the inherent ambiguity when visually distinguishing phonemes that have overlapping visemes where different phonemes appear identical on the lips. Current methods typically attempt to predict words or characters directly from these visual cues, but this approach frequently encounters high error rates due to coarticulation effects and viseme ambiguity. We propose a novel two-stage, phoneme-centric framework for Visual Automatic Speech Recognition (V-ASR) that addresses these longstanding challenges. First, our model predicts a compact sequence of phonemes from visual inputs using a Video Transformer with a CTC head, thereby reducing the task complexity and achieving robust speaker invariance. This phoneme output then serves as the input to a fine-tuned Large Language Model (LLM), which reconstructs coherent words and sentences by leveraging broader linguistic context. Unlike existing methods that either predict words directly-often faltering on visually similar phonemes-or rely on large-scale multimodal pre-training, our approach explicitly encodes intermediate linguistic structure while remaining highly data efficient. We demonstrate state-of-the-art performance on two challenging datasets, LRS2 and LRS3, where our method achieves significant reductions in Word Error Rate (WER) achieving a SOTA WER of 18.7 on LRS3 despite using 99.4% less labelled data than the next best approach. 3 authors · Mar 27
- Good Neighbors Are All You Need for Chinese Grapheme-to-Phoneme Conversion Most Chinese Grapheme-to-Phoneme (G2P) systems employ a three-stage framework that first transforms input sequences into character embeddings, obtains linguistic information using language models, and then predicts the phonemes based on global context about the entire input sequence. However, linguistic knowledge alone is often inadequate. Language models frequently encode overly general structures of a sentence and fail to cover specific cases needed to use phonetic knowledge. Also, a handcrafted post-processing system is needed to address the problems relevant to the tone of the characters. However, the system exhibits inconsistency in the segmentation of word boundaries which consequently degrades the performance of the G2P system. To address these issues, we propose the Reinforcer that provides strong inductive bias for language models by emphasizing the phonological information between neighboring characters to help disambiguate pronunciations. Experimental results show that the Reinforcer boosts the cutting-edge architectures by a large margin. We also combine the Reinforcer with a large-scale pre-trained model and demonstrate the validity of using neighboring context in knowledge transfer scenarios. 4 authors · Mar 14, 2023
- Large Language Models Are Zero-Shot Time Series Forecasters By encoding time series as a string of numerical digits, we can frame time series forecasting as next-token prediction in text. Developing this approach, we find that large language models (LLMs) such as GPT-3 and LLaMA-2 can surprisingly zero-shot extrapolate time series at a level comparable to or exceeding the performance of purpose-built time series models trained on the downstream tasks. To facilitate this performance, we propose procedures for effectively tokenizing time series data and converting discrete distributions over tokens into highly flexible densities over continuous values. We argue the success of LLMs for time series stems from their ability to naturally represent multimodal distributions, in conjunction with biases for simplicity, and repetition, which align with the salient features in many time series, such as repeated seasonal trends. We also show how LLMs can naturally handle missing data without imputation through non-numerical text, accommodate textual side information, and answer questions to help explain predictions. While we find that increasing model size generally improves performance on time series, we show GPT-4 can perform worse than GPT-3 because of how it tokenizes numbers, and poor uncertainty calibration, which is likely the result of alignment interventions such as RLHF. 4 authors · Oct 11, 2023 1
- Layer-wise Analysis of a Self-supervised Speech Representation Model Recently proposed self-supervised learning approaches have been successful for pre-training speech representation models. The utility of these learned representations has been observed empirically, but not much has been studied about the type or extent of information encoded in the pre-trained representations themselves. Developing such insights can help understand the capabilities and limits of these models and enable the research community to more efficiently develop their usage for downstream applications. In this work, we begin to fill this gap by examining one recent and successful pre-trained model (wav2vec 2.0), via its intermediate representation vectors, using a suite of analysis tools. We use the metrics of canonical correlation, mutual information, and performance on simple downstream tasks with non-parametric probes, in order to (i) query for acoustic and linguistic information content, (ii) characterize the evolution of information across model layers, and (iii) understand how fine-tuning the model for automatic speech recognition (ASR) affects these observations. Our findings motivate modifying the fine-tuning protocol for ASR, which produces improved word error rates in a low-resource setting. 3 authors · Jul 9, 2021
- TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Prediction We propose TalkNet, a non-autoregressive convolutional neural model for speech synthesis with explicit pitch and duration prediction. The model consists of three feed-forward convolutional networks. The first network predicts grapheme durations. An input text is expanded by repeating each symbol according to the predicted duration. The second network predicts pitch value for every mel frame. The third network generates a mel-spectrogram from the expanded text conditioned on predicted pitch. All networks are based on 1D depth-wise separable convolutional architecture. The explicit duration prediction eliminates word skipping and repeating. The quality of the generated speech nearly matches the best auto-regressive models - TalkNet trained on the LJSpeech dataset got MOS 4.08. The model has only 13.2M parameters, almost 2x less than the present state-of-the-art text-to-speech models. The non-autoregressive architecture allows for fast training and inference. The small model size and fast inference make the TalkNet an attractive candidate for embedded speech synthesis. 2 authors · Apr 16, 2021
- Non-Autoregressive Predictive Coding for Learning Speech Representations from Local Dependencies Self-supervised speech representations have been shown to be effective in a variety of speech applications. However, existing representation learning methods generally rely on the autoregressive model and/or observed global dependencies while generating the representation. In this work, we propose Non-Autoregressive Predictive Coding (NPC), a self-supervised method, to learn a speech representation in a non-autoregressive manner by relying only on local dependencies of speech. NPC has a conceptually simple objective and can be implemented easily with the introduced Masked Convolution Blocks. NPC offers a significant speedup for inference since it is parallelizable in time and has a fixed inference time for each time step regardless of the input sequence length. We discuss and verify the effectiveness of NPC by theoretically and empirically comparing it with other methods. We show that the NPC representation is comparable to other methods in speech experiments on phonetic and speaker classification while being more efficient. 3 authors · Oct 31, 2020
- Improving Speech Recognition Error Prediction for Modern and Off-the-shelf Speech Recognizers Modeling the errors of a speech recognizer can help simulate errorful recognized speech data from plain text, which has proven useful for tasks like discriminative language modeling, improving robustness of NLP systems, where limited or even no audio data is available at train time. Previous work typically considered replicating behavior of GMM-HMM based systems, but the behavior of more modern posterior-based neural network acoustic models is not the same and requires adjustments to the error prediction model. In this work, we extend a prior phonetic confusion based model for predicting speech recognition errors in two ways: first, we introduce a sampling-based paradigm that better simulates the behavior of a posterior-based acoustic model. Second, we investigate replacing the confusion matrix with a sequence-to-sequence model in order to introduce context dependency into the prediction. We evaluate the error predictors in two ways: first by predicting the errors made by a Switchboard ASR system on unseen data (Fisher), and then using that same predictor to estimate the behavior of an unrelated cloud-based ASR system on a novel task. Sampling greatly improves predictive accuracy within a 100-guess paradigm, while the sequence model performs similarly to the confusion matrix. 3 authors · Aug 20, 2024
- Predicting Prosodic Prominence from Text with Pre-trained Contextualized Word Representations In this paper we introduce a new natural language processing dataset and benchmark for predicting prosodic prominence from written text. To our knowledge this will be the largest publicly available dataset with prosodic labels. We describe the dataset construction and the resulting benchmark dataset in detail and train a number of different models ranging from feature-based classifiers to neural network systems for the prediction of discretized prosodic prominence. We show that pre-trained contextualized word representations from BERT outperform the other models even with less than 10% of the training data. Finally we discuss the dataset in light of the results and point to future research and plans for further improving both the dataset and methods of predicting prosodic prominence from text. The dataset and the code for the models are publicly available. 6 authors · Aug 6, 2019
- Generative Pre-Training for Speech with Autoregressive Predictive Coding Learning meaningful and general representations from unannotated speech that are applicable to a wide range of tasks remains challenging. In this paper we propose to use autoregressive predictive coding (APC), a recently proposed self-supervised objective, as a generative pre-training approach for learning meaningful, non-specific, and transferable speech representations. We pre-train APC on large-scale unlabeled data and conduct transfer learning experiments on three speech applications that require different information about speech characteristics to perform well: speech recognition, speech translation, and speaker identification. Extensive experiments show that APC not only outperforms surface features (e.g., log Mel spectrograms) and other popular representation learning methods on all three tasks, but is also effective at reducing downstream labeled data size and model parameters. We also investigate the use of Transformers for modeling APC and find it superior to RNNs. 2 authors · Oct 23, 2019
- Embers of Autoregression: Understanding Large Language Models Through the Problem They are Trained to Solve The widespread adoption of large language models (LLMs) makes it important to recognize their strengths and limitations. We argue that in order to develop a holistic understanding of these systems we need to consider the problem that they were trained to solve: next-word prediction over Internet text. By recognizing the pressures that this task exerts we can make predictions about the strategies that LLMs will adopt, allowing us to reason about when they will succeed or fail. This approach - which we call the teleological approach - leads us to identify three factors that we hypothesize will influence LLM accuracy: the probability of the task to be performed, the probability of the target output, and the probability of the provided input. We predict that LLMs will achieve higher accuracy when these probabilities are high than when they are low - even in deterministic settings where probability should not matter. To test our predictions, we evaluate two LLMs (GPT-3.5 and GPT-4) on eleven tasks, and we find robust evidence that LLMs are influenced by probability in the ways that we have hypothesized. In many cases, the experiments reveal surprising failure modes. For instance, GPT-4's accuracy at decoding a simple cipher is 51% when the output is a high-probability word sequence but only 13% when it is low-probability. These results show that AI practitioners should be careful about using LLMs in low-probability situations. More broadly, we conclude that we should not evaluate LLMs as if they are humans but should instead treat them as a distinct type of system - one that has been shaped by its own particular set of pressures. 5 authors · Sep 24, 2023
- Towards Building ASR Systems for the Next Billion Users Recent methods in speech and language technology pretrain very LARGE models which are fine-tuned for specific tasks. However, the benefits of such LARGE models are often limited to a few resource rich languages of the world. In this work, we make multiple contributions towards building ASR systems for low resource languages from the Indian subcontinent. First, we curate 17,000 hours of raw speech data for 40 Indian languages from a wide variety of domains including education, news, technology, and finance. Second, using this raw speech data we pretrain several variants of wav2vec style models for 40 Indian languages. Third, we analyze the pretrained models to find key features: codebook vectors of similar sounding phonemes are shared across languages, representations across layers are discriminative of the language family, and attention heads often pay attention within small local windows. Fourth, we fine-tune this model for downstream ASR for 9 languages and obtain state-of-the-art results on 3 public datasets, including on very low-resource languages such as Sinhala and Nepali. Our work establishes that multilingual pretraining is an effective strategy for building ASR systems for the linguistically diverse speakers of the Indian subcontinent. Our code, data and models are available publicly at https://indicnlp.ai4bharat.org/indicwav2vec/ and we hope they will help advance research in ASR for Indic languages. 8 authors · Nov 6, 2021
10 RALL-E: Robust Codec Language Modeling with Chain-of-Thought Prompting for Text-to-Speech Synthesis We present RALL-E, a robust language modeling method for text-to-speech (TTS) synthesis. While previous work based on large language models (LLMs) shows impressive performance on zero-shot TTS, such methods often suffer from poor robustness, such as unstable prosody (weird pitch and rhythm/duration) and a high word error rate (WER), due to the autoregressive prediction style of language models. The core idea behind RALL-E is chain-of-thought (CoT) prompting, which decomposes the task into simpler steps to enhance the robustness of LLM-based TTS. To accomplish this idea, RALL-E first predicts prosody features (pitch and duration) of the input text and uses them as intermediate conditions to predict speech tokens in a CoT style. Second, RALL-E utilizes the predicted duration prompt to guide the computing of self-attention weights in Transformer to enforce the model to focus on the corresponding phonemes and prosody features when predicting speech tokens. Results of comprehensive objective and subjective evaluations demonstrate that, compared to a powerful baseline method VALL-E, RALL-E significantly improves the WER of zero-shot TTS from 6.3% (without reranking) and 2.1% (with reranking) to 2.8% and 1.0%, respectively. Furthermore, we demonstrate that RALL-E correctly synthesizes sentences that are hard for VALL-E and reduces the error rate from 68% to 4%. 11 authors · Apr 4, 2024
- Deep Speech: Scaling up end-to-end speech recognition We present a state-of-the-art speech recognition system developed using end-to-end deep learning. Our architecture is significantly simpler than traditional speech systems, which rely on laboriously engineered processing pipelines; these traditional systems also tend to perform poorly when used in noisy environments. In contrast, our system does not need hand-designed components to model background noise, reverberation, or speaker variation, but instead directly learns a function that is robust to such effects. We do not need a phoneme dictionary, nor even the concept of a "phoneme." Key to our approach is a well-optimized RNN training system that uses multiple GPUs, as well as a set of novel data synthesis techniques that allow us to efficiently obtain a large amount of varied data for training. Our system, called Deep Speech, outperforms previously published results on the widely studied Switchboard Hub5'00, achieving 16.0% error on the full test set. Deep Speech also handles challenging noisy environments better than widely used, state-of-the-art commercial speech systems. 11 authors · Dec 17, 2014
- SLUE: New Benchmark Tasks for Spoken Language Understanding Evaluation on Natural Speech Progress in speech processing has been facilitated by shared datasets and benchmarks. Historically these have focused on automatic speech recognition (ASR), speaker identification, or other lower-level tasks. Interest has been growing in higher-level spoken language understanding tasks, including using end-to-end models, but there are fewer annotated datasets for such tasks. At the same time, recent work shows the possibility of pre-training generic representations and then fine-tuning for several tasks using relatively little labeled data. We propose to create a suite of benchmark tasks for Spoken Language Understanding Evaluation (SLUE) consisting of limited-size labeled training sets and corresponding evaluation sets. This resource would allow the research community to track progress, evaluate pre-trained representations for higher-level tasks, and study open questions such as the utility of pipeline versus end-to-end approaches. We present the first phase of the SLUE benchmark suite, consisting of named entity recognition, sentiment analysis, and ASR on the corresponding datasets. We focus on naturally produced (not read or synthesized) speech, and freely available datasets. We provide new transcriptions and annotations on subsets of the VoxCeleb and VoxPopuli datasets, evaluation metrics and results for baseline models, and an open-source toolkit to reproduce the baselines and evaluate new models. 7 authors · Nov 19, 2021
3 Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions This paper describes Tacotron 2, a neural network architecture for speech synthesis directly from text. The system is composed of a recurrent sequence-to-sequence feature prediction network that maps character embeddings to mel-scale spectrograms, followed by a modified WaveNet model acting as a vocoder to synthesize timedomain waveforms from those spectrograms. Our model achieves a mean opinion score (MOS) of 4.53 comparable to a MOS of 4.58 for professionally recorded speech. To validate our design choices, we present ablation studies of key components of our system and evaluate the impact of using mel spectrograms as the input to WaveNet instead of linguistic, duration, and F_0 features. We further demonstrate that using a compact acoustic intermediate representation enables significant simplification of the WaveNet architecture. 13 authors · Dec 15, 2017
- Allophant: Cross-lingual Phoneme Recognition with Articulatory Attributes This paper proposes Allophant, a multilingual phoneme recognizer. It requires only a phoneme inventory for cross-lingual transfer to a target language, allowing for low-resource recognition. The architecture combines a compositional phone embedding approach with individually supervised phonetic attribute classifiers in a multi-task architecture. We also introduce Allophoible, an extension of the PHOIBLE database. When combined with a distance based mapping approach for grapheme-to-phoneme outputs, it allows us to train on PHOIBLE inventories directly. By training and evaluating on 34 languages, we found that the addition of multi-task learning improves the model's capability of being applied to unseen phonemes and phoneme inventories. On supervised languages we achieve phoneme error rate improvements of 11 percentage points (pp.) compared to a baseline without multi-task learning. Evaluation of zero-shot transfer on 84 languages yielded a decrease in PER of 2.63 pp. over the baseline. 3 authors · Jun 7, 2023
- Replacing Human Audio with Synthetic Audio for On-device Unspoken Punctuation Prediction We present a novel multi-modal unspoken punctuation prediction system for the English language which combines acoustic and text features. We demonstrate for the first time, that by relying exclusively on synthetic data generated using a prosody-aware text-to-speech system, we can outperform a model trained with expensive human audio recordings on the unspoken punctuation prediction problem. Our model architecture is well suited for on-device use. This is achieved by leveraging hash-based embeddings of automatic speech recognition text output in conjunction with acoustic features as input to a quasi-recurrent neural network, keeping the model size small and latency low. 11 authors · Oct 20, 2020
- Do We Still Need Automatic Speech Recognition for Spoken Language Understanding? Spoken language understanding (SLU) tasks are usually solved by first transcribing an utterance with automatic speech recognition (ASR) and then feeding the output to a text-based model. Recent advances in self-supervised representation learning for speech data have focused on improving the ASR component. We investigate whether representation learning for speech has matured enough to replace ASR in SLU. We compare learned speech features from wav2vec 2.0, state-of-the-art ASR transcripts, and the ground truth text as input for a novel speech-based named entity recognition task, a cardiac arrest detection task on real-world emergency calls and two existing SLU benchmarks. We show that learned speech features are superior to ASR transcripts on three classification tasks. For machine translation, ASR transcripts are still the better choice. We highlight the intrinsic robustness of wav2vec 2.0 representations to out-of-vocabulary words as key to better performance. 7 authors · Nov 29, 2021
- Speech Model Pre-training for End-to-End Spoken Language Understanding Whereas conventional spoken language understanding (SLU) systems map speech to text, and then text to intent, end-to-end SLU systems map speech directly to intent through a single trainable model. Achieving high accuracy with these end-to-end models without a large amount of training data is difficult. We propose a method to reduce the data requirements of end-to-end SLU in which the model is first pre-trained to predict words and phonemes, thus learning good features for SLU. We introduce a new SLU dataset, Fluent Speech Commands, and show that our method improves performance both when the full dataset is used for training and when only a small subset is used. We also describe preliminary experiments to gauge the model's ability to generalize to new phrases not heard during training. 5 authors · Apr 7, 2019
