new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 28

Disentanglement via Latent Quantization

In disentangled representation learning, a model is asked to tease apart a dataset's underlying sources of variation and represent them independently of one another. Since the model is provided with no ground truth information about these sources, inductive biases take a paramount role in enabling disentanglement. In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space. Concretely, we do this by (i) quantizing the latent space into discrete code vectors with a separate learnable scalar codebook per dimension and (ii) applying strong model regularization via an unusually high weight decay. Intuitively, the latent space design forces the encoder to combinatorially construct codes from a small number of distinct scalar values, which in turn enables the decoder to assign a consistent meaning to each value. Regularization then serves to drive the model towards this parsimonious strategy. We demonstrate the broad applicability of this approach by adding it to both basic data-reconstructing (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models. For reliable evaluation, we also propose InfoMEC, a new set of metrics for disentanglement that is cohesively grounded in information theory and fixes well-established shortcomings in previous metrics. Together with regularization, latent quantization dramatically improves the modularity and explicitness of learned representations on a representative suite of benchmark datasets. In particular, our quantized-latent autoencoder (QLAE) consistently outperforms strong methods from prior work in these key disentanglement properties without compromising data reconstruction.

  • 5 authors
·
May 28, 2023 1

Franca: Nested Matryoshka Clustering for Scalable Visual Representation Learning

We present Franca (pronounced Fran-ka): free one; the first fully open-source (data, code, weights) vision foundation model that matches and in many cases surpasses the performance of state-of-the-art proprietary models, e.g., DINOv2, CLIP, SigLIPv2, etc. Our approach is grounded in a transparent training pipeline inspired by Web-SSL and uses publicly available data: ImageNet-21K and a subset of ReLAION-2B. Beyond model release, we tackle critical limitations in SSL clustering methods. While modern models rely on assigning image features to large codebooks via clustering algorithms like Sinkhorn-Knopp, they fail to account for the inherent ambiguity in clustering semantics. To address this, we introduce a parameter-efficient, multi-head clustering projector based on nested Matryoshka representations. This design progressively refines features into increasingly fine-grained clusters without increasing the model size, enabling both performance and memory efficiency. Additionally, we propose a novel positional disentanglement strategy that explicitly removes positional biases from dense representations, thereby improving the encoding of semantic content. This leads to consistent gains on several downstream benchmarks, demonstrating the utility of cleaner feature spaces. Our contributions establish a new standard for transparent, high-performance vision models and open a path toward more reproducible and generalizable foundation models for the broader AI community. The code and model checkpoints are available at https://github.com/valeoai/Franca.

  • 8 authors
·
Jul 18 5

Learning Disentangled Representations for Time Series

Time-series representation learning is a fundamental task for time-series analysis. While significant progress has been made to achieve accurate representations for downstream applications, the learned representations often lack interpretability and do not expose semantic meanings. Different from previous efforts on the entangled feature space, we aim to extract the semantic-rich temporal correlations in the latent interpretable factorized representation of the data. Motivated by the success of disentangled representation learning in computer vision, we study the possibility of learning semantic-rich time-series representations, which remains unexplored due to three main challenges: 1) sequential data structure introduces complex temporal correlations and makes the latent representations hard to interpret, 2) sequential models suffer from KL vanishing problem, and 3) interpretable semantic concepts for time-series often rely on multiple factors instead of individuals. To bridge the gap, we propose Disentangle Time Series (DTS), a novel disentanglement enhancement framework for sequential data. Specifically, to generate hierarchical semantic concepts as the interpretable and disentangled representation of time-series, DTS introduces multi-level disentanglement strategies by covering both individual latent factors and group semantic segments. We further theoretically show how to alleviate the KL vanishing problem: DTS introduces a mutual information maximization term, while preserving a heavier penalty on the total correlation and the dimension-wise KL to keep the disentanglement property. Experimental results on various real-world benchmark datasets demonstrate that the representations learned by DTS achieve superior performance in downstream applications, with high interpretability of semantic concepts.

  • 7 authors
·
May 17, 2021

DeBERTa: Decoding-enhanced BERT with Disentangled Attention

Recent progress in pre-trained neural language models has significantly improved the performance of many natural language processing (NLP) tasks. In this paper we propose a new model architecture DeBERTa (Decoding-enhanced BERT with disentangled attention) that improves the BERT and RoBERTa models using two novel techniques. The first is the disentangled attention mechanism, where each word is represented using two vectors that encode its content and position, respectively, and the attention weights among words are computed using disentangled matrices on their contents and relative positions, respectively. Second, an enhanced mask decoder is used to incorporate absolute positions in the decoding layer to predict the masked tokens in model pre-training. In addition, a new virtual adversarial training method is used for fine-tuning to improve models' generalization. We show that these techniques significantly improve the efficiency of model pre-training and the performance of both natural language understanding (NLU) and natural langauge generation (NLG) downstream tasks. Compared to RoBERTa-Large, a DeBERTa model trained on half of the training data performs consistently better on a wide range of NLP tasks, achieving improvements on MNLI by +0.9% (90.2% vs. 91.1%), on SQuAD v2.0 by +2.3% (88.4% vs. 90.7%) and RACE by +3.6% (83.2% vs. 86.8%). Notably, we scale up DeBERTa by training a larger version that consists of 48 Transform layers with 1.5 billion parameters. The significant performance boost makes the single DeBERTa model surpass the human performance on the SuperGLUE benchmark (Wang et al., 2019a) for the first time in terms of macro-average score (89.9 versus 89.8), and the ensemble DeBERTa model sits atop the SuperGLUE leaderboard as of January 6, 2021, out performing the human baseline by a decent margin (90.3 versus 89.8).

  • 4 authors
·
Jun 5, 2020

DiscRec: Disentangled Semantic-Collaborative Modeling for Generative Recommendation

Generative recommendation is emerging as a powerful paradigm that directly generates item predictions, moving beyond traditional matching-based approaches. However, current methods face two key challenges: token-item misalignment, where uniform token-level modeling ignores item-level granularity that is critical for collaborative signal learning, and semantic-collaborative signal entanglement, where collaborative and semantic signals exhibit distinct distributions yet are fused in a unified embedding space, leading to conflicting optimization objectives that limit the recommendation performance. To address these issues, we propose DiscRec, a novel framework that enables Disentangled Semantic-Collaborative signal modeling with flexible fusion for generative Recommendation.First, DiscRec introduces item-level position embeddings, assigned based on indices within each semantic ID, enabling explicit modeling of item structure in input token sequences.Second, DiscRec employs a dual-branch module to disentangle the two signals at the embedding layer: a semantic branch encodes semantic signals using original token embeddings, while a collaborative branch applies localized attention restricted to tokens within the same item to effectively capture collaborative signals. A gating mechanism subsequently fuses both branches while preserving the model's ability to model sequential dependencies. Extensive experiments on four real-world datasets demonstrate that DiscRec effectively decouples these signals and consistently outperforms state-of-the-art baselines. Our codes are available on https://github.com/Ten-Mao/DiscRec.

  • 6 authors
·
Jun 18

Be More Active! Understanding the Differences between Mean and Sampled Representations of Variational Autoencoders

The ability of Variational Autoencoders to learn disentangled representations has made them appealing for practical applications. However, their mean representations, which are generally used for downstream tasks, have recently been shown to be more correlated than their sampled counterpart, on which disentanglement is usually measured. In this paper, we refine this observation through the lens of selective posterior collapse, which states that only a subset of the learned representations, the active variables, is encoding useful information while the rest (the passive variables) is discarded. We first extend the existing definition to multiple data examples and show that active variables are equally disentangled in mean and sampled representations. Based on this extension and the pre-trained models from disentanglement lib, we then isolate the passive variables and show that they are responsible for the discrepancies between mean and sampled representations. Specifically, passive variables exhibit high correlation scores with other variables in mean representations while being fully uncorrelated in sampled ones. We thus conclude that despite what their higher correlation might suggest, mean representations are still good candidates for downstream tasks applications. However, it may be beneficial to remove their passive variables, especially when used with models sensitive to correlated features.

  • 2 authors
·
Sep 26, 2021

Disentangling Spatial and Temporal Learning for Efficient Image-to-Video Transfer Learning

Recently, large-scale pre-trained language-image models like CLIP have shown extraordinary capabilities for understanding spatial contents, but naively transferring such models to video recognition still suffers from unsatisfactory temporal modeling capabilities. Existing methods insert tunable structures into or in parallel with the pre-trained model, which either requires back-propagation through the whole pre-trained model and is thus resource-demanding, or is limited by the temporal reasoning capability of the pre-trained structure. In this work, we present DiST, which disentangles the learning of spatial and temporal aspects of videos. Specifically, DiST uses a dual-encoder structure, where a pre-trained foundation model acts as the spatial encoder, and a lightweight network is introduced as the temporal encoder. An integration branch is inserted between the encoders to fuse spatio-temporal information. The disentangled spatial and temporal learning in DiST is highly efficient because it avoids the back-propagation of massive pre-trained parameters. Meanwhile, we empirically show that disentangled learning with an extra network for integration benefits both spatial and temporal understanding. Extensive experiments on five benchmarks show that DiST delivers better performance than existing state-of-the-art methods by convincing gaps. When pre-training on the large-scale Kinetics-710, we achieve 89.7% on Kinetics-400 with a frozen ViT-L model, which verifies the scalability of DiST. Codes and models can be found in https://github.com/alibaba-mmai-research/DiST.

  • 7 authors
·
Sep 14, 2023

DisenBooth: Identity-Preserving Disentangled Tuning for Subject-Driven Text-to-Image Generation

Subject-driven text-to-image generation aims to generate customized images of the given subject based on the text descriptions, which has drawn increasing attention. Existing methods mainly resort to finetuning a pretrained generative model, where the identity-relevant information (e.g., the boy) and the identity-irrelevant information (e.g., the background or the pose of the boy) are entangled in the latent embedding space. However, the highly entangled latent embedding may lead to the failure of subject-driven text-to-image generation as follows: (i) the identity-irrelevant information hidden in the entangled embedding may dominate the generation process, resulting in the generated images heavily dependent on the irrelevant information while ignoring the given text descriptions; (ii) the identity-relevant information carried in the entangled embedding can not be appropriately preserved, resulting in identity change of the subject in the generated images. To tackle the problems, we propose DisenBooth, an identity-preserving disentangled tuning framework for subject-driven text-to-image generation. Specifically, DisenBooth finetunes the pretrained diffusion model in the denoising process. Different from previous works that utilize an entangled embedding to denoise each image, DisenBooth instead utilizes disentangled embeddings to respectively preserve the subject identity and capture the identity-irrelevant information. We further design the novel weak denoising and contrastive embedding auxiliary tuning objectives to achieve the disentanglement. Extensive experiments show that our proposed DisenBooth framework outperforms baseline models for subject-driven text-to-image generation with the identity-preserved embedding. Additionally, by combining the identity-preserved embedding and identity-irrelevant embedding, DisenBooth demonstrates more generation flexibility and controllability

  • 7 authors
·
May 5, 2023

Latent Traversals in Generative Models as Potential Flows

Despite the significant recent progress in deep generative models, the underlying structure of their latent spaces is still poorly understood, thereby making the task of performing semantically meaningful latent traversals an open research challenge. Most prior work has aimed to solve this challenge by modeling latent structures linearly, and finding corresponding linear directions which result in `disentangled' generations. In this work, we instead propose to model latent structures with a learned dynamic potential landscape, thereby performing latent traversals as the flow of samples down the landscape's gradient. Inspired by physics, optimal transport, and neuroscience, these potential landscapes are learned as physically realistic partial differential equations, thereby allowing them to flexibly vary over both space and time. To achieve disentanglement, multiple potentials are learned simultaneously, and are constrained by a classifier to be distinct and semantically self-consistent. Experimentally, we demonstrate that our method achieves both more qualitatively and quantitatively disentangled trajectories than state-of-the-art baselines. Further, we demonstrate that our method can be integrated as a regularization term during training, thereby acting as an inductive bias towards the learning of structured representations, ultimately improving model likelihood on similarly structured data.

