new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 17

Aligning Teacher with Student Preferences for Tailored Training Data Generation

Large Language Models (LLMs) have shown significant promise as copilots in various tasks. Local deployment of LLMs on edge devices is necessary when handling privacy-sensitive data or latency-sensitive tasks. The computational constraints of such devices make direct deployment of powerful large-scale LLMs impractical, necessitating the Knowledge Distillation from large-scale models to lightweight models. Lots of work has been done to elicit diversity and quality training examples from LLMs, but little attention has been paid to aligning teacher instructional content based on student preferences, akin to "responsive teaching" in pedagogy. Thus, we propose ARTE, dubbed Aligning TeacheR with StudenT PreferencEs, a framework that aligns the teacher model with student preferences to generate tailored training examples for Knowledge Distillation. Specifically, we elicit draft questions and rationales from the teacher model, then collect student preferences on these questions and rationales using students' performance with in-context learning as a proxy, and finally align the teacher model with student preferences. In the end, we repeat the first step with the aligned teacher model to elicit tailored training examples for the student model on the target task. Extensive experiments on academic benchmarks demonstrate the superiority of ARTE over existing instruction-tuning datasets distilled from powerful LLMs. Moreover, we thoroughly investigate the generalization of ARTE, including the generalization of fine-tuned student models in reasoning ability and the generalization of aligned teacher models to generate tailored training data across tasks and students. In summary, our contributions lie in proposing a novel framework for tailored training example generation, demonstrating its efficacy in experiments, and investigating the generalization of both student & aligned teacher models in ARTE.

  • 6 authors
·
Jun 27, 2024 2

Searching for Privacy Risks in LLM Agents via Simulation

The widespread deployment of LLM-based agents is likely to introduce a critical privacy threat: malicious agents that proactively engage others in multi-turn interactions to extract sensitive information. These dynamic dialogues enable adaptive attack strategies that can cause severe privacy violations, yet their evolving nature makes it difficult to anticipate and discover sophisticated vulnerabilities manually. To tackle this problem, we present a search-based framework that alternates between improving attacker and defender instructions by simulating privacy-critical agent interactions. Each simulation involves three roles: data subject, data sender, and data recipient. While the data subject's behavior is fixed, the attacker (data recipient) attempts to extract sensitive information from the defender (data sender) through persistent and interactive exchanges. To explore this interaction space efficiently, our search algorithm employs LLMs as optimizers, using parallel search with multiple threads and cross-thread propagation to analyze simulation trajectories and iteratively propose new instructions. Through this process, we find that attack strategies escalate from simple direct requests to sophisticated multi-turn tactics such as impersonation and consent forgery, while defenses advance from rule-based constraints to identity-verification state machines. The discovered attacks and defenses transfer across diverse scenarios and backbone models, demonstrating strong practical utility for building privacy-aware agents.

  • 2 authors
·
Aug 14

Efficient Differentially Private Fine-Tuning of LLMs via Reinforcement Learning

The tension between data privacy and model utility has become the defining bottleneck for the practical deployment of large language models (LLMs) trained on sensitive corpora including healthcare. Differentially private stochastic gradient descent (DP-SGD) guarantees formal privacy, yet it does so at a pronounced cost: gradients are forcibly clipped and perturbed with noise, degrading sample efficiency and final accuracy. Numerous variants have been proposed to soften this trade-off, but they all share a handicap: their control knobs are hard-coded, global, and oblivious to the evolving optimization landscape. Consequently, practitioners are forced either to over-spend privacy budget in pursuit of utility, or to accept mediocre models in order to stay within privacy constraints. We present RLDP, the first framework to cast DP optimization itself as a closed-loop control problem amenable to modern deep reinforcement learning (RL). RLDP continuously senses rich statistics of the learning dynamics and acts by selecting fine-grained per parameter gradient-clipping thresholds as well as the magnitude of injected Gaussian noise. A soft actor-critic (SAC) hyper-policy is trained online during language model fine-tuning; it learns, from scratch, how to allocate the privacy budget where it matters and when it matters. Across more than 1,600 ablation experiments on GPT2-small, Llama-1B, Llama-3B, and Mistral-7B, RLDP delivers perplexity reductions of 1.3-30.5% (mean 5.4%) and an average 5.6% downstream utility gain. RLDP reaches each baseline's final utility after only 13-43% of the gradient-update budget (mean speed-up 71%), all while honoring the same (epsilon, delta)-DP contract and exhibiting equal or lower susceptibility to membership-inference and canary-extraction attacks.

  • 5 authors
·
Jul 30 2

Encrypted Large Model Inference: The Equivariant Encryption Paradigm

Large scale deep learning model, such as modern language models and diffusion architectures, have revolutionized applications ranging from natural language processing to computer vision. However, their deployment in distributed or decentralized environments raises significant privacy concerns, as sensitive data may be exposed during inference. Traditional techniques like secure multi-party computation, homomorphic encryption, and differential privacy offer partial remedies but often incur substantial computational overhead, latency penalties, or limited compatibility with non-linear network operations. In this work, we introduce Equivariant Encryption (EE), a novel paradigm designed to enable secure, "blind" inference on encrypted data with near zero performance overhead. Unlike fully homomorphic approaches that encrypt the entire computational graph, EE selectively obfuscates critical internal representations within neural network layers while preserving the exact functionality of both linear and a prescribed set of non-linear operations. This targeted encryption ensures that raw inputs, intermediate activations, and outputs remain confidential, even when processed on untrusted infrastructure. We detail the theoretical foundations of EE, compare its performance and integration complexity against conventional privacy preserving techniques, and demonstrate its applicability across a range of architectures, from convolutional networks to large language models. Furthermore, our work provides a comprehensive threat analysis, outlining potential attack vectors and baseline strategies, and benchmarks EE against standard inference pipelines in decentralized settings. The results confirm that EE maintains high fidelity and throughput, effectively bridging the gap between robust data confidentiality and the stringent efficiency requirements of modern, large scale model inference.

  • 13 authors
·
Feb 2

VeriGuard: Enhancing LLM Agent Safety via Verified Code Generation

The deployment of autonomous AI agents in sensitive domains, such as healthcare, introduces critical risks to safety, security, and privacy. These agents may deviate from user objectives, violate data handling policies, or be compromised by adversarial attacks. Mitigating these dangers necessitates a mechanism to formally guarantee that an agent's actions adhere to predefined safety constraints, a challenge that existing systems do not fully address. We introduce VeriGuard, a novel framework that provides formal safety guarantees for LLM-based agents through a dual-stage architecture designed for robust and verifiable correctness. The initial offline stage involves a comprehensive validation process. It begins by clarifying user intent to establish precise safety specifications. VeriGuard then synthesizes a behavioral policy and subjects it to both testing and formal verification to prove its compliance with these specifications. This iterative process refines the policy until it is deemed correct. Subsequently, the second stage provides online action monitoring, where VeriGuard operates as a runtime monitor to validate each proposed agent action against the pre-verified policy before execution. This separation of the exhaustive offline validation from the lightweight online monitoring allows formal guarantees to be practically applied, providing a robust safeguard that substantially improves the trustworthiness of LLM agents.

google Google
·
Oct 3 2

A Generative Framework for Low-Cost Result Validation of Machine Learning-as-a-Service Inference

The growing popularity of Machine Learning (ML) has led to its deployment in various sensitive domains, which has resulted in significant research focused on ML security and privacy. However, in some applications, such as Augmented/Virtual Reality, integrity verification of the outsourced ML tasks is more critical--a facet that has not received much attention. Existing solutions, such as multi-party computation and proof-based systems, impose significant computation overhead, which makes them unfit for real-time applications. We propose Fides, a novel framework for real-time integrity validation of ML-as-a-Service (MLaaS) inference. Fides features a novel and efficient distillation technique--Greedy Distillation Transfer Learning--that dynamically distills and fine-tunes a space and compute-efficient verification model for verifying the corresponding service model while running inside a trusted execution environment. Fides features a client-side attack detection model that uses statistical analysis and divergence measurements to identify, with a high likelihood, if the service model is under attack. Fides also offers a re-classification functionality that predicts the original class whenever an attack is identified. We devised a generative adversarial network framework for training the attack detection and re-classification models. The evaluation shows that Fides achieves an accuracy of up to 98% for attack detection and 94% for re-classification.