- OverFlow: Putting flows on top of neural transducers for better TTS Neural HMMs are a type of neural transducer recently proposed for sequence-to-sequence modelling in text-to-speech. They combine the best features of classic statistical speech synthesis and modern neural TTS, requiring less data and fewer training updates, and are less prone to gibberish output caused by neural attention failures. In this paper, we combine neural HMM TTS with normalising flows for describing the highly non-Gaussian distribution of speech acoustics. The result is a powerful, fully probabilistic model of durations and acoustics that can be trained using exact maximum likelihood. Compared to dominant flow-based acoustic models, our approach integrates autoregression for improved modelling of long-range dependences such as utterance-level prosody. Experiments show that a system based on our proposal gives more accurate pronunciations and better subjective speech quality than comparable methods, whilst retaining the original advantages of neural HMMs. Audio examples and code are available at https://shivammehta25.github.io/OverFlow/ 6 authors · Nov 13, 2022
- Encoding of lexical tone in self-supervised models of spoken language Interpretability research has shown that self-supervised Spoken Language Models (SLMs) encode a wide variety of features in human speech from the acoustic, phonetic, phonological, syntactic and semantic levels, to speaker characteristics. The bulk of prior research on representations of phonology has focused on segmental features such as phonemes; the encoding of suprasegmental phonology (such as tone and stress patterns) in SLMs is not yet well understood. Tone is a suprasegmental feature that is present in more than half of the world's languages. This paper aims to analyze the tone encoding capabilities of SLMs, using Mandarin and Vietnamese as case studies. We show that SLMs encode lexical tone to a significant degree even when they are trained on data from non-tonal languages. We further find that SLMs behave similarly to native and non-native human participants in tone and consonant perception studies, but they do not follow the same developmental trajectory. 5 authors · Mar 25, 2024
3 HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the state-of-the-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER reduction on the more challenging dev-other and test-other evaluation subsets. 6 authors · Jun 14, 2021
- Self-Supervised Speech Representation Learning: A Review Although supervised deep learning has revolutionized speech and audio processing, it has necessitated the building of specialist models for individual tasks and application scenarios. It is likewise difficult to apply this to dialects and languages for which only limited labeled data is available. Self-supervised representation learning methods promise a single universal model that would benefit a wide variety of tasks and domains. Such methods have shown success in natural language processing and computer vision domains, achieving new levels of performance while reducing the number of labels required for many downstream scenarios. Speech representation learning is experiencing similar progress in three main categories: generative, contrastive, and predictive methods. Other approaches rely on multi-modal data for pre-training, mixing text or visual data streams with speech. Although self-supervised speech representation is still a nascent research area, it is closely related to acoustic word embedding and learning with zero lexical resources, both of which have seen active research for many years. This review presents approaches for self-supervised speech representation learning and their connection to other research areas. Since many current methods focus solely on automatic speech recognition as a downstream task, we review recent efforts on benchmarking learned representations to extend the application beyond speech recognition. 12 authors · May 21, 2022
1 Modeling of learning curves with applications to pos tagging An algorithm to estimate the evolution of learning curves on the whole of a training data base, based on the results obtained from a portion and using a functional strategy, is introduced. We approximate iteratively the sought value at the desired time, independently of the learning technique used and once a point in the process, called prediction level, has been passed. The proposal proves to be formally correct with respect to our working hypotheses and includes a reliable proximity condition. This allows the user to fix a convergence threshold with respect to the accuracy finally achievable, which extends the concept of stopping criterion and seems to be effective even in the presence of distorting observations. Our aim is to evaluate the training effort, supporting decision making in order to reduce the need for both human and computational resources during the learning process. The proposal is of interest in at least three operational procedures. The first is the anticipation of accuracy gain, with the purpose of measuring how much work is needed to achieve a certain degree of performance. The second relates the comparison of efficiency between systems at training time, with the objective of completing this task only for the one that best suits our requirements. The prediction of accuracy is also a valuable item of information for customizing systems, since we can estimate in advance the impact of settings on both the performance and the development costs. Using the generation of part-of-speech taggers as an example application, the experimental results are consistent with our expectations. 3 authors · Feb 4, 2024
- Generalized Multilingual Text-to-Speech Generation with Language-Aware Style Adaptation Text-to-Speech (TTS) models can generate natural, human-like speech across multiple languages by transforming phonemes into waveforms. However, multilingual TTS remains challenging due to discrepancies in phoneme vocabularies and variations in prosody and speaking style across languages. Existing approaches either train separate models for each language, which achieve high performance at the cost of increased computational resources, or use a unified model for multiple languages that struggles to capture fine-grained, language-specific style variations. In this work, we propose LanStyleTTS, a non-autoregressive, language-aware style adaptive TTS framework that standardizes phoneme representations and enables fine-grained, phoneme-level style control across languages. This design supports a unified multilingual TTS model capable of producing accurate and high-quality speech without the need to train language-specific models. We evaluate LanStyleTTS by integrating it with several state-of-the-art non-autoregressive TTS architectures. Results show consistent performance improvements across different model backbones. Furthermore, we investigate a range of acoustic feature representations, including mel-spectrograms and autoencoder-derived latent features. Our experiments demonstrate that latent encodings can significantly reduce model size and computational cost while preserving high-quality speech generation. 5 authors · Apr 11
2 VocalNet: Speech LLM with Multi-Token Prediction for Faster and High-Quality Generation Speech large language models (LLMs) have emerged as a prominent research focus in speech processing. We propose VocalNet-1B and VocalNet-8B, a series of high-performance, low-latency speech LLMs enabled by a scalable and model-agnostic training framework for real-time voice interaction. Departing from the conventional next-token prediction (NTP), we introduce multi-token prediction (MTP), a novel approach optimized for speech LLMs that simultaneously improves generation speed and quality. Experiments show that VocalNet outperforms mainstream Omni LLMs despite using significantly less training data, while also surpassing existing open-source speech LLMs by a substantial margin. To support reproducibility and community advancement, we will open-source all model weights, inference code, training data, and framework implementations upon publication. 7 authors · Apr 5
- Unsupervised Speech Recognition Despite rapid progress in the recent past, current speech recognition systems still require labeled training data which limits this technology to a small fraction of the languages spoken around the globe. This paper describes wav2vec-U, short for wav2vec Unsupervised, a method to train speech recognition models without any labeled data. We leverage self-supervised speech representations to segment unlabeled audio and learn a mapping from these representations to phonemes via adversarial training. The right representations are key to the success of our method. Compared to the best previous unsupervised work, wav2vec-U reduces the phoneme error rate on the TIMIT benchmark from 26.1 to 11.3. On the larger English Librispeech benchmark, wav2vec-U achieves a word error rate of 5.9 on test-other, rivaling some of the best published systems trained on 960 hours of labeled data from only two years ago. We also experiment on nine other languages, including low-resource languages such as Kyrgyz, Swahili and Tatar. 4 authors · May 24, 2021
3 Textually Pretrained Speech Language Models Speech language models (SpeechLMs) process and generate acoustic data only, without textual supervision. In this work, we propose TWIST, a method for training SpeechLMs using a warm-start from a pretrained textual language models. We show using both automatic and human evaluations that TWIST outperforms a cold-start SpeechLM across the board. We empirically analyze the effect of different model design choices such as the speech tokenizer, the pretrained textual model, and the dataset size. We find that model and dataset scale both play an important role in constructing better-performing SpeechLMs. Based on our observations, we present the largest (to the best of our knowledge) SpeechLM both in terms of number of parameters and training data. We additionally introduce two spoken versions of the StoryCloze textual benchmark to further improve model evaluation and advance future research in the field. Speech samples can be found on our website: https://pages.cs.huji.ac.il/adiyoss-lab/twist/ . 12 authors · May 22, 2023
- Few-Shot Spoken Language Understanding via Joint Speech-Text Models Recent work on speech representation models jointly pre-trained with text has demonstrated the potential of improving speech representations by encoding speech and text in a shared space. In this paper, we leverage such shared representations to address the persistent challenge of limited data availability in spoken language understanding tasks. By employing a pre-trained speech-text model, we find that models fine-tuned on text can be effectively transferred to speech testing data. With as little as 1 hour of labeled speech data, our proposed approach achieves comparable performance on spoken language understanding tasks (specifically, sentiment analysis and named entity recognition) when compared to previous methods using speech-only pre-trained models fine-tuned on 10 times more data. Beyond the proof-of-concept study, we also analyze the latent representations. We find that the bottom layers of speech-text models are largely task-agnostic and align speech and text representations into a shared space, while the top layers are more task-specific. 4 authors · Oct 9, 2023
- L1-aware Multilingual Mispronunciation Detection Framework The phonological discrepancies between a speaker's native (L1) and the non-native language (L2) serves as a major factor for mispronunciation. This paper introduces a novel multilingual MDD architecture, L1-MultiMDD, enriched with L1-aware speech representation. An end-to-end speech encoder is trained on the input signal and its corresponding reference phoneme sequence. First, an attention mechanism is deployed to align the input audio with the reference phoneme sequence. Afterwards, the L1-L2-speech embedding are extracted from an auxiliary model, pretrained in a multi-task setup identifying L1 and L2 language, and are infused with the primary network. Finally, the L1-MultiMDD is then optimized for a unified multilingual phoneme recognition task using connectionist temporal classification (CTC) loss for the target languages: English, Arabic, and Mandarin. Our experiments demonstrate the effectiveness of the proposed L1-MultiMDD framework on both seen -- L2-ARTIC, LATIC, and AraVoiceL2v2; and unseen -- EpaDB and Speechocean762 datasets. The consistent gains in PER, and false rejection rate (FRR) across all target languages confirm our approach's robustness, efficacy, and generalizability. 3 authors · Sep 14, 2023
- Decoding-based Regression Language models have recently been shown capable of performing regression tasks wherein numeric predictions are represented as decoded strings. In this work, we provide theoretical grounds for this capability and furthermore investigate the utility of causal auto-regressive sequence models when they are applied to any feature representation. We find that, despite being trained in the usual way - for next-token prediction via cross-entropy loss - decoding-based regression is as performant as traditional approaches for tabular regression tasks, while being flexible enough to capture arbitrary distributions, such as in the task of density estimation. 2 authors · Jan 31
- A unified one-shot prosody and speaker conversion system with self-supervised discrete speech units We present a unified system to realize one-shot voice conversion (VC) on the pitch, rhythm, and speaker attributes. Existing works generally ignore the correlation between prosody and language content, leading to the degradation of naturalness in converted speech. Additionally, the lack of proper language features prevents these systems from accurately preserving language content after conversion. To address these issues, we devise a cascaded modular system leveraging self-supervised discrete speech units as language representation. These discrete units provide duration information essential for rhythm modeling. Our system first extracts utterance-level prosody and speaker representations from the raw waveform. Given the prosody representation, a prosody predictor estimates pitch, energy, and duration for each discrete unit in the utterance. A synthesizer further reconstructs speech based on the predicted prosody, speaker representation, and discrete units. Experiments show that our system outperforms previous approaches in naturalness, intelligibility, speaker transferability, and prosody transferability. Code and samples are publicly available. 3 authors · Nov 11, 2022
- Hearing voices at the National Library -- a speech corpus and acoustic model for the Swedish language This paper explains our work in developing new acoustic models for automated speech recognition (ASR) at KBLab, the infrastructure for data-driven research at the National Library of Sweden (KB). We evaluate different approaches for a viable speech-to-text pipeline for audiovisual resources in Swedish, using the wav2vec 2.0 architecture in combination with speech corpuses created from KB's collections. These approaches include pretraining an acoustic model for Swedish from the ground up, and fine-tuning existing monolingual and multilingual models. The collections-based corpuses we use have been sampled from millions of hours of speech, with a conscious attempt to balance regional dialects to produce a more representative, and thus more democratic, model. The acoustic model this enabled, "VoxRex", outperforms existing models for Swedish ASR. We also evaluate combining this model with various pretrained language models, which further enhanced performance. We conclude by highlighting the potential of such technology for cultural heritage institutions with vast collections of previously unlabelled audiovisual data. Our models are released for further exploration and research here: https://huggingface.co/KBLab. 3 authors · May 6, 2022
1 PAST: Phonetic-Acoustic Speech Tokenizer We present PAST, a novel end-to-end framework that jointly models phonetic information alongside signal reconstruction, eliminating the need for external pretrained models. Unlike previous approaches that rely on pretrained self-supervised models, PAST employs supervised phonetic data, directly integrating domain knowledge into the tokenization process via auxiliary tasks. Additionally, we introduce a streamable, causal variant of PAST, enabling real-time speech applications. Results demonstrate that PAST surpasses existing evaluated baseline tokenizers across common evaluation metrics, including phonetic representation and speech reconstruction. Notably, PAST also achieves superior performance when serving as a speech representation for speech language models, further highlighting its effectiveness as a foundation for spoken language generation. To foster further research, we release the full implementation. For code, model checkpoints, and samples see: https://pages.cs.huji.ac.il/adiyoss-lab/PAST 3 authors · May 20
4 MaskGCT: Zero-Shot Text-to-Speech with Masked Generative Codec Transformer The recent large-scale text-to-speech (TTS) systems are usually grouped as autoregressive and non-autoregressive systems. The autoregressive systems implicitly model duration but exhibit certain deficiencies in robustness and lack of duration controllability. Non-autoregressive systems require explicit alignment information between text and speech during training and predict durations for linguistic units (e.g. phone), which may compromise their naturalness. In this paper, we introduce Masked Generative Codec Transformer (MaskGCT), a fully non-autoregressive TTS model that eliminates the need for explicit alignment information between text and speech supervision, as well as phone-level duration prediction. MaskGCT is a two-stage model: in the first stage, the model uses text to predict semantic tokens extracted from a speech self-supervised learning (SSL) model, and in the second stage, the model predicts acoustic tokens conditioned on these semantic tokens. MaskGCT follows the mask-and-predict learning paradigm. During training, MaskGCT learns to predict masked semantic or acoustic tokens based on given conditions and prompts. During inference, the model generates tokens of a specified length in a parallel manner. Experiments with 100K hours of in-the-wild speech demonstrate that MaskGCT outperforms the current state-of-the-art zero-shot TTS systems in terms of quality, similarity, and intelligibility. Audio samples are available at https://maskgct.github.io/. 10 authors · Sep 1, 2024
- CSS10: A Collection of Single Speaker Speech Datasets for 10 Languages We describe our development of CSS10, a collection of single speaker speech datasets for ten languages. It is composed of short audio clips from LibriVox audiobooks and their aligned texts. To validate its quality we train two neural text-to-speech models on each dataset. Subsequently, we conduct Mean Opinion Score tests on the synthesized speech samples. We make our datasets, pre-trained models, and test resources publicly available. We hope they will be used for future speech tasks. 2 authors · Mar 27, 2019
18 Pheme: Efficient and Conversational Speech Generation In recent years, speech generation has seen remarkable progress, now achieving one-shot generation capability that is often virtually indistinguishable from real human voice. Integrating such advancements in speech generation with large language models might revolutionize a wide range of applications. However, certain applications, such as assistive conversational systems, require natural and conversational speech generation tools that also operate efficiently in real time. Current state-of-the-art models like VALL-E and SoundStorm, powered by hierarchical neural audio codecs, require large neural components and extensive training data to work well. In contrast, MQTTS aims to build more compact conversational TTS models while capitalizing on smaller-scale real-life conversational speech data. However, its autoregressive nature yields high inference latency and thus limits its real-time usage. In order to mitigate the current limitations of the state-of-the-art TTS models while capitalizing on their strengths, in this work we introduce the Pheme model series that 1) offers compact yet high-performing models, 2) allows for parallel speech generation of 3) natural conversational speech, and 4) it can be trained efficiently on smaller-scale conversational data, cutting data demands by more than 10x but still matching the quality of the autoregressive TTS models. We also show that through simple teacher-student distillation we can meet significant improvements in voice quality for single-speaker setups on top of pretrained Pheme checkpoints, relying solely on synthetic speech generated by much larger teacher models. Audio samples and pretrained models are available online. 4 authors · Jan 5, 2024 2
- Mockingjay: Unsupervised Speech Representation Learning with Deep Bidirectional Transformer Encoders We present Mockingjay as a new speech representation learning approach, where bidirectional Transformer encoders are pre-trained on a large amount of unlabeled speech. Previous speech representation methods learn through conditioning on past frames and predicting information about future frames. Whereas Mockingjay is designed to predict the current frame through jointly conditioning on both past and future contexts. The Mockingjay representation improves performance for a wide range of downstream tasks, including phoneme classification, speaker recognition, and sentiment classification on spoken content, while outperforming other approaches. Mockingjay is empirically powerful and can be fine-tuned with downstream models, with only 2 epochs we further improve performance dramatically. In a low resource setting with only 0.1% of labeled data, we outperform the result of Mel-features that uses all 100% labeled data. 5 authors · Oct 24, 2019
- An ensemble-based framework for mispronunciation detection of Arabic phonemes Determination of mispronunciations and ensuring feedback to users are maintained by computer-assisted language learning (CALL) systems. In this work, we introduce an ensemble model that defines the mispronunciation of Arabic phonemes and assists learning of Arabic, effectively. To the best of our knowledge, this is the very first attempt to determine the mispronunciations of Arabic phonemes employing ensemble learning techniques and conventional machine learning models, comprehensively. In order to observe the effect of feature extraction techniques, mel-frequency cepstrum coefficients (MFCC), and Mel spectrogram are blended with each learning algorithm. To show the success of proposed model, 29 letters in the Arabic phonemes, 8 of which are hafiz, are voiced by a total of 11 different person. The amount of data set has been enhanced employing the methods of adding noise, time shifting, time stretching, pitch shifting. Extensive experiment results demonstrate that the utilization of voting classifier as an ensemble algorithm with Mel spectrogram feature extraction technique exhibits remarkable classification result with 95.9% of accuracy. 3 authors · Jan 3, 2023
