2 The Platonic Representation Hypothesis We argue that representations in AI models, particularly deep networks, are converging. First, we survey many examples of convergence in the literature: over time and across multiple domains, the ways by which different neural networks represent data are becoming more aligned. Next, we demonstrate convergence across data modalities: as vision models and language models get larger, they measure distance between datapoints in a more and more alike way. We hypothesize that this convergence is driving toward a shared statistical model of reality, akin to Plato's concept of an ideal reality. We term such a representation the platonic representation and discuss several possible selective pressures toward it. Finally, we discuss the implications of these trends, their limitations, and counterexamples to our analysis. 4 authors · May 13, 2024 1
7 Harnessing the Universal Geometry of Embeddings We introduce the first method for translating text embeddings from one vector space to another without any paired data, encoders, or predefined sets of matches. Our unsupervised approach translates any embedding to and from a universal latent representation (i.e., a universal semantic structure conjectured by the Platonic Representation Hypothesis). Our translations achieve high cosine similarity across model pairs with different architectures, parameter counts, and training datasets. The ability to translate unknown embeddings into a different space while preserving their geometry has serious implications for the security of vector databases. An adversary with access only to embedding vectors can extract sensitive information about the underlying documents, sufficient for classification and attribute inference. 4 authors · May 18
1 The Linear Representation Hypothesis and the Geometry of Large Language Models Informally, the 'linear representation hypothesis' is the idea that high-level concepts are represented linearly as directions in some representation space. In this paper, we address two closely related questions: What does "linear representation" actually mean? And, how do we make sense of geometric notions (e.g., cosine similarity or projection) in the representation space? To answer these, we use the language of counterfactuals to give two formalizations of "linear representation", one in the output (word) representation space, and one in the input (sentence) space. We then prove these connect to linear probing and model steering, respectively. To make sense of geometric notions, we use the formalization to identify a particular (non-Euclidean) inner product that respects language structure in a sense we make precise. Using this causal inner product, we show how to unify all notions of linear representation. In particular, this allows the construction of probes and steering vectors using counterfactual pairs. Experiments with LLaMA-2 demonstrate the existence of linear representations of concepts, the connection to interpretation and control, and the fundamental role of the choice of inner product. 3 authors · Nov 6, 2023
- Qualia and the Formal Structure of Meaning This work explores the hypothesis that subjectively attributed meaning constitutes the phenomenal content of conscious experience. That is, phenomenal content is semantic. This form of subjective meaning manifests as an intrinsic and non-representational character of qualia. Empirically, subjective meaning is ubiquitous in conscious experiences. We point to phenomenological studies that lend evidence to support this. Furthermore, this notion of meaning closely relates to what Frege refers to as "sense", in metaphysics and philosophy of language. It also aligns with Peirce's "interpretant", in semiotics. We discuss how Frege's sense can also be extended to the raw feels of consciousness. Sense and reference both play a role in phenomenal experience. Moreover, within the context of the mind-matter relation, we provide a formalization of subjective meaning associated to one's mental representations. Identifying the precise maps between the physical and mental domains, we argue that syntactic and semantic structures transcend language, and are realized within each of these domains. Formally, meaning is a relational attribute, realized via a map that interprets syntactic structures of a formal system within an appropriate semantic space. The image of this map within the mental domain is what is relevant for experience, and thus comprises the phenomenal content of qualia. We conclude with possible implications this may have for experience-based theories of consciousness. 1 authors · May 2, 2024
- PLATO-2: Towards Building an Open-Domain Chatbot via Curriculum Learning To build a high-quality open-domain chatbot, we introduce the effective training process of PLATO-2 via curriculum learning. There are two stages involved in the learning process. In the first stage, a coarse-grained generation model is trained to learn response generation under the simplified framework of one-to-one mapping. In the second stage, a fine-grained generative model augmented with latent variables and an evaluation model are further trained to generate diverse responses and to select the best response, respectively. PLATO-2 was trained on both Chinese and English data, whose effectiveness and superiority are verified through comprehensive evaluations, achieving new state-of-the-art results. 9 authors · Jun 30, 2020
- On the Continuity of Rotation Representations in Neural Networks In neural networks, it is often desirable to work with various representations of the same space. For example, 3D rotations can be represented with quaternions or Euler angles. In this paper, we advance a definition of a continuous representation, which can be helpful for training deep neural networks. We relate this to topological concepts such as homeomorphism and embedding. We then investigate what are continuous and discontinuous representations for 2D, 3D, and n-dimensional rotations. We demonstrate that for 3D rotations, all representations are discontinuous in the real Euclidean spaces of four or fewer dimensions. Thus, widely used representations such as quaternions and Euler angles are discontinuous and difficult for neural networks to learn. We show that the 3D rotations have continuous representations in 5D and 6D, which are more suitable for learning. We also present continuous representations for the general case of the n-dimensional rotation group SO(n). While our main focus is on rotations, we also show that our constructions apply to other groups such as the orthogonal group and similarity transforms. We finally present empirical results, which show that our continuous rotation representations outperform discontinuous ones for several practical problems in graphics and vision, including a simple autoencoder sanity test, a rotation estimator for 3D point clouds, and an inverse kinematics solver for 3D human poses. 5 authors · Dec 17, 2018
- Are Language Models More Like Libraries or Like Librarians? Bibliotechnism, the Novel Reference Problem, and the Attitudes of LLMs Are LLMs cultural technologies like photocopiers or printing presses, which transmit information but cannot create new content? A challenge for this idea, which we call bibliotechnism, is that LLMs generate novel text. We begin with a defense of bibliotechnism, showing how even novel text may inherit its meaning from original human-generated text. We then argue that bibliotechnism faces an independent challenge from examples in which LLMs generate novel reference, using new names to refer to new entities. Such examples could be explained if LLMs were not cultural technologies but had beliefs, desires, and intentions. According to interpretationism in the philosophy of mind, a system has such attitudes if and only if its behavior is well explained by the hypothesis that it does. Interpretationists may hold that LLMs have attitudes, and thus have a simple solution to the novel reference problem. We emphasize, however, that interpretationism is compatible with very simple creatures having attitudes and differs sharply from views that presuppose these attitudes require consciousness, sentience, or intelligence (topics about which we make no claims). 2 authors · Jan 9, 2024
- Generative Social Choice The mathematical study of voting, social choice theory, has traditionally only been applicable to choices among a few predetermined alternatives, but not to open-ended decisions such as collectively selecting a textual statement. We introduce generative social choice, a design methodology for open-ended democratic processes that combines the rigor of social choice theory with the capability of large language models to generate text and extrapolate preferences. Our framework divides the design of AI-augmented democratic processes into two components: first, proving that the process satisfies representation guarantees when given access to oracle queries; second, empirically validating that these queries can be approximately implemented using a large language model. We apply this framework to the problem of summarizing free-form opinions into a proportionally representative slate of opinion statements; specifically, we develop a democratic process with representation guarantees and use this process to portray the opinions of participants in a survey about abortion policy. In a trial with 100 representative US residents, we find that 84 out of 100 participants feel "excellently" or "exceptionally" represented by the slate of five statements we extracted. 7 authors · Sep 3, 2023