new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

Speech Analysis of Language Varieties in Italy

Italy exhibits rich linguistic diversity across its territory due to the distinct regional languages spoken in different areas. Recent advances in self-supervised learning provide new opportunities to analyze Italy's linguistic varieties using speech data alone. This includes the potential to leverage representations learned from large amounts of data to better examine nuances between closely related linguistic varieties. In this study, we focus on automatically identifying the geographic region of origin of speech samples drawn from Italy's diverse language varieties. We leverage self-supervised learning models to tackle this task and analyze differences and similarities between Italy's regional languages. In doing so, we also seek to uncover new insights into the relationships among these diverse yet closely related varieties, which may help linguists understand their interconnected evolution and regional development over time and space. To improve the discriminative ability of learned representations, we evaluate several supervised contrastive learning objectives, both as pre-training steps and additional fine-tuning objectives. Experimental evidence shows that pre-trained self-supervised models can effectively identify regions from speech recording. Additionally, incorporating contrastive objectives during fine-tuning improves classification accuracy and yields embeddings that distinctly separate regional varieties, demonstrating the value of combining self-supervised pre-training and contrastive learning for this task.

  • 4 authors
·
Jun 22, 2024

Do Not (Always) Look Right: Investigating the Capabilities of Decoder-Based Large Language Models for Sequence Labeling

Pre-trained language models based on masked language modeling (MLM) objective excel in natural language understanding (NLU) tasks. While fine-tuned MLM-based encoders consistently outperform causal language modeling decoders of comparable size, a recent trend of scaling decoder models to multiple billion parameters resulted in large language models (LLMs), making them competitive with MLM-based encoders. Although scale amplifies their prowess in NLU tasks, LLMs fall short of SOTA results in information extraction (IE) tasks, many framed as sequence labeling (SL). However, whether this is an intrinsic limitation of LLMs or whether their SL performance can be improved remains unclear. To address this, we explore strategies to enhance the SL performance of "open" LLMs (Llama2 and Mistral) on IE tasks. We investigate bidirectional information flow within groups of decoder blocks, applying layer-wise removal or enforcement of the causal mask (CM) during LLM fine-tuning. This approach yields performance gains competitive with SOTA SL models, matching or outperforming the results of CM removal from all blocks. Our findings hold for diverse SL tasks, proving that "open" LLMs with layer-dependent CM removal outperform strong MLM-based encoders and instruction-tuned LLMs. However, we observe no effect from CM removal on a small scale when maintaining an equivalent model size, pre-training steps, and pre-training and fine-tuning data.

  • 2 authors
·
Jan 25, 2024

Efficient Pre-training for Localized Instruction Generation of Videos

Procedural videos, exemplified by recipe demonstrations, are instrumental in conveying step-by-step instructions. However, understanding such videos is challenging as it involves the precise localization of steps and the generation of textual instructions. Manually annotating steps and writing instructions is costly, which limits the size of current datasets and hinders effective learning. Leveraging large but noisy video-transcript datasets for pre-training can boost performance but demands significant computational resources. Furthermore, transcripts contain irrelevant content and differ in style from human-written instructions. To mitigate these issues, we propose a novel technique, Sieve-&-Swap, to automatically generate high-quality training data for the recipe domain: (i) Sieve: filters irrelevant transcripts and (ii) Swap: acquires high-quality text by replacing transcripts with human-written instruction from a text-only recipe dataset. The resulting dataset is three orders of magnitude smaller than current web-scale datasets but enables efficient training of large-scale models. Alongside Sieve-&-Swap, we propose Procedure Transformer (ProcX), a model for end-to-end step localization and instruction generation for procedural videos. When pre-trained on our curated dataset, this model achieves state-of-the-art performance on YouCook2 and Tasty while using a fraction of the training data. We have released code and dataset.

  • 5 authors
·
Nov 27, 2023

Pre-training Tasks for Embedding-based Large-scale Retrieval

We consider the large-scale query-document retrieval problem: given a query (e.g., a question), return the set of relevant documents (e.g., paragraphs containing the answer) from a large document corpus. This problem is often solved in two steps. The retrieval phase first reduces the solution space, returning a subset of candidate documents. The scoring phase then re-ranks the documents. Critically, the retrieval algorithm not only desires high recall but also requires to be highly efficient, returning candidates in time sublinear to the number of documents. Unlike the scoring phase witnessing significant advances recently due to the BERT-style pre-training tasks on cross-attention models, the retrieval phase remains less well studied. Most previous works rely on classic Information Retrieval (IR) methods such as BM-25 (token matching + TF-IDF weights). These models only accept sparse handcrafted features and can not be optimized for different downstream tasks of interest. In this paper, we conduct a comprehensive study on the embedding-based retrieval models. We show that the key ingredient of learning a strong embedding-based Transformer model is the set of pre-training tasks. With adequately designed paragraph-level pre-training tasks, the Transformer models can remarkably improve over the widely-used BM-25 as well as embedding models without Transformers. The paragraph-level pre-training tasks we studied are Inverse Cloze Task (ICT), Body First Selection (BFS), Wiki Link Prediction (WLP), and the combination of all three.

  • 5 authors
·
Feb 10, 2020

BLSP: Bootstrapping Language-Speech Pre-training via Behavior Alignment of Continuation Writing

The emergence of large language models (LLMs) has sparked significant interest in extending their remarkable language capabilities to speech. However, modality alignment between speech and text still remains an open problem. Current solutions can be categorized into two strategies. One is a cascaded approach where outputs (tokens or states) of a separately trained speech recognition system are used as inputs for LLMs, which limits their potential in modeling alignment between speech and text. The other is an end-to-end approach that relies on speech instruction data, which is very difficult to collect in large quantities. In this paper, we address these issues and propose the BLSP approach that Bootstraps Language-Speech Pre-training via behavior alignment of continuation writing. We achieve this by learning a lightweight modality adapter between a frozen speech encoder and an LLM, ensuring that the LLM exhibits the same generation behavior regardless of the modality of input: a speech segment or its transcript. The training process can be divided into two steps. The first step prompts an LLM to generate texts with speech transcripts as prefixes, obtaining text continuations. In the second step, these continuations are used as supervised signals to train the modality adapter in an end-to-end manner. We demonstrate that this straightforward process can extend the capabilities of LLMs to speech, enabling speech recognition, speech translation, spoken language understanding, and speech conversation, even in zero-shot cross-lingual scenarios.

  • 8 authors
·
Sep 2, 2023

GeoMAE: Masked Geometric Target Prediction for Self-supervised Point Cloud Pre-Training

This paper tries to address a fundamental question in point cloud self-supervised learning: what is a good signal we should leverage to learn features from point clouds without annotations? To answer that, we introduce a point cloud representation learning framework, based on geometric feature reconstruction. In contrast to recent papers that directly adopt masked autoencoder (MAE) and only predict original coordinates or occupancy from masked point clouds, our method revisits differences between images and point clouds and identifies three self-supervised learning objectives peculiar to point clouds, namely centroid prediction, normal estimation, and curvature prediction. Combined with occupancy prediction, these four objectives yield an nontrivial self-supervised learning task and mutually facilitate models to better reason fine-grained geometry of point clouds. Our pipeline is conceptually simple and it consists of two major steps: first, it randomly masks out groups of points, followed by a Transformer-based point cloud encoder; second, a lightweight Transformer decoder predicts centroid, normal, and curvature for points in each voxel. We transfer the pre-trained Transformer encoder to a downstream peception model. On the nuScene Datset, our model achieves 3.38 mAP improvment for object detection, 2.1 mIoU gain for segmentation, and 1.7 AMOTA gain for multi-object tracking. We also conduct experiments on the Waymo Open Dataset and achieve significant performance improvements over baselines as well.