- SimpleSpeech 2: Towards Simple and Efficient Text-to-Speech with Flow-based Scalar Latent Transformer Diffusion Models Scaling Text-to-speech (TTS) to large-scale datasets has been demonstrated as an effective method for improving the diversity and naturalness of synthesized speech. At the high level, previous large-scale TTS models can be categorized into either Auto-regressive (AR) based (e.g., VALL-E) or Non-auto-regressive (NAR) based models (e.g., NaturalSpeech 2/3). Although these works demonstrate good performance, they still have potential weaknesses. For instance, AR-based models are plagued by unstable generation quality and slow generation speed; meanwhile, some NAR-based models need phoneme-level duration alignment information, thereby increasing the complexity of data pre-processing, model design, and loss design. In this work, we build upon our previous publication by implementing a simple and efficient non-autoregressive (NAR) TTS framework, termed SimpleSpeech 2. SimpleSpeech 2 effectively combines the strengths of both autoregressive (AR) and non-autoregressive (NAR) methods, offering the following key advantages: (1) simplified data preparation; (2) straightforward model and loss design; and (3) stable, high-quality generation performance with fast inference speed. Compared to our previous publication, we present ({\romannumeral1}) a detailed analysis of the influence of speech tokenizer and noisy label for TTS performance; ({\romannumeral2}) four distinct types of sentence duration predictors; ({\romannumeral3}) a novel flow-based scalar latent transformer diffusion model. With these improvement, we show a significant improvement in generation performance and generation speed compared to our previous work and other state-of-the-art (SOTA) large-scale TTS models. Furthermore, we show that SimpleSpeech 2 can be seamlessly extended to multilingual TTS by training it on multilingual speech datasets. Demos are available on: {https://dongchaoyang.top/SimpleSpeech2\_demo/}. 8 authors · Aug 25, 2024
- Synchronous Bidirectional Learning for Multilingual Lip Reading Lip reading has received increasing attention in recent years. This paper focuses on the synergy of multilingual lip reading. There are about as many as 7000 languages in the world, which implies that it is impractical to train separate lip reading models with large-scale data for each language. Although each language has its own linguistic and pronunciation rules, the lip movements of all languages share similar patterns due to the common structures of human organs. Based on this idea, we try to explore the synergized learning of multilingual lip reading in this paper, and further propose a synchronous bidirectional learning (SBL) framework for effective synergy of multilingual lip reading. We firstly introduce phonemes as our modeling units for the multilingual setting here. Phonemes are more closely related with the lip movements than the alphabet letters. At the same time, similar phonemes always lead to similar visual patterns no matter which type the target language is. Then, a novel SBL block is proposed to learn the rules for each language in a fill-in-the-blank way. Specifically, the model has to learn to infer the target unit given its bidirectional context, which could represent the composition rules of phonemes for each language. To make the learning process more targeted at each particular language, an extra task of predicting the language identity is introduced in the learning process. Finally, a thorough comparison on LRW (English) and LRW-1000 (Mandarin) is performed, which shows the promising benefits from the synergized learning of different languages and also reports a new state-of-the-art result on both datasets. 5 authors · May 8, 2020
- Learning Joint Acoustic-Phonetic Word Embeddings Most speech recognition tasks pertain to mapping words across two modalities: acoustic and orthographic. In this work, we suggest learning encoders that map variable-length, acoustic or phonetic, sequences that represent words into fixed-dimensional vectors in a shared latent space; such that the distance between two word vectors represents how closely the two words sound. Instead of directly learning the distances between word vectors, we employ weak supervision and model a binary classification task to predict whether two inputs, one of each modality, represent the same word given a distance threshold. We explore various deep-learning models, bimodal contrastive losses, and techniques for mining hard negative examples such as the semi-supervised technique of self-labeling. Our best model achieves an F_1 score of 0.95 for the binary classification task. 1 authors · Aug 1, 2019
- Mispronunciation detection using self-supervised speech representations In recent years, self-supervised learning (SSL) models have produced promising results in a variety of speech-processing tasks, especially in contexts of data scarcity. In this paper, we study the use of SSL models for the task of mispronunciation detection for second language learners. We compare two downstream approaches: 1) training the model for phone recognition (PR) using native English data, and 2) training a model directly for the target task using non-native English data. We compare the performance of these two approaches for various SSL representations as well as a representation extracted from a traditional DNN-based speech recognition model. We evaluate the models on L2Arctic and EpaDB, two datasets of non-native speech annotated with pronunciation labels at the phone level. Overall, we find that using a downstream model trained for the target task gives the best performance and that most upstream models perform similarly for the task. 3 authors · Jul 30, 2023
3 Establishing Task Scaling Laws via Compute-Efficient Model Ladders We develop task scaling laws and model ladders to predict the individual task performance of pretrained language models (LMs) in the overtrained setting. Standard power laws for language modeling loss cannot accurately model task performance. Therefore, we leverage a two-step prediction approach: first use model and data size to predict a task-specific loss, and then use this task loss to predict task performance. We train a set of small-scale "ladder" models, collect data points to fit the parameterized functions of the two prediction steps, and make predictions for two target models: a 7B model trained to 4T tokens and a 13B model trained to 5T tokens. Training the ladder models only costs 1% of the compute used for the target models. On four multiple-choice tasks written in ranked classification format, we can predict the accuracy of both target models within 2 points of absolute error. We have higher prediction error on four other tasks (average absolute error 6.9) and find that these are often tasks with higher variance in task metrics. We also find that using less compute to train fewer ladder models tends to deteriorate predictions. Finally, we empirically show that our design choices and the two-step approach lead to superior performance in establishing scaling laws. 12 authors · Dec 5, 2024 2
- Learning Robust and Multilingual Speech Representations Unsupervised speech representation learning has shown remarkable success at finding representations that correlate with phonetic structures and improve downstream speech recognition performance. However, most research has been focused on evaluating the representations in terms of their ability to improve the performance of speech recognition systems on read English (e.g. Wall Street Journal and LibriSpeech). This evaluation methodology overlooks two important desiderata that speech representations should have: robustness to domain shifts and transferability to other languages. In this paper we learn representations from up to 8000 hours of diverse and noisy speech data and evaluate the representations by looking at their robustness to domain shifts and their ability to improve recognition performance in many languages. We find that our representations confer significant robustness advantages to the resulting recognition systems: we see significant improvements in out-of-domain transfer relative to baseline feature sets and the features likewise provide improvements in 25 phonetically diverse languages including tonal languages and low-resource languages. 5 authors · Jan 29, 2020
- Improving Cross-Lingual Phonetic Representation of Low-Resource Languages Through Language Similarity Analysis This paper examines how linguistic similarity affects cross-lingual phonetic representation in speech processing for low-resource languages, emphasizing effective source language selection. Previous cross-lingual research has used various source languages to enhance performance for the target low-resource language without thorough consideration of selection. Our study stands out by providing an in-depth analysis of language selection, supported by a practical approach to assess phonetic proximity among multiple language families. We investigate how within-family similarity impacts performance in multilingual training, which aids in understanding language dynamics. We also evaluate the effect of using phonologically similar languages, regardless of family. For the phoneme recognition task, utilizing phonologically similar languages consistently achieves a relative improvement of 55.6% over monolingual training, even surpassing the performance of a large-scale self-supervised learning model. Multilingual training within the same language family demonstrates that higher phonological similarity enhances performance, while lower similarity results in degraded performance compared to monolingual training. 3 authors · Jan 12
- Weakly-supervised word-level pronunciation error detection in non-native English speech We propose a weakly-supervised model for word-level mispronunciation detection in non-native (L2) English speech. To train this model, phonetically transcribed L2 speech is not required and we only need to mark mispronounced words. The lack of phonetic transcriptions for L2 speech means that the model has to learn only from a weak signal of word-level mispronunciations. Because of that and due to the limited amount of mispronounced L2 speech, the model is more likely to overfit. To limit this risk, we train it in a multi-task setup. In the first task, we estimate the probabilities of word-level mispronunciation. For the second task, we use a phoneme recognizer trained on phonetically transcribed L1 speech that is easily accessible and can be automatically annotated. Compared to state-of-the-art approaches, we improve the accuracy of detecting word-level pronunciation errors in AUC metric by 30% on the GUT Isle Corpus of L2 Polish speakers, and by 21.5% on the Isle Corpus of L2 German and Italian speakers. 5 authors · Jun 7, 2021
- Disentangled Phonetic Representation for Chinese Spelling Correction Chinese Spelling Correction (CSC) aims to detect and correct erroneous characters in Chinese texts. Although efforts have been made to introduce phonetic information (Hanyu Pinyin) in this task, they typically merge phonetic representations with character representations, which tends to weaken the representation effect of normal texts. In this work, we propose to disentangle the two types of features to allow for direct interaction between textual and phonetic information. To learn useful phonetic representations, we introduce a pinyin-to-character objective to ask the model to predict the correct characters based solely on phonetic information, where a separation mask is imposed to disable attention from phonetic input to text. To avoid overfitting the phonetics, we further design a self-distillation module to ensure that semantic information plays a major role in the prediction. Extensive experiments on three CSC benchmarks demonstrate the superiority of our method in using phonetic information. 3 authors · May 24, 2023
- Vector-Quantized Autoregressive Predictive Coding Autoregressive Predictive Coding (APC), as a self-supervised objective, has enjoyed success in learning representations from large amounts of unlabeled data, and the learned representations are rich for many downstream tasks. However, the connection between low self-supervised loss and strong performance in downstream tasks remains unclear. In this work, we propose Vector-Quantized Autoregressive Predictive Coding (VQ-APC), a novel model that produces quantized representations, allowing us to explicitly control the amount of information encoded in the representations. By studying a sequence of increasingly limited models, we reveal the constituents of the learned representations. In particular, we confirm the presence of information with probing tasks, while showing the absence of information with mutual information, uncovering the model's preference in preserving speech information as its capacity becomes constrained. We find that there exists a point where phonetic and speaker information are amplified to maximize a self-supervised objective. As a byproduct, the learned codes for a particular model capacity correspond well to English phones. 3 authors · May 17, 2020
- speechocean762: An Open-Source Non-native English Speech Corpus For Pronunciation Assessment This paper introduces a new open-source speech corpus named "speechocean762" designed for pronunciation assessment use, consisting of 5000 English utterances from 250 non-native speakers, where half of the speakers are children. Five experts annotated each of the utterances at sentence-level, word-level and phoneme-level. A baseline system is released in open source to illustrate the phoneme-level pronunciation assessment workflow on this corpus. This corpus is allowed to be used freely for commercial and non-commercial purposes. It is available for free download from OpenSLR, and the corresponding baseline system is published in the Kaldi speech recognition toolkit. 9 authors · Apr 3, 2021
- SoundChoice: Grapheme-to-Phoneme Models with Semantic Disambiguation End-to-end speech synthesis models directly convert the input characters into an audio representation (e.g., spectrograms). Despite their impressive performance, such models have difficulty disambiguating the pronunciations of identically spelled words. To mitigate this issue, a separate Grapheme-to-Phoneme (G2P) model can be employed to convert the characters into phonemes before synthesizing the audio. This paper proposes SoundChoice, a novel G2P architecture that processes entire sentences rather than operating at the word level. The proposed architecture takes advantage of a weighted homograph loss (that improves disambiguation), exploits curriculum learning (that gradually switches from word-level to sentence-level G2P), and integrates word embeddings from BERT (for further performance improvement). Moreover, the model inherits the best practices in speech recognition, including multi-task learning with Connectionist Temporal Classification (CTC) and beam search with an embedded language model. As a result, SoundChoice achieves a Phoneme Error Rate (PER) of 2.65% on whole-sentence transcription using data from LibriSpeech and Wikipedia. Index Terms grapheme-to-phoneme, speech synthesis, text-tospeech, phonetics, pronunciation, disambiguation. 2 authors · Jul 26, 2022
1 An Integration of Pre-Trained Speech and Language Models for End-to-End Speech Recognition Advances in machine learning have made it possible to perform various text and speech processing tasks, including automatic speech recognition (ASR), in an end-to-end (E2E) manner. Since typical E2E approaches require large amounts of training data and resources, leveraging pre-trained foundation models instead of training from scratch is gaining attention. Although there have been attempts to use pre-trained speech and language models in ASR, most of them are limited to using either. This paper explores the potential of integrating a pre-trained speech representation model with a large language model (LLM) for E2E ASR. The proposed model enables E2E ASR by generating text tokens in an autoregressive manner via speech representations as speech prompts, taking advantage of the vast knowledge provided by the LLM. Furthermore, the proposed model can incorporate remarkable developments for LLM utilization, such as inference optimization and parameter-efficient domain adaptation. Experimental results show that the proposed model achieves performance comparable to modern E2E ASR models. 6 authors · Dec 6, 2023
4 VITS2: Improving Quality and Efficiency of Single-Stage Text-to-Speech with Adversarial Learning and Architecture Design Single-stage text-to-speech models have been actively studied recently, and their results have outperformed two-stage pipeline systems. Although the previous single-stage model has made great progress, there is room for improvement in terms of its intermittent unnaturalness, computational efficiency, and strong dependence on phoneme conversion. In this work, we introduce VITS2, a single-stage text-to-speech model that efficiently synthesizes a more natural speech by improving several aspects of the previous work. We propose improved structures and training mechanisms and present that the proposed methods are effective in improving naturalness, similarity of speech characteristics in a multi-speaker model, and efficiency of training and inference. Furthermore, we demonstrate that the strong dependence on phoneme conversion in previous works can be significantly reduced with our method, which allows a fully end-to-end single-stage approach. 6 authors · Jul 31, 2023
- Adapting Multilingual Speech Representation Model for a New, Underresourced Language through Multilingual Fine-tuning and Continued Pretraining In recent years, neural models learned through self-supervised pretraining on large scale multilingual text or speech data have exhibited promising results for underresourced languages, especially when a relatively large amount of data from related language(s) is available. While the technology has a potential for facilitating tasks carried out in language documentation projects, such as speech transcription, pretraining a multilingual model from scratch for every new language would be highly impractical. We investigate the possibility for adapting an existing multilingual wav2vec 2.0 model for a new language, focusing on actual fieldwork data from a critically endangered tongue: Ainu. Specifically, we (i) examine the feasibility of leveraging data from similar languages also in fine-tuning; (ii) verify whether the model's performance can be improved by further pretraining on target language data. Our results show that continued pretraining is the most effective method to adapt a wav2vec 2.0 model for a new language and leads to considerable reduction in error rates. Furthermore, we find that if a model pretrained on a related speech variety or an unrelated language with similar phonological characteristics is available, multilingual fine-tuning using additional data from that language can have positive impact on speech recognition performance when there is very little labeled data in the target language. 4 authors · Jan 17, 2023
- Benchmarking Generative Latent Variable Models for Speech Stochastic latent variable models (LVMs) achieve state-of-the-art performance on natural image generation but are still inferior to deterministic models on speech. In this paper, we develop a speech benchmark of popular temporal LVMs and compare them against state-of-the-art deterministic models. We report the likelihood, which is a much used metric in the image domain, but rarely, or incomparably, reported for speech models. To assess the quality of the learned representations, we also compare their usefulness for phoneme recognition. Finally, we adapt the Clockwork VAE, a state-of-the-art temporal LVM for video generation, to the speech domain. Despite being autoregressive only in latent space, we find that the Clockwork VAE can outperform previous LVMs and reduce the gap to deterministic models by using a hierarchy of latent variables. 5 authors · Feb 22, 2022
- Acoustic To Articulatory Speech Inversion Using Multi-Resolution Spectro-Temporal Representations Of Speech Signals Multi-resolution spectro-temporal features of a speech signal represent how the brain perceives sounds by tuning cortical cells to different spectral and temporal modulations. These features produce a higher dimensional representation of the speech signals. The purpose of this paper is to evaluate how well the auditory cortex representation of speech signals contribute to estimate articulatory features of those corresponding signals. Since obtaining articulatory features from acoustic features of speech signals has been a challenging topic of interest for different speech communities, we investigate the possibility of using this multi-resolution representation of speech signals as acoustic features. We used U. of Wisconsin X-ray Microbeam (XRMB) database of clean speech signals to train a feed-forward deep neural network (DNN) to estimate articulatory trajectories of six tract variables. The optimal set of multi-resolution spectro-temporal features to train the model were chosen using appropriate scale and rate vector parameters to obtain the best performing model. Experiments achieved a correlation of 0.675 with ground-truth tract variables. We compared the performance of this speech inversion system with prior experiments conducted using Mel Frequency Cepstral Coefficients (MFCCs). 5 authors · Mar 11, 2022
- Phonological Level wav2vec2-based Mispronunciation Detection and Diagnosis Method The automatic identification and analysis of pronunciation errors, known as Mispronunciation Detection and Diagnosis (MDD) plays a crucial role in Computer Aided Pronunciation Learning (CAPL) tools such as Second-Language (L2) learning or speech therapy applications. Existing MDD methods relying on analysing phonemes can only detect categorical errors of phonemes that have an adequate amount of training data to be modelled. With the unpredictable nature of the pronunciation errors of non-native or disordered speakers and the scarcity of training datasets, it is unfeasible to model all types of mispronunciations. Moreover, phoneme-level MDD approaches have a limited ability to provide detailed diagnostic information about the error made. In this paper, we propose a low-level MDD approach based on the detection of speech attribute features. Speech attribute features break down phoneme production into elementary components that are directly related to the articulatory system leading to more formative feedback to the learner. We further propose a multi-label variant of the Connectionist Temporal Classification (CTC) approach to jointly model the non-mutually exclusive speech attributes using a single model. The pre-trained wav2vec2 model was employed as a core model for the speech attribute detector. The proposed method was applied to L2 speech corpora collected from English learners from different native languages. The proposed speech attribute MDD method was further compared to the traditional phoneme-level MDD and achieved a significantly lower False Acceptance Rate (FAR), False Rejection Rate (FRR), and Diagnostic Error Rate (DER) over all speech attributes compared to the phoneme-level equivalent. 3 authors · Nov 12, 2023
- VALL-E R: Robust and Efficient Zero-Shot Text-to-Speech Synthesis via Monotonic Alignment With the help of discrete neural audio codecs, large language models (LLM) have increasingly been recognized as a promising methodology for zero-shot Text-to-Speech (TTS) synthesis. However, sampling based decoding strategies bring astonishing diversity to generation, but also pose robustness issues such as typos, omissions and repetition. In addition, the high sampling rate of audio also brings huge computational overhead to the inference process of autoregression. To address these issues, we propose VALL-E R, a robust and efficient zero-shot TTS system, building upon the foundation of VALL-E. Specifically, we introduce a phoneme monotonic alignment strategy to strengthen the connection between phonemes and acoustic sequence, ensuring a more precise alignment by constraining the acoustic tokens to match their associated phonemes. Furthermore, we employ a codec-merging approach to downsample the discrete codes in shallow quantization layer, thereby accelerating the decoding speed while preserving the high quality of speech output. Benefiting from these strategies, VALL-E R obtains controllablity over phonemes and demonstrates its strong robustness by approaching the WER of ground truth. In addition, it requires fewer autoregressive steps, with over 60% time reduction during inference. This research has the potential to be applied to meaningful projects, including the creation of speech for those affected by aphasia. Audio samples will be available at: https://aka.ms/valler. 10 authors · Jun 12, 2024