  • 4 authors
·
Apr 25, 2023

PaRot: Patch-Wise Rotation-Invariant Network via Feature Disentanglement and Pose Restoration

Recent interest in point cloud analysis has led rapid progress in designing deep learning methods for 3D models. However, state-of-the-art models are not robust to rotations, which remains an unknown prior to real applications and harms the model performance. In this work, we introduce a novel Patch-wise Rotation-invariant network (PaRot), which achieves rotation invariance via feature disentanglement and produces consistent predictions for samples with arbitrary rotations. Specifically, we design a siamese training module which disentangles rotation invariance and equivariance from patches defined over different scales, e.g., the local geometry and global shape, via a pair of rotations. However, our disentangled invariant feature loses the intrinsic pose information of each patch. To solve this problem, we propose a rotation-invariant geometric relation to restore the relative pose with equivariant information for patches defined over different scales. Utilising the pose information, we propose a hierarchical module which implements intra-scale and inter-scale feature aggregation for 3D shape learning. Moreover, we introduce a pose-aware feature propagation process with the rotation-invariant relative pose information embedded. Experiments show that our disentanglement module extracts high-quality rotation-robust features and the proposed lightweight model achieves competitive results in rotated 3D object classification and part segmentation tasks. Our project page is released at: https://patchrot.github.io/.

  • 4 authors
·
Feb 5, 2023

DPE: Disentanglement of Pose and Expression for General Video Portrait Editing

One-shot video-driven talking face generation aims at producing a synthetic talking video by transferring the facial motion from a video to an arbitrary portrait image. Head pose and facial expression are always entangled in facial motion and transferred simultaneously. However, the entanglement sets up a barrier for these methods to be used in video portrait editing directly, where it may require to modify the expression only while maintaining the pose unchanged. One challenge of decoupling pose and expression is the lack of paired data, such as the same pose but different expressions. Only a few methods attempt to tackle this challenge with the feat of 3D Morphable Models (3DMMs) for explicit disentanglement. But 3DMMs are not accurate enough to capture facial details due to the limited number of Blenshapes, which has side effects on motion transfer. In this paper, we introduce a novel self-supervised disentanglement framework to decouple pose and expression without 3DMMs and paired data, which consists of a motion editing module, a pose generator, and an expression generator. The editing module projects faces into a latent space where pose motion and expression motion can be disentangled, and the pose or expression transfer can be performed in the latent space conveniently via addition. The two generators render the modified latent codes to images, respectively. Moreover, to guarantee the disentanglement, we propose a bidirectional cyclic training strategy with well-designed constraints. Evaluations demonstrate our method can control pose or expression independently and be used for general video editing.

  • 7 authors
·
Jan 16, 2023

EVA02-AT: Egocentric Video-Language Understanding with Spatial-Temporal Rotary Positional Embeddings and Symmetric Optimization

Egocentric video-language understanding demands both high efficiency and accurate spatial-temporal modeling. Existing approaches face three key challenges: 1) Excessive pre-training cost arising from multi-stage pre-training pipelines, 2) Ineffective spatial-temporal encoding due to manually split 3D rotary positional embeddings that hinder feature interactions, and 3) Imprecise learning objectives in soft-label multi-instance retrieval, which neglect negative pair correlations. In this paper, we introduce EVA02-AT, a suite of EVA02-based video-language foundation models tailored to egocentric video understanding tasks. EVA02-AT first efficiently transfers an image-based CLIP model into a unified video encoder via a single-stage pretraining. Second, instead of applying rotary positional embeddings to isolated dimensions, we introduce spatial-temporal rotary positional embeddings along with joint attention, which can effectively encode both spatial and temporal information on the entire hidden dimension. This joint encoding of spatial-temporal features enables the model to learn cross-axis relationships, which are crucial for accurately modeling motion and interaction in videos. Third, focusing on multi-instance video-language retrieval tasks, we introduce the Symmetric Multi-Similarity (SMS) loss and a novel training framework that advances all soft labels for both positive and negative pairs, providing a more precise learning objective. Extensive experiments on Ego4D, EPIC-Kitchens-100, and Charades-Ego under zero-shot and fine-tuning settings demonstrate that EVA02-AT achieves state-of-the-art performance across diverse egocentric video-language tasks with fewer parameters. Models with our SMS loss also show significant performance gains on multi-instance retrieval benchmarks. Our code and models are publicly available at https://github.com/xqwang14/EVA02-AT .

  • 3 authors
·
Jun 17

SeqPE: Transformer with Sequential Position Encoding

Since self-attention layers in Transformers are permutation invariant by design, positional encodings must be explicitly incorporated to enable spatial understanding. However, fixed-size lookup tables used in traditional learnable position embeddings (PEs) limit extrapolation capabilities beyond pre-trained sequence lengths. Expert-designed methods such as ALiBi and RoPE, mitigate this limitation but demand extensive modifications for adapting to new modalities, underscoring fundamental challenges in adaptability and scalability. In this work, we present SeqPE, a unified and fully learnable position encoding framework that represents each n-dimensional position index as a symbolic sequence and employs a lightweight sequential position encoder to learn their embeddings in an end-to-end manner. To regularize SeqPE's embedding space, we introduce two complementary objectives: a contrastive objective that aligns embedding distances with a predefined position-distance function, and a knowledge distillation loss that anchors out-of-distribution position embeddings to in-distribution teacher representations, further enhancing extrapolation performance. Experiments across language modeling, long-context question answering, and 2D image classification demonstrate that SeqPE not only surpasses strong baselines in perplexity, exact match (EM), and accuracy--particularly under context length extrapolation--but also enables seamless generalization to multi-dimensional inputs without requiring manual architectural redesign. We release our code, data, and checkpoints at https://github.com/ghrua/seqpe.

  • 8 authors
·
Jun 16 2

Disentangled Diffusion-Based 3D Human Pose Estimation with Hierarchical Spatial and Temporal Denoiser

Recently, diffusion-based methods for monocular 3D human pose estimation have achieved state-of-the-art (SOTA) performance by directly regressing the 3D joint coordinates from the 2D pose sequence. Although some methods decompose the task into bone length and bone direction prediction based on the human anatomical skeleton to explicitly incorporate more human body prior constraints, the performance of these methods is significantly lower than that of the SOTA diffusion-based methods. This can be attributed to the tree structure of the human skeleton. Direct application of the disentangled method could amplify the accumulation of hierarchical errors, propagating through each hierarchy. Meanwhile, the hierarchical information has not been fully explored by the previous methods. To address these problems, a Disentangled Diffusion-based 3D Human Pose Estimation method with Hierarchical Spatial and Temporal Denoiser is proposed, termed DDHPose. In our approach: (1) We disentangle the 3D pose and diffuse the bone length and bone direction during the forward process of the diffusion model to effectively model the human pose prior. A disentanglement loss is proposed to supervise diffusion model learning. (2) For the reverse process, we propose Hierarchical Spatial and Temporal Denoiser (HSTDenoiser) to improve the hierarchical modeling of each joint. Our HSTDenoiser comprises two components: the Hierarchical-Related Spatial Transformer (HRST) and the Hierarchical-Related Temporal Transformer (HRTT). HRST exploits joint spatial information and the influence of the parent joint on each joint for spatial modeling, while HRTT utilizes information from both the joint and its hierarchical adjacent joints to explore the hierarchical temporal correlations among joints. Code and models are available at https://github.com/Andyen512/DDHPose

  • 5 authors
·
Mar 7, 2024

Motion Consistency Model: Accelerating Video Diffusion with Disentangled Motion-Appearance Distillation

Image diffusion distillation achieves high-fidelity generation with very few sampling steps. However, applying these techniques directly to video diffusion often results in unsatisfactory frame quality due to the limited visual quality in public video datasets. This affects the performance of both teacher and student video diffusion models. Our study aims to improve video diffusion distillation while improving frame appearance using abundant high-quality image data. We propose motion consistency model (MCM), a single-stage video diffusion distillation method that disentangles motion and appearance learning. Specifically, MCM includes a video consistency model that distills motion from the video teacher model, and an image discriminator that enhances frame appearance to match high-quality image data. This combination presents two challenges: (1) conflicting frame learning objectives, as video distillation learns from low-quality video frames while the image discriminator targets high-quality images; and (2) training-inference discrepancies due to the differing quality of video samples used during training and inference. To address these challenges, we introduce disentangled motion distillation and mixed trajectory distillation. The former applies the distillation objective solely to the motion representation, while the latter mitigates training-inference discrepancies by mixing distillation trajectories from both the low- and high-quality video domains. Extensive experiments show that our MCM achieves the state-of-the-art video diffusion distillation performance. Additionally, our method can enhance frame quality in video diffusion models, producing frames with high aesthetic scores or specific styles without corresponding video data.

  • 9 authors
·
Jun 10, 2024

MotionCrafter: One-Shot Motion Customization of Diffusion Models

The essence of a video lies in its dynamic motions, including character actions, object movements, and camera movements. While text-to-video generative diffusion models have recently advanced in creating diverse contents, controlling specific motions through text prompts remains a significant challenge. A primary issue is the coupling of appearance and motion, often leading to overfitting on appearance. To tackle this challenge, we introduce MotionCrafter, a novel one-shot instance-guided motion customization method. MotionCrafter employs a parallel spatial-temporal architecture that injects the reference motion into the temporal component of the base model, while the spatial module is independently adjusted for character or style control. To enhance the disentanglement of motion and appearance, we propose an innovative dual-branch motion disentanglement approach, comprising a motion disentanglement loss and an appearance prior enhancement strategy. During training, a frozen base model provides appearance normalization, effectively separating appearance from motion and thereby preserving diversity. Comprehensive quantitative and qualitative experiments, along with user preference tests, demonstrate that MotionCrafter can successfully integrate dynamic motions while preserving the coherence and quality of the base model with a wide range of appearance generation capabilities. Project page: https://zyxelsa.github.io/homepage-motioncrafter. Codes are available at https://github.com/zyxElsa/MotionCrafter.

  • 7 authors
·
Dec 8, 2023

EDTalk: Efficient Disentanglement for Emotional Talking Head Synthesis

Achieving disentangled control over multiple facial motions and accommodating diverse input modalities greatly enhances the application and entertainment of the talking head generation. This necessitates a deep exploration of the decoupling space for facial features, ensuring that they a) operate independently without mutual interference and b) can be preserved to share with different modal input, both aspects often neglected in existing methods. To address this gap, this paper proposes a novel Efficient Disentanglement framework for Talking head generation (EDTalk). Our framework enables individual manipulation of mouth shape, head pose, and emotional expression, conditioned on video or audio inputs. Specifically, we employ three lightweight modules to decompose the facial dynamics into three distinct latent spaces representing mouth, pose, and expression, respectively. Each space is characterized by a set of learnable bases whose linear combinations define specific motions. To ensure independence and accelerate training, we enforce orthogonality among bases and devise an efficient training strategy to allocate motion responsibilities to each space without relying on external knowledge. The learned bases are then stored in corresponding banks, enabling shared visual priors with audio input. Furthermore, considering the properties of each space, we propose an Audio-to-Motion module for audio-driven talking head synthesis. Experiments are conducted to demonstrate the effectiveness of EDTalk. We recommend watching the project website: https://tanshuai0219.github.io/EDTalk/

  • 4 authors
·
Apr 2, 2024

Less is More: Focus Attention for Efficient DETR

DETR-like models have significantly boosted the performance of detectors and even outperformed classical convolutional models. However, all tokens are treated equally without discrimination brings a redundant computational burden in the traditional encoder structure. The recent sparsification strategies exploit a subset of informative tokens to reduce attention complexity maintaining performance through the sparse encoder. But these methods tend to rely on unreliable model statistics. Moreover, simply reducing the token population hinders the detection performance to a large extent, limiting the application of these sparse models. We propose Focus-DETR, which focuses attention on more informative tokens for a better trade-off between computation efficiency and model accuracy. Specifically, we reconstruct the encoder with dual attention, which includes a token scoring mechanism that considers both localization and category semantic information of the objects from multi-scale feature maps. We efficiently abandon the background queries and enhance the semantic interaction of the fine-grained object queries based on the scores. Compared with the state-of-the-art sparse DETR-like detectors under the same setting, our Focus-DETR gets comparable complexity while achieving 50.4AP (+2.2) on COCO. The code is available at https://github.com/huawei-noah/noah-research/tree/master/Focus-DETR and https://gitee.com/mindspore/models/tree/master/research/cv/Focus-DETR.