  • 4 authors
·
May 15, 2023

Too Large; Data Reduction for Vision-Language Pre-Training

This paper examines the problems of severe image-text misalignment and high redundancy in the widely-used large-scale Vision-Language Pre-Training (VLP) datasets. To address these issues, we propose an efficient and straightforward Vision-Language learning algorithm called TL;DR, which aims to compress the existing large VLP data into a small, high-quality set. Our approach consists of two major steps. First, a codebook-based encoder-decoder captioner is developed to select representative samples. Second, a new caption is generated to complement the original captions for selected samples, mitigating the text-image misalignment problem while maintaining uniqueness. As the result, TL;DR enables us to reduce the large dataset into a small set of high-quality data, which can serve as an alternative pre-training dataset. This algorithm significantly speeds up the time-consuming pretraining process. Specifically, TL;DR can compress the mainstream VLP datasets at a high ratio, e.g., reduce well-cleaned CC3M dataset from 2.82M to 0.67M (sim24\%) and noisy YFCC15M from 15M to 2.5M (sim16.7\%). Extensive experiments with three popular VLP models over seven downstream tasks show that VLP model trained on the compressed dataset provided by TL;DR can perform similar or even better results compared with training on the full-scale dataset. The code will be made available at https://github.com/showlab/datacentric.vlp.

  • 5 authors
·
May 31, 2023

Sophia: A Scalable Stochastic Second-order Optimizer for Language Model Pre-training

Given the massive cost of language model pre-training, a non-trivial improvement of the optimization algorithm would lead to a material reduction on the time and cost of training. Adam and its variants have been state-of-the-art for years, and more sophisticated second-order (Hessian-based) optimizers often incur too much per-step overhead. In this paper, we propose Sophia, Second-order Clipped Stochastic Optimization, a simple scalable second-order optimizer that uses a light-weight estimate of the diagonal Hessian as the pre-conditioner. The update is the moving average of the gradients divided by the moving average of the estimated Hessian, followed by element-wise clipping. The clipping controls the worst-case update size and tames the negative impact of non-convexity and rapid change of Hessian along the trajectory. Sophia only estimates the diagonal Hessian every handful of iterations, which has negligible average per-step time and memory overhead. On language modeling with GPT-2 models of sizes ranging from 125M to 770M, Sophia achieves a 2x speed-up compared with Adam in the number of steps, total compute, and wall-clock time. Theoretically, we show that Sophia adapts to the curvature in different components of the parameters, which can be highly heterogeneous for language modeling tasks. Our run-time bound does not depend on the condition number of the loss.

  • 5 authors
·
May 23, 2023 1

Revisiting pre-trained remote sensing model benchmarks: resizing and normalization matters

Research in self-supervised learning (SSL) with natural images has progressed rapidly in recent years and is now increasingly being applied to and benchmarked with datasets containing remotely sensed imagery. A common benchmark case is to evaluate SSL pre-trained model embeddings on datasets of remotely sensed imagery with small patch sizes, e.g., 32x32 pixels, whereas standard SSL pre-training takes place with larger patch sizes, e.g., 224x224. Furthermore, pre-training methods tend to use different image normalization preprocessing steps depending on the dataset. In this paper, we show, across seven satellite and aerial imagery datasets of varying resolution, that by simply following the preprocessing steps used in pre-training (precisely, image sizing and normalization methods), one can achieve significant performance improvements when evaluating the extracted features on downstream tasks -- an important detail overlooked in previous work in this space. We show that by following these steps, ImageNet pre-training remains a competitive baseline for satellite imagery based transfer learning tasks -- for example we find that these steps give +32.28 to overall accuracy on the So2Sat random split dataset and +11.16 on the EuroSAT dataset. Finally, we report comprehensive benchmark results with a variety of simple baseline methods for each of the seven datasets, forming an initial benchmark suite for remote sensing imagery.

  • 5 authors
·
May 22, 2023

Efficient Language Model Training through Cross-Lingual and Progressive Transfer Learning

Most Transformer language models are primarily pretrained on English text, limiting their use for other languages. As the model sizes grow, the performance gap between English and other languages with fewer compute and data resources increases even further. Consequently, more resource-efficient training methods are needed to bridge the gap for languages with fewer resources available. To address this problem, we introduce a cross-lingual and progressive transfer learning approach, called CLP-Transfer, that transfers models from a source language, for which pretrained models are publicly available, like English, to a new target language. As opposed to prior work, which focused on the cross-lingual transfer between two languages, we extend the transfer to the model size. Given a pretrained model in a source language, we aim for a same-sized model in a target language. Instead of training a model from scratch, we exploit a smaller model that is in the target language but requires much fewer resources. Both small and source models are then used to initialize the token embeddings of the larger model based on the overlapping vocabulary of the source and target language. All remaining weights are reused from the model in the source language. This approach outperforms the sole cross-lingual transfer and can save up to 80% of the training steps compared to the random initialization.

  • 2 authors
·
Jan 23, 2023

BLADE: Enhancing Black-box Large Language Models with Small Domain-Specific Models

Large Language Models (LLMs) like ChatGPT and GPT-4 are versatile and capable of addressing a diverse range of tasks. However, general LLMs, which are developed on open-domain data, may lack the domain-specific knowledge essential for tasks in vertical domains, such as legal, medical, etc. To address this issue, previous approaches either conduct continuous pre-training with domain-specific data or employ retrieval augmentation to support general LLMs. Unfortunately, these strategies are either cost-intensive or unreliable in practical applications. To this end, we present a novel framework named BLADE, which enhances Black-box LArge language models with small Domain-spEcific models. BLADE consists of a black-box LLM and a small domain-specific LM. The small LM preserves domain-specific knowledge and offers specialized insights, while the general LLM contributes robust language comprehension and reasoning capabilities. Specifically, our method involves three steps: 1) pre-training the small LM with domain-specific data, 2) fine-tuning this model using knowledge instruction data, and 3) joint Bayesian optimization of the general LLM and the small LM. Extensive experiments conducted on public legal and medical benchmarks reveal that BLADE significantly outperforms existing approaches. This shows the potential of BLADE as an effective and cost-efficient solution in adapting general LLMs for vertical domains.

  • 8 authors
·
Mar 27, 2024

Vocabulary Expansion for Low-resource Cross-lingual Transfer

Large language models (LLMs) have shown remarkable capabilities in many languages beyond English. Yet, LLMs require more inference steps when generating non-English text due to their reliance on English-centric tokenizers, vocabulary, and pre-training data, resulting in higher usage costs to non-English speakers. Vocabulary expansion with target language tokens is a widely used cross-lingual vocabulary adaptation approach to remedy this issue. Despite its effectiveness in inference speedup, the majority of previous work has focused on high-resource settings assuming access to a substantial amount of target language data to effectively initialize the embeddings of the new tokens and adapt the LLM to the target language. However, vocabulary expansion for LLMs in low-resource settings (i.e. languages and compute) has yet to be explored. In this paper, we investigate sample-efficient adaptation strategies from different angles, including target vocabulary size and initialization methods, and the amount of target data available for adaptation. Extensive experiments across typologically diverse languages, tasks and models show that simpler heuristic-based embedding initialization is more efficient and robust to changes in target vocabulary size and adaptation data in low-resource settings, outperforming a popular random initialization and a more sophisticated state-of-the-art approach that relies on external data and model.