  • 4 authors
·
Mar 31, 2023

From Principle to Practice: Vertical Data Minimization for Machine Learning

Aiming to train and deploy predictive models, organizations collect large amounts of detailed client data, risking the exposure of private information in the event of a breach. To mitigate this, policymakers increasingly demand compliance with the data minimization (DM) principle, restricting data collection to only that data which is relevant and necessary for the task. Despite regulatory pressure, the problem of deploying machine learning models that obey DM has so far received little attention. In this work, we address this challenge in a comprehensive manner. We propose a novel vertical DM (vDM) workflow based on data generalization, which by design ensures that no full-resolution client data is collected during training and deployment of models, benefiting client privacy by reducing the attack surface in case of a breach. We formalize and study the corresponding problem of finding generalizations that both maximize data utility and minimize empirical privacy risk, which we quantify by introducing a diverse set of policy-aligned adversarial scenarios. Finally, we propose a range of baseline vDM algorithms, as well as Privacy-aware Tree (PAT), an especially effective vDM algorithm that outperforms all baselines across several settings. We plan to release our code as a publicly available library, helping advance the standardization of DM for machine learning. Overall, we believe our work can help lay the foundation for further exploration and adoption of DM principles in real-world applications.

  • 4 authors
·
Nov 17, 2023

Trusted Machine Learning Models Unlock Private Inference for Problems Currently Infeasible with Cryptography

We often interact with untrusted parties. Prioritization of privacy can limit the effectiveness of these interactions, as achieving certain goals necessitates sharing private data. Traditionally, addressing this challenge has involved either seeking trusted intermediaries or constructing cryptographic protocols that restrict how much data is revealed, such as multi-party computations or zero-knowledge proofs. While significant advances have been made in scaling cryptographic approaches, they remain limited in terms of the size and complexity of applications they can be used for. In this paper, we argue that capable machine learning models can fulfill the role of a trusted third party, thus enabling secure computations for applications that were previously infeasible. In particular, we describe Trusted Capable Model Environments (TCMEs) as an alternative approach for scaling secure computation, where capable machine learning model(s) interact under input/output constraints, with explicit information flow control and explicit statelessness. This approach aims to achieve a balance between privacy and computational efficiency, enabling private inference where classical cryptographic solutions are currently infeasible. We describe a number of use cases that are enabled by TCME, and show that even some simple classic cryptographic problems can already be solved with TCME. Finally, we outline current limitations and discuss the path forward in implementing them.

  • 7 authors
·
Jan 15 2

Rethinking Privacy in Machine Learning Pipelines from an Information Flow Control Perspective

Modern machine learning systems use models trained on ever-growing corpora. Typically, metadata such as ownership, access control, or licensing information is ignored during training. Instead, to mitigate privacy risks, we rely on generic techniques such as dataset sanitization and differentially private model training, with inherent privacy/utility trade-offs that hurt model performance. Moreover, these techniques have limitations in scenarios where sensitive information is shared across multiple participants and fine-grained access control is required. By ignoring metadata, we therefore miss an opportunity to better address security, privacy, and confidentiality challenges. In this paper, we take an information flow control perspective to describe machine learning systems, which allows us to leverage metadata such as access control policies and define clear-cut privacy and confidentiality guarantees with interpretable information flows. Under this perspective, we contrast two different approaches to achieve user-level non-interference: 1) fine-tuning per-user models, and 2) retrieval augmented models that access user-specific datasets at inference time. We compare these two approaches to a trivially non-interfering zero-shot baseline using a public model and to a baseline that fine-tunes this model on the whole corpus. We evaluate trained models on two datasets of scientific articles and demonstrate that retrieval augmented architectures deliver the best utility, scalability, and flexibility while satisfying strict non-interference guarantees.

  • 9 authors
·
Nov 27, 2023

Mind the Third Eye! Benchmarking Privacy Awareness in MLLM-powered Smartphone Agents

Smartphones bring significant convenience to users but also enable devices to extensively record various types of personal information. Existing smartphone agents powered by Multimodal Large Language Models (MLLMs) have achieved remarkable performance in automating different tasks. However, as the cost, these agents are granted substantial access to sensitive users' personal information during this operation. To gain a thorough understanding of the privacy awareness of these agents, we present the first large-scale benchmark encompassing 7,138 scenarios to the best of our knowledge. In addition, for privacy context in scenarios, we annotate its type (e.g., Account Credentials), sensitivity level, and location. We then carefully benchmark seven available mainstream smartphone agents. Our results demonstrate that almost all benchmarked agents show unsatisfying privacy awareness (RA), with performance remaining below 60% even with explicit hints. Overall, closed-source agents show better privacy ability than open-source ones, and Gemini 2.0-flash achieves the best, achieving an RA of 67%. We also find that the agents' privacy detection capability is highly related to scenario sensitivity level, i.e., the scenario with a higher sensitivity level is typically more identifiable. We hope the findings enlighten the research community to rethink the unbalanced utility-privacy tradeoff about smartphone agents. Our code and benchmark are available at https://zhixin-l.github.io/SAPA-Bench.

  • 6 authors
·
Aug 26 6

PANORAMA: A synthetic PII-laced dataset for studying sensitive data memorization in LLMs

The memorization of sensitive and personally identifiable information (PII) by large language models (LLMs) poses growing privacy risks as models scale and are increasingly deployed in real-world applications. Existing efforts to study sensitive and PII data memorization and develop mitigation strategies are hampered by the absence of comprehensive, realistic, and ethically sourced datasets reflecting the diversity of sensitive information found on the web. We introduce PANORAMA - Profile-based Assemblage for Naturalistic Online Representation and Attribute Memorization Analysis, a large-scale synthetic corpus of 384,789 samples derived from 9,674 synthetic profiles designed to closely emulate the distribution, variety, and context of PII and sensitive data as it naturally occurs in online environments. Our data generation pipeline begins with the construction of internally consistent, multi-attribute human profiles using constrained selection to reflect real-world demographics such as education, health attributes, financial status, etc. Using a combination of zero-shot prompting and OpenAI o3-mini, we generate diverse content types - including wiki-style articles, social media posts, forum discussions, online reviews, comments, and marketplace listings - each embedding realistic, contextually appropriate PII and other sensitive information. We validate the utility of PANORAMA by fine-tuning the Mistral-7B model on 1x, 5x, 10x, and 25x data replication rates with a subset of data and measure PII memorization rates - revealing not only consistent increases with repetition but also variation across content types, highlighting PANORAMA's ability to model how memorization risks differ by context. Our dataset and code are publicly available, providing a much-needed resource for privacy risk assessment, model auditing, and the development of privacy-preserving LLMs.

  • 2 authors
·
May 18

PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action

As language models (LMs) are widely utilized in personalized communication scenarios (e.g., sending emails, writing social media posts) and endowed with a certain level of agency, ensuring they act in accordance with the contextual privacy norms becomes increasingly critical. However, quantifying the privacy norm awareness of LMs and the emerging privacy risk in LM-mediated communication is challenging due to (1) the contextual and long-tailed nature of privacy-sensitive cases, and (2) the lack of evaluation approaches that capture realistic application scenarios. To address these challenges, we propose PrivacyLens, a novel framework designed to extend privacy-sensitive seeds into expressive vignettes and further into agent trajectories, enabling multi-level evaluation of privacy leakage in LM agents' actions. We instantiate PrivacyLens with a collection of privacy norms grounded in privacy literature and crowdsourced seeds. Using this dataset, we reveal a discrepancy between LM performance in answering probing questions and their actual behavior when executing user instructions in an agent setup. State-of-the-art LMs, like GPT-4 and Llama-3-70B, leak sensitive information in 25.68% and 38.69% of cases, even when prompted with privacy-enhancing instructions. We also demonstrate the dynamic nature of PrivacyLens by extending each seed into multiple trajectories to red-team LM privacy leakage risk. Dataset and code are available at https://github.com/SALT-NLP/PrivacyLens.

  • 5 authors
·
Aug 29, 2024 2

Privacy-Preserving Federated Embedding Learning for Localized Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) has recently emerged as a promising solution for enhancing the accuracy and credibility of Large Language Models (LLMs), particularly in Question & Answer tasks. This is achieved by incorporating proprietary and private data from integrated databases. However, private RAG systems face significant challenges due to the scarcity of private domain data and critical data privacy issues. These obstacles impede the deployment of private RAG systems, as developing privacy-preserving RAG systems requires a delicate balance between data security and data availability. To address these challenges, we regard federated learning (FL) as a highly promising technology for privacy-preserving RAG services. We propose a novel framework called Federated Retrieval-Augmented Generation (FedE4RAG). This framework facilitates collaborative training of client-side RAG retrieval models. The parameters of these models are aggregated and distributed on a central-server, ensuring data privacy without direct sharing of raw data. In FedE4RAG, knowledge distillation is employed for communication between the server and client models. This technique improves the generalization of local RAG retrievers during the federated learning process. Additionally, we apply homomorphic encryption within federated learning to safeguard model parameters and mitigate concerns related to data leakage. Extensive experiments conducted on the real-world dataset have validated the effectiveness of FedE4RAG. The results demonstrate that our proposed framework can markedly enhance the performance of private RAG systems while maintaining robust data privacy protection.