2 LLM-Powered Grapheme-to-Phoneme Conversion: Benchmark and Case Study Grapheme-to-phoneme (G2P) conversion is critical in speech processing, particularly for applications like speech synthesis. G2P systems must possess linguistic understanding and contextual awareness of languages with polyphone words and context-dependent phonemes. Large language models (LLMs) have recently demonstrated significant potential in various language tasks, suggesting that their phonetic knowledge could be leveraged for G2P. In this paper, we evaluate the performance of LLMs in G2P conversion and introduce prompting and post-processing methods that enhance LLM outputs without additional training or labeled data. We also present a benchmarking dataset designed to assess G2P performance on sentence-level phonetic challenges of the Persian language. Our results show that by applying the proposed methods, LLMs can outperform traditional G2P tools, even in an underrepresented language like Persian, highlighting the potential of developing LLM-aided G2P systems. 3 authors · Sep 13, 2024 1
- Sylber: Syllabic Embedding Representation of Speech from Raw Audio Syllables are compositional units of spoken language that play a crucial role in human speech perception and production. However, current neural speech representations lack structure, resulting in dense token sequences that are costly to process. To bridge this gap, we propose a new model, Sylber, that produces speech representations with clean and robust syllabic structure. Specifically, we propose a self-supervised model that regresses features on syllabic segments distilled from a teacher model which is an exponential moving average of the model in training. This results in a highly structured representation of speech features, offering three key benefits: 1) a fast, linear-time syllable segmentation algorithm, 2) efficient syllabic tokenization with an average of 4.27 tokens per second, and 3) syllabic units better suited for lexical and syntactic understanding. We also train token-to-speech generative models with our syllabic units and show that fully intelligible speech can be reconstructed from these tokens. Lastly, we observe that categorical perception, a linguistic phenomenon of speech perception, emerges naturally in our model, making the embedding space more categorical and sparse than previous self-supervised learning approaches. Together, we present a novel self-supervised approach for representing speech as syllables, with significant potential for efficient speech tokenization and spoken language modeling. 7 authors · Oct 9, 2024
- Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition Describes an audio dataset of spoken words designed to help train and evaluate keyword spotting systems. Discusses why this task is an interesting challenge, and why it requires a specialized dataset that is different from conventional datasets used for automatic speech recognition of full sentences. Suggests a methodology for reproducible and comparable accuracy metrics for this task. Describes how the data was collected and verified, what it contains, previous versions and properties. Concludes by reporting baseline results of models trained on this dataset. 1 authors · Apr 9, 2018
- ChildMandarin: A Comprehensive Mandarin Speech Dataset for Young Children Aged 3-5 Automatic speech recognition (ASR) systems have advanced significantly with models like Whisper, Conformer, and self-supervised frameworks such as Wav2vec 2.0 and HuBERT. However, developing robust ASR models for young children's speech remains challenging due to differences in pronunciation, tone, and pace compared to adult speech. In this paper, we introduce a new Mandarin speech dataset focused on children aged 3 to 5, addressing the scarcity of resources in this area. The dataset comprises 41.25 hours of speech with carefully crafted manual transcriptions, collected from 397 speakers across various provinces in China, with balanced gender representation. We provide a comprehensive analysis of speaker demographics, speech duration distribution and geographic coverage. Additionally, we evaluate ASR performance on models trained from scratch, such as Conformer, as well as fine-tuned pre-trained models like HuBERT and Whisper, where fine-tuning demonstrates significant performance improvements. Furthermore, we assess speaker verification (SV) on our dataset, showing that, despite the challenges posed by the unique vocal characteristics of young children, the dataset effectively supports both ASR and SV tasks. This dataset is a valuable contribution to Mandarin child speech research and holds potential for applications in educational technology and child-computer interaction. It will be open-source and freely available for all academic purposes. 10 authors · Sep 27, 2024
35 Robust Speech Recognition via Large-Scale Weak Supervision We study the capabilities of speech processing systems trained simply to predict large amounts of transcripts of audio on the internet. When scaled to 680,000 hours of multilingual and multitask supervision, the resulting models generalize well to standard benchmarks and are often competitive with prior fully supervised results but in a zero-shot transfer setting without the need for any fine-tuning. When compared to humans, the models approach their accuracy and robustness. We are releasing models and inference code to serve as a foundation for further work on robust speech processing. 6 authors · Dec 6, 2022 6
- Jointly Predicting Emotion, Age, and Country Using Pre-Trained Acoustic Embedding In this paper, we demonstrated the benefit of using pre-trained model to extract acoustic embedding to jointly predict (multitask learning) three tasks: emotion, age, and native country. The pre-trained model was trained with wav2vec 2.0 large robust model on the speech emotion corpus. The emotion and age tasks were regression problems, while country prediction was a classification task. A single harmonic mean from three metrics was used to evaluate the performance of multitask learning. The classifier was a linear network with two independent layers and shared layers, including the output layers. This study explores multitask learning on different acoustic features (including the acoustic embedding extracted from a model trained on an affective speech dataset), seed numbers, batch sizes, and normalizations for predicting paralinguistic information from speech. 3 authors · Jul 21, 2022
- SLUE Phase-2: A Benchmark Suite of Diverse Spoken Language Understanding Tasks Spoken language understanding (SLU) tasks have been studied for many decades in the speech research community, but have not received as much attention as lower-level tasks like speech and speaker recognition. In particular, there are not nearly as many SLU task benchmarks, and many of the existing ones use data that is not freely available to all researchers. Recent work has begun to introduce such benchmark datasets for several tasks. In this work, we introduce several new annotated SLU benchmark tasks based on freely available speech data, which complement existing benchmarks and address gaps in the SLU evaluation landscape. We contribute four tasks: question answering and summarization involve inference over longer speech sequences; named entity localization addresses the speech-specific task of locating the targeted content in the signal; dialog act classification identifies the function of a given speech utterance. We follow the blueprint of the Spoken Language Understanding Evaluation (SLUE) benchmark suite. In order to facilitate the development of SLU models that leverage the success of pre-trained speech representations, we will be publishing for each task (i) annotations for a relatively small fine-tuning set, (ii) annotated development and test sets, and (iii) baseline models for easy reproducibility and comparisons. In this work, we present the details of data collection and annotation and the performance of the baseline models. We also perform sensitivity analysis of pipeline models' performance (speech recognizer + text model) to the speech recognition accuracy, using more than 20 state-of-the-art speech recognition models. 10 authors · Dec 20, 2022
3 Forecasting Time Series with LLMs via Patch-Based Prompting and Decomposition Recent advances in Large Language Models (LLMs) have demonstrated new possibilities for accurate and efficient time series analysis, but prior work often required heavy fine-tuning and/or ignored inter-series correlations. In this work, we explore simple and flexible prompt-based strategies that enable LLMs to perform time series forecasting without extensive retraining or the use of a complex external architecture. Through the exploration of specialized prompting methods that leverage time series decomposition, patch-based tokenization, and similarity-based neighbor augmentation, we find that it is possible to enhance LLM forecasting quality while maintaining simplicity and requiring minimal preprocessing of data. To this end, we propose our own method, PatchInstruct, which enables LLMs to make precise and effective predictions. 10 authors · Jun 15 2
- Sequence Transduction with Recurrent Neural Networks Many machine learning tasks can be expressed as the transformation---or transduction---of input sequences into output sequences: speech recognition, machine translation, protein secondary structure prediction and text-to-speech to name but a few. One of the key challenges in sequence transduction is learning to represent both the input and output sequences in a way that is invariant to sequential distortions such as shrinking, stretching and translating. Recurrent neural networks (RNNs) are a powerful sequence learning architecture that has proven capable of learning such representations. However RNNs traditionally require a pre-defined alignment between the input and output sequences to perform transduction. This is a severe limitation since finding the alignment is the most difficult aspect of many sequence transduction problems. Indeed, even determining the length of the output sequence is often challenging. This paper introduces an end-to-end, probabilistic sequence transduction system, based entirely on RNNs, that is in principle able to transform any input sequence into any finite, discrete output sequence. Experimental results for phoneme recognition are provided on the TIMIT speech corpus. 1 authors · Nov 14, 2012
- MRI2Speech: Speech Synthesis from Articulatory Movements Recorded by Real-time MRI Previous real-time MRI (rtMRI)-based speech synthesis models depend heavily on noisy ground-truth speech. Applying loss directly over ground truth mel-spectrograms entangles speech content with MRI noise, resulting in poor intelligibility. We introduce a novel approach that adapts the multi-modal self-supervised AV-HuBERT model for text prediction from rtMRI and incorporates a new flow-based duration predictor for speaker-specific alignment. The predicted text and durations are then used by a speech decoder to synthesize aligned speech in any novel voice. We conduct thorough experiments on two datasets and demonstrate our method's generalization ability to unseen speakers. We assess our framework's performance by masking parts of the rtMRI video to evaluate the impact of different articulators on text prediction. Our method achieves a 15.18% Word Error Rate (WER) on the USC-TIMIT MRI corpus, marking a huge improvement over the current state-of-the-art. Speech samples are available at https://mri2speech.github.io/MRI2Speech/ 4 authors · Dec 25, 2024
54 AudioPaLM: A Large Language Model That Can Speak and Listen We introduce AudioPaLM, a large language model for speech understanding and generation. AudioPaLM fuses text-based and speech-based language models, PaLM-2 [Anil et al., 2023] and AudioLM [Borsos et al., 2022], into a unified multimodal architecture that can process and generate text and speech with applications including speech recognition and speech-to-speech translation. AudioPaLM inherits the capability to preserve paralinguistic information such as speaker identity and intonation from AudioLM and the linguistic knowledge present only in text large language models such as PaLM-2. We demonstrate that initializing AudioPaLM with the weights of a text-only large language model improves speech processing, successfully leveraging the larger quantity of text training data used in pretraining to assist with the speech tasks. The resulting model significantly outperforms existing systems for speech translation tasks and has the ability to perform zero-shot speech-to-text translation for many languages for which input/target language combinations were not seen in training. AudioPaLM also demonstrates features of audio language models, such as transferring a voice across languages based on a short spoken prompt. We release examples of our method at https://google-research.github.io/seanet/audiopalm/examples 30 authors · Jun 22, 2023 6
- HAM-TTS: Hierarchical Acoustic Modeling for Token-Based Zero-Shot Text-to-Speech with Model and Data Scaling Token-based text-to-speech (TTS) models have emerged as a promising avenue for generating natural and realistic speech, yet they grapple with low pronunciation accuracy, speaking style and timbre inconsistency, and a substantial need for diverse training data. In response, we introduce a novel hierarchical acoustic modeling approach complemented by a tailored data augmentation strategy and train it on the combination of real and synthetic data, scaling the data size up to 650k hours, leading to the zero-shot TTS model with 0.8B parameters. Specifically, our method incorporates a latent variable sequence containing supplementary acoustic information based on refined self-supervised learning (SSL) discrete units into the TTS model by a predictor. This significantly mitigates pronunciation errors and style mutations in synthesized speech. During training, we strategically replace and duplicate segments of the data to enhance timbre uniformity. Moreover, a pretrained few-shot voice conversion model is utilized to generate a plethora of voices with identical content yet varied timbres. This facilitates the explicit learning of utterance-level one-to-many mappings, enriching speech diversity and also ensuring consistency in timbre. Comparative experiments (Demo page: https://anonymous.4open.science/w/ham-tts/)demonstrate our model's superiority over VALL-E in pronunciation precision and maintaining speaking style, as well as timbre continuity. 9 authors · Mar 9, 2024
- A Dataset for measuring reading levels in India at scale One out of four children in India are leaving grade eight without basic reading skills. Measuring the reading levels in a vast country like India poses significant hurdles. Recent advances in machine learning opens up the possibility of automating this task. However, the datasets of children's speech are not only rare but are primarily in English. To solve this assessment problem and advance deep learning research in regional Indian languages, we present the ASER dataset of children in the age group of 6-14. The dataset consists of 5,301 subjects generating 81,330 labeled audio clips in Hindi, Marathi and English. These labels represent expert opinions on the child's ability to read at a specified level. Using this dataset, we built a simple ASR-based classifier. Early results indicate that we can achieve a prediction accuracy of 86% for the English language. Considering the ASER survey spans half a million subjects, this dataset can grow to those scales. 3 authors · Nov 27, 2019
- LibriSpeech-PC: Benchmark for Evaluation of Punctuation and Capitalization Capabilities of end-to-end ASR Models Traditional automatic speech recognition (ASR) models output lower-cased words without punctuation marks, which reduces readability and necessitates a subsequent text processing model to convert ASR transcripts into a proper format. Simultaneously, the development of end-to-end ASR models capable of predicting punctuation and capitalization presents several challenges, primarily due to limited data availability and shortcomings in the existing evaluation methods, such as inadequate assessment of punctuation prediction. In this paper, we introduce a LibriSpeech-PC benchmark designed to assess the punctuation and capitalization prediction capabilities of end-to-end ASR models. The benchmark includes a LibriSpeech-PC dataset with restored punctuation and capitalization, a novel evaluation metric called Punctuation Error Rate (PER) that focuses on punctuation marks, and initial baseline models. All code, data, and models are publicly available. 6 authors · Oct 4, 2023
- SLIDE: Integrating Speech Language Model with LLM for Spontaneous Spoken Dialogue Generation Recently, ``textless" speech language models (SLMs) based on speech units have made huge progress in generating naturalistic speech, including non-verbal vocalizations. However, the generated speech samples often lack semantic coherence. In this paper, we propose SLM and LLM Integration for spontaneous spoken Dialogue gEneration (SLIDE). Specifically, we first utilize an LLM to generate the textual content of spoken dialogue. Next, we convert the textual dialogues into phoneme sequences and use a two-tower transformer-based duration predictor to predict the duration of each phoneme. Finally, an SLM conditioned on the spoken phoneme sequences is used to vocalize the textual dialogue. Experimental results on the Fisher dataset demonstrate that our system can generate naturalistic spoken dialogue while maintaining high semantic coherence. 6 authors · Jan 1
- Explaining Speech Classification Models via Word-Level Audio Segments and Paralinguistic Features Recent advances in eXplainable AI (XAI) have provided new insights into how models for vision, language, and tabular data operate. However, few approaches exist for understanding speech models. Existing work focuses on a few spoken language understanding (SLU) tasks, and explanations are difficult to interpret for most users. We introduce a new approach to explain speech classification models. We generate easy-to-interpret explanations via input perturbation on two information levels. 1) Word-level explanations reveal how each word-related audio segment impacts the outcome. 2) Paralinguistic features (e.g., prosody and background noise) answer the counterfactual: ``What would the model prediction be if we edited the audio signal in this way?'' We validate our approach by explaining two state-of-the-art SLU models on two speech classification tasks in English and Italian. Our findings demonstrate that the explanations are faithful to the model's inner workings and plausible to humans. Our method and findings pave the way for future research on interpreting speech models. 5 authors · Sep 14, 2023
- Multi-View Multi-Task Representation Learning for Mispronunciation Detection The disparity in phonology between learner's native (L1) and target (L2) language poses a significant challenge for mispronunciation detection and diagnosis (MDD) systems. This challenge is further intensified by lack of annotated L2 data. This paper proposes a novel MDD architecture that exploits multiple `views' of the same input data assisted by auxiliary tasks to learn more distinctive phonetic representation in a low-resource setting. Using the mono- and multilingual encoders, the model learn multiple views of the input, and capture the sound properties across diverse languages and accents. These encoded representations are further enriched by learning articulatory features in a multi-task setup. Our reported results using the L2-ARCTIC data outperformed the SOTA models, with a phoneme error rate reduction of 11.13% and 8.60% and absolute F1 score increase of 5.89%, and 2.49% compared to the single-view mono- and multilingual systems, with a limited L2 dataset. 3 authors · Jun 2, 2023
- The order in speech disorder: a scoping review of state of the art machine learning methods for clinical speech classification Background:Speech patterns have emerged as potential diagnostic markers for conditions with varying etiologies. Machine learning (ML) presents an opportunity to harness these patterns for accurate disease diagnosis. Objective: This review synthesized findings from studies exploring ML's capability in leveraging speech for the diagnosis of neurological, laryngeal and mental disorders. Methods: A systematic examination of 564 articles was conducted with 91 articles included in the study, which encompassed a wide spectrum of conditions, ranging from voice pathologies to mental and neurological disorders. Methods for speech classifications were assessed based on the relevant studies and scored between 0-10 based on the reported diagnostic accuracy of their ML models. Results: High diagnostic accuracies were consistently observed for laryngeal disorders, dysarthria, and changes related to speech in Parkinsons disease. These findings indicate the robust potential of speech as a diagnostic tool. Disorders like depression, schizophrenia, mild cognitive impairment and Alzheimers dementia also demonstrated high accuracies, albeit with some variability across studies. Meanwhile, disorders like OCD and autism highlighted the need for more extensive research to ascertain the relationship between speech patterns and the respective conditions. Conclusion: ML models utilizing speech patterns demonstrate promising potential in diagnosing a range of mental, laryngeal, and neurological disorders. However, the efficacy varies across conditions, and further research is needed. The integration of these models into clinical practice could potentially revolutionize the evaluation and diagnosis of a number of different medical conditions. 4 authors · Mar 3
13 PromptTTS 2: Describing and Generating Voices with Text Prompt Speech conveys more information than just text, as the same word can be uttered in various voices to convey diverse information. Compared to traditional text-to-speech (TTS) methods relying on speech prompts (reference speech) for voice variability, using text prompts (descriptions) is more user-friendly since speech prompts can be hard to find or may not exist at all. TTS approaches based on the text prompt face two challenges: 1) the one-to-many problem, where not all details about voice variability can be described in the text prompt, and 2) the limited availability of text prompt datasets, where vendors and large cost of data labeling are required to write text prompt for speech. In this work, we introduce PromptTTS 2 to address these challenges with a variation network to provide variability information of voice not captured by text prompts, and a prompt generation pipeline to utilize the large language models (LLM) to compose high quality text prompts. Specifically, the variation network predicts the representation extracted from the reference speech (which contains full information about voice) based on the text prompt representation. For the prompt generation pipeline, it generates text prompts for speech with a speech understanding model to recognize voice attributes (e.g., gender, speed) from speech and a large language model to formulate text prompt based on the recognition results. Experiments on a large-scale (44K hours) speech dataset demonstrate that compared to the previous works, PromptTTS 2 generates voices more consistent with text prompts and supports the sampling of diverse voice variability, thereby offering users more choices on voice generation. Additionally, the prompt generation pipeline produces high-quality prompts, eliminating the large labeling cost. The demo page of PromptTTS 2 is available onlinehttps://speechresearch.github.io/prompttts2. 15 authors · Sep 5, 2023 2