  • 3 authors
·
Jun 17, 2024 2

NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation

Recent fMRI-to-image approaches mainly focused on associating fMRI signals with specific conditions of pre-trained diffusion models. These approaches, while producing high-quality images, capture only a limited aspect of the complex information in fMRI signals and offer little detailed control over image creation. In contrast, this paper proposes to directly modulate the generation process of diffusion models using fMRI signals. Our approach, NeuroPictor, divides the fMRI-to-image process into three steps: i) fMRI calibrated-encoding, to tackle multi-individual pre-training for a shared latent space to minimize individual difference and enable the subsequent cross-subject training; ii) fMRI-to-image cross-subject pre-training, perceptually learning to guide diffusion model with high- and low-level conditions across different individuals; iii) fMRI-to-image single-subject refining, similar with step ii but focus on adapting to particular individual. NeuroPictor extracts high-level semantic features from fMRI signals that characterizing the visual stimulus and incrementally fine-tunes the diffusion model with a low-level manipulation network to provide precise structural instructions. By training with over 60,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity, particularly in the within-subject setting, as evidenced in benchmark datasets. Project page: https://jingyanghuo.github.io/neuropictor/.

  • 7 authors
·
Mar 26, 2024

Leveraging Domain Adaptation and Data Augmentation to Improve Qur'anic IR in English and Arabic

In this work, we approach the problem of Qur'anic information retrieval (IR) in Arabic and English. Using the latest state-of-the-art methods in neural IR, we research what helps to tackle this task more efficiently. Training retrieval models requires a lot of data, which is difficult to obtain for training in-domain. Therefore, we commence with training on a large amount of general domain data and then continue training on in-domain data. To handle the lack of in-domain data, we employed a data augmentation technique, which considerably improved results in MRR@10 and NDCG@5 metrics, setting the state-of-the-art in Qur'anic IR for both English and Arabic. The absence of an Islamic corpus and domain-specific model for IR task in English motivated us to address this lack of resources and take preliminary steps of the Islamic corpus compilation and domain-specific language model (LM) pre-training, which helped to improve the performance of the retrieval models that use the domain-specific LM as the shared backbone. We examined several language models (LMs) in Arabic to select one that efficiently deals with the Qur'anic IR task. Besides transferring successful experiments from English to Arabic, we conducted additional experiments with retrieval task in Arabic to amortize the scarcity of general domain datasets used to train the retrieval models. Handling Qur'anic IR task combining English and Arabic allowed us to enhance the comparison and share valuable insights across models and languages.

  • 1 authors
·
Dec 5, 2023

Affordance-Guided Reinforcement Learning via Visual Prompting

Robots equipped with reinforcement learning (RL) have the potential to learn a wide range of skills solely from a reward signal. However, obtaining a robust and dense reward signal for general manipulation tasks remains a challenge. Existing learning-based approaches require significant data, such as human demonstrations of success and failure, to learn task-specific reward functions. Recently, there is also a growing adoption of large multi-modal foundation models for robotics that can perform visual reasoning in physical contexts and generate coarse robot motions for manipulation tasks. Motivated by this range of capability, in this work, we present Keypoint-based Affordance Guidance for Improvements (KAGI), a method leveraging rewards shaped by vision-language models (VLMs) for autonomous RL. State-of-the-art VLMs have demonstrated impressive reasoning about affordances through keypoints in zero-shot, and we use these to define dense rewards that guide autonomous robotic learning. On real-world manipulation tasks specified by natural language descriptions, KAGI improves the sample efficiency of autonomous RL and enables successful task completion in 20K online fine-tuning steps. Additionally, we demonstrate the robustness of KAGI to reductions in the number of in-domain demonstrations used for pre-training, reaching similar performance in 35K online fine-tuning steps. Project website: https://sites.google.com/view/affordance-guided-rl

  • 5 authors
·
Jul 14, 2024

AttenST: A Training-Free Attention-Driven Style Transfer Framework with Pre-Trained Diffusion Models

While diffusion models have achieved remarkable progress in style transfer tasks, existing methods typically rely on fine-tuning or optimizing pre-trained models during inference, leading to high computational costs and challenges in balancing content preservation with style integration. To address these limitations, we introduce AttenST, a training-free attention-driven style transfer framework. Specifically, we propose a style-guided self-attention mechanism that conditions self-attention on the reference style by retaining the query of the content image while substituting its key and value with those from the style image, enabling effective style feature integration. To mitigate style information loss during inversion, we introduce a style-preserving inversion strategy that refines inversion accuracy through multiple resampling steps. Additionally, we propose a content-aware adaptive instance normalization, which integrates content statistics into the normalization process to optimize style fusion while mitigating the content degradation. Furthermore, we introduce a dual-feature cross-attention mechanism to fuse content and style features, ensuring a harmonious synthesis of structural fidelity and stylistic expression. Extensive experiments demonstrate that AttenST outperforms existing methods, achieving state-of-the-art performance in style transfer dataset.

  • 5 authors
·
Mar 10

T-Stitch: Accelerating Sampling in Pre-Trained Diffusion Models with Trajectory Stitching

Sampling from diffusion probabilistic models (DPMs) is often expensive for high-quality image generation and typically requires many steps with a large model. In this paper, we introduce sampling Trajectory Stitching T-Stitch, a simple yet efficient technique to improve the sampling efficiency with little or no generation degradation. Instead of solely using a large DPM for the entire sampling trajectory, T-Stitch first leverages a smaller DPM in the initial steps as a cheap drop-in replacement of the larger DPM and switches to the larger DPM at a later stage. Our key insight is that different diffusion models learn similar encodings under the same training data distribution and smaller models are capable of generating good global structures in the early steps. Extensive experiments demonstrate that T-Stitch is training-free, generally applicable for different architectures, and complements most existing fast sampling techniques with flexible speed and quality trade-offs. On DiT-XL, for example, 40% of the early timesteps can be safely replaced with a 10x faster DiT-S without performance drop on class-conditional ImageNet generation. We further show that our method can also be used as a drop-in technique to not only accelerate the popular pretrained stable diffusion (SD) models but also improve the prompt alignment of stylized SD models from the public model zoo. Code is released at https://github.com/NVlabs/T-Stitch

  • 8 authors
·
Feb 21, 2024 1

Efficient Multi-turn RL for GUI Agents via Decoupled Training and Adaptive Data Curation

Vision-language model (VLM) based GUI agents show promise for automating complex desktop and mobile tasks, but face significant challenges in applying reinforcement learning (RL): (1) slow multi-turn interactions with GUI environments for policy rollout, and (2) insufficient high-quality agent-environment interactions for policy learning. To address these challenges, we propose DART, a Decoupled Agentic RL Training framework for GUI agents, which coordinates heterogeneous modules in a highly decoupled manner. DART separates the training system into four asynchronous modules: environment cluster, rollout service, data manager, and trainer. This design enables non-blocking communication, asynchronous training, rollout-wise trajectory sampling, and per-worker model synchronization, significantly improving the system efficiency: 1.6*GPU utilization for rollout, 1.9* training throughput, and 5.5* environment utilization. To facilitate effective learning from abundant samples, we introduce an adaptive data curation scheme: (1) pre-collecting successful trajectories for challenging tasks to supplement sparse success in online sampling; (2) dynamically adjusting rollout numbers and trajectory lengths based on task difficulty; (3) training selectively on high-entropy steps to prioritize critical decisions; (4) stabilizing learning via truncated importance sampling for policy mismatch between policy rollout and updating. On the OSWorld benchmark, DART-GUI-7B achieves a 42.13% task success rate, a 14.61% absolute gain over the base model, and 7.34% higher than open-source SOTA. We will fully open-source our training framework, data, and model checkpoints via computer-use-agents.github.io/dart-gui, which we believe is a timely contribution to the open-source community of agentic RL training.