  • 14 authors
·
Apr 27

The Sum Leaks More Than Its Parts: Compositional Privacy Risks and Mitigations in Multi-Agent Collaboration

As large language models (LLMs) become integral to multi-agent systems, new privacy risks emerge that extend beyond memorization, direct inference, or single-turn evaluations. In particular, seemingly innocuous responses, when composed across interactions, can cumulatively enable adversaries to recover sensitive information, a phenomenon we term compositional privacy leakage. We present the first systematic study of such compositional privacy leaks and possible mitigation methods in multi-agent LLM systems. First, we develop a framework that models how auxiliary knowledge and agent interactions jointly amplify privacy risks, even when each response is benign in isolation. Next, to mitigate this, we propose and evaluate two defense strategies: (1) Theory-of-Mind defense (ToM), where defender agents infer a questioner's intent by anticipating how their outputs may be exploited by adversaries, and (2) Collaborative Consensus Defense (CoDef), where responder agents collaborate with peers who vote based on a shared aggregated state to restrict sensitive information spread. Crucially, we balance our evaluation across compositions that expose sensitive information and compositions that yield benign inferences. Our experiments quantify how these defense strategies differ in balancing the privacy-utility trade-off. We find that while chain-of-thought alone offers limited protection to leakage (~39% sensitive blocking rate), our ToM defense substantially improves sensitive query blocking (up to 97%) but can reduce benign task success. CoDef achieves the best balance, yielding the highest Balanced Outcome (79.8%), highlighting the benefit of combining explicit reasoning with defender collaboration. Together, our results expose a new class of risks in collaborative LLM deployments and provide actionable insights for designing safeguards against compositional, context-driven privacy leakage.

  • 3 authors
·
Sep 16 2

Subject Membership Inference Attacks in Federated Learning

Privacy attacks on Machine Learning (ML) models often focus on inferring the existence of particular data points in the training data. However, what the adversary really wants to know is if a particular individual's (subject's) data was included during training. In such scenarios, the adversary is more likely to have access to the distribution of a particular subject than actual records. Furthermore, in settings like cross-silo Federated Learning (FL), a subject's data can be embodied by multiple data records that are spread across multiple organizations. Nearly all of the existing private FL literature is dedicated to studying privacy at two granularities -- item-level (individual data records), and user-level (participating user in the federation), neither of which apply to data subjects in cross-silo FL. This insight motivates us to shift our attention from the privacy of data records to the privacy of data subjects, also known as subject-level privacy. We propose two novel black-box attacks for subject membership inference, of which one assumes access to a model after each training round. Using these attacks, we estimate subject membership inference risk on real-world data for single-party models as well as FL scenarios. We find our attacks to be extremely potent, even without access to exact training records, and using the knowledge of membership for a handful of subjects. To better understand the various factors that may influence subject privacy risk in cross-silo FL settings, we systematically generate several hundred synthetic federation configurations, varying properties of the data, model design and training, and the federation itself. Finally, we investigate the effectiveness of Differential Privacy in mitigating this threat.

  • 4 authors
·
Jun 7, 2022

When the signal is in the noise: Exploiting Diffix's Sticky Noise

Anonymized data is highly valuable to both businesses and researchers. A large body of research has however shown the strong limits of the de-identification release-and-forget model, where data is anonymized and shared. This has led to the development of privacy-preserving query-based systems. Based on the idea of "sticky noise", Diffix has been recently proposed as a novel query-based mechanism satisfying alone the EU Article~29 Working Party's definition of anonymization. According to its authors, Diffix adds less noise to answers than solutions based on differential privacy while allowing for an unlimited number of queries. This paper presents a new class of noise-exploitation attacks, exploiting the noise added by the system to infer private information about individuals in the dataset. Our first differential attack uses samples extracted from Diffix in a likelihood ratio test to discriminate between two probability distributions. We show that using this attack against a synthetic best-case dataset allows us to infer private information with 89.4% accuracy using only 5 attributes. Our second cloning attack uses dummy conditions that conditionally strongly affect the output of the query depending on the value of the private attribute. Using this attack on four real-world datasets, we show that we can infer private attributes of at least 93% of the users in the dataset with accuracy between 93.3% and 97.1%, issuing a median of 304 queries per user. We show how to optimize this attack, targeting 55.4% of the users and achieving 91.7% accuracy, using a maximum of only 32 queries per user. Our attacks demonstrate that adding data-dependent noise, as done by Diffix, is not sufficient to prevent inference of private attributes. We furthermore argue that Diffix alone fails to satisfy Art. 29 WP's definition of anonymization. [...]

  • 5 authors
·
Apr 18, 2018

Balancing Transparency and Risk: The Security and Privacy Risks of Open-Source Machine Learning Models

The field of artificial intelligence (AI) has experienced remarkable progress in recent years, driven by the widespread adoption of open-source machine learning models in both research and industry. Considering the resource-intensive nature of training on vast datasets, many applications opt for models that have already been trained. Hence, a small number of key players undertake the responsibility of training and publicly releasing large pre-trained models, providing a crucial foundation for a wide range of applications. However, the adoption of these open-source models carries inherent privacy and security risks that are often overlooked. To provide a concrete example, an inconspicuous model may conceal hidden functionalities that, when triggered by specific input patterns, can manipulate the behavior of the system, such as instructing self-driving cars to ignore the presence of other vehicles. The implications of successful privacy and security attacks encompass a broad spectrum, ranging from relatively minor damage like service interruptions to highly alarming scenarios, including physical harm or the exposure of sensitive user data. In this work, we present a comprehensive overview of common privacy and security threats associated with the use of open-source models. By raising awareness of these dangers, we strive to promote the responsible and secure use of AI systems.

  • 3 authors
·
Aug 18, 2023

MAGPIE: A dataset for Multi-AGent contextual PrIvacy Evaluation

The proliferation of LLM-based agents has led to increasing deployment of inter-agent collaboration for tasks like scheduling, negotiation, resource allocation etc. In such systems, privacy is critical, as agents often access proprietary tools and domain-specific databases requiring strict confidentiality. This paper examines whether LLM-based agents demonstrate an understanding of contextual privacy. And, if instructed, do these systems preserve inference time user privacy in non-adversarial multi-turn conversation. Existing benchmarks to evaluate contextual privacy in LLM-agents primarily assess single-turn, low-complexity tasks where private information can be easily excluded. We first present a benchmark - MAGPIE comprising 158 real-life high-stakes scenarios across 15 domains. These scenarios are designed such that complete exclusion of private data impedes task completion yet unrestricted information sharing could lead to substantial losses. We then evaluate the current state-of-the-art LLMs on (a) their understanding of contextually private data and (b) their ability to collaborate without violating user privacy. Empirical experiments demonstrate that current models, including GPT-4o and Claude-2.7-Sonnet, lack robust understanding of contextual privacy, misclassifying private data as shareable 25.2\% and 43.6\% of the time. In multi-turn conversations, these models disclose private information in 59.9\% and 50.5\% of cases even under explicit privacy instructions. Furthermore, multi-agent systems fail to complete tasks in 71\% of scenarios. These results underscore that current models are not aligned towards both contextual privacy preservation and collaborative task-solving.

  • 4 authors
·
Jun 25

DP-OPT: Make Large Language Model Your Privacy-Preserving Prompt Engineer

Large Language Models (LLMs) have emerged as dominant tools for various tasks, particularly when tailored for a specific target by prompt tuning. Nevertheless, concerns surrounding data privacy present obstacles due to the tuned prompts' dependency on sensitive private information. A practical solution is to host a local LLM and optimize a soft prompt privately using data. Yet, hosting a local model becomes problematic when model ownership is protected. Alternative methods, like sending data to the model's provider for training, intensify these privacy issues facing an untrusted provider. In this paper, we present a novel solution called Differentially-Private Offsite Prompt Tuning (DP-OPT) to address this challenge. Our approach involves tuning a discrete prompt on the client side and then applying it to the desired cloud models. We demonstrate that prompts suggested by LLMs themselves can be transferred without compromising performance significantly. To ensure that the prompts do not leak private information, we introduce the first private prompt generation mechanism, by a differentially-private (DP) ensemble of in-context learning with private demonstrations. With DP-OPT, generating privacy-preserving prompts by Vicuna-7b can yield competitive performance compared to non-private in-context learning on GPT3.5 or local private prompt tuning. Codes are available at https://github.com/VITA-Group/DP-OPT .