- Multi-task self-supervised learning for Robust Speech Recognition Despite the growing interest in unsupervised learning, extracting meaningful knowledge from unlabelled audio remains an open challenge. To take a step in this direction, we recently proposed a problem-agnostic speech encoder (PASE), that combines a convolutional encoder followed by multiple neural networks, called workers, tasked to solve self-supervised problems (i.e., ones that do not require manual annotations as ground truth). PASE was shown to capture relevant speech information, including speaker voice-print and phonemes. This paper proposes PASE+, an improved version of PASE for robust speech recognition in noisy and reverberant environments. To this end, we employ an online speech distortion module, that contaminates the input signals with a variety of random disturbances. We then propose a revised encoder that better learns short- and long-term speech dynamics with an efficient combination of recurrent and convolutional networks. Finally, we refine the set of workers used in self-supervision to encourage better cooperation. Results on TIMIT, DIRHA and CHiME-5 show that PASE+ significantly outperforms both the previous version of PASE as well as common acoustic features. Interestingly, PASE+ learns transferable representations suitable for highly mismatched acoustic conditions. 7 authors · Jan 24, 2020
- Computer-assisted Pronunciation Training -- Speech synthesis is almost all you need The research community has long studied computer-assisted pronunciation training (CAPT) methods in non-native speech. Researchers focused on studying various model architectures, such as Bayesian networks and deep learning methods, as well as on the analysis of different representations of the speech signal. Despite significant progress in recent years, existing CAPT methods are not able to detect pronunciation errors with high accuracy (only 60\% precision at 40\%-80\% recall). One of the key problems is the low availability of mispronounced speech that is needed for the reliable training of pronunciation error detection models. If we had a generative model that could mimic non-native speech and produce any amount of training data, then the task of detecting pronunciation errors would be much easier. We present three innovative techniques based on phoneme-to-phoneme (P2P), text-to-speech (T2S), and speech-to-speech (S2S) conversion to generate correctly pronounced and mispronounced synthetic speech. We show that these techniques not only improve the accuracy of three machine learning models for detecting pronunciation errors but also help establish a new state-of-the-art in the field. Earlier studies have used simple speech generation techniques such as P2P conversion, but only as an additional mechanism to improve the accuracy of pronunciation error detection. We, on the other hand, consider speech generation to be the first-class method of detecting pronunciation errors. The effectiveness of these techniques is assessed in the tasks of detecting pronunciation and lexical stress errors. Non-native English speech corpora of German, Italian, and Polish speakers are used in the evaluations. The best proposed S2S technique improves the accuracy of detecting pronunciation errors in AUC metric by 41\% from 0.528 to 0.749 compared to the state-of-the-art approach. 4 authors · Jul 2, 2022
- Late fusion ensembles for speech recognition on diverse input audio representations We explore diverse representations of speech audio, and their effect on a performance of late fusion ensemble of E-Branchformer models, applied to Automatic Speech Recognition (ASR) task. Although it is generally known that ensemble methods often improve the performance of the system even for speech recognition, it is very interesting to explore how ensembles of complex state-of-the-art models, such as medium-sized and large E-Branchformers, cope in this setting when their base models are trained on diverse representations of the input speech audio. The results are evaluated on four widely-used benchmark datasets: Librispeech, Aishell, Gigaspeech, TEDLIUMv2 and show that improvements of 1% - 14% can still be achieved over the state-of-the-art models trained using comparable techniques on these datasets. A noteworthy observation is that such ensemble offers improvements even with the use of language models, although the gap is closing. 2 authors · Dec 1, 2024
- CLSRIL-23: Cross Lingual Speech Representations for Indic Languages We present a CLSRIL-23, a self supervised learning based audio pre-trained model which learns cross lingual speech representations from raw audio across 23 Indic languages. It is built on top of wav2vec 2.0 which is solved by training a contrastive task over masked latent speech representations and jointly learns the quantization of latents shared across all languages. We compare the language wise loss during pretraining to compare effects of monolingual and multilingual pretraining. Performance on some downstream fine-tuning tasks for speech recognition is also compared and our experiments show that multilingual pretraining outperforms monolingual training, in terms of learning speech representations which encodes phonetic similarity of languages and also in terms of performance on down stream tasks. A decrease of 5% is observed in WER and 9.5% in CER when a multilingual pretrained model is used for finetuning in Hindi. All the code models are also open sourced. CLSRIL-23 is a model trained on 23 languages and almost 10,000 hours of audio data to facilitate research in speech recognition for Indic languages. We hope that new state of the art systems will be created using the self supervised approach, especially for low resources Indic languages. 7 authors · Jul 15, 2021
- Towards a Speech Foundation Model for Singapore and Beyond This technical report describes the MERaLiON Speech Encoder, a foundation model designed to support a wide range of downstream speech applications. Developed as part of Singapore's National Multimodal Large Language Model Programme, the MERaLiON Speech Encoder is tailored to address the speech processing needs in Singapore and the surrounding Southeast Asian region. The model currently supports mainly English, including the variety spoken in Singapore. We are actively expanding our datasets to gradually cover other languages in subsequent releases. The MERaLiON Speech Encoder was pre-trained from scratch on 200K hours of unlabelled speech data using a self-supervised learning approach based on masked language modelling. We describe our training procedure and hyperparameter tuning experiments in detail below. Our evaluation demonstrates improvements to spontaneous and Singapore speech benchmarks for speech recognition, while remaining competitive to other state-of-the-art speech encoders across ten other speech tasks. We commit to releasing our model, supporting broader research endeavours, both in Singapore and beyond. 9 authors · Dec 16, 2024
- Ask2Mask: Guided Data Selection for Masked Speech Modeling Masked speech modeling (MSM) methods such as wav2vec2 or w2v-BERT learn representations over speech frames which are randomly masked within an utterance. While these methods improve performance of Automatic Speech Recognition (ASR) systems, they have one major limitation. They treat all unsupervised speech samples with equal weight, which hinders learning as not all samples have relevant information to learn meaningful representations. In this work, we address this limitation. We propose ask2mask (ATM), a novel approach to focus on specific samples during MSM pre-training. ATM employs an external ASR model or scorer to weight unsupervised input samples in two different ways: 1) A fine-grained data selection is performed by masking over the highly confident input frames as chosen by the scorer. This allows the model to learn meaningful representations. 2) ATM is further extended to focus at utterance-level by weighting the final MSM loss with the utterance-level confidence score. We conduct fine-tuning experiments on two well-benchmarked corpora: LibriSpeech (matching the pre-training data) and Commonvoice, TED-LIUM, AMI and CHiME-6 (not matching the pre-training data). The results substantiate the efficacy of ATM on significantly improving the recognition performance under mismatched conditions (up to 11.6\% relative over published results and upto 4.46\% relative over our internal baseline) while still yielding modest improvements under matched conditions. 5 authors · Feb 24, 2022
1 FastSpeech 2: Fast and High-Quality End-to-End Text to Speech Non-autoregressive text to speech (TTS) models such as FastSpeech can synthesize speech significantly faster than previous autoregressive models with comparable quality. The training of FastSpeech model relies on an autoregressive teacher model for duration prediction (to provide more information as input) and knowledge distillation (to simplify the data distribution in output), which can ease the one-to-many mapping problem (i.e., multiple speech variations correspond to the same text) in TTS. However, FastSpeech has several disadvantages: 1) the teacher-student distillation pipeline is complicated and time-consuming, 2) the duration extracted from the teacher model is not accurate enough, and the target mel-spectrograms distilled from teacher model suffer from information loss due to data simplification, both of which limit the voice quality. In this paper, we propose FastSpeech 2, which addresses the issues in FastSpeech and better solves the one-to-many mapping problem in TTS by 1) directly training the model with ground-truth target instead of the simplified output from teacher, and 2) introducing more variation information of speech (e.g., pitch, energy and more accurate duration) as conditional inputs. Specifically, we extract duration, pitch and energy from speech waveform and directly take them as conditional inputs in training and use predicted values in inference. We further design FastSpeech 2s, which is the first attempt to directly generate speech waveform from text in parallel, enjoying the benefit of fully end-to-end inference. Experimental results show that 1) FastSpeech 2 achieves a 3x training speed-up over FastSpeech, and FastSpeech 2s enjoys even faster inference speed; 2) FastSpeech 2 and 2s outperform FastSpeech in voice quality, and FastSpeech 2 can even surpass autoregressive models. Audio samples are available at https://speechresearch.github.io/fastspeech2/. 7 authors · Jun 8, 2020
- Full-text Error Correction for Chinese Speech Recognition with Large Language Model Large Language Models (LLMs) have demonstrated substantial potential for error correction in Automatic Speech Recognition (ASR). However, most research focuses on utterances from short-duration speech recordings, which are the predominant form of speech data for supervised ASR training. This paper investigates the effectiveness of LLMs for error correction in full-text generated by ASR systems from longer speech recordings, such as transcripts from podcasts, news broadcasts, and meetings. First, we develop a Chinese dataset for full-text error correction, named ChFT, utilizing a pipeline that involves text-to-speech synthesis, ASR, and error-correction pair extractor. This dataset enables us to correct errors across contexts, including both full-text and segment, and to address a broader range of error types, such as punctuation restoration and inverse text normalization, thus making the correction process comprehensive. Second, we fine-tune a pre-trained LLM on the constructed dataset using a diverse set of prompts and target formats, and evaluate its performance on full-text error correction. Specifically, we design prompts based on full-text and segment, considering various output formats, such as directly corrected text and JSON-based error-correction pairs. Through various test settings, including homogeneous, up-to-date, and hard test sets, we find that the fine-tuned LLMs perform well in the full-text setting with different prompts, each presenting its own strengths and weaknesses. This establishes a promising baseline for further research. The dataset is available on the website. 4 authors · Sep 12, 2024
- Pitch-Aware RNN-T for Mandarin Chinese Mispronunciation Detection and Diagnosis Mispronunciation Detection and Diagnosis (MDD) systems, leveraging Automatic Speech Recognition (ASR), face two main challenges in Mandarin Chinese: 1) The two-stage models create an information gap between the phoneme or tone classification stage and the MDD stage. 2) The scarcity of Mandarin MDD datasets limits model training. In this paper, we introduce a stateless RNN-T model for Mandarin MDD, utilizing HuBERT features with pitch embedding through a Pitch Fusion Block. Our model, trained solely on native speaker data, shows a 3% improvement in Phone Error Rate and a 7% increase in False Acceptance Rate over the state-of-the-art baseline in non-native scenarios 3 authors · Jun 6, 2024
- Speech-Text Dialog Pre-training for Spoken Dialog Understanding with Explicit Cross-Modal Alignment Recently, speech-text pre-training methods have shown remarkable success in many speech and natural language processing tasks. However, most previous pre-trained models are usually tailored for one or two specific tasks, but fail to conquer a wide range of speech-text tasks. In addition, existing speech-text pre-training methods fail to explore the contextual information within a dialogue to enrich utterance representations. In this paper, we propose Speech-text dialog Pre-training for spoken dialog understanding with ExpliCiT cRoss-Modal Alignment (SPECTRA), which is the first-ever speech-text dialog pre-training model. Concretely, to consider the temporality of speech modality, we design a novel temporal position prediction task to capture the speech-text alignment. This pre-training task aims to predict the start and end time of each textual word in the corresponding speech waveform. In addition, to learn the characteristics of spoken dialogs, we generalize a response selection task from textual dialog pre-training to speech-text dialog pre-training scenarios. Experimental results on four different downstream speech-text tasks demonstrate the superiority of SPECTRA in learning speech-text alignment and multi-turn dialog context. 9 authors · May 19, 2023
1 Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data Recent end-to-end speech language models (SLMs) have expanded upon the capabilities of large language models (LLMs) by incorporating pre-trained speech models. However, these SLMs often undergo extensive speech instruction-tuning to bridge the gap between speech and text modalities. This requires significant annotation efforts and risks catastrophic forgetting of the original language capabilities. In this work, we present a simple yet effective automatic process for creating speech-text pair data that carefully injects speech paralinguistic understanding abilities into SLMs while preserving the inherent language capabilities of the text-based LLM. Our model demonstrates general capabilities for speech-related tasks without the need for speech instruction-tuning data, achieving impressive performance on Dynamic-SUPERB and AIR-Bench-Chat benchmarks. Furthermore, our model exhibits the ability to follow complex instructions derived from LLMs, such as specific output formatting and chain-of-thought reasoning. Our approach not only enhances the versatility and effectiveness of SLMs but also reduces reliance on extensive annotated datasets, paving the way for more efficient and capable speech understanding systems. 8 authors · Sep 30, 2024
- Self-Training for End-to-End Speech Recognition We revisit self-training in the context of end-to-end speech recognition. We demonstrate that training with pseudo-labels can substantially improve the accuracy of a baseline model. Key to our approach are a strong baseline acoustic and language model used to generate the pseudo-labels, filtering mechanisms tailored to common errors from sequence-to-sequence models, and a novel ensemble approach to increase pseudo-label diversity. Experiments on the LibriSpeech corpus show that with an ensemble of four models and label filtering, self-training yields a 33.9% relative improvement in WER compared with a baseline trained on 100 hours of labelled data in the noisy speech setting. In the clean speech setting, self-training recovers 59.3% of the gap between the baseline and an oracle model, which is at least 93.8% relatively higher than what previous approaches can achieve. 3 authors · Sep 19, 2019
2 HyPoradise: An Open Baseline for Generative Speech Recognition with Large Language Models Advancements in deep neural networks have allowed automatic speech recognition (ASR) systems to attain human parity on several publicly available clean speech datasets. However, even state-of-the-art ASR systems experience performance degradation when confronted with adverse conditions, as a well-trained acoustic model is sensitive to variations in the speech domain, e.g., background noise. Intuitively, humans address this issue by relying on their linguistic knowledge: the meaning of ambiguous spoken terms is usually inferred from contextual cues thereby reducing the dependency on the auditory system. Inspired by this observation, we introduce the first open-source benchmark to utilize external large language models (LLMs) for ASR error correction, where N-best decoding hypotheses provide informative elements for true transcription prediction. This approach is a paradigm shift from the traditional language model rescoring strategy that can only select one candidate hypothesis as the output transcription. The proposed benchmark contains a novel dataset, HyPoradise (HP), encompassing more than 334,000 pairs of N-best hypotheses and corresponding accurate transcriptions across prevalent speech domains. Given this dataset, we examine three types of error correction techniques based on LLMs with varying amounts of labeled hypotheses-transcription pairs, which gains a significant word error rate (WER) reduction. Experimental evidence demonstrates the proposed technique achieves a breakthrough by surpassing the upper bound of traditional re-ranking based methods. More surprisingly, LLM with reasonable prompt and its generative capability can even correct those tokens that are missing in N-best list. We make our results publicly accessible for reproducible pipelines with released pre-trained models, thus providing a new evaluation paradigm for ASR error correction with LLMs. 6 authors · Sep 27, 2023
- Evaluating Dialect Robustness of Language Models via Conversation Understanding With an evergrowing number of LLMs reporting superlative performance for English, their ability to perform equitably for different dialects of English (i.e., dialect robustness) needs to be ascertained. Specifically, we use English language (US English or Indian English) conversations between humans who play the word-guessing game of `taboo'. We formulate two evaluative tasks: target word prediction (TWP) (i.e.predict the masked target word in a conversation) and target word selection (TWS) (i.e., select the most likely masked target word in a conversation, from among a set of candidate words). Extending MD3, an existing dialectic dataset of taboo-playing conversations, we introduce M-MD3, a target-word-masked version of MD3 with the USEng and IndEng subsets. We add two subsets: AITrans (where dialectic information is removed from IndEng) and AIGen (where LLMs are prompted to generate conversations). Our evaluation uses pre-trained and fine-tuned versions of two closed-source (GPT-4/3.5) and two open-source LLMs (Mistral and Gemma). LLMs perform significantly better for US English than Indian English for both TWP and TWS, for all settings. While GPT-based models perform the best, the comparatively smaller models work more equitably for short conversations (<8 turns). Our results on AIGen and AITrans (the best and worst-performing subset) respectively show that LLMs may learn a dialect of their own based on the composition of the training data, and that dialect robustness is indeed a challenging task. Our evaluation methodology exhibits a novel way to examine attributes of language models using pre-existing dialogue datasets. 2 authors · May 9, 2024
- SpeechStew: Simply Mix All Available Speech Recognition Data to Train One Large Neural Network We present SpeechStew, a speech recognition model that is trained on a combination of various publicly available speech recognition datasets: AMI, Broadcast News, Common Voice, LibriSpeech, Switchboard/Fisher, Tedlium, and Wall Street Journal. SpeechStew simply mixes all of these datasets together, without any special re-weighting or re-balancing of the datasets. SpeechStew achieves SoTA or near SoTA results across a variety of tasks, without the use of an external language model. Our results include 9.0\% WER on AMI-IHM, 4.7\% WER on Switchboard, 8.3\% WER on CallHome, and 1.3\% on WSJ, which significantly outperforms prior work with strong external language models. We also demonstrate that SpeechStew learns powerful transfer learning representations. We fine-tune SpeechStew on a noisy low resource speech dataset, CHiME-6. We achieve 38.9\% WER without a language model, which compares to 38.6\% WER to a strong HMM baseline with a language model. 6 authors · Apr 5, 2021
- A Variational Framework for Improving Naturalness in Generative Spoken Language Models The success of large language models in text processing has inspired their adaptation to speech modeling. However, since speech is continuous and complex, it is often discretized for autoregressive modeling. Speech tokens derived from self-supervised models (known as semantic tokens) typically focus on the linguistic aspects of speech but neglect prosodic information. As a result, models trained on these tokens can generate speech with reduced naturalness. Existing approaches try to fix this by adding pitch features to the semantic tokens. However, pitch alone cannot fully represent the range of paralinguistic attributes, and selecting the right features requires careful hand-engineering. To overcome this, we propose an end-to-end variational approach that automatically learns to encode these continuous speech attributes to enhance the semantic tokens. Our approach eliminates the need for manual extraction and selection of paralinguistic features. Moreover, it produces preferred speech continuations according to human raters. Code, samples and models are available at https://github.com/b04901014/vae-gslm. 5 authors · Jun 17
2 A Multi-Dialectal Dataset for German Dialect ASR and Dialect-to-Standard Speech Translation Although Germany has a diverse landscape of dialects, they are underrepresented in current automatic speech recognition (ASR) research. To enable studies of how robust models are towards dialectal variation, we present Betthupferl, an evaluation dataset containing four hours of read speech in three dialect groups spoken in Southeast Germany (Franconian, Bavarian, Alemannic), and half an hour of Standard German speech. We provide both dialectal and Standard German transcriptions, and analyze the linguistic differences between them. We benchmark several multilingual state-of-the-art ASR models on speech translation into Standard German, and find differences between how much the output resembles the dialectal vs. standardized transcriptions. Qualitative error analyses of the best ASR model reveal that it sometimes normalizes grammatical differences, but often stays closer to the dialectal constructions. 5 authors · Jun 3 1