Understanding Warmup-Stable-Decay Learning Rates: A River Valley Loss Landscape Perspective

Training language models currently requires pre-determining a fixed compute budget because the typical cosine learning rate schedule depends on the total number of steps. In contrast, the Warmup-Stable-Decay (WSD) schedule uses a constant learning rate to produce a main branch of iterates that can in principle continue indefinitely without a pre-specified compute budget. Then, given any compute budget, one can branch out from the main branch at a proper time with a rapidly decaying learning rate to produce a strong model. Empirically, WSD generates a non-traditional loss curve: the loss remains elevated during the stable phase but sharply declines during the decay phase. Towards explaining this phenomenon, we conjecture that pretraining loss exhibits a river valley landscape, which resembles a deep valley with a river at its bottom. Under this assumption, we show that during the stable phase, the iterate undergoes large oscillations due to the high learning rate, yet it progresses swiftly along the river. During the decay phase, the rapidly dropping learning rate minimizes the iterate's oscillations, moving it closer to the river and revealing true optimization progress. Therefore, the sustained high learning rate phase and fast decaying phase are responsible for progress in the river and the mountain directions respectively, and are both critical. Our analysis predicts phenomenons consistent with empirical observations and shows that this landscape can emerge from pretraining on a simple bi-gram dataset. Inspired by the theory, we introduce WSD-S, a variant of WSD that reuses previous checkpoints' decay phases and keeps only one main branch, where we resume from a decayed checkpoint. WSD-S empirically outperforms WSD and Cyclic-Cosine in obtaining multiple language model checkpoints across various compute budgets in a single run for parameters scaling from 0.1B to 1.2B.

  • 6 authors
·
Oct 7, 2024

Objects matter: object-centric world models improve reinforcement learning in visually complex environments

Deep reinforcement learning has achieved remarkable success in learning control policies from pixels across a wide range of tasks, yet its application remains hindered by low sample efficiency, requiring significantly more environment interactions than humans to reach comparable performance. Model-based reinforcement learning (MBRL) offers a solution by leveraging learnt world models to generate simulated experience, thereby improving sample efficiency. However, in visually complex environments, small or dynamic elements can be critical for decision-making. Yet, traditional MBRL methods in pixel-based environments typically rely on auto-encoding with an L_2 loss, which is dominated by large areas and often fails to capture decision-relevant details. To address these limitations, we propose an object-centric MBRL pipeline, which integrates recent advances in computer vision to allow agents to focus on key decision-related elements. Our approach consists of four main steps: (1) annotating key objects related to rewards and goals with segmentation masks, (2) extracting object features using a pre-trained, frozen foundation vision model, (3) incorporating these object features with the raw observations to predict environmental dynamics, and (4) training the policy using imagined trajectories generated by this object-centric world model. Building on the efficient MBRL algorithm STORM, we call this pipeline OC-STORM. We demonstrate OC-STORM's practical value in overcoming the limitations of conventional MBRL approaches on both Atari games and the visually complex game Hollow Knight.

  • 4 authors
·
Jan 27

Sample4Geo: Hard Negative Sampling For Cross-View Geo-Localisation

Cross-View Geo-Localisation is still a challenging task where additional modules, specific pre-processing or zooming strategies are necessary to determine accurate positions of images. Since different views have different geometries, pre-processing like polar transformation helps to merge them. However, this results in distorted images which then have to be rectified. Adding hard negatives to the training batch could improve the overall performance but with the default loss functions in geo-localisation it is difficult to include them. In this article, we present a simplified but effective architecture based on contrastive learning with symmetric InfoNCE loss that outperforms current state-of-the-art results. Our framework consists of a narrow training pipeline that eliminates the need of using aggregation modules, avoids further pre-processing steps and even increases the generalisation capability of the model to unknown regions. We introduce two types of sampling strategies for hard negatives. The first explicitly exploits geographically neighboring locations to provide a good starting point. The second leverages the visual similarity between the image embeddings in order to mine hard negative samples. Our work shows excellent performance on common cross-view datasets like CVUSA, CVACT, University-1652 and VIGOR. A comparison between cross-area and same-area settings demonstrate the good generalisation capability of our model.

  • 3 authors
·
Mar 21, 2023

Pre-training A Neural Language Model Improves The Sample Efficiency of an Emergency Room Classification Model

To build a French national electronic injury surveillance system based on emergency room visits, we aim to develop a coding system to classify their causes from clinical notes in free-text. Supervised learning techniques have shown good results in this area but require a large amount of expert annotated dataset which is time consuming and costly to obtain. We hypothesize that the Natural Language Processing Transformer model incorporating a generative self-supervised pre-training step can significantly reduce the required number of annotated samples for supervised fine-tuning. In this preliminary study, we test our hypothesis in the simplified problem of predicting whether a visit is the consequence of a traumatic event or not from free-text clinical notes. Using fully re-trained GPT-2 models (without OpenAI pre-trained weights), we assess the gain of applying a self-supervised pre-training phase with unlabeled notes prior to the supervised learning task. Results show that the number of data required to achieve a ginve level of performance (AUC>0.95) was reduced by a factor of 10 when applying pre-training. Namely, for 16 times more data, the fully-supervised model achieved an improvement <1% in AUC. To conclude, it is possible to adapt a multi-purpose neural language model such as the GPT-2 to create a powerful tool for classification of free-text notes with only a small number of labeled samples.

  • 6 authors
·
Aug 30, 2019

POA: Pre-training Once for Models of All Sizes

Large-scale self-supervised pre-training has paved the way for one foundation model to handle many different vision tasks. Most pre-training methodologies train a single model of a certain size at one time. Nevertheless, various computation or storage constraints in real-world scenarios require substantial efforts to develop a series of models with different sizes to deploy. Thus, in this study, we propose a novel tri-branch self-supervised training framework, termed as POA (Pre-training Once for All), to tackle this aforementioned issue. Our approach introduces an innovative elastic student branch into a modern self-distillation paradigm. At each pre-training step, we randomly sample a sub-network from the original student to form the elastic student and train all branches in a self-distilling fashion. Once pre-trained, POA allows the extraction of pre-trained models of diverse sizes for downstream tasks. Remarkably, the elastic student facilitates the simultaneous pre-training of multiple models with different sizes, which also acts as an additional ensemble of models of various sizes to enhance representation learning. Extensive experiments, including k-nearest neighbors, linear probing evaluation and assessments on multiple downstream tasks demonstrate the effectiveness and advantages of our POA. It achieves state-of-the-art performance using ViT, Swin Transformer and ResNet backbones, producing around a hundred models with different sizes through a single pre-training session. The code is available at: https://github.com/Qichuzyy/POA.