  • 5 authors
·
Jul 24, 2023

Coordinate Quantized Neural Implicit Representations for Multi-view Reconstruction

In recent years, huge progress has been made on learning neural implicit representations from multi-view images for 3D reconstruction. As an additional input complementing coordinates, using sinusoidal functions as positional encodings plays a key role in revealing high frequency details with coordinate-based neural networks. However, high frequency positional encodings make the optimization unstable, which results in noisy reconstructions and artifacts in empty space. To resolve this issue in a general sense, we introduce to learn neural implicit representations with quantized coordinates, which reduces the uncertainty and ambiguity in the field during optimization. Instead of continuous coordinates, we discretize continuous coordinates into discrete coordinates using nearest interpolation among quantized coordinates which are obtained by discretizing the field in an extremely high resolution. We use discrete coordinates and their positional encodings to learn implicit functions through volume rendering. This significantly reduces the variations in the sample space, and triggers more multi-view consistency constraints on intersections of rays from different views, which enables to infer implicit function in a more effective way. Our quantized coordinates do not bring any computational burden, and can seamlessly work upon the latest methods. Our evaluations under the widely used benchmarks show our superiority over the state-of-the-art. Our code is available at https://github.com/MachinePerceptionLab/CQ-NIR.

  • 3 authors
·
Aug 21, 2023

Faster Diffusion: Rethinking the Role of UNet Encoder in Diffusion Models

One of the key components within diffusion models is the UNet for noise prediction. While several works have explored basic properties of the UNet decoder, its encoder largely remains unexplored. In this work, we conduct the first comprehensive study of the UNet encoder. We empirically analyze the encoder features and provide insights to important questions regarding their changes at the inference process. In particular, we find that encoder features change gently, whereas the decoder features exhibit substantial variations across different time-steps. This finding inspired us to omit the encoder at certain adjacent time-steps and reuse cyclically the encoder features in the previous time-steps for the decoder. Further based on this observation, we introduce a simple yet effective encoder propagation scheme to accelerate the diffusion sampling for a diverse set of tasks. By benefiting from our propagation scheme, we are able to perform in parallel the decoder at certain adjacent time-steps. Additionally, we introduce a prior noise injection method to improve the texture details in the generated image. Besides the standard text-to-image task, we also validate our approach on other tasks: text-to-video, personalized generation and reference-guided generation. Without utilizing any knowledge distillation technique, our approach accelerates both the Stable Diffusion (SD) and the DeepFloyd-IF models sampling by 41% and 24% respectively, while maintaining high-quality generation performance. Our code is available in https://github.com/hutaiHang/Faster-Diffusion{FasterDiffusion}.

  • 8 authors
·
Dec 15, 2023 1

Householder Projector for Unsupervised Latent Semantics Discovery

Generative Adversarial Networks (GANs), especially the recent style-based generators (StyleGANs), have versatile semantics in the structured latent space. Latent semantics discovery methods emerge to move around the latent code such that only one factor varies during the traversal. Recently, an unsupervised method proposed a promising direction to directly use the eigenvectors of the projection matrix that maps latent codes to features as the interpretable directions. However, one overlooked fact is that the projection matrix is non-orthogonal and the number of eigenvectors is too large. The non-orthogonality would entangle semantic attributes in the top few eigenvectors, and the large dimensionality might result in meaningless variations among the directions even if the matrix is orthogonal. To avoid these issues, we propose Householder Projector, a flexible and general low-rank orthogonal matrix representation based on Householder transformations, to parameterize the projection matrix. The orthogonality guarantees that the eigenvectors correspond to disentangled interpretable semantics, while the low-rank property encourages that each identified direction has meaningful variations. We integrate our projector into pre-trained StyleGAN2/StyleGAN3 and evaluate the models on several benchmarks. Within only 1% of the original training steps for fine-tuning, our projector helps StyleGANs to discover more disentangled and precise semantic attributes without sacrificing image fidelity.

  • 4 authors
·
Jul 16, 2023

Disentangled Graph Variational Auto-Encoder for Multimodal Recommendation with Interpretability

Multimodal recommender systems amalgamate multimodal information (e.g., textual descriptions, images) into a collaborative filtering framework to provide more accurate recommendations. While the incorporation of multimodal information could enhance the interpretability of these systems, current multimodal models represent users and items utilizing entangled numerical vectors, rendering them arduous to interpret. To address this, we propose a Disentangled Graph Variational Auto-Encoder (DGVAE) that aims to enhance both model and recommendation interpretability. DGVAE initially projects multimodal information into textual contents, such as converting images to text, by harnessing state-of-the-art multimodal pre-training technologies. It then constructs a frozen item-item graph and encodes the contents and interactions into two sets of disentangled representations utilizing a simplified residual graph convolutional network. DGVAE further regularizes these disentangled representations through mutual information maximization, aligning the representations derived from the interactions between users and items with those learned from textual content. This alignment facilitates the interpretation of user binary interactions via text. Our empirical analysis conducted on three real-world datasets demonstrates that DGVAE significantly surpasses the performance of state-of-the-art baselines by a margin of 10.02%. We also furnish a case study from a real-world dataset to illustrate the interpretability of DGVAE. Code is available at: https://github.com/enoche/DGVAE.

  • 2 authors
·
Feb 25, 2024

Representation Entanglement for Generation:Training Diffusion Transformers Is Much Easier Than You Think

REPA and its variants effectively mitigate training challenges in diffusion models by incorporating external visual representations from pretrained models, through alignment between the noisy hidden projections of denoising networks and foundational clean image representations. We argue that the external alignment, which is absent during the entire denoising inference process, falls short of fully harnessing the potential of discriminative representations. In this work, we propose a straightforward method called Representation Entanglement for Generation (REG), which entangles low-level image latents with a single high-level class token from pretrained foundation models for denoising. REG acquires the capability to produce coherent image-class pairs directly from pure noise, substantially improving both generation quality and training efficiency. This is accomplished with negligible additional inference overhead, requiring only one single additional token for denoising (<0.5\% increase in FLOPs and latency). The inference process concurrently reconstructs both image latents and their corresponding global semantics, where the acquired semantic knowledge actively guides and enhances the image generation process. On ImageNet 256times256, SiT-XL/2 + REG demonstrates remarkable convergence acceleration, achieving 63times and 23times faster training than SiT-XL/2 and SiT-XL/2 + REPA, respectively. More impressively, SiT-L/2 + REG trained for merely 400K iterations outperforms SiT-XL/2 + REPA trained for 4M iterations (10times longer). Code is available at: https://github.com/Martinser/REG.

  • 12 authors
·
Jul 2

MotionMaster: Training-free Camera Motion Transfer For Video Generation

The emergence of diffusion models has greatly propelled the progress in image and video generation. Recently, some efforts have been made in controllable video generation, including text-to-video generation and video motion control, among which camera motion control is an important topic. However, existing camera motion control methods rely on training a temporal camera module, and necessitate substantial computation resources due to the large amount of parameters in video generation models. Moreover, existing methods pre-define camera motion types during training, which limits their flexibility in camera control. Therefore, to reduce training costs and achieve flexible camera control, we propose COMD, a novel training-free video motion transfer model, which disentangles camera motions and object motions in source videos and transfers the extracted camera motions to new videos. We first propose a one-shot camera motion disentanglement method to extract camera motion from a single source video, which separates the moving objects from the background and estimates the camera motion in the moving objects region based on the motion in the background by solving a Poisson equation. Furthermore, we propose a few-shot camera motion disentanglement method to extract the common camera motion from multiple videos with similar camera motions, which employs a window-based clustering technique to extract the common features in temporal attention maps of multiple videos. Finally, we propose a motion combination method to combine different types of camera motions together, enabling our model a more controllable and flexible camera control. Extensive experiments demonstrate that our training-free approach can effectively decouple camera-object motion and apply the decoupled camera motion to a wide range of controllable video generation tasks, achieving flexible and diverse camera motion control.

  • 8 authors
·
Apr 24, 2024 1

When Video Coding Meets Multimodal Large Language Models: A Unified Paradigm for Video Coding

Existing codecs are designed to eliminate intrinsic redundancies to create a compact representation for compression. However, strong external priors from Multimodal Large Language Models (MLLMs) have not been explicitly explored in video compression. Herein, we introduce a unified paradigm for Cross-Modality Video Coding (CMVC), which is a pioneering approach to explore multimodality representation and video generative models in video coding. Specifically, on the encoder side, we disentangle a video into spatial content and motion components, which are subsequently transformed into distinct modalities to achieve very compact representation by leveraging MLLMs. During decoding, previously encoded components and video generation models are leveraged to create multiple encoding-decoding modes that optimize video reconstruction quality for specific decoding requirements, including Text-Text-to-Video (TT2V) mode to ensure high-quality semantic information and Image-Text-to-Video (IT2V) mode to achieve superb perceptual consistency. In addition, we propose an efficient frame interpolation model for IT2V mode via Low-Rank Adaption (LoRA) tuning to guarantee perceptual quality, which allows the generated motion cues to behave smoothly. Experiments on benchmarks indicate that TT2V achieves effective semantic reconstruction, while IT2V exhibits competitive perceptual consistency. These results highlight potential directions for future research in video coding.

  • 6 authors
·
Aug 15, 2024

MotionCLIP: Exposing Human Motion Generation to CLIP Space

We introduce MotionCLIP, a 3D human motion auto-encoder featuring a latent embedding that is disentangled, well behaved, and supports highly semantic textual descriptions. MotionCLIP gains its unique power by aligning its latent space with that of the Contrastive Language-Image Pre-training (CLIP) model. Aligning the human motion manifold to CLIP space implicitly infuses the extremely rich semantic knowledge of CLIP into the manifold. In particular, it helps continuity by placing semantically similar motions close to one another, and disentanglement, which is inherited from the CLIP-space structure. MotionCLIP comprises a transformer-based motion auto-encoder, trained to reconstruct motion while being aligned to its text label's position in CLIP-space. We further leverage CLIP's unique visual understanding and inject an even stronger signal through aligning motion to rendered frames in a self-supervised manner. We show that although CLIP has never seen the motion domain, MotionCLIP offers unprecedented text-to-motion abilities, allowing out-of-domain actions, disentangled editing, and abstract language specification. For example, the text prompt "couch" is decoded into a sitting down motion, due to lingual similarity, and the prompt "Spiderman" results in a web-swinging-like solution that is far from seen during training. In addition, we show how the introduced latent space can be leveraged for motion interpolation, editing and recognition.

  • 5 authors
·
Mar 15, 2022

The Impact of Positional Encoding on Length Generalization in Transformers

Length generalization, the ability to generalize from small training context sizes to larger ones, is a critical challenge in the development of Transformer-based language models. Positional encoding (PE) has been identified as a major factor influencing length generalization, but the exact impact of different PE schemes on extrapolation in downstream tasks remains unclear. In this paper, we conduct a systematic empirical study comparing the length generalization performance of decoder-only Transformers with five different position encoding approaches including Absolute Position Embedding (APE), T5's Relative PE, ALiBi, and Rotary, in addition to Transformers without positional encoding (NoPE). Our evaluation encompasses a battery of reasoning and mathematical tasks. Our findings reveal that the most commonly used positional encoding methods, such as ALiBi, Rotary, and APE, are not well suited for length generalization in downstream tasks. More importantly, NoPE outperforms other explicit positional encoding methods while requiring no additional computation. We theoretically demonstrate that NoPE can represent both absolute and relative PEs, but when trained with SGD, it mostly resembles T5's relative PE attention patterns. Finally, we find that scratchpad is not always helpful to solve length generalization and its format highly impacts the model's performance. Overall, our work suggests that explicit position embeddings are not essential for decoder-only Transformers to generalize well to longer sequences.

  • 5 authors
·
May 30, 2023

DropPos: Pre-Training Vision Transformers by Reconstructing Dropped Positions

As it is empirically observed that Vision Transformers (ViTs) are quite insensitive to the order of input tokens, the need for an appropriate self-supervised pretext task that enhances the location awareness of ViTs is becoming evident. To address this, we present DropPos, a novel pretext task designed to reconstruct Dropped Positions. The formulation of DropPos is simple: we first drop a large random subset of positional embeddings and then the model classifies the actual position for each non-overlapping patch among all possible positions solely based on their visual appearance. To avoid trivial solutions, we increase the difficulty of this task by keeping only a subset of patches visible. Additionally, considering there may be different patches with similar visual appearances, we propose position smoothing and attentive reconstruction strategies to relax this classification problem, since it is not necessary to reconstruct their exact positions in these cases. Empirical evaluations of DropPos show strong capabilities. DropPos outperforms supervised pre-training and achieves competitive results compared with state-of-the-art self-supervised alternatives on a wide range of downstream benchmarks. This suggests that explicitly encouraging spatial reasoning abilities, as DropPos does, indeed contributes to the improved location awareness of ViTs. The code is publicly available at https://github.com/Haochen-Wang409/DropPos.