  • 6 authors
·
Nov 26, 2023

Anonymizing Speech: Evaluating and Designing Speaker Anonymization Techniques

The growing use of voice user interfaces has led to a surge in the collection and storage of speech data. While data collection allows for the development of efficient tools powering most speech services, it also poses serious privacy issues for users as centralized storage makes private personal speech data vulnerable to cyber threats. With the increasing use of voice-based digital assistants like Amazon's Alexa, Google's Home, and Apple's Siri, and with the increasing ease with which personal speech data can be collected, the risk of malicious use of voice-cloning and speaker/gender/pathological/etc. recognition has increased. This thesis proposes solutions for anonymizing speech and evaluating the degree of the anonymization. In this work, anonymization refers to making personal speech data unlinkable to an identity while maintaining the usefulness (utility) of the speech signal (e.g., access to linguistic content). We start by identifying several challenges that evaluation protocols need to consider to evaluate the degree of privacy protection properly. We clarify how anonymization systems must be configured for evaluation purposes and highlight that many practical deployment configurations do not permit privacy evaluation. Furthermore, we study and examine the most common voice conversion-based anonymization system and identify its weak points before suggesting new methods to overcome some limitations. We isolate all components of the anonymization system to evaluate the degree of speaker PPI associated with each of them. Then, we propose several transformation methods for each component to reduce as much as possible speaker PPI while maintaining utility. We promote anonymization algorithms based on quantization-based transformation as an alternative to the most-used and well-known noise-based approach. Finally, we endeavor a new attack method to invert anonymization.

  • 1 authors
·
Aug 5, 2023

Towards Secure and Private AI: A Framework for Decentralized Inference

The rapid advancement of ML models in critical sectors such as healthcare, finance, and security has intensified the need for robust data security, model integrity, and reliable outputs. Large multimodal foundational models, while crucial for complex tasks, present challenges in scalability, reliability, and potential misuse. Decentralized systems offer a solution by distributing workload and mitigating central points of failure, but they introduce risks of unauthorized access to sensitive data across nodes. We address these challenges with a comprehensive framework designed for responsible AI development. Our approach incorporates: 1) Zero-knowledge proofs for secure model verification, enhancing trust without compromising privacy. 2) Consensus-based verification checks to ensure consistent outputs across nodes, mitigating hallucinations and maintaining model integrity. 3) Split Learning techniques that segment models across different nodes, preserving data privacy by preventing full data access at any point. 4) Hardware-based security through trusted execution environments (TEEs) to protect data and computations. This framework aims to enhance security and privacy and improve the reliability and fairness of multimodal AI systems. Promoting efficient resource utilization contributes to more sustainable AI development. Our state-of-the-art proofs and principles demonstrate the framework's effectiveness in responsibly democratizing artificial intelligence, offering a promising approach for building secure and private foundational models.

  • 8 authors
·
Jul 28, 2024

Privacy-Preserving LLM Interaction with Socratic Chain-of-Thought Reasoning and Homomorphically Encrypted Vector Databases

Large language models (LLMs) are increasingly used as personal agents, accessing sensitive user data such as calendars, emails, and medical records. Users currently face a trade-off: They can send private records, many of which are stored in remote databases, to powerful but untrusted LLM providers, increasing their exposure risk. Alternatively, they can run less powerful models locally on trusted devices. We bridge this gap. Our Socratic Chain-of-Thought Reasoning first sends a generic, non-private user query to a powerful, untrusted LLM, which generates a Chain-of-Thought (CoT) prompt and detailed sub-queries without accessing user data. Next, we embed these sub-queries and perform encrypted sub-second semantic search using our Homomorphically Encrypted Vector Database across one million entries of a single user's private data. This represents a realistic scale of personal documents, emails, and records accumulated over years of digital activity. Finally, we feed the CoT prompt and the decrypted records to a local language model and generate the final response. On the LoCoMo long-context QA benchmark, our hybrid framework, combining GPT-4o with a local Llama-3.2-1B model, outperforms using GPT-4o alone by up to 7.1 percentage points. This demonstrates a first step toward systems where tasks are decomposed and split between untrusted strong LLMs and weak local ones, preserving user privacy.

  • 7 authors
·
Jun 19

Automated Privacy Information Annotation in Large Language Model Interactions

Users interacting with large language models (LLMs) under their real identifiers often unknowingly risk disclosing private information. Automatically notifying users whether their queries leak privacy and which phrases leak what private information has therefore become a practical need. Existing privacy detection methods, however, were designed for different objectives and application scenarios, typically tagging personally identifiable information (PII) in anonymous content. In this work, to support the development and evaluation of privacy detection models for LLM interactions that are deployable on local user devices, we construct a large-scale multilingual dataset with 249K user queries and 154K annotated privacy phrases. In particular, we build an automated privacy annotation pipeline with cloud-based strong LLMs to automatically extract privacy phrases from dialogue datasets and annotate leaked information. We also design evaluation metrics at the levels of privacy leakage, extracted privacy phrase, and privacy information. We further establish baseline methods using light-weight LLMs with both tuning-free and tuning-based methods, and report a comprehensive evaluation of their performance. Evaluation results reveal a gap between current performance and the requirements of real-world LLM applications, motivating future research into more effective local privacy detection methods grounded in our dataset.

  • 7 authors
·
May 27

Democratizing LLMs: An Exploration of Cost-Performance Trade-offs in Self-Refined Open-Source Models

The dominance of proprietary LLMs has led to restricted access and raised information privacy concerns. High-performing open-source alternatives are crucial for information-sensitive and high-volume applications but often lag behind in performance. To address this gap, we propose (1) A untargeted variant of iterative self-critique and self-refinement devoid of external influence. (2) A novel ranking metric - Performance, Refinement, and Inference Cost Score (PeRFICS) - to find the optimal model for a given task considering refined performance and cost. Our experiments show that SoTA open source models of varying sizes from 7B - 65B, on average, improve 8.2% from their baseline performance. Strikingly, even models with extremely small memory footprints, such as Vicuna-7B, show a 11.74% improvement overall and up to a 25.39% improvement in high-creativity, open ended tasks on the Vicuna benchmark. Vicuna-13B takes it a step further and outperforms ChatGPT post-refinement. This work has profound implications for resource-constrained and information-sensitive environments seeking to leverage LLMs without incurring prohibitive costs, compromising on performance and privacy. The domain-agnostic self-refinement process coupled with our novel ranking metric facilitates informed decision-making in model selection, thereby reducing costs and democratizing access to high-performing language models, as evidenced by case studies.

  • 5 authors
·
Oct 11, 2023

DP-BREM: Differentially-Private and Byzantine-Robust Federated Learning with Client Momentum

Federated Learning (FL) allows multiple participating clients to train machine learning models collaboratively while keeping their datasets local and only exchanging the gradient or model updates with a coordinating server. Existing FL protocols are vulnerable to attacks that aim to compromise data privacy and/or model robustness. Recently proposed defenses focused on ensuring either privacy or robustness, but not both. In this paper, we focus on simultaneously achieving differential privacy (DP) and Byzantine robustness for cross-silo FL, based on the idea of learning from history. The robustness is achieved via client momentum, which averages the updates of each client over time, thus reducing the variance of the honest clients and exposing the small malicious perturbations of Byzantine clients that are undetectable in a single round but accumulate over time. In our initial solution DP-BREM, DP is achieved by adding noise to the aggregated momentum, and we account for the privacy cost from the momentum, which is different from the conventional DP-SGD that accounts for the privacy cost from the gradient. Since DP-BREM assumes a trusted server (who can obtain clients' local models or updates), we further develop the final solution called DP-BREM+, which achieves the same DP and robustness properties as DP-BREM without a trusted server by utilizing secure aggregation techniques, where DP noise is securely and jointly generated by the clients. Both theoretical analysis and experimental results demonstrate that our proposed protocols achieve better privacy-utility tradeoff and stronger Byzantine robustness than several baseline methods, under different DP budgets and attack settings.

  • 3 authors
·
Jun 21, 2023

Hot-Swap MarkBoard: An Efficient Black-box Watermarking Approach for Large-scale Model Distribution

Recently, Deep Learning (DL) models have been increasingly deployed on end-user devices as On-Device AI, offering improved efficiency and privacy. However, this deployment trend poses more serious Intellectual Property (IP) risks, as models are distributed on numerous local devices, making them vulnerable to theft and redistribution. Most existing ownership protection solutions (e.g., backdoor-based watermarking) are designed for cloud-based AI-as-a-Service (AIaaS) and are not directly applicable to large-scale distribution scenarios, where each user-specific model instance must carry a unique watermark. These methods typically embed a fixed watermark, and modifying the embedded watermark requires retraining the model. To address these challenges, we propose Hot-Swap MarkBoard, an efficient watermarking method. It encodes user-specific n-bit binary signatures by independently embedding multiple watermarks into a multi-branch Low-Rank Adaptation (LoRA) module, enabling efficient watermark customization without retraining through branch swapping. A parameter obfuscation mechanism further entangles the watermark weights with those of the base model, preventing removal without degrading model performance. The method supports black-box verification and is compatible with various model architectures and DL tasks, including classification, image generation, and text generation. Extensive experiments across three types of tasks and six backbone models demonstrate our method's superior efficiency and adaptability compared to existing approaches, achieving 100\% verification accuracy.