  • 10 authors
·
Aug 2, 2024 3

Predictions For Pre-training Language Models

Language model pre-training has proven to be useful in many language understanding tasks. In this paper, we investigate whether it is still helpful to add the self-training method in the pre-training step and the fine-tuning step. Towards this goal, we propose a learning framework that making best use of the unlabel data on the low-resource and high-resource labeled dataset. In industry NLP applications, we have large amounts of data produced by users or customers. Our learning framework is based on this large amounts of unlabel data. First, We use the model fine-tuned on manually labeled dataset to predict pseudo labels for the user-generated unlabeled data. Then we use the pseudo labels to supervise the task-specific training on the large amounts of user-generated data. We consider this task-specific training step on pseudo labels as a pre-training step for the next fine-tuning step. At last, we fine-tune on the manually labeled dataset upon the pre-trained model. In this work, we first empirically show that our method is able to solidly improve the performance by 3.6%, when the manually labeled fine-tuning dataset is relatively small. Then we also show that our method still is able to improve the performance further by 0.2%, when the manually labeled fine-tuning dataset is relatively large enough. We argue that our method make the best use of the unlabel data, which is superior to either pre-training or self-training alone.

  • 1 authors
·
Nov 17, 2020

Linguistic Entity Masking to Improve Cross-Lingual Representation of Multilingual Language Models for Low-Resource Languages

Multilingual Pre-trained Language models (multiPLMs), trained on the Masked Language Modelling (MLM) objective are commonly being used for cross-lingual tasks such as bitext mining. However, the performance of these models is still suboptimal for low-resource languages (LRLs). To improve the language representation of a given multiPLM, it is possible to further pre-train it. This is known as continual pre-training. Previous research has shown that continual pre-training with MLM and subsequently with Translation Language Modelling (TLM) improves the cross-lingual representation of multiPLMs. However, during masking, both MLM and TLM give equal weight to all tokens in the input sequence, irrespective of the linguistic properties of the tokens. In this paper, we introduce a novel masking strategy, Linguistic Entity Masking (LEM) to be used in the continual pre-training step to further improve the cross-lingual representations of existing multiPLMs. In contrast to MLM and TLM, LEM limits masking to the linguistic entity types nouns, verbs and named entities, which hold a higher prominence in a sentence. Secondly, we limit masking to a single token within the linguistic entity span thus keeping more context, whereas, in MLM and TLM, tokens are masked randomly. We evaluate the effectiveness of LEM using three downstream tasks, namely bitext mining, parallel data curation and code-mixed sentiment analysis using three low-resource language pairs English-Sinhala, English-Tamil, and Sinhala-Tamil. Experiment results show that continually pre-training a multiPLM with LEM outperforms a multiPLM continually pre-trained with MLM+TLM for all three tasks.

  • 2 authors
·
Jan 9

Self-Supervised Contrastive Learning for Robust Audio-Sheet Music Retrieval Systems

Linking sheet music images to audio recordings remains a key problem for the development of efficient cross-modal music retrieval systems. One of the fundamental approaches toward this task is to learn a cross-modal embedding space via deep neural networks that is able to connect short snippets of audio and sheet music. However, the scarcity of annotated data from real musical content affects the capability of such methods to generalize to real retrieval scenarios. In this work, we investigate whether we can mitigate this limitation with self-supervised contrastive learning, by exposing a network to a large amount of real music data as a pre-training step, by contrasting randomly augmented views of snippets of both modalities, namely audio and sheet images. Through a number of experiments on synthetic and real piano data, we show that pre-trained models are able to retrieve snippets with better precision in all scenarios and pre-training configurations. Encouraged by these results, we employ the snippet embeddings in the higher-level task of cross-modal piece identification and conduct more experiments on several retrieval configurations. In this task, we observe that the retrieval quality improves from 30% up to 100% when real music data is present. We then conclude by arguing for the potential of self-supervised contrastive learning for alleviating the annotated data scarcity in multi-modal music retrieval models.

  • 3 authors
·
Sep 21, 2023

TOP-Training: Target-Oriented Pretraining for Medical Extractive Question Answering

We study extractive question-answering in the medical domain (Medical-EQA). This problem has two main challenges: (i) domain specificity, as most AI models lack necessary domain knowledge, and (ii) extraction-based answering style, which restricts most autoregressive LLMs due to potential hallucinations. To handle those challenges, we propose TOP-Training, a target-oriented pre-training paradigm that stands out among all domain adaptation techniques with two desirable features: (i) TOP-Training moves one step further than popular domain-oriented fine-tuning since it not only moves closer to the target domain, but also familiarizes itself with the target dataset, and (ii) it does not assume the existence of a large set of unlabeled instances from the target domain. Specifically, for a target Medical-EQA dataset, we extract its entities and leverage large language models (LLMs) to generate synthetic texts containing those entities; we then demonstrate that pretraining on this synthetic text data yields better performance on the target Medical-EQA benchmarks. Overall, our contributions are threefold: (i) TOP-Training, a new pretraining technique to effectively adapt LLMs to better solve a target problem, (ii) TOP-Training has a wide application scope because it does not require the target problem to have a large set of unlabeled data, and (iii) our experiments highlight the limitations of autoregressive LLMs, emphasizing TOP-Training as a means to unlock the true potential of bidirectional LLMs.

  • 6 authors
·
Oct 25, 2023

Continual Pre-Training of Large Language Models: How to (re)warm your model?

Large language models (LLMs) are routinely pre-trained on billions of tokens, only to restart the process over again once new data becomes available. A much cheaper and more efficient solution would be to enable the continual pre-training of these models, i.e. updating pre-trained models with new data instead of re-training them from scratch. However, the distribution shift induced by novel data typically results in degraded performance on past data. Taking a step towards efficient continual pre-training, in this work, we examine the effect of different warm-up strategies. Our hypothesis is that the learning rate must be re-increased to improve compute efficiency when training on a new dataset. We study the warmup phase of models pre-trained on the Pile (upstream data, 300B tokens) as we continue to pre-train on SlimPajama (downstream data, 297B tokens), following a linear warmup and cosine decay schedule. We conduct all experiments on the Pythia 410M language model architecture and evaluate performance through validation perplexity. We experiment with different pre-training checkpoints, various maximum learning rates, and various warmup lengths. Our results show that while rewarming models first increases the loss on upstream and downstream data, in the longer run it improves the downstream performance, outperforming models trained from scratchx2013even for a large downstream dataset.

  • 8 authors
·
Aug 7, 2023

MindLLM: Pre-training Lightweight Large Language Model from Scratch, Evaluations and Domain Applications

Large Language Models (LLMs) have demonstrated remarkable performance across various natural language tasks, marking significant strides towards general artificial intelligence. While general artificial intelligence is leveraged by developing increasingly large-scale models, there could be another branch to develop lightweight custom models that better serve certain domains, taking into account the high cost of training and deploying LLMs and the scarcity of resources. In this paper, we present MindLLM, a novel series of bilingual lightweight large language models, trained from scratch, alleviating such burdens by offering models with 1.3 billion and 3 billion parameters. A thorough account of experiences accrued during large model development is given, covering every step of the process, including data construction, model architecture, evaluation, and applications. Such insights are hopefully valuable for fellow academics and developers. MindLLM consistently matches or surpasses the performance of other open-source larger models on some public benchmarks. We also introduce an innovative instruction tuning framework tailored for smaller models to enhance their capabilities efficiently. Moreover, we explore the application of MindLLM in specific vertical domains such as law and finance, underscoring the agility and adaptability of our lightweight models.

