new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 20

Population Aware Diffusion for Time Series Generation

Diffusion models have shown promising ability in generating high-quality time series (TS) data. Despite the initial success, existing works mostly focus on the authenticity of data at the individual level, but pay less attention to preserving the population-level properties on the entire dataset. Such population-level properties include value distributions for each dimension and distributions of certain functional dependencies (e.g., cross-correlation, CC) between different dimensions. For instance, when generating house energy consumption TS data, the value distributions of the outside temperature and the kitchen temperature should be preserved, as well as the distribution of CC between them. Preserving such TS population-level properties is critical in maintaining the statistical insights of the datasets, mitigating model bias, and augmenting downstream tasks like TS prediction. Yet, it is often overlooked by existing models. Hence, data generated by existing models often bear distribution shifts from the original data. We propose Population-aware Diffusion for Time Series (PaD-TS), a new TS generation model that better preserves the population-level properties. The key novelties of PaD-TS include 1) a new training method explicitly incorporating TS population-level property preservation, and 2) a new dual-channel encoder model architecture that better captures the TS data structure. Empirical results in major benchmark datasets show that PaD-TS can improve the average CC distribution shift score between real and synthetic data by 5.9x while maintaining a performance comparable to state-of-the-art models on individual-level authenticity.

  • 5 authors
·
Jan 1 2

Search for dark matter subhalos among unassociated Fermi-LAT sources in presence of dataset shift

We search for dark matter (DM) annihilating subhalos of the Milky Way halo among the Fermi Large Area Telescope (LAT) unassociated sources. We construct, for the first time, a statistical model of the unassociated sources at latitudes above 10 degrees. The latter is built as a combination of both DM annihilation subhalos as well as Galactic and extragalactic astrophysical components. The astrophysical components are constructed based on distributions of associated sources, while the distribution of DM subhalos is derived from Monte Carlo simulations. In this model we take into account the differences in the distributions of associated and unassociated sources including both covariate and prior probability shifts (both being forms of ``dataset shifts''). Previous searches of DM subhalos were based on classify-and-count strategies, while the approach adopted in this work is based on quantification learning, which allows one to determine a well-defined statistical interpretation of the contribution of a population of DM subhalos to the unassociated Fermi-LAT sources. In the bb annihilation channel and for a range of DM masses from 10 GeV to 1 TeV, we don't find a significant contribution from DM subhalos and derive a statistical 95% confidence upper limit on the DM annihilation cross section in this channel. While the derived limits are consistent with previous classify-and-count approaches, our generative statistical model opens new avenues for population studies of Fermi-LAT sources and, more generally, for searches of anomalies on top of backgrounds in presence of statistical and systematic uncertainties.

  • 5 authors
·
Mar 18