- wav2vec: Unsupervised Pre-training for Speech Recognition We explore unsupervised pre-training for speech recognition by learning representations of raw audio. wav2vec is trained on large amounts of unlabeled audio data and the resulting representations are then used to improve acoustic model training. We pre-train a simple multi-layer convolutional neural network optimized via a noise contrastive binary classification task. Our experiments on WSJ reduce WER of a strong character-based log-mel filterbank baseline by up to 36% when only a few hours of transcribed data is available. Our approach achieves 2.43% WER on the nov92 test set. This outperforms Deep Speech 2, the best reported character-based system in the literature while using two orders of magnitude less labeled training data. 4 authors · Apr 11, 2019
1 Lip Reading for Low-resource Languages by Learning and Combining General Speech Knowledge and Language-specific Knowledge This paper proposes a novel lip reading framework, especially for low-resource languages, which has not been well addressed in the previous literature. Since low-resource languages do not have enough video-text paired data to train the model to have sufficient power to model lip movements and language, it is regarded as challenging to develop lip reading models for low-resource languages. In order to mitigate the challenge, we try to learn general speech knowledge, the ability to model lip movements, from a high-resource language through the prediction of speech units. It is known that different languages partially share common phonemes, thus general speech knowledge learned from one language can be extended to other languages. Then, we try to learn language-specific knowledge, the ability to model language, by proposing Language-specific Memory-augmented Decoder (LMDecoder). LMDecoder saves language-specific audio features into memory banks and can be trained on audio-text paired data which is more easily accessible than video-text paired data. Therefore, with LMDecoder, we can transform the input speech units into language-specific audio features and translate them into texts by utilizing the learned rich language knowledge. Finally, by combining general speech knowledge and language-specific knowledge, we can efficiently develop lip reading models even for low-resource languages. Through extensive experiments using five languages, English, Spanish, French, Italian, and Portuguese, the effectiveness of the proposed method is evaluated. 4 authors · Aug 18, 2023
- TERA: Self-Supervised Learning of Transformer Encoder Representation for Speech We introduce a self-supervised speech pre-training method called TERA, which stands for Transformer Encoder Representations from Alteration. Recent approaches often learn by using a single auxiliary task like contrastive prediction, autoregressive prediction, or masked reconstruction. Unlike previous methods, we use alteration along three orthogonal axes to pre-train Transformer Encoders on a large amount of unlabeled speech. The model learns through the reconstruction of acoustic frames from their altered counterpart, where we use a stochastic policy to alter along various dimensions: time, frequency, and magnitude. TERA can be used for speech representations extraction or fine-tuning with downstream models. We evaluate TERA on several downstream tasks, including phoneme classification, keyword spotting, speaker recognition, and speech recognition. We present a large-scale comparison of various self-supervised models. TERA achieves strong performance in the comparison by improving upon surface features and outperforming previous models. In our experiments, we study the effect of applying different alteration techniques, pre-training on more data, and pre-training on various features. We analyze different model sizes and find that smaller models are strong representation learners than larger models, while larger models are more effective for downstream fine-tuning than smaller models. Furthermore, we show the proposed method is transferable to downstream datasets not used in pre-training. 3 authors · Jul 12, 2020
- Self-Supervised Syllable Discovery Based on Speaker-Disentangled HuBERT Self-supervised speech representation learning has become essential for extracting meaningful features from untranscribed audio. Recent advances highlight the potential of deriving discrete symbols from the features correlated with linguistic units, which enables text-less training across diverse tasks. In particular, sentence-level Self-Distillation of the pretrained HuBERT (SD-HuBERT) induces syllabic structures within latent speech frame representations extracted from an intermediate Transformer layer. In SD-HuBERT, sentence-level representation is accumulated from speech frame features through self-attention layers using a special CLS token. However, we observe that the information aggregated in the CLS token correlates more with speaker identity than with linguistic content. To address this, we propose a speech-only self-supervised fine-tuning approach that separates syllabic units from speaker information. Our method introduces speaker perturbation as data augmentation and adopts a frame-level training objective to prevent the CLS token from aggregating paralinguistic information. Experimental results show that our approach surpasses the current state-of-the-art method in most syllable segmentation and syllabic unit quality metrics on Librispeech, underscoring its effectiveness in promoting syllabic organization within speech-only models. 2 authors · Sep 16, 2024
- Beyond Orthography: Automatic Recovery of Short Vowels and Dialectal Sounds in Arabic This paper presents a novel Dialectal Sound and Vowelization Recovery framework, designed to recognize borrowed and dialectal sounds within phonologically diverse and dialect-rich languages, that extends beyond its standard orthographic sound sets. The proposed framework utilized a quantized sequence of input with(out) continuous pretrained self-supervised representation. We show the efficacy of the pipeline using limited data for Arabic, a dialect-rich language containing more than 22 major dialects. Phonetically correct transcribed speech resources for dialectal Arabic are scarce. Therefore, we introduce ArabVoice15, a first-of-its-kind, curated test set featuring 5 hours of dialectal speech across 15 Arab countries, with phonetically accurate transcriptions, including borrowed and dialect-specific sounds. We described in detail the annotation guideline along with the analysis of the dialectal confusion pairs. Our extensive evaluation includes both subjective -- human perception tests and objective measures. Our empirical results, reported with three test sets, show that with only one and half hours of training data, our model improve character error rate by ~ 7\% in ArabVoice15 compared to the baseline. 4 authors · Aug 5, 2024
1 NaturalL2S: End-to-End High-quality Multispeaker Lip-to-Speech Synthesis with Differential Digital Signal Processing Recent advancements in visual speech recognition (VSR) have promoted progress in lip-to-speech synthesis, where pre-trained VSR models enhance the intelligibility of synthesized speech by providing valuable semantic information. The success achieved by cascade frameworks, which combine pseudo-VSR with pseudo-text-to-speech (TTS) or implicitly utilize the transcribed text, highlights the benefits of leveraging VSR models. However, these methods typically rely on mel-spectrograms as an intermediate representation, which may introduce a key bottleneck: the domain gap between synthetic mel-spectrograms, generated from inherently error-prone lip-to-speech mappings, and real mel-spectrograms used to train vocoders. This mismatch inevitably degrades synthesis quality. To bridge this gap, we propose Natural Lip-to-Speech (NaturalL2S), an end-to-end framework integrating acoustic inductive biases with differentiable speech generation components. Specifically, we introduce a fundamental frequency (F0) predictor to capture prosodic variations in synthesized speech. The predicted F0 then drives a Differentiable Digital Signal Processing (DDSP) synthesizer to generate a coarse signal which serves as prior information for subsequent speech synthesis. Additionally, instead of relying on a reference speaker embedding as an auxiliary input, our approach achieves satisfactory performance on speaker similarity without explicitly modelling speaker characteristics. Both objective and subjective evaluation results demonstrate that NaturalL2S can effectively enhance the quality of the synthesized speech when compared to state-of-the-art methods. Our demonstration page is accessible at https://yifan-liang.github.io/NaturalL2S/. 5 authors · Feb 17 1
3 Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Several recent end-to-end text-to-speech (TTS) models enabling single-stage training and parallel sampling have been proposed, but their sample quality does not match that of two-stage TTS systems. In this work, we present a parallel end-to-end TTS method that generates more natural sounding audio than current two-stage models. Our method adopts variational inference augmented with normalizing flows and an adversarial training process, which improves the expressive power of generative modeling. We also propose a stochastic duration predictor to synthesize speech with diverse rhythms from input text. With the uncertainty modeling over latent variables and the stochastic duration predictor, our method expresses the natural one-to-many relationship in which a text input can be spoken in multiple ways with different pitches and rhythms. A subjective human evaluation (mean opinion score, or MOS) on the LJ Speech, a single speaker dataset, shows that our method outperforms the best publicly available TTS systems and achieves a MOS comparable to ground truth. 3 authors · Jun 10, 2021
- FT Speech: Danish Parliament Speech Corpus This paper introduces FT Speech, a new speech corpus created from the recorded meetings of the Danish Parliament, otherwise known as the Folketing (FT). The corpus contains over 1,800 hours of transcribed speech by a total of 434 speakers. It is significantly larger in duration, vocabulary, and amount of spontaneous speech than the existing public speech corpora for Danish, which are largely limited to read-aloud and dictation data. We outline design considerations, including the preprocessing methods and the alignment procedure. To evaluate the quality of the corpus, we train automatic speech recognition systems on the new resource and compare them to the systems trained on the Danish part of Sprakbanken, the largest public ASR corpus for Danish to date. Our baseline results show that we achieve a 14.01 WER on the new corpus. A combination of FT Speech with in-domain language data provides comparable results to models trained specifically on Sprakbanken, showing that FT Speech transfers well to this data set. Interestingly, our results demonstrate that the opposite is not the case. This shows that FT Speech provides a valuable resource for promoting research on Danish ASR with more spontaneous speech. 3 authors · May 25, 2020
- Time-LLM: Time Series Forecasting by Reprogramming Large Language Models Time series forecasting holds significant importance in many real-world dynamic systems and has been extensively studied. Unlike natural language process (NLP) and computer vision (CV), where a single large model can tackle multiple tasks, models for time series forecasting are often specialized, necessitating distinct designs for different tasks and applications. While pre-trained foundation models have made impressive strides in NLP and CV, their development in time series domains has been constrained by data sparsity. Recent studies have revealed that large language models (LLMs) possess robust pattern recognition and reasoning abilities over complex sequences of tokens. However, the challenge remains in effectively aligning the modalities of time series data and natural language to leverage these capabilities. In this work, we present Time-LLM, a reprogramming framework to repurpose LLMs for general time series forecasting with the backbone language models kept intact. We begin by reprogramming the input time series with text prototypes before feeding it into the frozen LLM to align the two modalities. To augment the LLM's ability to reason with time series data, we propose Prompt-as-Prefix (PaP), which enriches the input context and directs the transformation of reprogrammed input patches. The transformed time series patches from the LLM are finally projected to obtain the forecasts. Our comprehensive evaluations demonstrate that Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models. Moreover, Time-LLM excels in both few-shot and zero-shot learning scenarios. 11 authors · Oct 2, 2023
- FlexSpeech: Towards Stable, Controllable and Expressive Text-to-Speech Current speech generation research can be categorized into two primary classes: non-autoregressive and autoregressive. The fundamental distinction between these approaches lies in the duration prediction strategy employed for predictable-length sequences. The NAR methods ensure stability in speech generation by explicitly and independently modeling the duration of each phonetic unit. Conversely, AR methods employ an autoregressive paradigm to predict the compressed speech token by implicitly modeling duration with Markov properties. Although this approach improves prosody, it does not provide the structural guarantees necessary for stability. To simultaneously address the issues of stability and naturalness in speech generation, we propose FlexSpeech, a stable, controllable, and expressive TTS model. The motivation behind FlexSpeech is to incorporate Markov dependencies and preference optimization directly on the duration predictor to boost its naturalness while maintaining explicit modeling of the phonetic units to ensure stability. Specifically, we decompose the speech generation task into two components: an AR duration predictor and a NAR acoustic model. The acoustic model is trained on a substantial amount of data to learn to render audio more stably, given reference audio prosody and phone durations. The duration predictor is optimized in a lightweight manner for different stylistic variations, thereby enabling rapid style transfer while maintaining a decoupled relationship with the specified speaker timbre. Experimental results demonstrate that our approach achieves SOTA stability and naturalness in zero-shot TTS. More importantly, when transferring to a specific stylistic domain, we can accomplish lightweight optimization of the duration module solely with about 100 data samples, without the need to adjust the acoustic model, thereby enabling rapid and stable style transfer. 5 authors · May 8
- Libri-Light: A Benchmark for ASR with Limited or No Supervision We introduce a new collection of spoken English audio suitable for training speech recognition systems under limited or no supervision. It is derived from open-source audio books from the LibriVox project. It contains over 60K hours of audio, which is, to our knowledge, the largest freely-available corpus of speech. The audio has been segmented using voice activity detection and is tagged with SNR, speaker ID and genre descriptions. Additionally, we provide baseline systems and evaluation metrics working under three settings: (1) the zero resource/unsupervised setting (ABX), (2) the semi-supervised setting (PER, CER) and (3) the distant supervision setting (WER). Settings (2) and (3) use limited textual resources (10 minutes to 10 hours) aligned with the speech. Setting (3) uses large amounts of unaligned text. They are evaluated on the standard LibriSpeech dev and test sets for comparison with the supervised state-of-the-art. 15 authors · Dec 17, 2019
- Effectiveness of self-supervised pre-training for speech recognition We compare self-supervised representation learning algorithms which either explicitly quantize the audio data or learn representations without quantization. We find the former to be more accurate since it builds a good vocabulary of the data through vq-wav2vec [1] to enable learning of effective representations in subsequent BERT training. Different to previous work, we directly fine-tune the pre-trained BERT models on transcribed speech using a Connectionist Temporal Classification (CTC) loss instead of feeding the representations into a task-specific model. We also propose a BERT-style model learning directly from the continuous audio data and compare pre-training on raw audio to spectral features. Fine-tuning a BERT model on 10 hour of labeled Librispeech data with a vq-wav2vec vocabulary is almost as good as the best known reported system trained on 100 hours of labeled data on testclean, while achieving a 25% WER reduction on test-other. When using only 10 minutes of labeled data, WER is 25.2 on test-other and 16.3 on test-clean. This demonstrates that self-supervision can enable speech recognition systems trained on a near-zero amount of transcribed data. 3 authors · Nov 10, 2019
- What do tokens know about their characters and how do they know it? Pre-trained language models (PLMs) that use subword tokenization schemes can succeed at a variety of language tasks that require character-level information, despite lacking explicit access to the character composition of tokens. Here, studying a range of models (e.g., GPT- J, BERT, RoBERTa, GloVe), we probe what word pieces encode about character-level information by training classifiers to predict the presence or absence of a particular alphabetical character in a token, based on its embedding (e.g., probing whether the model embedding for "cat" encodes that it contains the character "a"). We find that these models robustly encode character-level information and, in general, larger models perform better at the task. We show that these results generalize to characters from non-Latin alphabets (Arabic, Devanagari, and Cyrillic). Then, through a series of experiments and analyses, we investigate the mechanisms through which PLMs acquire English-language character information during training and argue that this knowledge is acquired through multiple phenomena, including a systematic relationship between particular characters and particular parts of speech, as well as natural variability in the tokenization of related strings. 2 authors · Jun 6, 2022
- Reduce, Reuse, Recycle: Is Perturbed Data better than Other Language augmentation for Low Resource Self-Supervised Speech Models Self-supervised representation learning (SSRL) has demonstrated superior performance than supervised models for tasks including phoneme recognition. Training SSRL models poses a challenge for low-resource languages where sufficient pre-training data may not be available. A common approach is cross-lingual pre-training. Instead, we propose to use audio augmentation techniques, namely: pitch variation, noise addition, accented target language and other language speech to pre-train SSRL models in a low resource condition and evaluate phoneme recognition. Our comparisons found that a combined synthetic augmentations (noise/pitch) strategy outperformed accent and language knowledge transfer. Furthermore, we examined the scaling factor of augmented data to achieve equivalent performance to model pre-trained with target domain speech. Our findings suggest that for resource-constrained languages, combined augmentations can be a viable option than other augmentations. 3 authors · Sep 22, 2023
48 S2S-Arena, Evaluating Speech2Speech Protocols on Instruction Following with Paralinguistic Information The rapid development of large language models (LLMs) has brought significant attention to speech models, particularly recent progress in speech2speech protocols supporting speech input and output. However, the existing benchmarks adopt automatic text-based evaluators for evaluating the instruction following ability of these models lack consideration for paralinguistic information in both speech understanding and generation. To address these issues, we introduce S2S-Arena, a novel arena-style S2S benchmark that evaluates instruction-following capabilities with paralinguistic information in both speech-in and speech-out across real-world tasks. We design 154 samples that fused TTS and live recordings in four domains with 21 tasks and manually evaluate existing popular speech models in an arena-style manner. The experimental results show that: (1) in addition to the superior performance of GPT-4o, the speech model of cascaded ASR, LLM, and TTS outperforms the jointly trained model after text-speech alignment in speech2speech protocols; (2) considering paralinguistic information, the knowledgeability of the speech model mainly depends on the LLM backbone, and the multilingual support of that is limited by the speech module; (3) excellent speech models can already understand the paralinguistic information in speech input, but generating appropriate audio with paralinguistic information is still a challenge. 6 authors · Mar 6 2
- Understanding Semantics from Speech Through Pre-training End-to-end Spoken Language Understanding (SLU) is proposed to infer the semantic meaning directly from audio features without intermediate text representation. Although the acoustic model component of an end-to-end SLU system can be pre-trained with Automatic Speech Recognition (ASR) targets, the SLU component can only learn semantic features from limited task-specific training data. In this paper, for the first time we propose to do large-scale unsupervised pre-training for the SLU component of an end-to-end SLU system, so that the SLU component may preserve semantic features from massive unlabeled audio data. As the output of the acoustic model component, i.e. phoneme posterior sequences, has much different characteristic from text sequences, we propose a novel pre-training model called BERT-PLM, which stands for Bidirectional Encoder Representations from Transformers through Permutation Language Modeling. BERT-PLM trains the SLU component on unlabeled data through a regression objective equivalent to the partial permutation language modeling objective, while leverages full bi-directional context information with BERT networks. The experiment results show that our approach out-perform the state-of-the-art end-to-end systems with over 12.5% error reduction. 6 authors · Sep 24, 2019
- MMSU: A Massive Multi-task Spoken Language Understanding and Reasoning Benchmark Speech inherently contains rich acoustic information that extends far beyond the textual language. In real-world spoken language understanding, effective interpretation often requires integrating semantic meaning (e.g., content), paralinguistic features (e.g., emotions, speed, pitch) and phonological characteristics (e.g., prosody, intonation, rhythm), which are embedded in speech. While recent multimodal Speech Large Language Models (SpeechLLMs) have demonstrated remarkable capabilities in processing audio information, their ability to perform fine-grained perception and complex reasoning in natural speech remains largely unexplored. To address this gap, we introduce MMSU, a comprehensive benchmark designed specifically for understanding and reasoning in spoken language. MMSU comprises 5,000 meticulously curated audio-question-answer triplets across 47 distinct tasks. To ground our benchmark in linguistic theory, we systematically incorporate a wide range of linguistic phenomena, including phonetics, prosody, rhetoric, syntactics, semantics, and paralinguistics. Through a rigorous evaluation of 14 advanced SpeechLLMs, we identify substantial room for improvement in existing models, highlighting meaningful directions for future optimization. MMSU establishes a new standard for comprehensive assessment of spoken language understanding, providing valuable insights for developing more sophisticated human-AI speech interaction systems. MMSU benchmark is available at https://huggingface.co/datasets/ddwang2000/MMSU. Evaluation Code is available at https://github.com/dingdongwang/MMSU_Bench. 7 authors · Jun 5