  • 8 authors
·
Oct 24, 2023 1

Rewriting Pre-Training Data Boosts LLM Performance in Math and Code

The performance of large language models (LLMs) in program synthesis and mathematical reasoning is fundamentally limited by the quality of their pre-training corpora. We introduce two openly licensed datasets, released under the Llama 3.3 Community License, that significantly enhance LLM performance by systematically rewriting public data. SwallowCode (approximately 16.1 billion tokens) refines Python snippets from The-Stack-v2 through a novel four-stage pipeline: syntax validation, pylint-based style filtering, and a two-stage LLM rewriting process that enforces style conformity and transforms snippets into self-contained, algorithmically efficient examples. Unlike prior methods that rely on exclusionary filtering or limited transformations, our transform-and-retain approach upgrades low-quality code, maximizing data utility. SwallowMath (approximately 2.3 billion tokens) enhances Finemath-4+ by removing boilerplate, restoring context, and reformatting solutions into concise, step-by-step explanations. Within a fixed 50 billion token training budget, continual pre-training of Llama-3.1-8B with SwallowCode boosts pass@1 by +17.0 on HumanEval and +17.7 on HumanEval+ compared to Stack-Edu, surpassing the baseline model's code generation capabilities. Similarly, substituting SwallowMath yields +12.4 accuracy on GSM8K and +7.6 on MATH. Ablation studies confirm that each pipeline stage contributes incrementally, with rewriting delivering the largest gains. All datasets, prompts, and checkpoints are publicly available, enabling reproducible research and advancing LLM pre-training for specialized domains.

CALICO: Self-Supervised Camera-LiDAR Contrastive Pre-training for BEV Perception

Perception is crucial in the realm of autonomous driving systems, where bird's eye view (BEV)-based architectures have recently reached state-of-the-art performance. The desirability of self-supervised representation learning stems from the expensive and laborious process of annotating 2D and 3D data. Although previous research has investigated pretraining methods for both LiDAR and camera-based 3D object detection, a unified pretraining framework for multimodal BEV perception is missing. In this study, we introduce CALICO, a novel framework that applies contrastive objectives to both LiDAR and camera backbones. Specifically, CALICO incorporates two stages: point-region contrast (PRC) and region-aware distillation (RAD). PRC better balances the region- and scene-level representation learning on the LiDAR modality and offers significant performance improvement compared to existing methods. RAD effectively achieves contrastive distillation on our self-trained teacher model. CALICO's efficacy is substantiated by extensive evaluations on 3D object detection and BEV map segmentation tasks, where it delivers significant performance improvements. Notably, CALICO outperforms the baseline method by 10.5% and 8.6% on NDS and mAP. Moreover, CALICO boosts the robustness of multimodal 3D object detection against adversarial attacks and corruption. Additionally, our framework can be tailored to different backbones and heads, positioning it as a promising approach for multimodal BEV perception.

  • 6 authors
·
Jun 1, 2023

On the Interplay of Pre-Training, Mid-Training, and RL on Reasoning Language Models

Recent reinforcement learning (RL) techniques have yielded impressive reasoning improvements in language models, yet it remains unclear whether post-training truly extends a model's reasoning ability beyond what it acquires during pre-training. A central challenge is the lack of control in modern training pipelines: large-scale pre-training corpora are opaque, mid-training is often underexamined, and RL objectives interact with unknown prior knowledge in complex ways. To resolve this ambiguity, we develop a fully controlled experimental framework that isolates the causal contributions of pre-training, mid-training, and RL-based post-training. Our approach employs synthetic reasoning tasks with explicit atomic operations, parseable step-by-step reasoning traces, and systematic manipulation of training distributions. We evaluate models along two axes: extrapolative generalization to more complex compositions and contextual generalization across surface contexts. Using this framework, we reconcile competing views on RL's effectiveness. We show that: 1) RL produces true capability gains (pass@128) only when pre-training leaves sufficient headroom and when RL data target the model's edge of competence, tasks at the boundary that are difficult but not yet out of reach. 2) Contextual generalization requires minimal yet sufficient pre-training exposure, after which RL can reliably transfer. 3) Mid-training significantly enhances performance under fixed compute compared with RL only, demonstrating its central but underexplored role in training pipelines. 4) Process-level rewards reduce reward hacking and improve reasoning fidelity. Together, these results clarify the interplay between pre-training, mid-training, and RL, offering a foundation for understanding and improving reasoning LM training strategies.

cmu-lti CMU-LTI
·
Dec 8 2

Thinking Augmented Pre-training

This paper introduces a simple and scalable approach to improve the data efficiency of large language model (LLM) training by augmenting existing text data with thinking trajectories. The compute for pre-training LLMs has been growing at an unprecedented rate, while the availability of high-quality data remains limited. Consequently, maximizing the utility of available data constitutes a significant research challenge. A primary impediment is that certain high-quality tokens are difficult to learn given a fixed model capacity, as the underlying rationale for a single token can be exceptionally complex and deep. To address this issue, we propose Thinking augmented Pre-Training (TPT), a universal methodology that augments text with automatically generated thinking trajectories. Such augmentation effectively increases the volume of the training data and makes high-quality tokens more learnable through step-by-step reasoning and decomposition. We apply TPT across diverse training configurations up to 100B tokens, encompassing pre-training with both constrained and abundant data, as well as mid-training from strong open-source checkpoints. Experimental results indicate that our method substantially improves the performance of LLMs across various model sizes and families. Notably, TPT enhances the data efficiency of LLM pre-training by a factor of 3. For a 3B parameter model, it improves the post-training performance by over 10% on several challenging reasoning benchmarks.

  • 5 authors
·
Sep 24 2

Directional Diffusion-Style Code Editing Pre-training

Code pre-trained models have shown promising effectiveness in various software engineering tasks. Among these tasks, many tasks are related to software evolution and/or code editing. However, existing code pre-trained models often overlook the real-world code editing data and the evolutionary nature of the editing process. In this paper, to simulate the step-by-step code editing process of human developers, we propose DivoT5, a pre-trained model based on directional diffusion at the data level. In DivoT5, we adopt two categories of pre-training tasks. The first category is mask and denoising tasks augmented with a diffusion direction representing code evolution. That is, we first apply a noising process to the code snippets before evolution, and then ask the pre-training process to restore the snippets with noise into the code snippets after evolution. The second category is tasks aiming to reinforce the evolutionary direction. That is, we first generate various intermediate versions for each pair of snippets before and after evolution, and then ask the pre-training process to transform the intermediate versions into the snippet after evolution for each pair. We evaluate DivoT5 for two code-editing scenarios and one non-editing scenario using five downstream tasks. Given each downstream task, we fine-tune the pre-trained DivoT5 to evaluate its effectiveness. Our experimental results show that DivoT5 achieves state-of-the-art (SOTA) performance on most tasks in comparison to models of the same scale (220M), large scale (770M) models in fine-tuning, and billion-scale (6.7B, 8B, ChatGPT) models in few-shot settings. For one code-editing task (i.e., automated code review), DivoT5 pre-trained on top of CodeT5-small (60M) can even outperform CodeT5-base (220M) and other pre-trained models with 220M parameters except for DivoT5 pre-trained on top of CodeT5-base (220M).