  • 10 authors
·
Jul 28

SFPrompt: Communication-Efficient Split Federated Fine-Tuning for Large Pre-Trained Models over Resource-Limited Devices

Large pre-trained models have exhibited remarkable achievements across various domains. The substantial training costs associated with these models have led to wide studies of fine-tuning for effectively harnessing their capabilities in solving downstream tasks. Yet, conventional fine-tuning approaches become infeasible when the model lacks access to downstream data due to privacy concerns. Naively integrating fine-tuning approaches with the emerging federated learning frameworks incurs substantial communication overhead and exerts high demand on local computing resources, making it impractical for common resource-limited devices. In this paper, we introduce SFPrompt, an innovative privacy-preserving fine-tuning method tailored for the federated setting where direct uploading of raw data is prohibited and local devices are resource-constrained to run a complete pre-trained model. In essence, SFPrompt judiciously combines split learning with federated learning to handle these challenges. Specifically, the pre-trained model is first partitioned into client and server components, thereby streamlining the client-side model and substantially alleviating computational demands on local resources. SFPrompt then introduces soft prompts into the federated model to enhance the fine-tuning performance. To further reduce communication costs, a novel dataset pruning algorithm and a local-loss update strategy are devised during the fine-tuning process. Extensive experiments demonstrate that SFPrompt delivers competitive performance as the federated full fine-tuning approach while consuming a mere 0.46% of local computing resources and incurring 53% less communication cost.

  • 3 authors
·
Jul 24, 2024

SafeSynthDP: Leveraging Large Language Models for Privacy-Preserving Synthetic Data Generation Using Differential Privacy

Machine learning (ML) models frequently rely on training data that may include sensitive or personal information, raising substantial privacy concerns. Legislative frameworks such as the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA) have necessitated the development of strategies that preserve privacy while maintaining the utility of data. In this paper, we investigate the capability of Large Language Models (LLMs) to generate synthetic datasets integrated with Differential Privacy (DP) mechanisms, thereby enabling data-driven research and model training without direct exposure of sensitive information. Our approach incorporates DP-based noise injection methods, including Laplace and Gaussian distributions, into the data generation process. We then evaluate the utility of these DP-enhanced synthetic datasets by comparing the performance of ML models trained on them against models trained on the original data. To substantiate privacy guarantees, we assess the resilience of the generated synthetic data to membership inference attacks and related threats. The experimental results demonstrate that integrating DP within LLM-driven synthetic data generation offers a viable balance between privacy protection and data utility. This study provides a foundational methodology and insight into the privacy-preserving capabilities of LLMs, paving the way for compliant and effective ML research and applications.

  • 2 authors
·
Dec 29, 2024

Federated Heavy Hitter Analytics with Local Differential Privacy

Federated heavy hitter analytics enables service providers to better understand the preferences of cross-party users by analyzing the most frequent items. As with federated learning, it faces challenges of privacy concerns, statistical heterogeneity, and expensive communication. Local differential privacy (LDP), as the de facto standard for privacy-preserving data collection, solves the privacy challenge by letting each user perturb her data locally and report the sanitized version. However, in federated settings, applying LDP complicates the other two challenges, due to the deteriorated utility by the injected LDP noise or increasing communication/computation costs by perturbation mechanism. To tackle these problems, we propose a novel target-aligning prefix tree mechanism satisfying epsilon-LDP, for federated heavy hitter analytics. In particular, we propose an adaptive extension strategy to address the inconsistencies between covering necessary prefixes and estimating heavy hitters within a party to enhance the utility. We also present a consensus-based pruning strategy that utilizes noisy prior knowledge from other parties to further align the inconsistency between finding heavy hitters in each party and providing reasonable frequency information to identify the global ones. To the best of our knowledge, our study is the first solution to the federated heavy hitter analytics in a cross-party setting while satisfying the stringent epsilon-LDP. Comprehensive experiments on both real-world and synthetic datasets confirm the effectiveness of our proposed mechanism.

  • 3 authors
·
Dec 19, 2024

PrivPAS: A real time Privacy-Preserving AI System and applied ethics

With 3.78 billion social media users worldwide in 2021 (48% of the human population), almost 3 billion images are shared daily. At the same time, a consistent evolution of smartphone cameras has led to a photography explosion with 85% of all new pictures being captured using smartphones. However, lately, there has been an increased discussion of privacy concerns when a person being photographed is unaware of the picture being taken or has reservations about the same being shared. These privacy violations are amplified for people with disabilities, who may find it challenging to raise dissent even if they are aware. Such unauthorized image captures may also be misused to gain sympathy by third-party organizations, leading to a privacy breach. Privacy for people with disabilities has so far received comparatively less attention from the AI community. This motivates us to work towards a solution to generate privacy-conscious cues for raising awareness in smartphone users of any sensitivity in their viewfinder content. To this end, we introduce PrivPAS (A real time Privacy-Preserving AI System) a novel framework to identify sensitive content. Additionally, we curate and annotate a dataset to identify and localize accessibility markers and classify whether an image is sensitive to a featured subject with a disability. We demonstrate that the proposed lightweight architecture, with a memory footprint of a mere 8.49MB, achieves a high mAP of 89.52% on resource-constrained devices. Furthermore, our pipeline, trained on face anonymized data, achieves an F1-score of 73.1%.

  • 6 authors
·
Feb 5, 2022

MobileAgent: enhancing mobile control via human-machine interaction and SOP integration

Agents centered around Large Language Models (LLMs) are now capable of automating mobile device operations for users. After fine-tuning to learn a user's mobile operations, these agents can adhere to high-level user instructions online. They execute tasks such as goal decomposition, sequencing of sub-goals, and interactive environmental exploration, until the final objective is achieved. However, privacy concerns related to personalized user data arise during mobile operations, requiring user confirmation. Moreover, users' real-world operations are exploratory, with action data being complex and redundant, posing challenges for agent learning. To address these issues, in our practical application, we have designed interactive tasks between agents and humans to identify sensitive information and align with personalized user needs. Additionally, we integrated Standard Operating Procedure (SOP) information within the model's in-context learning to enhance the agent's comprehension of complex task execution. Our approach is evaluated on the new device control benchmark AitW, which encompasses 30K unique instructions across multi-step tasks, including application operation, web searching, and web shopping. Experimental results show that the SOP-based agent achieves state-of-the-art performance in LLMs without incurring additional inference costs, boasting an overall action success rate of 66.92\%. The code and data examples are available at https://github.com/alipay/mobile-agent.

  • 1 authors
·
Jan 3, 2024

Differentially Private Low-Rank Adaptation of Large Language Model Using Federated Learning

The surge in interest and application of large language models (LLMs) has sparked a drive to fine-tune these models to suit specific applications, such as finance and medical science. However, concerns regarding data privacy have emerged, especially when multiple stakeholders aim to collaboratively enhance LLMs using sensitive data. In this scenario, federated learning becomes a natural choice, allowing decentralized fine-tuning without exposing raw data to central servers. Motivated by this, we investigate how data privacy can be ensured in LLM fine-tuning through practical federated learning approaches, enabling secure contributions from multiple parties to enhance LLMs. Yet, challenges arise: 1) despite avoiding raw data exposure, there is a risk of inferring sensitive information from model outputs, and 2) federated learning for LLMs incurs notable communication overhead. To address these challenges, this article introduces DP-LoRA, a novel federated learning algorithm tailored for LLMs. DP-LoRA preserves data privacy by employing a Gaussian mechanism that adds noise in weight updates, maintaining individual data privacy while facilitating collaborative model training. Moreover, DP-LoRA optimizes communication efficiency via low-rank adaptation, minimizing the transmission of updated weights during distributed training. The experimental results across medical, financial, and general datasets using various LLMs demonstrate that DP-LoRA effectively ensures strict privacy constraints while minimizing communication overhead.

  • 6 authors
·
Dec 29, 2023

Incremental Semi-supervised Federated Learning for Health Inference via Mobile Sensing

Mobile sensing appears as a promising solution for health inference problem (e.g., influenza-like symptom recognition) by leveraging diverse smart sensors to capture fine-grained information about human behaviors and ambient contexts. Centralized training of machine learning models can place mobile users' sensitive information under privacy risks due to data breach and misexploitation. Federated Learning (FL) enables mobile devices to collaboratively learn global models without the exposure of local private data. However, there are challenges of on-device FL deployment using mobile sensing: 1) long-term and continuously collected mobile sensing data may exhibit domain shifts as sensing objects (e.g. humans) have varying behaviors as a result of internal and/or external stimulus; 2) model retraining using all available data may increase computation and memory burden; and 3) the sparsity of annotated crowd-sourced data causes supervised FL to lack robustness. In this work, we propose FedMobile, an incremental semi-supervised federated learning algorithm, to train models semi-supervisedly and incrementally in a decentralized online fashion. We evaluate FedMobile using a real-world mobile sensing dataset for influenza-like symptom recognition. Our empirical results show that FedMobile-trained models achieve the best results in comparison to the selected baseline methods.