- A Dataset for Automatic Assessment of TTS Quality in Spanish This work addresses the development of a database for the automatic assessment of text-to-speech (TTS) systems in Spanish, aiming to improve the accuracy of naturalness prediction models. The dataset consists of 4,326 audio samples from 52 different TTS systems and human voices and is, up to our knowledge, the first of its kind in Spanish. To label the audios, a subjective test was designed based on the ITU-T Rec. P.807 standard and completed by 92 participants. Furthermore, the utility of the collected dataset was validated by training automatic naturalness prediction systems. We explored two approaches: fine-tuning an existing model originally trained for English, and training small downstream networks on top of frozen self-supervised speech models. Our models achieve a mean absolute error of 0.8 on a five-point MOS scale. Further analysis demonstrates the quality and diversity of the developed dataset, and its potential to advance TTS research in Spanish. 2 authors · Jul 2
35 Roadmap towards Superhuman Speech Understanding using Large Language Models The success of large language models (LLMs) has prompted efforts to integrate speech and audio data, aiming to create general foundation models capable of processing both textual and non-textual inputs. Recent advances, such as GPT-4o, highlight the potential for end-to-end speech LLMs, which preserves non-semantic information and world knowledge for deeper speech understanding. To guide the development of speech LLMs, we propose a five-level roadmap, ranging from basic automatic speech recognition (ASR) to advanced superhuman models capable of integrating non-semantic information with abstract acoustic knowledge for complex tasks. Moreover, we design a benchmark, SAGI Bechmark, that standardizes critical aspects across various tasks in these five levels, uncovering challenges in using abstract acoustic knowledge and completeness of capability. Our findings reveal gaps in handling paralinguistic cues and abstract acoustic knowledge, and we offer future directions. This paper outlines a roadmap for advancing speech LLMs, introduces a benchmark for evaluation, and provides key insights into their current limitations and potential. 6 authors · Oct 17, 2024 2
1 Syllable based DNN-HMM Cantonese Speech to Text System This paper reports our work on building up a Cantonese Speech-to-Text (STT) system with a syllable based acoustic model. This is a part of an effort in building a STT system to aid dyslexic students who have cognitive deficiency in writing skills but have no problem expressing their ideas through speech. For Cantonese speech recognition, the basic unit of acoustic models can either be the conventional Initial-Final (IF) syllables, or the Onset-Nucleus-Coda (ONC) syllables where finals are further split into nucleus and coda to reflect the intra-syllable variations in Cantonese. By using the Kaldi toolkit, our system is trained using the stochastic gradient descent optimization model with the aid of GPUs for the hybrid Deep Neural Network and Hidden Markov Model (DNN-HMM) with and without I-vector based speaker adaptive training technique. The input features of the same Gaussian Mixture Model with speaker adaptive training (GMM-SAT) to DNN are used in all cases. Experiments show that the ONC-based syllable acoustic modeling with I-vector based DNN-HMM achieves the best performance with the word error rate (WER) of 9.66% and the real time factor (RTF) of 1.38812. 9 authors · Feb 13, 2024
- Pronunciation Assessment with Multi-modal Large Language Models Large language models (LLMs), renowned for their powerful conversational abilities, are widely recognized as exceptional tools in the field of education, particularly in the context of automated intelligent instruction systems for language learning. In this paper, we propose a scoring system based on LLMs, motivated by their positive impact on text-related scoring tasks. Specifically, the speech encoder first maps the learner's speech into contextual features. The adapter layer then transforms these features to align with the text embedding in latent space. The assessment task-specific prefix and prompt text are embedded and concatenated with the features generated by the modality adapter layer, enabling the LLMs to predict accuracy and fluency scores. Our experiments demonstrate that the proposed scoring systems achieve competitive results compared to the baselines on the Speechocean762 datasets. Moreover, we also conducted an ablation study to better understand the contributions of the prompt text and training strategy in the proposed scoring system. 4 authors · Jul 12, 2024
- Can Self-Supervised Neural Representations Pre-Trained on Human Speech distinguish Animal Callers? Self-supervised learning (SSL) models use only the intrinsic structure of a given signal, independent of its acoustic domain, to extract essential information from the input to an embedding space. This implies that the utility of such representations is not limited to modeling human speech alone. Building on this understanding, this paper explores the cross-transferability of SSL neural representations learned from human speech to analyze bio-acoustic signals. We conduct a caller discrimination analysis and a caller detection study on Marmoset vocalizations using eleven SSL models pre-trained with various pretext tasks. The results show that the embedding spaces carry meaningful caller information and can successfully distinguish the individual identities of Marmoset callers without fine-tuning. This demonstrates that representations pre-trained on human speech can be effectively applied to the bio-acoustics domain, providing valuable insights for future investigations in this field. 2 authors · May 23, 2023
- WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis This paper introduces WaveGrad 2, a non-autoregressive generative model for text-to-speech synthesis. WaveGrad 2 is trained to estimate the gradient of the log conditional density of the waveform given a phoneme sequence. The model takes an input phoneme sequence, and through an iterative refinement process, generates an audio waveform. This contrasts to the original WaveGrad vocoder which conditions on mel-spectrogram features, generated by a separate model. The iterative refinement process starts from Gaussian noise, and through a series of refinement steps (e.g., 50 steps), progressively recovers the audio sequence. WaveGrad 2 offers a natural way to trade-off between inference speed and sample quality, through adjusting the number of refinement steps. Experiments show that the model can generate high fidelity audio, approaching the performance of a state-of-the-art neural TTS system. We also report various ablation studies over different model configurations. Audio samples are available at https://wavegrad.github.io/v2. 7 authors · Jun 17, 2021
- ZMM-TTS: Zero-shot Multilingual and Multispeaker Speech Synthesis Conditioned on Self-supervised Discrete Speech Representations Neural text-to-speech (TTS) has achieved human-like synthetic speech for single-speaker, single-language synthesis. Multilingual TTS systems are limited to resource-rich languages due to the lack of large paired text and studio-quality audio data. In most cases, TTS systems are built using a single speaker's voice. However, there is growing interest in developing systems that can synthesize voices for new speakers using only a few seconds of their speech. This paper presents ZMM-TTS, a multilingual and multispeaker framework utilizing quantized latent speech representations from a large-scale, pre-trained, self-supervised model. Our paper is the first to incorporate the representations from text-based and speech-based self-supervised learning models into multilingual speech synthesis tasks. We conducted comprehensive subjective and objective evaluations through a series of experiments. Our model has been proven effective in terms of speech naturalness and similarity for both seen and unseen speakers in six high-resource languages. We also tested the efficiency of our method on two hypothetical low-resource languages. The results are promising, indicating that our proposed approach can synthesize audio that is intelligible and has a high degree of similarity to the target speaker's voice, even without any training data for the new, unseen language. 8 authors · Dec 21, 2023
- Keyword spotting -- Detecting commands in speech using deep learning Speech recognition has become an important task in the development of machine learning and artificial intelligence. In this study, we explore the important task of keyword spotting using speech recognition machine learning and deep learning techniques. We implement feature engineering by converting raw waveforms to Mel Frequency Cepstral Coefficients (MFCCs), which we use as inputs to our models. We experiment with several different algorithms such as Hidden Markov Model with Gaussian Mixture, Convolutional Neural Networks and variants of Recurrent Neural Networks including Long Short-Term Memory and the Attention mechanism. In our experiments, RNN with BiLSTM and Attention achieves the best performance with an accuracy of 93.9 % 3 authors · Dec 9, 2023
- Learning Speaker Representation with Semi-supervised Learning approach for Speaker Profiling Speaker profiling, which aims to estimate speaker characteristics such as age and height, has a wide range of applications inforensics, recommendation systems, etc. In this work, we propose a semisupervised learning approach to mitigate the issue of low training data for speaker profiling. This is done by utilizing external corpus with speaker information to train a better representation which can help to improve the speaker profiling systems. Specifically, besides the standard supervised learning path, the proposed framework has two more paths: (1) an unsupervised speaker representation learning path that helps to capture the speaker information; (2) a consistency training path that helps to improve the robustness of the system by enforcing it to produce similar predictions for utterances of the same speaker.The proposed approach is evaluated on the TIMIT and NISP datasets for age, height, and gender estimation, while the Librispeech is used as the unsupervised external corpus. Trained both on single-task and multi-task settings, our approach was able to achieve state-of-the-art results on age estimation on the TIMIT Test dataset with Root Mean Square Error(RMSE) of6.8 and 7.4 years and Mean Absolute Error(MAE) of 4.8 and5.0 years for male and female speakers respectively. 3 authors · Oct 24, 2021
1 VoxSim: A perceptual voice similarity dataset This paper introduces VoxSim, a dataset of perceptual voice similarity ratings. Recent efforts to automate the assessment of speech synthesis technologies have primarily focused on predicting mean opinion score of naturalness, leaving speaker voice similarity relatively unexplored due to a lack of extensive training data. To address this, we generate about 41k utterance pairs from the VoxCeleb dataset, a widely utilised speech dataset for speaker recognition, and collect nearly 70k speaker similarity scores through a listening test. VoxSim offers a valuable resource for the development and benchmarking of speaker similarity prediction models. We provide baseline results of speaker similarity prediction models on the VoxSim test set and further demonstrate that the model trained on our dataset generalises to the out-of-domain VCC2018 dataset. 7 authors · Jul 26, 2024
- The Norwegian Parliamentary Speech Corpus The Norwegian Parliamentary Speech Corpus (NPSC) is a speech dataset with recordings of meetings from Stortinget, the Norwegian parliament. It is the first, publicly available dataset containing unscripted, Norwegian speech designed for training of automatic speech recognition (ASR) systems. The recordings are manually transcribed and annotated with language codes and speakers, and there are detailed metadata about the speakers. The transcriptions exist in both normalized and non-normalized form, and non-standardized words are explicitly marked and annotated with standardized equivalents. To test the usefulness of this dataset, we have compared an ASR system trained on the NPSC with a baseline system trained on only manuscript-read speech. These systems were tested on an independent dataset containing spontaneous, dialectal speech. The NPSC-trained system performed significantly better, with a 22.9% relative improvement in word error rate (WER). Moreover, training on the NPSC is shown to have a "democratizing" effect in terms of dialects, as improvements are generally larger for dialects with higher WER from the baseline system. 2 authors · Jan 26, 2022
- Human-like Linguistic Biases in Neural Speech Models: Phonetic Categorization and Phonotactic Constraints in Wav2Vec2.0 What do deep neural speech models know about phonology? Existing work has examined the encoding of individual linguistic units such as phonemes in these models. Here we investigate interactions between units. Inspired by classic experiments on human speech perception, we study how Wav2Vec2 resolves phonotactic constraints. We synthesize sounds on an acoustic continuum between /l/ and /r/ and embed them in controlled contexts where only /l/, only /r/, or neither occur in English. Like humans, Wav2Vec2 models show a bias towards the phonotactically admissable category in processing such ambiguous sounds. Using simple measures to analyze model internals on the level of individual stimuli, we find that this bias emerges in early layers of the model's Transformer module. This effect is amplified by ASR finetuning but also present in fully self-supervised models. Our approach demonstrates how controlled stimulus designs can help localize specific linguistic knowledge in neural speech models. 2 authors · Jul 3, 2024
1 What do self-supervised speech models know about Dutch? Analyzing advantages of language-specific pre-training How language-specific are speech representations learned by self-supervised models? Existing work has shown that a range of linguistic features can be successfully decoded from end-to-end models trained only on speech recordings. However, it's less clear to what extent pre-training on specific languages improves language-specific linguistic information. Here we test the encoding of Dutch phonetic and lexical information in internal representations of self-supervised Wav2Vec2 models. Pre-training exclusively on Dutch improves the representation of Dutch linguistic features as compared to pre-training on similar amounts of English or larger amounts of multilingual data. This language-specific advantage is well-detected by trained clustering or classification probes, and partially observable using zero-shot metrics. Furthermore, the language-specific benefit on linguistic feature encoding aligns with downstream performance on Automatic Speech Recognition. 6 authors · Jun 1 2
- Analytic Study of Text-Free Speech Synthesis for Raw Audio using a Self-Supervised Learning Model We examine the text-free speech representations of raw audio obtained from a self-supervised learning (SSL) model by analyzing the synthesized speech using the SSL representations instead of conventional text representations. Since raw audio does not have paired speech representations as transcribed texts do, obtaining speech representations from unpaired speech is crucial for augmenting available datasets for speech synthesis. Specifically, the proposed speech synthesis is conducted using discrete symbol representations from the SSL model in comparison with text representations, and analytical examinations of the synthesized speech have been carried out. The results empirically show that using text representations is advantageous for preserving semantic information, while using discrete symbol representations is superior for preserving acoustic content, including prosodic and intonational information. 3 authors · Dec 4, 2024
8 MooER: LLM-based Speech Recognition and Translation Models from Moore Threads In this paper, we present MooER, a LLM-based large-scale automatic speech recognition (ASR) / automatic speech translation (AST) model of Moore Threads. A 5000h pseudo labeled dataset containing open source and self collected speech data is used for training. We achieve performance comparable to other open source models trained with up to hundreds of thousands of hours of labeled speech data. Meanwhile, experiments conducted on Covost2 Zh2en testset suggest that our model outperforms other open source Speech LLMs. A BLEU score of 25.2 can be obtained. The main contributions of this paper are summarized as follows. First, this paper presents a training strategy for encoders and LLMs on speech related tasks (including ASR and AST) using a small size of pseudo labeled data without any extra manual annotation and selection. Second, we release our ASR and AST models and plan to open-source our training code and strategy in the near future. Moreover, a model trained on 8wh scale training data is planned to be released later on. 8 authors · Aug 9, 2024 2
- SpeechBlender: Speech Augmentation Framework for Mispronunciation Data Generation The lack of labeled second language (L2) speech data is a major challenge in designing mispronunciation detection models. We introduce SpeechBlender - a fine-grained data augmentation pipeline for generating mispronunciation errors to overcome such data scarcity. The SpeechBlender utilizes varieties of masks to target different regions of phonetic units, and use the mixing factors to linearly interpolate raw speech signals while augmenting pronunciation. The masks facilitate smooth blending of the signals, generating more effective samples than the `Cut/Paste' method. Our proposed technique achieves state-of-the-art results, with Speechocean762, on ASR dependent mispronunciation detection models at phoneme level, with a 2.0% gain in Pearson Correlation Coefficient (PCC) compared to the previous state-of-the-art [1]. Additionally, we demonstrate a 5.0% improvement at the phoneme level compared to our baseline. We also observed a 4.6% increase in F1-score with Arabic AraVoiceL2 testset. 5 authors · Nov 2, 2022
1 Self-Supervised Embeddings for Detecting Individual Symptoms of Depression Depression, a prevalent mental health disorder impacting millions globally, demands reliable assessment systems. Unlike previous studies that focus solely on either detecting depression or predicting its severity, our work identifies individual symptoms of depression while also predicting its severity using speech input. We leverage self-supervised learning (SSL)-based speech models to better utilize the small-sized datasets that are frequently encountered in this task. Our study demonstrates notable performance improvements by utilizing SSL embeddings compared to conventional speech features. We compare various types of SSL pretrained models to elucidate the type of speech information (semantic, speaker, or prosodic) that contributes the most in identifying different symptoms. Additionally, we evaluate the impact of combining multiple SSL embeddings on performance. Furthermore, we show the significance of multi-task learning for identifying depressive symptoms effectively. 6 authors · Jun 24, 2024
- A Language Modeling Approach to Diacritic-Free Hebrew TTS We tackle the task of text-to-speech (TTS) in Hebrew. Traditional Hebrew contains Diacritics, which dictate the way individuals should pronounce given words, however, modern Hebrew rarely uses them. The lack of diacritics in modern Hebrew results in readers expected to conclude the correct pronunciation and understand which phonemes to use based on the context. This imposes a fundamental challenge on TTS systems to accurately map between text-to-speech. In this work, we propose to adopt a language modeling Diacritics-Free approach, for the task of Hebrew TTS. The model operates on discrete speech representations and is conditioned on a word-piece tokenizer. We optimize the proposed method using in-the-wild weakly supervised data and compare it to several diacritic-based TTS systems. Results suggest the proposed method is superior to the evaluated baselines considering both content preservation and naturalness of the generated speech. Samples can be found under the following link: pages.cs.huji.ac.il/adiyoss-lab/HebTTS/ 3 authors · Jul 16, 2024
- On feature representations for marmoset vocal communication analysis The acoustic analysis of marmoset (Callithrix jacchus) vocalizations is often used to understand the evolutionary origins of human language. Currently, the analysis is largely carried out in a manual or semi-manual manner. Thus, there is a need to develop automatic call analysis methods. In that direction, research has been limited to the development of analysis methods with small amounts of data or for specific scenarios. Furthermore, there is lack of prior knowledge about what type of information is relevant for different call analysis tasks. To address these issues, as a first step, this paper explores different feature representation methods, namely, HCTSA-based hand-crafted features Catch22, pre-trained self supervised learning (SSL) based features extracted from neural networks trained on human speech and end-to-end acoustic modeling for call-type classification, caller identification and caller sex identification. Through an investigation on three different marmoset call datasets, we demonstrate that SSL-based feature representations and end-to-end acoustic modeling tend to lead to better systems than Catch22 features for call-type and caller classification. Furthermore, we also highlight the impact of signal bandwidth on the obtained task performances. 5 authors · Apr 21
- Generative Pre-trained Speech Language Model with Efficient Hierarchical Transformer While recent advancements in speech language models have achieved significant progress, they face remarkable challenges in modeling the long acoustic sequences of neural audio codecs. In this paper, we introduce Generative Pre-trained Speech Transformer (GPST), a hierarchical transformer designed for efficient speech language modeling. GPST quantizes audio waveforms into two distinct types of discrete speech representations and integrates them within a hierarchical transformer architecture, allowing for a unified one-stage generation process and enhancing Hi-Res audio generation capabilities. By training on large corpora of speeches in an end-to-end unsupervised manner, GPST can generate syntactically consistent speech with diverse speaker identities. Given a brief 3-second prompt, GPST can produce natural and coherent personalized speech, demonstrating in-context learning abilities. Moreover, our approach can be easily extended to spoken cross-lingual speech generation by incorporating multi-lingual semantic tokens and universal acoustic tokens. Experimental results indicate that GPST significantly outperforms the existing speech language models in terms of word error rate, speech quality, and speaker similarity. See https://youngsheen.github.io/GPST/demo for demo samples. 5 authors · Jun 3, 2024
- Generative Spoken Language Modeling from Raw Audio We introduce Generative Spoken Language Modeling, the task of learning the acoustic and linguistic characteristics of a language from raw audio (no text, no labels), and a set of metrics to automatically evaluate the learned representations at acoustic and linguistic levels for both encoding and generation. We set up baseline systems consisting of a discrete speech encoder (returning pseudo-text units), a generative language model (trained on pseudo-text), and a speech decoder (generating a waveform from pseudo-text) all trained without supervision and validate the proposed metrics with human evaluation. Across 3 speech encoders (CPC, wav2vec 2.0, HuBERT), we find that the number of discrete units (50, 100, or 200) matters in a task-dependent and encoder-dependent way, and that some combinations approach text-based systems. 11 authors · Feb 1, 2021