  • 9 authors
·
Jan 21

How Useful is Continued Pre-Training for Generative Unsupervised Domain Adaptation?

Recent breakthroughs in scale have enabled the emergence of powerful generative language models, and the ability to fine-tune these models on various tasks by casting them into prompts or instructions. In this landscape, the problem of Unsupervised Domain Adaptation (UDA), or the problem of leveraging knowledge from a labeled source domain to an unlabeled target domain, has been left behind, with recent UDA methods still addressing discriminative classification. In particular, two popular UDA approaches, involving Continued Pre-Training (CPT) and learning domain invariant representations, have been under-explored in the generative setting, signaling a gap. In this work, we evaluate the utility of CPT for generative UDA. We first perform an empirical evaluation to measure the trade-offs between CPT and strong methods promoting domain invariance. We further evaluate how well the benefits of CPT extend to different architectures, tuning methods and data regimes. We then motivate the use of CPT by studying to what degree it benefits classification performance on the target domain. Finally, we attempt to understand the mechanism behind which CPT improves classification performance on the unlabeled target domain. Our findings suggest that a implicitly learns the downstream task while predicting masked words informative to that task. Our work connects the body of UDA research with that of instruction tuning, enabling an initial step towards a wider applicability of modern language models.

  • 3 authors
·
Jan 30, 2024

COSMO: COntrastive Streamlined MultimOdal Model with Interleaved Pre-Training

In the evolution of Vision-Language Pre-training, shifting from short-text comprehension to encompassing extended textual contexts is pivotal. Recent autoregressive vision-language models like flamingo, palme, leveraging the long-context capability of Large Language Models, have excelled in few-shot text generation tasks but face challenges in alignment tasks. Addressing this gap, we introduce the contrastive loss into text generation models, presenting the COntrastive-Streamlined MultimOdal framework (\ModelName), strategically partitioning the language model into dedicated unimodal text processing and adept multimodal data handling components. \ModelName, our unified framework, merges unimodal and multimodal elements, enhancing model performance for tasks involving textual and visual data while notably reducing learnable parameters. However, these models demand extensive long-text datasets, yet the availability of high-quality long-text video datasets remains limited. To bridge this gap, this work introduces \VideoDatasetName, an inaugural interleaved video-text dataset featuring comprehensive captions, marking a significant step forward. Demonstrating its impact, we illustrate how enhances model performance in image-text tasks. With 34% learnable parameters and utilizing 72\% of the available data, our model demonstrates significant superiority over OpenFlamingo~openflamingo. For instance, in the 4-shot flickr captioning task, performance notably improves from 57.2% to 65.\%. The contributions of and are underscored by notable performance gains across 14 diverse downstream datasets encompassing both image-text and video-text tasks.

  • 8 authors
·
Jan 1, 2024 2

Vi-Mistral-X: Building a Vietnamese Language Model with Advanced Continual Pre-training

The advancement of Large Language Models (LLMs) has significantly transformed the field of natural language processing, although the focus on English-centric models has created a noticeable research gap for specific languages, including Vietnamese. To address this issue, this paper presents vi-mistral-x, an innovative Large Language Model designed expressly for the Vietnamese language. It utilizes a unique method of continual pre-training, based on the Mistral architecture, which incorporates grouped-query attention and sliding window attention techniques. This model, vi-Mistral-X, marks a significant step forward in improving the understanding and generation of the Vietnamese language. It introduces an additional phase of continual pre-training, specifically adapted for Vietnamese, enhancing the model's capability in understanding complex language nuances and generating accurate, context-aware Vietnamese text. Through comprehensive testing on various benchmarks, vi-mistral-x has shown to outperform existing Vietnamese LLMs in several key areas, including text classification, question answering, and text generation. Particularly, in the Vietnamese Multitask Language Understanding (VMLU) benchmark, vi-mistral-x sets a new standard, outperforming other available models significantly. This paper highlights the critical role of continual pre-training in advancing language-specific LLMs and opens new avenues for the development of multilingual models. We aim for vi-mistral-x to not just be an important asset for processing the Vietnamese language but also to encourage more advancements in creating large language models for languages that are less represented.

  • 1 authors
·
Mar 20, 2024

Advancing End-to-End Pixel Space Generative Modeling via Self-supervised Pre-training

Pixel-space generative models are often more difficult to train and generally underperform compared to their latent-space counterparts, leaving a persistent performance and efficiency gap. In this paper, we introduce a novel two-stage training framework that closes this gap for pixel-space diffusion and consistency models. In the first stage, we pre-train encoders to capture meaningful semantics from clean images while aligning them with points along the same deterministic sampling trajectory, which evolves points from the prior to the data distribution. In the second stage, we integrate the encoder with a randomly initialized decoder and fine-tune the complete model end-to-end for both diffusion and consistency models. Our training framework demonstrates strong empirical performance on ImageNet dataset. Specifically, our diffusion model reaches an FID of 2.04 on ImageNet-256 and 2.35 on ImageNet-512 with 75 number of function evaluations (NFE), surpassing prior pixel-space methods by a large margin in both generation quality and efficiency while rivaling leading VAE-based models at comparable training cost. Furthermore, on ImageNet-256, our consistency model achieves an impressive FID of 8.82 in a single sampling step, significantly surpassing its latent-space counterpart. To the best of our knowledge, this marks the first successful training of a consistency model directly on high-resolution images without relying on pre-trained VAEs or diffusion models.

GD-ML AMAP-ML
·
Oct 14 3

GrowCLIP: Data-aware Automatic Model Growing for Large-scale Contrastive Language-Image Pre-training

Cross-modal pre-training has shown impressive performance on a wide range of downstream tasks, benefiting from massive image-text pairs collected from the Internet. In practice, online data are growing constantly, highlighting the importance of the ability of pre-trained model to learn from data that is continuously growing. Existing works on cross-modal pre-training mainly focus on training a network with fixed architecture. However, it is impractical to limit the model capacity when considering the continuously growing nature of pre-training data in real-world applications. On the other hand, it is important to utilize the knowledge in the current model to obtain efficient training and better performance. To address the above issues, in this paper, we propose GrowCLIP, a data-driven automatic model growing algorithm for contrastive language-image pre-training with continuous image-text pairs as input. Specially, we adopt a dynamic growth space and seek out the optimal architecture at each growth step to adapt to online learning scenarios. And the shared encoder is proposed in our growth space to enhance the degree of cross-modal fusion. Besides, we explore the effect of growth in different dimensions, which could provide future references for the design of cross-modal model architecture. Finally, we employ parameter inheriting with momentum (PIM) to maintain the previous knowledge and address the issue of the local minimum dilemma. Compared with the existing methods, GrowCLIP improves 2.3% average top-1 accuracy on zero-shot image classification of 9 downstream tasks. As for zero-shot image retrieval, GrowCLIP can improve 1.2% for top-1 image-to-text recall on Flickr30K dataset.