  • 5 authors
·
Dec 19, 2023

A New Federated Learning Framework Against Gradient Inversion Attacks

Federated Learning (FL) aims to protect data privacy by enabling clients to collectively train machine learning models without sharing their raw data. However, recent studies demonstrate that information exchanged during FL is subject to Gradient Inversion Attacks (GIA) and, consequently, a variety of privacy-preserving methods have been integrated into FL to thwart such attacks, such as Secure Multi-party Computing (SMC), Homomorphic Encryption (HE), and Differential Privacy (DP). Despite their ability to protect data privacy, these approaches inherently involve substantial privacy-utility trade-offs. By revisiting the key to privacy exposure in FL under GIA, which lies in the frequent sharing of model gradients that contain private data, we take a new perspective by designing a novel privacy preserve FL framework that effectively ``breaks the direct connection'' between the shared parameters and the local private data to defend against GIA. Specifically, we propose a Hypernetwork Federated Learning (HyperFL) framework that utilizes hypernetworks to generate the parameters of the local model and only the hypernetwork parameters are uploaded to the server for aggregation. Theoretical analyses demonstrate the convergence rate of the proposed HyperFL, while extensive experimental results show the privacy-preserving capability and comparable performance of HyperFL. Code is available at https://github.com/Pengxin-Guo/HyperFL.

  • 7 authors
·
Dec 9, 2024 2

Towards integration of Privacy Enhancing Technologies in Explainable Artificial Intelligence

Explainable Artificial Intelligence (XAI) is a crucial pathway in mitigating the risk of non-transparency in the decision-making process of black-box Artificial Intelligence (AI) systems. However, despite the benefits, XAI methods are found to leak the privacy of individuals whose data is used in training or querying the models. Researchers have demonstrated privacy attacks that exploit explanations to infer sensitive personal information of individuals. Currently there is a lack of defenses against known privacy attacks targeting explanations when vulnerable XAI are used in production and machine learning as a service system. To address this gap, in this article, we explore Privacy Enhancing Technologies (PETs) as a defense mechanism against attribute inference on explanations provided by feature-based XAI methods. We empirically evaluate 3 types of PETs, namely synthetic training data, differentially private training and noise addition, on two categories of feature-based XAI. Our evaluation determines different responses from the mitigation methods and side-effects of PETs on other system properties such as utility and performance. In the best case, PETs integration in explanations reduced the risk of the attack by 49.47%, while maintaining model utility and explanation quality. Through our evaluation, we identify strategies for using PETs in XAI for maximizing benefits and minimizing the success of this privacy attack on sensitive personal information.

  • 4 authors
·
Jul 6

Measuring Physical-World Privacy Awareness of Large Language Models: An Evaluation Benchmark

The deployment of Large Language Models (LLMs) in embodied agents creates an urgent need to measure their privacy awareness in the physical world. Existing evaluation methods, however, are confined to natural language based scenarios. To bridge this gap, we introduce EAPrivacy, a comprehensive evaluation benchmark designed to quantify the physical-world privacy awareness of LLM-powered agents. EAPrivacy utilizes procedurally generated scenarios across four tiers to test an agent's ability to handle sensitive objects, adapt to changing environments, balance task execution with privacy constraints, and resolve conflicts with social norms. Our measurements reveal a critical deficit in current models. The top-performing model, Gemini 2.5 Pro, achieved only 59\% accuracy in scenarios involving changing physical environments. Furthermore, when a task was accompanied by a privacy request, models prioritized completion over the constraint in up to 86\% of cases. In high-stakes situations pitting privacy against critical social norms, leading models like GPT-4o and Claude-3.5-haiku disregarded the social norm over 15\% of the time. These findings, demonstrated by our benchmark, underscore a fundamental misalignment in LLMs regarding physically grounded privacy and establish the need for more robust, physically-aware alignment. Codes and datasets will be available at https://github.com/Graph-COM/EAPrivacy.

Life of PII -- A PII Obfuscation Transformer

Protecting sensitive information is crucial in today's world of Large Language Models (LLMs) and data-driven services. One common method used to preserve privacy is by using data perturbation techniques to reduce overreaching utility of (sensitive) Personal Identifiable Information (PII) data while maintaining its statistical and semantic properties. Data perturbation methods often result in significant information loss, making them impractical for use. In this paper, we propose 'Life of PII', a novel Obfuscation Transformer framework for transforming PII into faux-PII while preserving the original information, intent, and context as much as possible. Our approach includes an API to interface with the given document, a configuration-based obfuscator, and a model based on the Transformer architecture, which has shown high context preservation and performance in natural language processing tasks and LLMs. Our Transformer-based approach learns mapping between the original PII and its transformed faux-PII representation, which we call "obfuscated" data. Our experiments demonstrate that our method, called Life of PII, outperforms traditional data perturbation techniques in terms of both utility preservation and privacy protection. We show that our approach can effectively reduce utility loss while preserving the original information, offering greater flexibility in the trade-off between privacy protection and data utility. Our work provides a solution for protecting PII in various real-world applications.

  • 3 authors
·
May 16, 2023

Exploring the Vulnerabilities of Federated Learning: A Deep Dive into Gradient Inversion Attacks

Federated Learning (FL) has emerged as a promising privacy-preserving collaborative model training paradigm without sharing raw data. However, recent studies have revealed that private information can still be leaked through shared gradient information and attacked by Gradient Inversion Attacks (GIA). While many GIA methods have been proposed, a detailed analysis, evaluation, and summary of these methods are still lacking. Although various survey papers summarize existing privacy attacks in FL, few studies have conducted extensive experiments to unveil the effectiveness of GIA and their associated limiting factors in this context. To fill this gap, we first undertake a systematic review of GIA and categorize existing methods into three types, i.e., optimization-based GIA (OP-GIA), generation-based GIA (GEN-GIA), and analytics-based GIA (ANA-GIA). Then, we comprehensively analyze and evaluate the three types of GIA in FL, providing insights into the factors that influence their performance, practicality, and potential threats. Our findings indicate that OP-GIA is the most practical attack setting despite its unsatisfactory performance, while GEN-GIA has many dependencies and ANA-GIA is easily detectable, making them both impractical. Finally, we offer a three-stage defense pipeline to users when designing FL frameworks and protocols for better privacy protection and share some future research directions from the perspectives of attackers and defenders that we believe should be pursued. We hope that our study can help researchers design more robust FL frameworks to defend against these attacks.

  • 10 authors
·
Mar 13 2

T2UE: Generating Unlearnable Examples from Text Descriptions

Large-scale pre-training frameworks like CLIP have revolutionized multimodal learning, but their reliance on web-scraped datasets, frequently containing private user data, raises serious concerns about misuse. Unlearnable Examples (UEs) have emerged as a promising countermeasure against unauthorized model training, employing carefully crafted unlearnable noise to disrupt the learning of meaningful representations from protected data. Current approaches typically generate UEs by jointly optimizing unlearnable noise for both images and their associated text descriptions (or labels). However, this optimization process is often computationally prohibitive for on-device execution, forcing reliance on external third-party services. This creates a fundamental privacy paradox: users must initially expose their data to these very services to achieve protection, thereby compromising privacy in the process. Such a contradiction has severely hindered the development of practical, scalable data protection solutions. To resolve this paradox, we introduce Text-to-Unlearnable Example (T2UE), a novel framework that enables users to generate UEs using only text descriptions. T2UE circumvents the need for original image data by employing a text-to-image (T2I) model to map text descriptions into the image (noise) space, combined with an error-minimization framework to produce effective unlearnable noise. Extensive experiments show that T2UE-protected data substantially degrades performance in downstream tasks (e.g., cross-modal retrieval) for state-of-the-art models. Notably, the protective effect generalizes across diverse architectures and even to supervised learning settings. Our work demonstrates the feasibility of "zero-contact data protection", where personal data can be safeguarded based solely on their textual descriptions, eliminating the need for direct data exposure.