  • 6 authors
·
Sep 7, 2023

DynamiCtrl: Rethinking the Basic Structure and the Role of Text for High-quality Human Image Animation

With diffusion transformer (DiT) excelling in video generation, its use in specific tasks has drawn increasing attention. However, adapting DiT for pose-guided human image animation faces two core challenges: (a) existing U-Net-based pose control methods may be suboptimal for the DiT backbone; and (b) removing text guidance, as in previous approaches, often leads to semantic loss and model degradation. To address these issues, we propose DynamiCtrl, a novel framework for human animation in video DiT architecture. Specifically, we use a shared VAE encoder for human images and driving poses, unifying them into a common latent space, maintaining pose fidelity, and eliminating the need for an expert pose encoder during video denoising. To integrate pose control into the DiT backbone effectively, we propose a novel Pose-adaptive Layer Norm model. It injects normalized pose features into the denoising process via conditioning on visual tokens, enabling seamless and scalable pose control across DiT blocks. Furthermore, to overcome the shortcomings of text removal, we introduce the "Joint-text" paradigm, which preserves the role of text embeddings to provide global semantic context. Through full-attention blocks, image and pose features are aligned with text features, enhancing semantic consistency, leveraging pretrained knowledge, and enabling multi-level control. Experiments verify the superiority of DynamiCtrl on benchmark and self-collected data (e.g., achieving the best LPIPS of 0.166), demonstrating strong character control and high-quality synthesis. The project page is available at https://gulucaptain.github.io/DynamiCtrl/.

  • 8 authors
·
Mar 27

GenCompositor: Generative Video Compositing with Diffusion Transformer

Video compositing combines live-action footage to create video production, serving as a crucial technique in video creation and film production. Traditional pipelines require intensive labor efforts and expert collaboration, resulting in lengthy production cycles and high manpower costs. To address this issue, we automate this process with generative models, called generative video compositing. This new task strives to adaptively inject identity and motion information of foreground video to the target video in an interactive manner, allowing users to customize the size, motion trajectory, and other attributes of the dynamic elements added in final video. Specifically, we designed a novel Diffusion Transformer (DiT) pipeline based on its intrinsic properties. To maintain consistency of the target video before and after editing, we revised a light-weight DiT-based background preservation branch with masked token injection. As to inherit dynamic elements from other sources, a DiT fusion block is proposed using full self-attention, along with a simple yet effective foreground augmentation for training. Besides, for fusing background and foreground videos with different layouts based on user control, we developed a novel position embedding, named Extended Rotary Position Embedding (ERoPE). Finally, we curated a dataset comprising 61K sets of videos for our new task, called VideoComp. This data includes complete dynamic elements and high-quality target videos. Experiments demonstrate that our method effectively realizes generative video compositing, outperforming existing possible solutions in fidelity and consistency.

  • 7 authors
·
Sep 2 4

DiTraj: training-free trajectory control for video diffusion transformer

Diffusion Transformers (DiT)-based video generation models with 3D full attention exhibit strong generative capabilities. Trajectory control represents a user-friendly task in the field of controllable video generation. However, existing methods either require substantial training resources or are specifically designed for U-Net, do not take advantage of the superior performance of DiT. To address these issues, we propose DiTraj, a simple but effective training-free framework for trajectory control in text-to-video generation, tailored for DiT. Specifically, first, to inject the object's trajectory, we propose foreground-background separation guidance: we use the Large Language Model (LLM) to convert user-provided prompts into foreground and background prompts, which respectively guide the generation of foreground and background regions in the video. Then, we analyze 3D full attention and explore the tight correlation between inter-token attention scores and position embedding. Based on this, we propose inter-frame Spatial-Temporal Decoupled 3D-RoPE (STD-RoPE). By modifying only foreground tokens' position embedding, STD-RoPE eliminates their cross-frame spatial discrepancies, strengthening cross-frame attention among them and thus enhancing trajectory control. Additionally, we achieve 3D-aware trajectory control by regulating the density of position embedding. Extensive experiments demonstrate that our method outperforms previous methods in both video quality and trajectory controllability.

  • 9 authors
·
Sep 25

Source Prompt Disentangled Inversion for Boosting Image Editability with Diffusion Models

Text-driven diffusion models have significantly advanced the image editing performance by using text prompts as inputs. One crucial step in text-driven image editing is to invert the original image into a latent noise code conditioned on the source prompt. While previous methods have achieved promising results by refactoring the image synthesizing process, the inverted latent noise code is tightly coupled with the source prompt, limiting the image editability by target text prompts. To address this issue, we propose a novel method called Source Prompt Disentangled Inversion (SPDInv), which aims at reducing the impact of source prompt, thereby enhancing the text-driven image editing performance by employing diffusion models. To make the inverted noise code be independent of the given source prompt as much as possible, we indicate that the iterative inversion process should satisfy a fixed-point constraint. Consequently, we transform the inversion problem into a searching problem to find the fixed-point solution, and utilize the pre-trained diffusion models to facilitate the searching process. The experimental results show that our proposed SPDInv method can effectively mitigate the conflicts between the target editing prompt and the source prompt, leading to a significant decrease in editing artifacts. In addition to text-driven image editing, with SPDInv we can easily adapt customized image generation models to localized editing tasks and produce promising performance. The source code are available at https://github.com/leeruibin/SPDInv.

  • 4 authors
·
Mar 17, 2024

Learning Yourself: Class-Incremental Semantic Segmentation with Language-Inspired Bootstrapped Disentanglement

Class-Incremental Semantic Segmentation (CISS) requires continuous learning of newly introduced classes while retaining knowledge of past classes. By abstracting mainstream methods into two stages (visual feature extraction and prototype-feature matching), we identify a more fundamental challenge termed catastrophic semantic entanglement. This phenomenon involves Prototype-Feature Entanglement caused by semantic misalignment during the incremental process, and Background-Increment Entanglement due to dynamic data evolution. Existing techniques, which rely on visual feature learning without sufficient cues to distinguish targets, introduce significant noise and errors. To address these issues, we introduce a Language-inspired Bootstrapped Disentanglement framework (LBD). We leverage the prior class semantics of pre-trained visual-language models (e.g., CLIP) to guide the model in autonomously disentangling features through Language-guided Prototypical Disentanglement and Manifold Mutual Background Disentanglement. The former guides the disentangling of new prototypes by treating hand-crafted text features as topological templates, while the latter employs multiple learnable prototypes and mask-pooling-based supervision for background-incremental class disentanglement. By incorporating soft prompt tuning and encoder adaptation modifications, we further bridge the capability gap of CLIP between dense and sparse tasks, achieving state-of-the-art performance on both Pascal VOC and ADE20k, particularly in multi-step scenarios.

  • 3 authors
·
Aug 30

Robust Dual Gaussian Splatting for Immersive Human-centric Volumetric Videos

Volumetric video represents a transformative advancement in visual media, enabling users to freely navigate immersive virtual experiences and narrowing the gap between digital and real worlds. However, the need for extensive manual intervention to stabilize mesh sequences and the generation of excessively large assets in existing workflows impedes broader adoption. In this paper, we present a novel Gaussian-based approach, dubbed DualGS, for real-time and high-fidelity playback of complex human performance with excellent compression ratios. Our key idea in DualGS is to separately represent motion and appearance using the corresponding skin and joint Gaussians. Such an explicit disentanglement can significantly reduce motion redundancy and enhance temporal coherence. We begin by initializing the DualGS and anchoring skin Gaussians to joint Gaussians at the first frame. Subsequently, we employ a coarse-to-fine training strategy for frame-by-frame human performance modeling. It includes a coarse alignment phase for overall motion prediction as well as a fine-grained optimization for robust tracking and high-fidelity rendering. To integrate volumetric video seamlessly into VR environments, we efficiently compress motion using entropy encoding and appearance using codec compression coupled with a persistent codebook. Our approach achieves a compression ratio of up to 120 times, only requiring approximately 350KB of storage per frame. We demonstrate the efficacy of our representation through photo-realistic, free-view experiences on VR headsets, enabling users to immersively watch musicians in performance and feel the rhythm of the notes at the performers' fingertips.

  • 8 authors
·
Sep 12, 2024 4

EnerVerse: Envisioning Embodied Future Space for Robotics Manipulation

We introduce EnerVerse, a comprehensive framework for embodied future space generation specifically designed for robotic manipulation tasks. EnerVerse seamlessly integrates convolutional and bidirectional attention mechanisms for inner-chunk space modeling, ensuring low-level consistency and continuity. Recognizing the inherent redundancy in video data, we propose a sparse memory context combined with a chunkwise unidirectional generative paradigm to enable the generation of infinitely long sequences. To further augment robotic capabilities, we introduce the Free Anchor View (FAV) space, which provides flexible perspectives to enhance observation and analysis. The FAV space mitigates motion modeling ambiguity, removes physical constraints in confined environments, and significantly improves the robot's generalization and adaptability across various tasks and settings. To address the prohibitive costs and labor intensity of acquiring multi-camera observations, we present a data engine pipeline that integrates a generative model with 4D Gaussian Splatting (4DGS). This pipeline leverages the generative model's robust generalization capabilities and the spatial constraints provided by 4DGS, enabling an iterative enhancement of data quality and diversity, thus creating a data flywheel effect that effectively narrows the sim-to-real gap. Finally, our experiments demonstrate that the embodied future space generation prior substantially enhances policy predictive capabilities, resulting in improved overall performance, particularly in long-range robotic manipulation tasks.

Hi-VAE: Efficient Video Autoencoding with Global and Detailed Motion

Recent breakthroughs in video autoencoders (Video AEs) have advanced video generation, but existing methods fail to efficiently model spatio-temporal redundancies in dynamics, resulting in suboptimal compression factors. This shortfall leads to excessive training costs for downstream tasks. To address this, we introduce Hi-VAE, an efficient video autoencoding framework that hierarchically encode coarse-to-fine motion representations of video dynamics and formulate the decoding process as a conditional generation task. Specifically, Hi-VAE decomposes video dynamics into two latent spaces: Global Motion, capturing overarching motion patterns, and Detailed Motion, encoding high-frequency spatial details. Using separate self-supervised motion encoders, we compress video latents into compact motion representations to reduce redundancy significantly. A conditional diffusion decoder then reconstructs videos by combining hierarchical global and detailed motions, enabling high-fidelity video reconstructions. Extensive experiments demonstrate that Hi-VAE achieves a high compression factor of 1428times, almost 30times higher than baseline methods (e.g., Cosmos-VAE at 48times), validating the efficiency of our approach. Meanwhile, Hi-VAE maintains high reconstruction quality at such high compression rates and performs effectively in downstream generative tasks. Moreover, Hi-VAE exhibits interpretability and scalability, providing new perspectives for future exploration in video latent representation and generation.

  • 8 authors
·
Jun 8

ACR: Attention Collaboration-based Regressor for Arbitrary Two-Hand Reconstruction

Reconstructing two hands from monocular RGB images is challenging due to frequent occlusion and mutual confusion. Existing methods mainly learn an entangled representation to encode two interacting hands, which are incredibly fragile to impaired interaction, such as truncated hands, separate hands, or external occlusion. This paper presents ACR (Attention Collaboration-based Regressor), which makes the first attempt to reconstruct hands in arbitrary scenarios. To achieve this, ACR explicitly mitigates interdependencies between hands and between parts by leveraging center and part-based attention for feature extraction. However, reducing interdependence helps release the input constraint while weakening the mutual reasoning about reconstructing the interacting hands. Thus, based on center attention, ACR also learns cross-hand prior that handle the interacting hands better. We evaluate our method on various types of hand reconstruction datasets. Our method significantly outperforms the best interacting-hand approaches on the InterHand2.6M dataset while yielding comparable performance with the state-of-the-art single-hand methods on the FreiHand dataset. More qualitative results on in-the-wild and hand-object interaction datasets and web images/videos further demonstrate the effectiveness of our approach for arbitrary hand reconstruction. Our code is available at https://github.com/ZhengdiYu/Arbitrary-Hands-3D-Reconstruction.