  • 10 authors
·
Aug 22, 2023

HPLT 3.0: Very Large-Scale Multilingual Resources for LLM and MT. Mono- and Bi-lingual Data, Multilingual Evaluation, and Pre-Trained Models

We present an ongoing initiative to provide open, very large, high-quality, and richly annotated textual datasets for almost 200 languages. At 30 trillion tokens, this is likely the largest generally available multilingual collection of LLM pre-training data. These datasets are derived from web crawls from different sources and accompanied with a complete, open-source pipeline for document selection from web archives, text extraction from HTML, language identification for noisy texts, exact and near-deduplication, annotation with, among others, register labels, text quality estimates, and personally identifiable information; and final selection and filtering. We report on data quality probes through contrastive and analytical statistics, through manual inspection of samples for 24 languages, and through end-to-end evaluation of various language model architectures trained on this data. For multilingual LLM evaluation, we provide a comprehensive collection of benchmarks for nine European languages, with special emphasis on natively created tasks, mechanisms to mitigate prompt sensitivity, and refined normalization and aggregation of scores. Additionally, we train and evaluate a family of 57 monolingual encoder-decoder models, as well as a handful of monolingual GPT-like reference models. Besides the monolingual data and models, we also present a very large collection of parallel texts automatically mined from this data, together with a novel parallel corpus synthesized via machine translation.

  • 32 authors
·
Nov 2

Noise-Aware Training of Layout-Aware Language Models

A visually rich document (VRD) utilizes visual features along with linguistic cues to disseminate information. Training a custom extractor that identifies named entities from a document requires a large number of instances of the target document type annotated at textual and visual modalities. This is an expensive bottleneck in enterprise scenarios, where we want to train custom extractors for thousands of different document types in a scalable way. Pre-training an extractor model on unlabeled instances of the target document type, followed by a fine-tuning step on human-labeled instances does not work in these scenarios, as it surpasses the maximum allowable training time allocated for the extractor. We address this scenario by proposing a Noise-Aware Training method or NAT in this paper. Instead of acquiring expensive human-labeled documents, NAT utilizes weakly labeled documents to train an extractor in a scalable way. To avoid degradation in the model's quality due to noisy, weakly labeled samples, NAT estimates the confidence of each training sample and incorporates it as uncertainty measure during training. We train multiple state-of-the-art extractor models using NAT. Experiments on a number of publicly available and in-house datasets show that NAT-trained models are not only robust in performance -- it outperforms a transfer-learning baseline by up to 6% in terms of macro-F1 score, but it is also more label-efficient -- it reduces the amount of human-effort required to obtain comparable performance by up to 73%.

  • 8 authors
·
Mar 30, 2024 1

One Step of Gradient Descent is Provably the Optimal In-Context Learner with One Layer of Linear Self-Attention

Recent works have empirically analyzed in-context learning and shown that transformers trained on synthetic linear regression tasks can learn to implement ridge regression, which is the Bayes-optimal predictor, given sufficient capacity [Aky\"urek et al., 2023], while one-layer transformers with linear self-attention and no MLP layer will learn to implement one step of gradient descent (GD) on a least-squares linear regression objective [von Oswald et al., 2022]. However, the theory behind these observations remains poorly understood. We theoretically study transformers with a single layer of linear self-attention, trained on synthetic noisy linear regression data. First, we mathematically show that when the covariates are drawn from a standard Gaussian distribution, the one-layer transformer which minimizes the pre-training loss will implement a single step of GD on the least-squares linear regression objective. Then, we find that changing the distribution of the covariates and weight vector to a non-isotropic Gaussian distribution has a strong impact on the learned algorithm: the global minimizer of the pre-training loss now implements a single step of pre-conditioned GD. However, if only the distribution of the responses is changed, then this does not have a large effect on the learned algorithm: even when the response comes from a more general family of nonlinear functions, the global minimizer of the pre-training loss still implements a single step of GD on a least-squares linear regression objective.

  • 3 authors
·
Jul 7, 2023

ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases

Convolutional architectures have proven extremely successful for vision tasks. Their hard inductive biases enable sample-efficient learning, but come at the cost of a potentially lower performance ceiling. Vision Transformers (ViTs) rely on more flexible self-attention layers, and have recently outperformed CNNs for image classification. However, they require costly pre-training on large external datasets or distillation from pre-trained convolutional networks. In this paper, we ask the following question: is it possible to combine the strengths of these two architectures while avoiding their respective limitations? To this end, we introduce gated positional self-attention (GPSA), a form of positional self-attention which can be equipped with a ``soft" convolutional inductive bias. We initialise the GPSA layers to mimic the locality of convolutional layers, then give each attention head the freedom to escape locality by adjusting a gating parameter regulating the attention paid to position versus content information. The resulting convolutional-like ViT architecture, ConViT, outperforms the DeiT on ImageNet, while offering a much improved sample efficiency. We further investigate the role of locality in learning by first quantifying how it is encouraged in vanilla self-attention layers, then analysing how it is escaped in GPSA layers. We conclude by presenting various ablations to better understand the success of the ConViT. Our code and models are released publicly at https://github.com/facebookresearch/convit.

  • 6 authors
·
Mar 19, 2021

RAD-DINO: Exploring Scalable Medical Image Encoders Beyond Text Supervision

Language-supervised pre-training has proven to be a valuable method for extracting semantically meaningful features from images, serving as a foundational element in multimodal systems within the computer vision and medical imaging domains. However, resulting features are limited by the information contained within the text. This is particularly problematic in medical imaging, where radiologists' written findings focus on specific observations; a challenge compounded by the scarcity of paired imaging-text data due to concerns over leakage of personal health information. In this work, we fundamentally challenge the prevailing reliance on language supervision for learning general purpose biomedical imaging encoders. We introduce RAD-DINO, a biomedical image encoder pre-trained solely on unimodal biomedical imaging data that obtains similar or greater performance than state-of-the-art biomedical language supervised models on a diverse range of benchmarks. Specifically, the quality of learned representations is evaluated on standard imaging tasks (classification and semantic segmentation), and a vision-language alignment task (text report generation from images). To further demonstrate the drawback of language supervision, we show that features from RAD-DINO correlate with other medical records (e.g., sex or age) better than language-supervised models, which are generally not mentioned in radiology reports. Finally, we conduct a series of ablations determining the factors in RAD-DINO's performance; notably, we observe that RAD-DINO's downstream performance scales well with the quantity and diversity of training data, demonstrating that image-only supervision is a scalable approach for training a foundational biomedical image encoder.

  • 15 authors
·
Jan 19, 2024

CM-UNet: A Self-Supervised Learning-Based Model for Coronary Artery Segmentation in X-Ray Angiography

Accurate segmentation of coronary arteries remains a significant challenge in clinical practice, hindering the ability to effectively diagnose and manage coronary artery disease. The lack of large, annotated datasets for model training exacerbates this issue, limiting the development of automated tools that could assist radiologists. To address this, we introduce CM-UNet, which leverages self-supervised pre-training on unannotated datasets and transfer learning on limited annotated data, enabling accurate disease detection while minimizing the need for extensive manual annotations. Fine-tuning CM-UNet with only 18 annotated images instead of 500 resulted in a 15.2% decrease in Dice score, compared to a 46.5% drop in baseline models without pre-training. This demonstrates that self-supervised learning can enhance segmentation performance and reduce dependence on large datasets. This is one of the first studies to highlight the importance of self-supervised learning in improving coronary artery segmentation from X-ray angiography, with potential implications for advancing diagnostic accuracy in clinical practice. By enhancing segmentation accuracy in X-ray angiography images, the proposed approach aims to improve clinical workflows, reduce radiologists' workload, and accelerate disease detection, ultimately contributing to better patient outcomes. The source code is publicly available at https://github.com/CamilleChallier/Contrastive-Masked-UNet.

  • 11 authors
·
Jul 22