6 Unified Speech-Text Pretraining for Spoken Dialog Modeling While recent work shows promising results in expanding the capabilities of large language models (LLM) to directly understand and synthesize speech, an LLM-based strategy for modeling spoken dialogs remains elusive and calls for further investigation. This work proposes an extensive speech-text LLM framework, named the Unified Spoken Dialog Model (USDM), to generate coherent spoken responses with organic prosodic features relevant to the given input speech without relying on automatic speech recognition (ASR) or text-to-speech (TTS) solutions. Our approach employs a multi-step speech-text inference scheme that leverages chain-of-reasoning capabilities exhibited by the underlying LLM. We also propose a generalized speech-text pretraining scheme that helps with capturing cross-modal semantics. Automatic and human evaluations show that the proposed approach is effective in generating natural-sounding spoken responses, outperforming both prior and cascaded baselines. Detailed comparative studies reveal that, despite the cascaded approach being stronger in individual components, the joint speech-text modeling improves robustness against recognition errors and speech quality. Demo is available at https://unifiedsdm.github.io. 10 authors · Feb 8, 2024
1 Boosting Norwegian Automatic Speech Recognition In this paper, we present several baselines for automatic speech recognition (ASR) models for the two official written languages in Norway: Bokm{\aa}l and Nynorsk. We compare the performance of models of varying sizes and pre-training approaches on multiple Norwegian speech datasets. Additionally, we measure the performance of these models against previous state-of-the-art ASR models, as well as on out-of-domain datasets. We improve the state of the art on the Norwegian Parliamentary Speech Corpus (NPSC) from a word error rate (WER) of 17.10\% to 7.60\%, with models achieving 5.81\% for Bokm{\aa}l and 11.54\% for Nynorsk. We also discuss the challenges and potential solutions for further improving ASR models for Norwegian. 5 authors · Jul 4, 2023
- HiFiTTS-2: A Large-Scale High Bandwidth Speech Dataset This paper introduces HiFiTTS-2, a large-scale speech dataset designed for high-bandwidth speech synthesis. The dataset is derived from LibriVox audiobooks, and contains approximately 36.7k hours of English speech for 22.05 kHz training, and 31.7k hours for 44.1 kHz training. We present our data processing pipeline, including bandwidth estimation, segmentation, text preprocessing, and multi-speaker detection. The dataset is accompanied by detailed utterance and audiobook metadata generated by our pipeline, enabling researchers to apply data quality filters to adapt the dataset to various use cases. Experimental results demonstrate that our data pipeline and resulting dataset can facilitate the training of high-quality, zero-shot text-to-speech (TTS) models at high bandwidths. 7 authors · Jun 4
38 Seed-TTS: A Family of High-Quality Versatile Speech Generation Models We introduce Seed-TTS, a family of large-scale autoregressive text-to-speech (TTS) models capable of generating speech that is virtually indistinguishable from human speech. Seed-TTS serves as a foundation model for speech generation and excels in speech in-context learning, achieving performance in speaker similarity and naturalness that matches ground truth human speech in both objective and subjective evaluations. With fine-tuning, we achieve even higher subjective scores across these metrics. Seed-TTS offers superior controllability over various speech attributes such as emotion and is capable of generating highly expressive and diverse speech for speakers in the wild. Furthermore, we propose a self-distillation method for speech factorization, as well as a reinforcement learning approach to enhance model robustness, speaker similarity, and controllability. We additionally present a non-autoregressive (NAR) variant of the Seed-TTS model, named Seed-TTS_DiT, which utilizes a fully diffusion-based architecture. Unlike previous NAR-based TTS systems, Seed-TTS_DiT does not depend on pre-estimated phoneme durations and performs speech generation through end-to-end processing. We demonstrate that this variant achieves comparable performance to the language model-based variant and showcase its effectiveness in speech editing. We encourage readers to listen to demos at https://bytedancespeech.github.io/seedtts_tech_report. 46 authors · Jun 4, 2024 2
- Improved training of end-to-end attention models for speech recognition Sequence-to-sequence attention-based models on subword units allow simple open-vocabulary end-to-end speech recognition. In this work, we show that such models can achieve competitive results on the Switchboard 300h and LibriSpeech 1000h tasks. In particular, we report the state-of-the-art word error rates (WER) of 3.54% on the dev-clean and 3.82% on the test-clean evaluation subsets of LibriSpeech. We introduce a new pretraining scheme by starting with a high time reduction factor and lowering it during training, which is crucial both for convergence and final performance. In some experiments, we also use an auxiliary CTC loss function to help the convergence. In addition, we train long short-term memory (LSTM) language models on subword units. By shallow fusion, we report up to 27% relative improvements in WER over the attention baseline without a language model. 4 authors · May 8, 2018
- TimeCMA: Towards LLM-Empowered Time Series Forecasting via Cross-Modality Alignment The widespread adoption of scalable mobile sensing has led to large amounts of time series data for real-world applications. A fundamental application is multivariate time series forecasting (MTSF), which aims to predict future time series values based on historical observations. Existing MTSF methods suffer from limited parameterization and small-scale training data. Recently, Large language models (LLMs) have been introduced in time series, which achieve promising forecasting performance but incur heavy computational costs. To solve these challenges, we propose TimeCMA, an LLM-empowered framework for time series forecasting with cross-modality alignment. We design a dual-modality encoding module with two branches, where the time series encoding branch extracts relatively low-quality yet pure embeddings of time series through an inverted Transformer. In addition, the LLM-empowered encoding branch wraps the same time series as prompts to obtain high-quality yet entangled prompt embeddings via a Pre-trained LLM. Then, we design a cross-modality alignment module to retrieve high-quality and pure time series embeddings from the prompt embeddings. Moreover, we develop a time series forecasting module to decode the aligned embeddings while capturing dependencies among multiple variables for forecasting. Notably, we tailor the prompt to encode sufficient temporal information into a last token and design the last token embedding storage to reduce computational costs. Extensive experiments on real data offer insight into the accuracy and efficiency of the proposed framework. 8 authors · Jun 2, 2024
6 A decoder-only foundation model for time-series forecasting Motivated by recent advances in large language models for Natural Language Processing (NLP), we design a time-series foundation model for forecasting whose out-of-the-box zero-shot performance on a variety of public datasets comes close to the accuracy of state-of-the-art supervised forecasting models for each individual dataset. Our model is based on pretraining a patched-decoder style attention model on a large time-series corpus, and can work well across different forecasting history lengths, prediction lengths and temporal granularities. 4 authors · Oct 14, 2023
- UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data In this paper, we propose a unified pre-training approach called UniSpeech to learn speech representations with both unlabeled and labeled data, in which supervised phonetic CTC learning and phonetically-aware contrastive self-supervised learning are conducted in a multi-task learning manner. The resultant representations can capture information more correlated with phonetic structures and improve the generalization across languages and domains. We evaluate the effectiveness of UniSpeech for cross-lingual representation learning on public CommonVoice corpus. The results show that UniSpeech outperforms self-supervised pretraining and supervised transfer learning for speech recognition by a maximum of 13.4% and 17.8% relative phone error rate reductions respectively (averaged over all testing languages). The transferability of UniSpeech is also demonstrated on a domain-shift speech recognition task, i.e., a relative word error rate reduction of 6% against the previous approach. 8 authors · Jan 19, 2021
- Non-Attentive Tacotron: Robust and Controllable Neural TTS Synthesis Including Unsupervised Duration Modeling This paper presents Non-Attentive Tacotron based on the Tacotron 2 text-to-speech model, replacing the attention mechanism with an explicit duration predictor. This improves robustness significantly as measured by unaligned duration ratio and word deletion rate, two metrics introduced in this paper for large-scale robustness evaluation using a pre-trained speech recognition model. With the use of Gaussian upsampling, Non-Attentive Tacotron achieves a 5-scale mean opinion score for naturalness of 4.41, slightly outperforming Tacotron 2. The duration predictor enables both utterance-wide and per-phoneme control of duration at inference time. When accurate target durations are scarce or unavailable in the training data, we propose a method using a fine-grained variational auto-encoder to train the duration predictor in a semi-supervised or unsupervised manner, with results almost as good as supervised training. 7 authors · Oct 8, 2020
27 Mega-TTS 2: Zero-Shot Text-to-Speech with Arbitrary Length Speech Prompts Zero-shot text-to-speech aims at synthesizing voices with unseen speech prompts. Previous large-scale multispeaker TTS models have successfully achieved this goal with an enrolled recording within 10 seconds. However, most of them are designed to utilize only short speech prompts. The limited information in short speech prompts significantly hinders the performance of fine-grained identity imitation. In this paper, we introduce Mega-TTS 2, a generic zero-shot multispeaker TTS model that is capable of synthesizing speech for unseen speakers with arbitrary-length prompts. Specifically, we 1) design a multi-reference timbre encoder to extract timbre information from multiple reference speeches; 2) and train a prosody language model with arbitrary-length speech prompts; With these designs, our model is suitable for prompts of different lengths, which extends the upper bound of speech quality for zero-shot text-to-speech. Besides arbitrary-length prompts, we introduce arbitrary-source prompts, which leverages the probabilities derived from multiple P-LLM outputs to produce expressive and controlled prosody. Furthermore, we propose a phoneme-level auto-regressive duration model to introduce in-context learning capabilities to duration modeling. Experiments demonstrate that our method could not only synthesize identity-preserving speech with a short prompt of an unseen speaker but also achieve improved performance with longer speech prompts. Audio samples can be found in https://mega-tts.github.io/mega2_demo/. 11 authors · Jul 14, 2023 10
- ASR advancements for indigenous languages: Quechua, Guarani, Bribri, Kotiria, and Wa'ikhana Indigenous languages are a fundamental legacy in the development of human communication, embodying the unique identity and culture of local communities of America. The Second AmericasNLP Competition Track 1 of NeurIPS 2022 proposed developing automatic speech recognition (ASR) systems for five indigenous languages: Quechua, Guarani, Bribri, Kotiria, and Wa'ikhana. In this paper, we propose a reliable ASR model for each target language by crawling speech corpora spanning diverse sources and applying data augmentation methods that resulted in the winning approach in this competition. To achieve this, we systematically investigated the impact of different hyperparameters by a Bayesian search on the performance of the language models, specifically focusing on the variants of the Wav2vec2.0 XLS-R model: 300M and 1B parameters. Moreover, we performed a global sensitivity analysis to assess the contribution of various hyperparametric configurations to the performances of our best models. Importantly, our results show that freeze fine-tuning updates and dropout rate are more vital parameters than the total number of epochs of lr. Additionally, we liberate our best models -- with no other ASR model reported until now for two Wa'ikhana and Kotiria -- and the many experiments performed to pave the way to other researchers to continue improving ASR in minority languages. This insight opens up interesting avenues for future work, allowing for the advancement of ASR techniques in the preservation of minority indigenous and acknowledging the complexities involved in this important endeavour. 3 authors · Apr 12, 2024
3 CLAPSpeech: Learning Prosody from Text Context with Contrastive Language-Audio Pre-training Improving text representation has attracted much attention to achieve expressive text-to-speech (TTS). However, existing works only implicitly learn the prosody with masked token reconstruction tasks, which leads to low training efficiency and difficulty in prosody modeling. We propose CLAPSpeech, a cross-modal contrastive pre-training framework that explicitly learns the prosody variance of the same text token under different contexts. Specifically, 1) We encourage the model to connect the text context with its corresponding prosody pattern in the joint multi-modal space with the elaborate design of the encoder inputs and contrastive loss; 2) We introduce a multi-scale pre-training pipeline to capture prosody patterns in multiple levels. We show how to incorporate CLAPSpeech into existing TTS models for better prosody. Experiments on three datasets not only show that CLAPSpeech could improve the prosody prediction for existing TTS methods, but also demonstrate its generalization ability to adapt to multiple languages and multi-speaker TTS. We also deeply analyze the principle behind the performance of CLAPSpeech. Ablation studies demonstrate the necessity of each component in our method. Source code and audio samples are available at https://clapspeech.github.io. 8 authors · May 18, 2023 4
8 A Suite for Acoustic Language Model Evaluation Speech language models have recently demonstrated great potential as universal speech processing systems. Such models have the ability to model the rich acoustic information existing in audio signals, beyond spoken content, such as emotion, background noise, etc. Despite this, evaluation benchmarks which evaluate awareness to a wide range of acoustic aspects, are lacking. To help bridge this gap, we introduce SALMon, a novel evaluation suite encompassing background noise, emotion, speaker identity and room impulse response. The proposed benchmarks both evaluate the consistency of the inspected element and how much it matches the spoken text. We follow a modelling based approach, measuring whether a model gives correct samples higher scores than incorrect ones. This approach makes the benchmark fast to compute even for large models. We evaluated several speech language models on SALMon, thus highlighting the strengths and weaknesses of each evaluated method. Code and data are publicly available at https://pages.cs.huji.ac.il/adiyoss-lab/salmon/ . 3 authors · Sep 11, 2024
- Future Token Prediction -- Causal Language Modelling with Per-Token Semantic State Vector for Multi-Token Prediction Causal decoder-only transformer models used for generative language modelling, such as Generative Pre-trained Transformers (GPT), are trained to predict the next token in a sequence based only on its previous tokens. Despite this simple training objective, they have proved to be powerful AI tools. However, only predicting the next token results in top layer embedding vectors that are highly token-focused. There may be benefits in generating embedding vectors at each token position that better capture the overall meaning of longer sequences of future text. Recent studies matching brain scans with deep language models suggest that humans also predict upcoming words when listening or reading but consider multiple future tokens rather than just one. This research investigates a new pretraining method called Future Token Prediction (FTP). In FTP, a large transformer encoder generates top layer embedding vectors for each token position, which, instead of being passed to a language head, are linearly and expansively projected to a pseudo-sequence, which is cross attended to by a small transformer decoder to predict the next N tokens forward from that position in the sequence. The top layer embedding vectors from FTP models exhibit distinct properties compared to those from standard GPT models, varying smoothly along a text sequence as measured by cosine similarity between adjacent tokens. Text generated by FTP models show improved topic coherence compared to standard GPT-like models trained with the same prediction perplexity for the next single token. The vectors are shown to better represent the topic of text based on the results of text classification examples. On a toy, but complex, coding problem, FTP networks produce significantly better results than GPT networks. 1 authors · Oct 23, 2024
- FastPitch: Parallel Text-to-speech with Pitch Prediction We present FastPitch, a fully-parallel text-to-speech model based on FastSpeech, conditioned on fundamental frequency contours. The model predicts pitch contours during inference. By altering these predictions, the generated speech can be more expressive, better match the semantic of the utterance, and in the end more engaging to the listener. Uniformly increasing or decreasing pitch with FastPitch generates speech that resembles the voluntary modulation of voice. Conditioning on frequency contours improves the overall quality of synthesized speech, making it comparable to state-of-the-art. It does not introduce an overhead, and FastPitch retains the favorable, fully-parallel Transformer architecture, with over 900x real-time factor for mel-spectrogram synthesis of a typical utterance. 1 authors · Jun 11, 2020
- FunASR: A Fundamental End-to-End Speech Recognition Toolkit This paper introduces FunASR, an open-source speech recognition toolkit designed to bridge the gap between academic research and industrial applications. FunASR offers models trained on large-scale industrial corpora and the ability to deploy them in applications. The toolkit's flagship model, Paraformer, is a non-autoregressive end-to-end speech recognition model that has been trained on a manually annotated Mandarin speech recognition dataset that contains 60,000 hours of speech. To improve the performance of Paraformer, we have added timestamp prediction and hotword customization capabilities to the standard Paraformer backbone. In addition, to facilitate model deployment, we have open-sourced a voice activity detection model based on the Feedforward Sequential Memory Network (FSMN-VAD) and a text post-processing punctuation model based on the controllable time-delay Transformer (CT-Transformer), both of which were trained on industrial corpora. These functional modules provide a solid foundation for building high-precision long audio speech recognition services. Compared to other models trained on open datasets, Paraformer demonstrates superior performance. 11 authors · May 18, 2023
2 LLM4TS: Two-Stage Fine-Tuning for Time-Series Forecasting with Pre-Trained LLMs In this work, we leverage pre-trained Large Language Models (LLMs) to enhance time-series forecasting. Mirroring the growing interest in unifying models for Natural Language Processing and Computer Vision, we envision creating an analogous model for long-term time-series forecasting. Due to limited large-scale time-series data for building robust foundation models, our approach LLM4TS focuses on leveraging the strengths of pre-trained LLMs. By combining time-series patching with temporal encoding, we have enhanced the capability of LLMs to handle time-series data effectively. Inspired by the supervised fine-tuning in chatbot domains, we prioritize a two-stage fine-tuning process: first conducting supervised fine-tuning to orient the LLM towards time-series data, followed by task-specific downstream fine-tuning. Furthermore, to unlock the flexibility of pre-trained LLMs without extensive parameter adjustments, we adopt several Parameter-Efficient Fine-Tuning (PEFT) techniques. Drawing on these innovations, LLM4TS has yielded state-of-the-art results in long-term forecasting. Our model has also shown exceptional capabilities as both a robust representation learner and an effective few-shot learner, thanks to the knowledge transferred from the pre-trained LLM. 3 authors · Aug 16, 2023
1 Multi-resolution HuBERT: Multi-resolution Speech Self-Supervised Learning with Masked Unit Prediction Existing Self-Supervised Learning (SSL) models for speech typically process speech signals at a fixed resolution of 20 milliseconds. This approach overlooks the varying informational content present at different resolutions in speech signals. In contrast, this paper aims to incorporate multi-resolution information into speech self-supervised representation learning. We introduce a SSL model that leverages a hierarchical Transformer architecture, complemented by HuBERT-style masked prediction objectives, to process speech at multiple resolutions. Experimental results indicate that the proposed model not only achieves more efficient inference but also exhibits superior or comparable performance to the original HuBERT model over various tasks. Specifically, significant performance improvements over the original HuBERT have been observed in fine-tuning experiments on the LibriSpeech speech recognition benchmark as well as in evaluations using the Speech Universal PERformance Benchmark (SUPERB) and Multilingual SUPERB (ML-SUPERB). 5 authors · Oct 4, 2023
- Frozen Large Language Models Can Perceive Paralinguistic Aspects of Speech This work studies the capabilities of a large language model (LLM) to understand paralinguistic aspects of speech without fine-tuning its weights. We utilize an end-to-end system with a speech encoder, which is trained to produce token embeddings such that the LLM's response to an expressive speech prompt is aligned with its response to a semantically matching text prompt that has also been conditioned on the user's speaking style. This framework enables the encoder to generate tokens that capture both linguistic and paralinguistic information and effectively convey them to the LLM, even when the LLM's weights remain completely frozen. To the best of our knowledge, our work is the first to explore how to induce a frozen LLM to understand more than just linguistic content from speech inputs in a general interaction setting. Experiments demonstrate that our system is able to produce higher quality and more empathetic responses to expressive speech prompts compared to several baselines. 11 authors · Oct 1, 2024