  • 5 authors
·
Mar 10, 2023

RIGID: Recurrent GAN Inversion and Editing of Real Face Videos

GAN inversion is indispensable for applying the powerful editability of GAN to real images. However, existing methods invert video frames individually often leading to undesired inconsistent results over time. In this paper, we propose a unified recurrent framework, named Recurrent vIdeo GAN Inversion and eDiting (RIGID), to explicitly and simultaneously enforce temporally coherent GAN inversion and facial editing of real videos. Our approach models the temporal relations between current and previous frames from three aspects. To enable a faithful real video reconstruction, we first maximize the inversion fidelity and consistency by learning a temporal compensated latent code. Second, we observe incoherent noises lie in the high-frequency domain that can be disentangled from the latent space. Third, to remove the inconsistency after attribute manipulation, we propose an in-between frame composition constraint such that the arbitrary frame must be a direct composite of its neighboring frames. Our unified framework learns the inherent coherence between input frames in an end-to-end manner, and therefore it is agnostic to a specific attribute and can be applied to arbitrary editing of the same video without re-training. Extensive experiments demonstrate that RIGID outperforms state-of-the-art methods qualitatively and quantitatively in both inversion and editing tasks. The deliverables can be found in https://cnnlstm.github.io/RIGID

  • 4 authors
·
Aug 11, 2023

Representation learning for improved interpretability and classification accuracy of clinical factors from EEG

Despite extensive standardization, diagnostic interviews for mental health disorders encompass substantial subjective judgment. Previous studies have demonstrated that EEG-based neural measures can function as reliable objective correlates of depression, or even predictors of depression and its course. However, their clinical utility has not been fully realized because of 1) the lack of automated ways to deal with the inherent noise associated with EEG data at scale, and 2) the lack of knowledge of which aspects of the EEG signal may be markers of a clinical disorder. Here we adapt an unsupervised pipeline from the recent deep representation learning literature to address these problems by 1) learning a disentangled representation using beta-VAE to denoise the signal, and 2) extracting interpretable features associated with a sparse set of clinical labels using a Symbol-Concept Association Network (SCAN). We demonstrate that our method is able to outperform the canonical hand-engineered baseline classification method on a number of factors, including participant age and depression diagnosis. Furthermore, our method recovers a representation that can be used to automatically extract denoised Event Related Potentials (ERPs) from novel, single EEG trajectories, and supports fast supervised re-mapping to various clinical labels, allowing clinicians to re-use a single EEG representation regardless of updates to the standardized diagnostic system. Finally, single factors of the learned disentangled representations often correspond to meaningful markers of clinical factors, as automatically detected by SCAN, allowing for human interpretability and post-hoc expert analysis of the recommendations made by the model.

  • 9 authors
·
Oct 28, 2020

VOODOO 3D: Volumetric Portrait Disentanglement for One-Shot 3D Head Reenactment

We present a 3D-aware one-shot head reenactment method based on a fully volumetric neural disentanglement framework for source appearance and driver expressions. Our method is real-time and produces high-fidelity and view-consistent output, suitable for 3D teleconferencing systems based on holographic displays. Existing cutting-edge 3D-aware reenactment methods often use neural radiance fields or 3D meshes to produce view-consistent appearance encoding, but, at the same time, they rely on linear face models, such as 3DMM, to achieve its disentanglement with facial expressions. As a result, their reenactment results often exhibit identity leakage from the driver or have unnatural expressions. To address these problems, we propose a neural self-supervised disentanglement approach that lifts both the source image and driver video frame into a shared 3D volumetric representation based on tri-planes. This representation can then be freely manipulated with expression tri-planes extracted from the driving images and rendered from an arbitrary view using neural radiance fields. We achieve this disentanglement via self-supervised learning on a large in-the-wild video dataset. We further introduce a highly effective fine-tuning approach to improve the generalizability of the 3D lifting using the same real-world data. We demonstrate state-of-the-art performance on a wide range of datasets, and also showcase high-quality 3D-aware head reenactment on highly challenging and diverse subjects, including non-frontal head poses and complex expressions for both source and driver.

  • 6 authors
·
Dec 7, 2023

Exploring Gradient-based Multi-directional Controls in GANs

Generative Adversarial Networks (GANs) have been widely applied in modeling diverse image distributions. However, despite its impressive applications, the structure of the latent space in GANs largely remains as a black-box, leaving its controllable generation an open problem, especially when spurious correlations between different semantic attributes exist in the image distributions. To address this problem, previous methods typically learn linear directions or individual channels that control semantic attributes in the image space. However, they often suffer from imperfect disentanglement, or are unable to obtain multi-directional controls. In this work, in light of the above challenges, we propose a novel approach that discovers nonlinear controls, which enables multi-directional manipulation as well as effective disentanglement, based on gradient information in the learned GAN latent space. More specifically, we first learn interpolation directions by following the gradients from classification networks trained separately on the attributes, and then navigate the latent space by exclusively controlling channels activated for the target attribute in the learned directions. Empirically, with small training data, our approach is able to gain fine-grained controls over a diverse set of bi-directional and multi-directional attributes, and we showcase its ability to achieve disentanglement significantly better than state-of-the-art methods both qualitatively and quantitatively.

  • 5 authors
·
Sep 1, 2022

Rethinking Multi-view Representation Learning via Distilled Disentangling

Multi-view representation learning aims to derive robust representations that are both view-consistent and view-specific from diverse data sources. This paper presents an in-depth analysis of existing approaches in this domain, highlighting a commonly overlooked aspect: the redundancy between view-consistent and view-specific representations. To this end, we propose an innovative framework for multi-view representation learning, which incorporates a technique we term 'distilled disentangling'. Our method introduces the concept of masked cross-view prediction, enabling the extraction of compact, high-quality view-consistent representations from various sources without incurring extra computational overhead. Additionally, we develop a distilled disentangling module that efficiently filters out consistency-related information from multi-view representations, resulting in purer view-specific representations. This approach significantly reduces redundancy between view-consistent and view-specific representations, enhancing the overall efficiency of the learning process. Our empirical evaluations reveal that higher mask ratios substantially improve the quality of view-consistent representations. Moreover, we find that reducing the dimensionality of view-consistent representations relative to that of view-specific representations further refines the quality of the combined representations. Our code is accessible at: https://github.com/Guanzhou-Ke/MRDD.

  • 4 authors
·
Mar 16, 2024

HNeRV: A Hybrid Neural Representation for Videos

Implicit neural representations store videos as neural networks and have performed well for various vision tasks such as video compression and denoising. With frame index or positional index as input, implicit representations (NeRV, E-NeRV, \etc) reconstruct video from fixed and content-agnostic embeddings. Such embedding largely limits the regression capacity and internal generalization for video interpolation. In this paper, we propose a Hybrid Neural Representation for Videos (HNeRV), where a learnable encoder generates content-adaptive embeddings, which act as the decoder input. Besides the input embedding, we introduce HNeRV blocks, which ensure model parameters are evenly distributed across the entire network, such that higher layers (layers near the output) can have more capacity to store high-resolution content and video details. With content-adaptive embeddings and re-designed architecture, HNeRV outperforms implicit methods in video regression tasks for both reconstruction quality (+4.7 PSNR) and convergence speed (16times faster), and shows better internal generalization. As a simple and efficient video representation, HNeRV also shows decoding advantages for speed, flexibility, and deployment, compared to traditional codecs~(H.264, H.265) and learning-based compression methods. Finally, we explore the effectiveness of HNeRV on downstream tasks such as video compression and video inpainting. We provide project page at https://haochen-rye.github.io/HNeRV, and Code at https://github.com/haochen-rye/HNeRV

  • 4 authors
·
Apr 5, 2023

Reenact Anything: Semantic Video Motion Transfer Using Motion-Textual Inversion

Recent years have seen a tremendous improvement in the quality of video generation and editing approaches. While several techniques focus on editing appearance, few address motion. Current approaches using text, trajectories, or bounding boxes are limited to simple motions, so we specify motions with a single motion reference video instead. We further propose to use a pre-trained image-to-video model rather than a text-to-video model. This approach allows us to preserve the exact appearance and position of a target object or scene and helps disentangle appearance from motion. Our method, called motion-textual inversion, leverages our observation that image-to-video models extract appearance mainly from the (latent) image input, while the text/image embedding injected via cross-attention predominantly controls motion. We thus represent motion using text/image embedding tokens. By operating on an inflated motion-text embedding containing multiple text/image embedding tokens per frame, we achieve a high temporal motion granularity. Once optimized on the motion reference video, this embedding can be applied to various target images to generate videos with semantically similar motions. Our approach does not require spatial alignment between the motion reference video and target image, generalizes across various domains, and can be applied to various tasks such as full-body and face reenactment, as well as controlling the motion of inanimate objects and the camera. We empirically demonstrate the effectiveness of our method in the semantic video motion transfer task, significantly outperforming existing methods in this context.

  • 5 authors
·
Aug 1, 2024 2

Leveraging Vision-Centric Multi-Modal Expertise for 3D Object Detection

Current research is primarily dedicated to advancing the accuracy of camera-only 3D object detectors (apprentice) through the knowledge transferred from LiDAR- or multi-modal-based counterparts (expert). However, the presence of the domain gap between LiDAR and camera features, coupled with the inherent incompatibility in temporal fusion, significantly hinders the effectiveness of distillation-based enhancements for apprentices. Motivated by the success of uni-modal distillation, an apprentice-friendly expert model would predominantly rely on camera features, while still achieving comparable performance to multi-modal models. To this end, we introduce VCD, a framework to improve the camera-only apprentice model, including an apprentice-friendly multi-modal expert and temporal-fusion-friendly distillation supervision. The multi-modal expert VCD-E adopts an identical structure as that of the camera-only apprentice in order to alleviate the feature disparity, and leverages LiDAR input as a depth prior to reconstruct the 3D scene, achieving the performance on par with other heterogeneous multi-modal experts. Additionally, a fine-grained trajectory-based distillation module is introduced with the purpose of individually rectifying the motion misalignment for each object in the scene. With those improvements, our camera-only apprentice VCD-A sets new state-of-the-art on nuScenes with a score of 63.1% NDS.

  • 7 authors
·
Oct 24, 2023

Distilled Decoding 2: One-step Sampling of Image Auto-regressive Models with Conditional Score Distillation

Image Auto-regressive (AR) models have emerged as a powerful paradigm of visual generative models. Despite their promising performance, they suffer from slow generation speed due to the large number of sampling steps required. Although Distilled Decoding 1 (DD1) was recently proposed to enable few-step sampling for image AR models, it still incurs significant performance degradation in the one-step setting, and relies on a pre-defined mapping that limits its flexibility. In this work, we propose a new method, Distilled Decoding 2 (DD2), to further advances the feasibility of one-step sampling for image AR models. Unlike DD1, DD2 does not without rely on a pre-defined mapping. We view the original AR model as a teacher model which provides the ground truth conditional score in the latent embedding space at each token position. Based on this, we propose a novel conditional score distillation loss to train a one-step generator. Specifically, we train a separate network to predict the conditional score of the generated distribution and apply score distillation at every token position conditioned on previous tokens. Experimental results show that DD2 enables one-step sampling for image AR models with an minimal FID increase from 3.40 to 5.43 on ImageNet-256. Compared to the strongest baseline DD1, DD2 reduces the gap between the one-step sampling and original AR model by 67%, with up to 12.3times training speed-up simultaneously. DD2 takes a significant step toward the goal of one-step AR generation, opening up new possibilities for fast and high-quality AR modeling. Code is available at https://github.com/imagination-research/Distilled-Decoding-2.

  • 7 authors
·
Oct 23 2

Position Prediction as an Effective Pretraining Strategy

Transformers have gained increasing popularity in a wide range of applications, including Natural Language Processing (NLP), Computer Vision and Speech Recognition, because of their powerful representational capacity. However, harnessing this representational capacity effectively requires a large amount of data, strong regularization, or both, to mitigate overfitting. Recently, the power of the Transformer has been unlocked by self-supervised pretraining strategies based on masked autoencoders which rely on reconstructing masked inputs, directly, or contrastively from unmasked content. This pretraining strategy which has been used in BERT models in NLP, Wav2Vec models in Speech and, recently, in MAE models in Vision, forces the model to learn about relationships between the content in different parts of the input using autoencoding related objectives. In this paper, we propose a novel, but surprisingly simple alternative to content reconstruction~-- that of predicting locations from content, without providing positional information for it. Doing so requires the Transformer to understand the positional relationships between different parts of the input, from their content alone. This amounts to an efficient implementation where the pretext task is a classification problem among all possible positions for each input token. We experiment on both Vision and Speech benchmarks, where our approach brings improvements over strong supervised training baselines and is comparable to modern unsupervised/self-supervised pretraining methods. Our method also enables Transformers trained without position embeddings to outperform ones trained with full position information.