  • 6 authors
·
Aug 5

AutoDev: Automated AI-Driven Development

The landscape of software development has witnessed a paradigm shift with the advent of AI-powered assistants, exemplified by GitHub Copilot. However, existing solutions are not leveraging all the potential capabilities available in an IDE such as building, testing, executing code, git operations, etc. Therefore, they are constrained by their limited capabilities, primarily focusing on suggesting code snippets and file manipulation within a chat-based interface. To fill this gap, we present AutoDev, a fully automated AI-driven software development framework, designed for autonomous planning and execution of intricate software engineering tasks. AutoDev enables users to define complex software engineering objectives, which are assigned to AutoDev's autonomous AI Agents to achieve. These AI agents can perform diverse operations on a codebase, including file editing, retrieval, build processes, execution, testing, and git operations. They also have access to files, compiler output, build and testing logs, static analysis tools, and more. This enables the AI Agents to execute tasks in a fully automated manner with a comprehensive understanding of the contextual information required. Furthermore, AutoDev establishes a secure development environment by confining all operations within Docker containers. This framework incorporates guardrails to ensure user privacy and file security, allowing users to define specific permitted or restricted commands and operations within AutoDev. In our evaluation, we tested AutoDev on the HumanEval dataset, obtaining promising results with 91.5% and 87.8% of Pass@1 for code generation and test generation respectively, demonstrating its effectiveness in automating software engineering tasks while maintaining a secure and user-controlled development environment.

  • 5 authors
·
Mar 13, 2024

Swing Distillation: A Privacy-Preserving Knowledge Distillation Framework

Knowledge distillation (KD) has been widely used for model compression and knowledge transfer. Typically, a big teacher model trained on sufficient data transfers knowledge to a small student model. However, despite the success of KD, little effort has been made to study whether KD leaks the training data of the teacher model. In this paper, we experimentally reveal that KD suffers from the risk of privacy leakage. To alleviate this issue, we propose a novel knowledge distillation method, swing distillation, which can effectively protect the private information of the teacher model from flowing to the student model. In our framework, the temperature coefficient is dynamically and adaptively adjusted according to the degree of private information contained in the data, rather than a predefined constant hyperparameter. It assigns different temperatures to tokens according to the likelihood that a token in a position contains private information. In addition, we inject noise into soft targets provided to the student model, in order to avoid unshielded knowledge transfer. Experiments on multiple datasets and tasks demonstrate that the proposed swing distillation can significantly reduce (by over 80% in terms of canary exposure) the risk of privacy leakage in comparison to KD with competitive or better performance. Furthermore, swing distillation is robust against the increasing privacy budget.

  • 6 authors
·
Dec 16, 2022

Privacy Preservation in Artificial Intelligence and Extended Reality (AI-XR) Metaverses: A Survey

The metaverse is a nascent concept that envisions a virtual universe, a collaborative space where individuals can interact, create, and participate in a wide range of activities. Privacy in the metaverse is a critical concern as the concept evolves and immersive virtual experiences become more prevalent. The metaverse privacy problem refers to the challenges and concerns surrounding the privacy of personal information and data within Virtual Reality (VR) environments as the concept of a shared VR space becomes more accessible. Metaverse will harness advancements from various technologies such as Artificial Intelligence (AI), Extended Reality (XR), Mixed Reality (MR), and 5G/6G-based communication to provide personalized and immersive services to its users. Moreover, to enable more personalized experiences, the metaverse relies on the collection of fine-grained user data that leads to various privacy issues. Therefore, before the potential of the metaverse can be fully realized, privacy concerns related to personal information and data within VR environments must be addressed. This includes safeguarding users' control over their data, ensuring the security of their personal information, and protecting in-world actions and interactions from unauthorized sharing. In this paper, we explore various privacy challenges that future metaverses are expected to face, given their reliance on AI for tracking users, creating XR and MR experiences, and facilitating interactions. Moreover, we thoroughly analyze technical solutions such as differential privacy, Homomorphic Encryption (HE), and Federated Learning (FL) and discuss related sociotechnical issues regarding privacy.

  • 3 authors
·
Sep 19, 2023

Detection of Compromised Functions in a Serverless Cloud Environment

Serverless computing is an emerging cloud paradigm with serverless functions at its core. While serverless environments enable software developers to focus on developing applications without the need to actively manage the underlying runtime infrastructure, they open the door to a wide variety of security threats that can be challenging to mitigate with existing methods. Existing security solutions do not apply to all serverless architectures, since they require significant modifications to the serverless infrastructure or rely on third-party services for the collection of more detailed data. In this paper, we present an extendable serverless security threat detection model that leverages cloud providers' native monitoring tools to detect anomalous behavior in serverless applications. Our model aims to detect compromised serverless functions by identifying post-exploitation abnormal behavior related to different types of attacks on serverless functions, and therefore, it is a last line of defense. Our approach is not tied to any specific serverless application, is agnostic to the type of threats, and is adaptable through model adjustments. To evaluate our model's performance, we developed a serverless cybersecurity testbed in an AWS cloud environment, which includes two different serverless applications and simulates a variety of attack scenarios that cover the main security threats faced by serverless functions. Our evaluation demonstrates our model's ability to detect all implemented attacks while maintaining a negligible false alarm rate.

  • 5 authors
·
Aug 5, 2024

From Robustness to Privacy and Back

We study the relationship between two desiderata of algorithms in statistical inference and machine learning: differential privacy and robustness to adversarial data corruptions. Their conceptual similarity was first observed by Dwork and Lei (STOC 2009), who observed that private algorithms satisfy robustness, and gave a general method for converting robust algorithms to private ones. However, all general methods for transforming robust algorithms into private ones lead to suboptimal error rates. Our work gives the first black-box transformation that converts any adversarially robust algorithm into one that satisfies pure differential privacy. Moreover, we show that for any low-dimensional estimation task, applying our transformation to an optimal robust estimator results in an optimal private estimator. Thus, we conclude that for any low-dimensional task, the optimal error rate for varepsilon-differentially private estimators is essentially the same as the optimal error rate for estimators that are robust to adversarially corrupting 1/varepsilon training samples. We apply our transformation to obtain new optimal private estimators for several high-dimensional tasks, including Gaussian (sparse) linear regression and PCA. Finally, we present an extension of our transformation that leads to approximate differentially private algorithms whose error does not depend on the range of the output space, which is impossible under pure differential privacy.

  • 3 authors
·
Feb 3, 2023

AI-in-the-Loop: Privacy Preserving Real-Time Scam Detection and Conversational Scambaiting by Leveraging LLMs and Federated Learning

Scams exploiting real-time social engineering -- such as phishing, impersonation, and phone fraud -- remain a persistent and evolving threat across digital platforms. Existing defenses are largely reactive, offering limited protection during active interactions. We propose a privacy-preserving, AI-in-the-loop framework that proactively detects and disrupts scam conversations in real time. The system combines instruction-tuned artificial intelligence with a safety-aware utility function that balances engagement with harm minimization, and employs federated learning to enable continual model updates without raw data sharing. Experimental evaluations show that the system produces fluent and engaging responses (perplexity as low as 22.3, engagement approx0.80), while human studies confirm significant gains in realism, safety, and effectiveness over strong baselines. In federated settings, models trained with FedAvg sustain up to 30 rounds while preserving high engagement (approx0.80), strong relevance (approx0.74), and low PII leakage (leq0.0085). Even with differential privacy, novelty and safety remain stable, indicating that robust privacy can be achieved without sacrificing performance. The evaluation of guard models (LlamaGuard, LlamaGuard2/3, MD-Judge) shows a straightforward pattern: stricter moderation settings reduce the chance of exposing personal information, but they also limit how much the model engages in conversation. In contrast, more relaxed settings allow longer and richer interactions, which improve scam detection, but at the cost of higher privacy risk. To our knowledge, this is the first framework to unify real-time scam-baiting, federated privacy preservation, and calibrated safety moderation into a proactive defense paradigm.

  • 4 authors
·
Sep 3

BOLT: Bandwidth-Optimized Lightning-Fast Oblivious Map powered by Secure HBM Accelerators

While Trusted Execution Environments provide a strong foundation for secure cloud computing, they remain vulnerable to access pattern leakages. Oblivious Maps (OMAPs) mitigate this by fully hiding access patterns but suffer from high overhead due to randomized remapping and worst-case padding. We argue these costs are not fundamental. Modern accelerators featuring High-Bandwidth Memory (HBM) offer a new opportunity: Vaswani et al. [OSDI'18] point out that eavesdropping on HBM is difficult -- even for physical attackers -- as its memory channels are sealed together with processor cores inside the same physical package. Later, Hunt et al. [NSDI'20] show that, with proper isolation, HBM can be turned into an unobservable region where both data and memory traces are hidden. This motivates a rethink of OMAP design with HBM-backed solutions to finally overcome their traditional performance limits. Building on these insights, we present BOLT, a Bandwidth Optimized, Lightning-fast OMAP accelerator that, for the first time, achieves O(1) + O(log_2(log_2 (N))) bandwidth overhead. BOLT introduces three key innovations: (i) a new OMAP algorithm that leverages isolated HBM as an unobservable cache to accelerate oblivious access to large host memory; (ii) a self-hosted architecture that offloads execution and memory control from the host to mitigate CPU-side leakage; and (iii) tailored algorithm-architecture co-designs that maximize resource efficiency. We implement a prototype BOLT on a Xilinx U55C FPGA. Evaluations show that BOLT achieves up to 279x and 480x speedups in initialization and query time, respectively, over state-of-the-art OMAPs, including an industry implementation from Facebook.