  • 10 authors
·
Jul 15, 2022 2

ScatterNeRF: Seeing Through Fog with Physically-Based Inverse Neural Rendering

Vision in adverse weather conditions, whether it be snow, rain, or fog is challenging. In these scenarios, scattering and attenuation severly degrades image quality. Handling such inclement weather conditions, however, is essential to operate autonomous vehicles, drones and robotic applications where human performance is impeded the most. A large body of work explores removing weather-induced image degradations with dehazing methods. Most methods rely on single images as input and struggle to generalize from synthetic fully-supervised training approaches or to generate high fidelity results from unpaired real-world datasets. With data as bottleneck and most of today's training data relying on good weather conditions with inclement weather as outlier, we rely on an inverse rendering approach to reconstruct the scene content. We introduce ScatterNeRF, a neural rendering method which adequately renders foggy scenes and decomposes the fog-free background from the participating media-exploiting the multiple views from a short automotive sequence without the need for a large training data corpus. Instead, the rendering approach is optimized on the multi-view scene itself, which can be typically captured by an autonomous vehicle, robot or drone during operation. Specifically, we propose a disentangled representation for the scattering volume and the scene objects, and learn the scene reconstruction with physics-inspired losses. We validate our method by capturing multi-view In-the-Wild data and controlled captures in a large-scale fog chamber.

  • 6 authors
·
May 3, 2023

X-UniMotion: Animating Human Images with Expressive, Unified and Identity-Agnostic Motion Latents

We present X-UniMotion, a unified and expressive implicit latent representation for whole-body human motion, encompassing facial expressions, body poses, and hand gestures. Unlike prior motion transfer methods that rely on explicit skeletal poses and heuristic cross-identity adjustments, our approach encodes multi-granular motion directly from a single image into a compact set of four disentangled latent tokens -- one for facial expression, one for body pose, and one for each hand. These motion latents are both highly expressive and identity-agnostic, enabling high-fidelity, detailed cross-identity motion transfer across subjects with diverse identities, poses, and spatial configurations. To achieve this, we introduce a self-supervised, end-to-end framework that jointly learns the motion encoder and latent representation alongside a DiT-based video generative model, trained on large-scale, diverse human motion datasets. Motion-identity disentanglement is enforced via 2D spatial and color augmentations, as well as synthetic 3D renderings of cross-identity subject pairs under shared poses. Furthermore, we guide motion token learning with auxiliary decoders that promote fine-grained, semantically aligned, and depth-aware motion embeddings. Extensive experiments show that X-UniMotion outperforms state-of-the-art methods, producing highly expressive animations with superior motion fidelity and identity preservation.

  • 8 authors
·
Aug 12

LOOPE: Learnable Optimal Patch Order in Positional Embeddings for Vision Transformers

Positional embeddings (PE) play a crucial role in Vision Transformers (ViTs) by providing spatial information otherwise lost due to the permutation invariant nature of self attention. While absolute positional embeddings (APE) have shown theoretical advantages over relative positional embeddings (RPE), particularly due to the ability of sinusoidal functions to preserve spatial inductive biases like monotonicity and shift invariance, a fundamental challenge arises when mapping a 2D grid to a 1D sequence. Existing methods have mostly overlooked or never explored the impact of patch ordering in positional embeddings. To address this, we propose LOOPE, a learnable patch-ordering method that optimizes spatial representation for a given set of frequencies, providing a principled approach to patch order optimization. Empirical results show that our PE significantly improves classification accuracy across various ViT architectures. To rigorously evaluate the effectiveness of positional embeddings, we introduce the "Three Cell Experiment", a novel benchmarking framework that assesses the ability of PEs to retain relative and absolute positional information across different ViT architectures. Unlike standard evaluations, which typically report a performance gap of 4 to 6% between models with and without PE, our method reveals a striking 30 to 35% difference, offering a more sensitive diagnostic tool to measure the efficacy of PEs. Our experimental analysis confirms that the proposed LOOPE demonstrates enhanced effectiveness in retaining both relative and absolute positional information.

  • 3 authors
·
Apr 19

Mitigating Object Hallucination via Concentric Causal Attention

Recent Large Vision Language Models (LVLMs) present remarkable zero-shot conversational and reasoning capabilities given multimodal queries. Nevertheless, they suffer from object hallucination, a phenomenon where LVLMs are prone to generate textual responses not factually aligned with image inputs. Our pilot study reveals that object hallucination is closely tied with Rotary Position Encoding (RoPE), a widely adopted positional dependency modeling design in existing LVLMs. Due to the long-term decay in RoPE, LVLMs tend to hallucinate more when relevant visual cues are distant from instruction tokens in the multimodal input sequence. Additionally, we observe a similar effect when reversing the sequential order of visual tokens during multimodal alignment. Our tests indicate that long-term decay in RoPE poses challenges to LVLMs while capturing visual-instruction interactions across long distances. We propose Concentric Causal Attention (CCA), a simple yet effective positional alignment strategy that mitigates the impact of RoPE long-term decay in LVLMs by naturally reducing relative distance between visual and instruction tokens. With CCA, visual tokens can better interact with instruction tokens, thereby enhancing model's perception capability and alleviating object hallucination. Without bells and whistles, our positional alignment method surpasses existing hallucination mitigation strategies by large margins on multiple object hallucination benchmarks.

  • 4 authors
·
Oct 21, 2024 2

MonoNeRF: Learning a Generalizable Dynamic Radiance Field from Monocular Videos

In this paper, we target at the problem of learning a generalizable dynamic radiance field from monocular videos. Different from most existing NeRF methods that are based on multiple views, monocular videos only contain one view at each timestamp, thereby suffering from ambiguity along the view direction in estimating point features and scene flows. Previous studies such as DynNeRF disambiguate point features by positional encoding, which is not transferable and severely limits the generalization ability. As a result, these methods have to train one independent model for each scene and suffer from heavy computational costs when applying to increasing monocular videos in real-world applications. To address this, We propose MonoNeRF to simultaneously learn point features and scene flows with point trajectory and feature correspondence constraints across frames. More specifically, we learn an implicit velocity field to estimate point trajectory from temporal features with Neural ODE, which is followed by a flow-based feature aggregation module to obtain spatial features along the point trajectory. We jointly optimize temporal and spatial features in an end-to-end manner. Experiments show that our MonoNeRF is able to learn from multiple scenes and support new applications such as scene editing, unseen frame synthesis, and fast novel scene adaptation. Codes are available at https://github.com/tianfr/MonoNeRF.

  • 3 authors
·
Dec 26, 2022

Learning Disentangled Identifiers for Action-Customized Text-to-Image Generation

This study focuses on a novel task in text-to-image (T2I) generation, namely action customization. The objective of this task is to learn the co-existing action from limited data and generalize it to unseen humans or even animals. Experimental results show that existing subject-driven customization methods fail to learn the representative characteristics of actions and struggle in decoupling actions from context features, including appearance. To overcome the preference for low-level features and the entanglement of high-level features, we propose an inversion-based method Action-Disentangled Identifier (ADI) to learn action-specific identifiers from the exemplar images. ADI first expands the semantic conditioning space by introducing layer-wise identifier tokens, thereby increasing the representational richness while distributing the inversion across different features. Then, to block the inversion of action-agnostic features, ADI extracts the gradient invariance from the constructed sample triples and masks the updates of irrelevant channels. To comprehensively evaluate the task, we present an ActionBench that includes a variety of actions, each accompanied by meticulously selected samples. Both quantitative and qualitative results show that our ADI outperforms existing baselines in action-customized T2I generation. Our project page is at https://adi-t2i.github.io/ADI.

  • 7 authors
·
Nov 27, 2023 2

Context Autoencoder for Self-Supervised Representation Learning

We present a novel masked image modeling (MIM) approach, context autoencoder (CAE), for self-supervised representation pretraining. We pretrain an encoder by making predictions in the encoded representation space. The pretraining tasks include two tasks: masked representation prediction - predict the representations for the masked patches, and masked patch reconstruction - reconstruct the masked patches. The network is an encoder-regressor-decoder architecture: the encoder takes the visible patches as input; the regressor predicts the representations of the masked patches, which are expected to be aligned with the representations computed from the encoder, using the representations of visible patches and the positions of visible and masked patches; the decoder reconstructs the masked patches from the predicted encoded representations. The CAE design encourages the separation of learning the encoder (representation) from completing the pertaining tasks: masked representation prediction and masked patch reconstruction tasks, and making predictions in the encoded representation space empirically shows the benefit to representation learning. We demonstrate the effectiveness of our CAE through superior transfer performance in downstream tasks: semantic segmentation, object detection and instance segmentation, and classification. The code will be available at https://github.com/Atten4Vis/CAE.

  • 10 authors
·
Feb 7, 2022

Boundary-Denoising for Video Activity Localization

Video activity localization aims at understanding the semantic content in long untrimmed videos and retrieving actions of interest. The retrieved action with its start and end locations can be used for highlight generation, temporal action detection, etc. Unfortunately, learning the exact boundary location of activities is highly challenging because temporal activities are continuous in time, and there are often no clear-cut transitions between actions. Moreover, the definition of the start and end of events is subjective, which may confuse the model. To alleviate the boundary ambiguity, we propose to study the video activity localization problem from a denoising perspective. Specifically, we propose an encoder-decoder model named DenoiseLoc. During training, a set of action spans is randomly generated from the ground truth with a controlled noise scale. Then we attempt to reverse this process by boundary denoising, allowing the localizer to predict activities with precise boundaries and resulting in faster convergence speed. Experiments show that DenoiseLoc advances %in several video activity understanding tasks. For example, we observe a gain of +12.36% average mAP on QV-Highlights dataset and +1.64% [email protected] on THUMOS'14 dataset over the baseline. Moreover, DenoiseLoc achieves state-of-the-art performance on TACoS and MAD datasets, but with much fewer predictions compared to other current methods.

  • 6 authors
·
Apr 6, 2023

Context-aware Rotary Position Embedding

Positional encoding is a vital component of Transformer architectures, enabling models to incorporate sequence order into self-attention mechanisms. Rotary Positional Embeddings (RoPE) have become a widely adopted solution due to their compatibility with relative position encoding and computational efficiency. However, RoPE relies on static, input-independent sinusoidal frequency patterns, limiting its ability to model context-sensitive relationships. In this work, we propose CARoPE (Context-Aware Rotary Positional Embedding), a novel generalization of RoPE that dynamically generates head-specific frequency patterns conditioned on token embeddings. This design introduces token- and context-sensitive positional representations while preserving RoPE efficiency and architectural simplicity. CARoPE computes input-dependent phase shifts using a bounded transformation of token embeddings and integrates them into the rotary mechanism across attention heads. We evaluate CARoPE on the FineWeb-Edu-10B dataset using GPT-2 variants trained on next-token prediction tasks. Experimental results show that CARoPE consistently outperforms RoPE and other common positional encoding baselines, achieving significantly lower perplexity, even at longer context lengths. Additionally, CARoPE enables faster training throughput without sacrificing model stability. These findings demonstrate that CARoPE offers a scalable, expressive, and efficient upgrade to existing positional encoding strategies in Transformer models.

  • 3 authors
·
Jul 30

HumanMAC: Masked Motion Completion for Human Motion Prediction

Human motion prediction is a classical problem in computer vision and computer graphics, which has a wide range of practical applications. Previous effects achieve great empirical performance based on an encoding-decoding style. The methods of this style work by first encoding previous motions to latent representations and then decoding the latent representations into predicted motions. However, in practice, they are still unsatisfactory due to several issues, including complicated loss constraints, cumbersome training processes, and scarce switch of different categories of motions in prediction. In this paper, to address the above issues, we jump out of the foregoing style and propose a novel framework from a new perspective. Specifically, our framework works in a masked completion fashion. In the training stage, we learn a motion diffusion model that generates motions from random noise. In the inference stage, with a denoising procedure, we make motion prediction conditioning on observed motions to output more continuous and controllable predictions. The proposed framework enjoys promising algorithmic properties, which only needs one loss in optimization and is trained in an end-to-end manner. Additionally, it accomplishes the switch of different categories of motions effectively, which is significant in realistic tasks, e.g., the animation task. Comprehensive experiments on benchmarks confirm the superiority of the proposed framework. The project page is available at https://lhchen.top/Human-MAC.

  • 6 authors
·
Feb 7, 2023

DDMI: Domain-Agnostic Latent Diffusion Models for Synthesizing High-Quality Implicit Neural Representations

Recent studies have introduced a new class of generative models for synthesizing implicit neural representations (INRs) that capture arbitrary continuous signals in various domains. These models opened the door for domain-agnostic generative models, but they often fail to achieve high-quality generation. We observed that the existing methods generate the weights of neural networks to parameterize INRs and evaluate the network with fixed positional embeddings (PEs). Arguably, this architecture limits the expressive power of generative models and results in low-quality INR generation. To address this limitation, we propose Domain-agnostic Latent Diffusion Model for INRs (DDMI) that generates adaptive positional embeddings instead of neural networks' weights. Specifically, we develop a Discrete-to-continuous space Variational AutoEncoder (D2C-VAE), which seamlessly connects discrete data and the continuous signal functions in the shared latent space. Additionally, we introduce a novel conditioning mechanism for evaluating INRs with the hierarchically decomposed PEs to further enhance expressive power. Extensive experiments across four modalities, e.g., 2D images, 3D shapes, Neural Radiance Fields, and videos, with seven benchmark datasets, demonstrate the versatility of DDMI and its superior performance compared to the existing INR generative models.

  • 4 authors
·
Jan 23, 2024

MultiPly: Reconstruction of Multiple People from Monocular Video in the Wild

We present MultiPly, a novel framework to reconstruct multiple people in 3D from monocular in-the-wild videos. Reconstructing multiple individuals moving and interacting naturally from monocular in-the-wild videos poses a challenging task. Addressing it necessitates precise pixel-level disentanglement of individuals without any prior knowledge about the subjects. Moreover, it requires recovering intricate and complete 3D human shapes from short video sequences, intensifying the level of difficulty. To tackle these challenges, we first define a layered neural representation for the entire scene, composited by individual human and background models. We learn the layered neural representation from videos via our layer-wise differentiable volume rendering. This learning process is further enhanced by our hybrid instance segmentation approach which combines the self-supervised 3D segmentation and the promptable 2D segmentation module, yielding reliable instance segmentation supervision even under close human interaction. A confidence-guided optimization formulation is introduced to optimize the human poses and shape/appearance alternately. We incorporate effective objectives to refine human poses via photometric information and impose physically plausible constraints on human dynamics, leading to temporally consistent 3D reconstructions with high fidelity. The evaluation of our method shows the superiority over prior art on publicly available datasets and in-the-wild videos.

  • 7 authors
·
Jun 3, 2024

TimeDRL: Disentangled Representation Learning for Multivariate Time-Series

Multivariate time-series data in numerous real-world applications (e.g., healthcare and industry) are informative but challenging due to the lack of labels and high dimensionality. Recent studies in self-supervised learning have shown their potential in learning rich representations without relying on labels, yet they fall short in learning disentangled embeddings and addressing issues of inductive bias (e.g., transformation-invariance). To tackle these challenges, we propose TimeDRL, a generic multivariate time-series representation learning framework with disentangled dual-level embeddings. TimeDRL is characterized by three novel features: (i) disentangled derivation of timestamp-level and instance-level embeddings from patched time-series data using a [CLS] token strategy; (ii) utilization of timestamp-predictive and instance-contrastive tasks for disentangled representation learning, with the former optimizing timestamp-level embeddings with predictive loss, and the latter optimizing instance-level embeddings with contrastive loss; and (iii) avoidance of augmentation methods to eliminate inductive biases, such as transformation-invariance from cropping and masking. Comprehensive experiments on 6 time-series forecasting datasets and 5 time-series classification datasets have shown that TimeDRL consistently surpasses existing representation learning approaches, achieving an average improvement of forecasting by 58.02% in MSE and classification by 1.48% in accuracy. Furthermore, extensive ablation studies confirmed the relative contribution of each component in TimeDRL's architecture, and semi-supervised learning evaluations demonstrated its effectiveness in real-world scenarios, even with limited labeled data. The code is available at https://github.com/blacksnail789521/TimeDRL.

  • 5 authors
·
Dec 7, 2023

Large Motion Video Autoencoding with Cross-modal Video VAE

Learning a robust video Variational Autoencoder (VAE) is essential for reducing video redundancy and facilitating efficient video generation. Directly applying image VAEs to individual frames in isolation can result in temporal inconsistencies and suboptimal compression rates due to a lack of temporal compression. Existing Video VAEs have begun to address temporal compression; however, they often suffer from inadequate reconstruction performance. In this paper, we present a novel and powerful video autoencoder capable of high-fidelity video encoding. First, we observe that entangling spatial and temporal compression by merely extending the image VAE to a 3D VAE can introduce motion blur and detail distortion artifacts. Thus, we propose temporal-aware spatial compression to better encode and decode the spatial information. Additionally, we integrate a lightweight motion compression model for further temporal compression. Second, we propose to leverage the textual information inherent in text-to-video datasets and incorporate text guidance into our model. This significantly enhances reconstruction quality, particularly in terms of detail preservation and temporal stability. Third, we further improve the versatility of our model through joint training on both images and videos, which not only enhances reconstruction quality but also enables the model to perform both image and video autoencoding. Extensive evaluations against strong recent baselines demonstrate the superior performance of our method. The project website can be found at~https://yzxing87.github.io/vae/{https://yzxing87.github.io/vae/}.

  • 7 authors
·
Dec 23, 2024 3

Factorized Visual Tokenization and Generation

Visual tokenizers are fundamental to image generation. They convert visual data into discrete tokens, enabling transformer-based models to excel at image generation. Despite their success, VQ-based tokenizers like VQGAN face significant limitations due to constrained vocabulary sizes. Simply expanding the codebook often leads to training instability and diminishing performance gains, making scalability a critical challenge. In this work, we introduce Factorized Quantization (FQ), a novel approach that revitalizes VQ-based tokenizers by decomposing a large codebook into multiple independent sub-codebooks. This factorization reduces the lookup complexity of large codebooks, enabling more efficient and scalable visual tokenization. To ensure each sub-codebook captures distinct and complementary information, we propose a disentanglement regularization that explicitly reduces redundancy, promoting diversity across the sub-codebooks. Furthermore, we integrate representation learning into the training process, leveraging pretrained vision models like CLIP and DINO to infuse semantic richness into the learned representations. This design ensures our tokenizer captures diverse semantic levels, leading to more expressive and disentangled representations. Experiments show that the proposed FQGAN model substantially improves the reconstruction quality of visual tokenizers, achieving state-of-the-art performance. We further demonstrate that this tokenizer can be effectively adapted into auto-regressive image generation. https://showlab.github.io/FQGAN

  • 7 authors
·
Nov 25, 2024 2

Disentangled Contrastive Collaborative Filtering

Recent studies show that graph neural networks (GNNs) are prevalent to model high-order relationships for collaborative filtering (CF). Towards this research line, graph contrastive learning (GCL) has exhibited powerful performance in addressing the supervision label shortage issue by learning augmented user and item representations. While many of them show their effectiveness, two key questions still remain unexplored: i) Most existing GCL-based CF models are still limited by ignoring the fact that user-item interaction behaviors are often driven by diverse latent intent factors (e.g., shopping for family party, preferred color or brand of products); ii) Their introduced non-adaptive augmentation techniques are vulnerable to noisy information, which raises concerns about the model's robustness and the risk of incorporating misleading self-supervised signals. In light of these limitations, we propose a Disentangled Contrastive Collaborative Filtering framework (DCCF) to realize intent disentanglement with self-supervised augmentation in an adaptive fashion. With the learned disentangled representations with global context, our DCCF is able to not only distill finer-grained latent factors from the entangled self-supervision signals but also alleviate the augmentation-induced noise. Finally, the cross-view contrastive learning task is introduced to enable adaptive augmentation with our parameterized interaction mask generator. Experiments on various public datasets demonstrate the superiority of our method compared to existing solutions. Our model implementation is released at the link https://github.com/HKUDS/DCCF.

  • 5 authors
·
May 4, 2023

Learning Structured Output Representations from Attributes using Deep Conditional Generative Models

Structured output representation is a generative task explored in computer vision that often times requires the mapping of low dimensional features to high dimensional structured outputs. Losses in complex spatial information in deterministic approaches such as Convolutional Neural Networks (CNN) lead to uncertainties and ambiguous structures within a single output representation. A probabilistic approach through deep Conditional Generative Models (CGM) is presented by Sohn et al. in which a particular model known as the Conditional Variational Auto-encoder (CVAE) is introduced and explored. While the original paper focuses on the task of image segmentation, this paper adopts the CVAE framework for the task of controlled output representation through attributes. This approach allows us to learn a disentangled multimodal prior distribution, resulting in more controlled and robust approach to sample generation. In this work we recreate the CVAE architecture and train it on images conditioned on various attributes obtained from two image datasets; the Large-scale CelebFaces Attributes (CelebA) dataset and the Caltech-UCSD Birds (CUB-200-2011) dataset. We attempt to generate new faces with distinct attributes such as hair color and glasses, as well as different bird species samples with various attributes. We further introduce strategies for improving generalized sample generation by applying a weighted term to the variational lower bound.

  • 1 authors
·
Apr 30, 2023

One-Way Ticket:Time-Independent Unified Encoder for Distilling Text-to-Image Diffusion Models

Text-to-Image (T2I) diffusion models have made remarkable advancements in generative modeling; however, they face a trade-off between inference speed and image quality, posing challenges for efficient deployment. Existing distilled T2I models can generate high-fidelity images with fewer sampling steps, but often struggle with diversity and quality, especially in one-step models. From our analysis, we observe redundant computations in the UNet encoders. Our findings suggest that, for T2I diffusion models, decoders are more adept at capturing richer and more explicit semantic information, while encoders can be effectively shared across decoders from diverse time steps. Based on these observations, we introduce the first Time-independent Unified Encoder TiUE for the student model UNet architecture, which is a loop-free image generation approach for distilling T2I diffusion models. Using a one-pass scheme, TiUE shares encoder features across multiple decoder time steps, enabling parallel sampling and significantly reducing inference time complexity. In addition, we incorporate a KL divergence term to regularize noise prediction, which enhances the perceptual realism and diversity of the generated images. Experimental results demonstrate that TiUE outperforms state-of-the-art methods, including LCM, SD-Turbo, and SwiftBrushv2, producing more diverse and realistic results while maintaining the computational efficiency.

  • 10 authors
·
May 28 2

Re-HOLD: Video Hand Object Interaction Reenactment via adaptive Layout-instructed Diffusion Model

Current digital human studies focusing on lip-syncing and body movement are no longer sufficient to meet the growing industrial demand, while human video generation techniques that support interacting with real-world environments (e.g., objects) have not been well investigated. Despite human hand synthesis already being an intricate problem, generating objects in contact with hands and their interactions presents an even more challenging task, especially when the objects exhibit obvious variations in size and shape. To tackle these issues, we present a novel video Reenactment framework focusing on Human-Object Interaction (HOI) via an adaptive Layout-instructed Diffusion model (Re-HOLD). Our key insight is to employ specialized layout representation for hands and objects, respectively. Such representations enable effective disentanglement of hand modeling and object adaptation to diverse motion sequences. To further improve the generation quality of HOI, we design an interactive textural enhancement module for both hands and objects by introducing two independent memory banks. We also propose a layout adjustment strategy for the cross-object reenactment scenario to adaptively adjust unreasonable layouts caused by diverse object sizes during inference. Comprehensive qualitative and quantitative evaluations demonstrate that our proposed framework significantly outperforms existing methods. Project page: https://fyycs.github.io/Re-HOLD.

  • 9 authors
·
Mar 21

Unifying Diffusion Models' Latent Space, with Applications to CycleDiffusion and Guidance

Diffusion models have achieved unprecedented performance in generative modeling. The commonly-adopted formulation of the latent code of diffusion models is a sequence of gradually denoised samples, as opposed to the simpler (e.g., Gaussian) latent space of GANs, VAEs, and normalizing flows. This paper provides an alternative, Gaussian formulation of the latent space of various diffusion models, as well as an invertible DPM-Encoder that maps images into the latent space. While our formulation is purely based on the definition of diffusion models, we demonstrate several intriguing consequences. (1) Empirically, we observe that a common latent space emerges from two diffusion models trained independently on related domains. In light of this finding, we propose CycleDiffusion, which uses DPM-Encoder for unpaired image-to-image translation. Furthermore, applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors. (2) One can guide pre-trained diffusion models and GANs by controlling the latent codes in a unified, plug-and-play formulation based on energy-based models. Using the CLIP model and a face recognition model as guidance, we demonstrate that diffusion models have better coverage of low-density sub-populations and individuals than GANs. The code is publicly available at https://github.com/ChenWu98/cycle-diffusion.

  • 2 authors
·
Oct 11, 2022 1

DisPose: Disentangling Pose Guidance for Controllable Human Image Animation

Controllable human image animation aims to generate videos from reference images using driving videos. Due to the limited control signals provided by sparse guidance (e.g., skeleton pose), recent works have attempted to introduce additional dense conditions (e.g., depth map) to ensure motion alignment. However, such strict dense guidance impairs the quality of the generated video when the body shape of the reference character differs significantly from that of the driving video. In this paper, we present DisPose to mine more generalizable and effective control signals without additional dense input, which disentangles the sparse skeleton pose in human image animation into motion field guidance and keypoint correspondence. Specifically, we generate a dense motion field from a sparse motion field and the reference image, which provides region-level dense guidance while maintaining the generalization of the sparse pose control. We also extract diffusion features corresponding to pose keypoints from the reference image, and then these point features are transferred to the target pose to provide distinct identity information. To seamlessly integrate into existing models, we propose a plug-and-play hybrid ControlNet that improves the quality and consistency of generated videos while freezing the existing model parameters. Extensive qualitative and quantitative experiments demonstrate the superiority of DisPose compared to current methods. Code: https://github.com/lihxxx/DisPose{https://github.com/lihxxx/DisPose}.

  • 7 authors
·
Dec 12, 2024 2

DRoPE: Directional Rotary Position Embedding for Efficient Agent Interaction Modeling

Accurate and efficient modeling of agent interactions is essential for trajectory generation, the core of autonomous driving systems. Existing methods, scene-centric, agent-centric, and query-centric frameworks, each present distinct advantages and drawbacks, creating an impossible triangle among accuracy, computational time, and memory efficiency. To break this limitation, we propose Directional Rotary Position Embedding (DRoPE), a novel adaptation of Rotary Position Embedding (RoPE), originally developed in natural language processing. Unlike traditional relative position embedding (RPE), which introduces significant space complexity, RoPE efficiently encodes relative positions without explicitly increasing complexity but faces inherent limitations in handling angular information due to periodicity. DRoPE overcomes this limitation by introducing a uniform identity scalar into RoPE's 2D rotary transformation, aligning rotation angles with realistic agent headings to naturally encode relative angular information. We theoretically analyze DRoPE's correctness and efficiency, demonstrating its capability to simultaneously optimize trajectory generation accuracy, time complexity, and space complexity. Empirical evaluations compared with various state-of-the-art trajectory generation models, confirm DRoPE's good performance and significantly reduced space complexity, indicating both theoretical soundness and practical effectiveness. The video documentation is available at https://drope-traj.github.io/.

  • 10 authors
·
Mar 19

EntroPE: Entropy-Guided Dynamic Patch Encoder for Time Series Forecasting

Transformer-based models have significantly advanced time series forecasting, with patch-based input strategies offering efficiency and improved long-horizon modeling. Yet, existing approaches rely on temporally-agnostic patch construction, where arbitrary starting positions and fixed lengths fracture temporal coherence by splitting natural transitions across boundaries. This naive segmentation often disrupts short-term dependencies and weakens representation learning. In response, we propose EntroPE (Entropy-Guided Dynamic Patch Encoder), a novel, temporally informed framework that dynamically detects transition points via conditional entropy and dynamically places patch boundaries. This preserves temporal structure while retaining the computational benefits of patching. EntroPE consists of two key modules, namely an Entropy-based Dynamic Patcher (EDP) that applies information-theoretic criteria to locate natural temporal shifts and determine patch boundaries, and an Adaptive Patch Encoder (APE) that employs pooling and cross-attention to capture intra-patch dependencies and produce fixed-size latent representations. These embeddings are then processed by a global transformer to model inter-patch dynamics. Experiments across long-term forecasting benchmarks demonstrate that EntroPE improves both accuracy and efficiency, establishing entropy-guided dynamic patching as a promising new paradigm for time series modeling. Code is available at: https://github.com/Sachithx/EntroPE.

NaviNeRF: NeRF-based 3D Representation Disentanglement by Latent Semantic Navigation

3D representation disentanglement aims to identify, decompose, and manipulate the underlying explanatory factors of 3D data, which helps AI fundamentally understand our 3D world. This task is currently under-explored and poses great challenges: (i) the 3D representations are complex and in general contains much more information than 2D image; (ii) many 3D representations are not well suited for gradient-based optimization, let alone disentanglement. To address these challenges, we use NeRF as a differentiable 3D representation, and introduce a self-supervised Navigation to identify interpretable semantic directions in the latent space. To our best knowledge, this novel method, dubbed NaviNeRF, is the first work to achieve fine-grained 3D disentanglement without any priors or supervisions. Specifically, NaviNeRF is built upon the generative NeRF pipeline, and equipped with an Outer Navigation Branch and an Inner Refinement Branch. They are complementary -- the outer navigation is to identify global-view semantic directions, and the inner refinement dedicates to fine-grained attributes. A synergistic loss is further devised to coordinate two branches. Extensive experiments demonstrate that NaviNeRF has a superior fine-grained 3D disentanglement ability than the previous 3D-aware models. Its performance is also comparable to editing-oriented models relying on semantic or geometry priors.

  • 7 authors
·
Apr 22, 2023

NERV++: An Enhanced Implicit Neural Video Representation

Neural fields, also known as implicit neural representations (INRs), have shown a remarkable capability of representing, generating, and manipulating various data types, allowing for continuous data reconstruction at a low memory footprint. Though promising, INRs applied to video compression still need to improve their rate-distortion performance by a large margin, and require a huge number of parameters and long training iterations to capture high-frequency details, limiting their wider applicability. Resolving this problem remains a quite challenging task, which would make INRs more accessible in compression tasks. We take a step towards resolving these shortcomings by introducing neural representations for videos NeRV++, an enhanced implicit neural video representation, as more straightforward yet effective enhancement over the original NeRV decoder architecture, featuring separable conv2d residual blocks (SCRBs) that sandwiches the upsampling block (UB), and a bilinear interpolation skip layer for improved feature representation. NeRV++ allows videos to be directly represented as a function approximated by a neural network, and significantly enhance the representation capacity beyond current INR-based video codecs. We evaluate our method on UVG, MCL JVC, and Bunny datasets, achieving competitive results for video compression with INRs. This achievement narrows the gap to autoencoder-based video coding, marking a significant stride in INR-based video compression research.

  • 3 authors
·
Feb 28, 2024

The Nature of Mathematical Modeling and Probabilistic Optimization Engineering in Generative AI

In this paper, we give an in-depth analysis on the mathematical problem formulations and the probabilistic optimization explorations for some of the key components in Transformer model [33] in the field of generative AI. We explore and discuss some potential further enhancement for current state of the art methods for some key underlying technologies of generative AI models from algorithmic and probabilistic optimization perspective. In particular, we present an optimal solution for sub-word encoding (SWE) based on similar initial settings as that of byte-pair encoding (BPE) algorithm in [9] with similar objectives as that of WordPiece approach in [28, 31] to maximize the likelihood of the training data. We also present cross entropy optimization method to optimize hyperparameters for word2vec model [17]. In addition, we propose a factored combination of rotary positional encoding (RoPE) [32] and attention with linear biases (ALiBi) [23] with a harmonic series. We also present a probabilistic FlashAttention [6, 7] (PrFlashAttention) method with a probability distribution over block distances in the matrix to decide which block is likely to participate in a given round of attention computation while maintaining the lower triangle shape of the tensor for autoregressive language models by re-shaping the tensors. Finally, we present staircase adaptive quantization (SAQ) of key-value (KV) cache for multi-query attention (MQA) based on the framework presented in [16] to have gradual quantization degradation while achieving reasonable model quality and cost savings.

  • 1 authors
·
Oct 24, 2024 2

PSCodec: A Series of High-Fidelity Low-bitrate Neural Speech Codecs Leveraging Prompt Encoders

Neural speech codecs have recently emerged as a focal point in the fields of speech compression and generation. Despite this progress, achieving high-quality speech reconstruction under low-bitrate scenarios remains a significant challenge. In this paper, we propose PSCodec, a series of neural speech codecs based on prompt encoders, comprising PSCodec-Base, PSCodec-DRL-ICT, and PSCodec-CasAN, which are capable of delivering high-performance speech reconstruction with low bandwidths. Specifically, we first introduce PSCodec-Base, which leverages a pretrained speaker verification model-based prompt encoder (VPP-Enc) and a learnable Mel-spectrogram-based prompt encoder (MelP-Enc) to effectively disentangle and integrate voiceprint and Mel-related features in utterances. To further enhance feature utilization efficiency, we propose PSCodec-DRL-ICT, incorporating a structural similarity (SSIM) based disentangled representation loss (DRL) and an incremental continuous training (ICT) strategy. While PSCodec-DRL-ICT demonstrates impressive performance, its reliance on extensive hyperparameter tuning and multi-stage training makes it somewhat labor-intensive. To circumvent these limitations, we propose PSCodec-CasAN, utilizing an advanced cascaded attention network (CasAN) to enhance representational capacity of the entire system. Extensive experiments show that our proposed PSCodec-Base, PSCodec-DRL-ICT, and PSCodec-CasAN all significantly outperform several state-of-the-art neural codecs, exhibiting substantial improvements in both speech reconstruction quality and speaker similarity under low-bitrate conditions.

  • 9 authors
·
Apr 3, 2024

Lifting Scheme-Based Implicit Disentanglement of Emotion-Related Facial Dynamics in the Wild

In-the-wild dynamic facial expression recognition (DFER) encounters a significant challenge in recognizing emotion-related expressions, which are often temporally and spatially diluted by emotion-irrelevant expressions and global context. Most prior DFER methods directly utilize coupled spatiotemporal representations that may incorporate weakly relevant features with emotion-irrelevant context bias. Several DFER methods highlight dynamic information for DFER, but following explicit guidance that may be vulnerable to irrelevant motion. In this paper, we propose a novel Implicit Facial Dynamics Disentanglement framework (IFDD). Through expanding wavelet lifting scheme to fully learnable framework, IFDD disentangles emotion-related dynamic information from emotion-irrelevant global context in an implicit manner, i.e., without exploit operations and external guidance. The disentanglement process contains two stages. The first is Inter-frame Static-dynamic Splitting Module (ISSM) for rough disentanglement estimation, which explores inter-frame correlation to generate content-aware splitting indexes on-the-fly. We utilize these indexes to split frame features into two groups, one with greater global similarity, and the other with more unique dynamic features. The second stage is Lifting-based Aggregation-Disentanglement Module (LADM) for further refinement. LADM first aggregates two groups of features from ISSM to obtain fine-grained global context features by an updater, and then disentangles emotion-related facial dynamic features from the global context by a predictor. Extensive experiments on in-the-wild datasets have demonstrated that IFDD outperforms prior supervised DFER methods with higher recognition accuracy and comparable efficiency. Code is available at https://github.com/CyberPegasus/IFDD.

  • 2 authors
·
Dec 17, 2024

Causal Diffusion Autoencoders: Toward Counterfactual Generation via Diffusion Probabilistic Models

Diffusion probabilistic models (DPMs) have become the state-of-the-art in high-quality image generation. However, DPMs have an arbitrary noisy latent space with no interpretable or controllable semantics. Although there has been significant research effort to improve image sample quality, there is little work on representation-controlled generation using diffusion models. Specifically, causal modeling and controllable counterfactual generation using DPMs is an underexplored area. In this work, we propose CausalDiffAE, a diffusion-based causal representation learning framework to enable counterfactual generation according to a specified causal model. Our key idea is to use an encoder to extract high-level semantically meaningful causal variables from high-dimensional data and model stochastic variation using reverse diffusion. We propose a causal encoding mechanism that maps high-dimensional data to causally related latent factors and parameterize the causal mechanisms among latent factors using neural networks. To enforce the disentanglement of causal variables, we formulate a variational objective and leverage auxiliary label information in a prior to regularize the latent space. We propose a DDIM-based counterfactual generation procedure subject to do-interventions. Finally, to address the limited label supervision scenario, we also study the application of CausalDiffAE when a part of the training data is unlabeled, which also enables granular control over the strength of interventions in generating counterfactuals during inference. We empirically show that CausalDiffAE learns a disentangled latent space and is capable of generating high-quality counterfactual images.

  • 4 authors
·
Apr 26, 2024