  • 6 authors
·
Sep 1

CoGenesis: A Framework Collaborating Large and Small Language Models for Secure Context-Aware Instruction Following

With the advancement of language models (LMs), their exposure to private data is increasingly inevitable, and their deployment (especially for smaller ones) on personal devices, such as PCs and smartphones, has become a prevailing trend. In contexts laden with user information, enabling models to both safeguard user privacy and execute commands efficiently emerges as an essential research imperative. In this paper, we propose CoGenesis, a collaborative generation framework integrating large (hosted on cloud infrastructure) and small models (deployed on local devices) to address privacy concerns logically. Initially, we design a pipeline to create personalized writing instruction datasets enriched with extensive context details as the testbed of this research issue. Subsequently, we introduce two variants of CoGenesis based on sketch and logits respectively. Our experimental findings, based on our synthesized dataset and two additional open-source datasets, indicate that: 1) Large-scale models perform well when provided with user context but struggle in the absence of such context. 2) While specialized smaller models fine-tuned on the synthetic dataset show promise, they still lag behind their larger counterparts. 3) Our CoGenesis framework, utilizing mixed-scale models, showcases competitive performance, providing a feasible solution to privacy issues.

  • 6 authors
·
Mar 5, 2024

Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

One major goal of the AI security community is to securely and reliably produce and deploy deep learning models for real-world applications. To this end, data poisoning based backdoor attacks on deep neural networks (DNNs) in the production stage (or training stage) and corresponding defenses are extensively explored in recent years. Ironically, backdoor attacks in the deployment stage, which can often happen in unprofessional users' devices and are thus arguably far more threatening in real-world scenarios, draw much less attention of the community. We attribute this imbalance of vigilance to the weak practicality of existing deployment-stage backdoor attack algorithms and the insufficiency of real-world attack demonstrations. To fill the blank, in this work, we study the realistic threat of deployment-stage backdoor attacks on DNNs. We base our study on a commonly used deployment-stage attack paradigm -- adversarial weight attack, where adversaries selectively modify model weights to embed backdoor into deployed DNNs. To approach realistic practicality, we propose the first gray-box and physically realizable weights attack algorithm for backdoor injection, namely subnet replacement attack (SRA), which only requires architecture information of the victim model and can support physical triggers in the real world. Extensive experimental simulations and system-level real-world attack demonstrations are conducted. Our results not only suggest the effectiveness and practicality of the proposed attack algorithm, but also reveal the practical risk of a novel type of computer virus that may widely spread and stealthily inject backdoor into DNN models in user devices. By our study, we call for more attention to the vulnerability of DNNs in the deployment stage.

  • 6 authors
·
Nov 25, 2021

TPM-Based Continuous Remote Attestation and Integrity Verification for 5G VNFs on Kubernetes

In the rapidly evolving landscape of 5G technology, the adoption of cloud-based infrastructure for the deployment of 5G services has become increasingly common. Using a service-based architecture, critical 5G components, such as the Access and Mobility Management Function (AMF), Session Management Function (SMF), and User Plane Function (UPF), now run as containerized pods on Kubernetes clusters. Although this approach improves scalability, flexibility, and resilience, it also introduces new security challenges, particularly to ensure the integrity and trustworthiness of these components. Current 5G security specifications (for example, 3GPP TS 33.501) focus on communication security and assume that network functions remain trustworthy after authentication, consequently lacking mechanisms to continuously validate the integrity of NVFs at runtime. To close this gap, and to align with Zero Trust principles of 'never trust, always verify', we present a TPM 2.0-based continuous remote attestation solution for core 5G components deployed on Kubernetes. Our approach uses the Linux Integrity Measurement Architecture (IMA) and a Trusted Platform Module (TPM) to provide hardware-based runtime validation. We integrate the open-source Keylime framework with a custom IMA template that isolates pod-level measurements, allowing per-pod integrity verification. A prototype on a k3s cluster (consisting of 1 master, 2 worker nodes) was implemented to attest to core functions, including AMF, SMF and UPF. The experimental results show that the system detects unauthorized modifications in real time, labels each pod's trust state, and generates detailed audit logs. This work provides hardware-based continuous attestation for cloud native and edge deployments, strengthening the resilience of 5G as critical infrastructure in multi-vendor and mission-critical scenarios of 5G.

  • 5 authors
·
Oct 3

SoK: Can Synthetic Images Replace Real Data? A Survey of Utility and Privacy of Synthetic Image Generation

Advances in generative models have transformed the field of synthetic image generation for privacy-preserving data synthesis (PPDS). However, the field lacks a comprehensive survey and comparison of synthetic image generation methods across diverse settings. In particular, when we generate synthetic images for the purpose of training a classifier, there is a pipeline of generation-sampling-classification which takes private training as input and outputs the final classifier of interest. In this survey, we systematically categorize existing image synthesis methods, privacy attacks, and mitigations along this generation-sampling-classification pipeline. To empirically compare diverse synthesis approaches, we provide a benchmark with representative generative methods and use model-agnostic membership inference attacks (MIAs) as a measure of privacy risk. Through this study, we seek to answer critical questions in PPDS: Can synthetic data effectively replace real data? Which release strategy balances utility and privacy? Do mitigations improve the utility-privacy tradeoff? Which generative models perform best across different scenarios? With a systematic evaluation of diverse methods, our study provides actionable insights into the utility-privacy tradeoffs of synthetic data generation methods and guides the decision on optimal data releasing strategies for real-world applications.

  • 4 authors
·
Jun 24

CryptoNite: Revealing the Pitfalls of End-to-End Private Inference at Scale

The privacy concerns of providing deep learning inference as a service have underscored the need for private inference (PI) protocols that protect users' data and the service provider's model using cryptographic methods. Recently proposed PI protocols have achieved significant reductions in PI latency by moving the computationally heavy homomorphic encryption (HE) parts to an offline/pre-compute phase. Paired with recent optimizations that tailor networks for PI, these protocols have achieved performance levels that are tantalizingly close to being practical. In this paper, we conduct a rigorous end-to-end characterization of PI protocols and optimization techniques and find that the current understanding of PI performance is overly optimistic. Specifically, we find that offline storage costs of garbled circuits (GC), a key cryptographic protocol used in PI, on user/client devices are prohibitively high and force much of the expensive offline HE computation to the online phase, resulting in a 10-1000times increase to PI latency. We propose a modified PI protocol that significantly reduces client-side storage costs for a small increase in online latency. Evaluated end-to-end, the modified protocol outperforms current protocols by reducing the mean PI latency by 4times for ResNet18 on TinyImageNet. We conclude with a discussion of several recently proposed PI optimizations in light of the findings and note many actually increase PI latency when evaluated from an end-to-end perspective.

  • 5 authors
·
Nov 3, 2021

Entropy-Guided Attention for Private LLMs

The pervasiveness of proprietary language models has raised critical privacy concerns, necessitating advancements in private inference (PI), where computations are performed directly on encrypted data without revealing users' sensitive information. While PI offers a promising solution, its practical deployment is hindered by substantial communication and latency overheads, primarily stemming from nonlinear operations. To address this, we introduce an information-theoretic framework to characterize the role of nonlinearities in decoder-only language models, laying a principled foundation for optimizing transformer-architectures tailored to the demands of PI. By leveraging Shannon's entropy as a quantitative measure, we uncover the previously unexplored dual significance of nonlinearities: beyond ensuring training stability, they are crucial for maintaining attention head diversity. Specifically, we find that their removal triggers two critical failure modes: {\em entropy collapse} in deeper layers that destabilizes training, and {\em entropic overload} in earlier layers that leads to under-utilization of Multi-Head Attention's (MHA) representational capacity. We propose an entropy-guided attention mechanism paired with a novel entropy regularization technique to mitigate entropic overload. Additionally, we explore PI-friendly alternatives to layer normalization for preventing entropy collapse and stabilizing the training of LLMs with reduced-nonlinearities. Our study bridges the gap between information theory and architectural design, establishing entropy dynamics as a principled guide for developing efficient PI architectures. The code and implementation are available at https://github.com/Nandan91/entropy-guided-attention-llm{entropy-guided-llm}.

  • 2 authors
·
Jan 6 8

Adaptive Deployment of Untrusted LLMs Reduces Distributed Threats

As large language models (LLMs) become increasingly capable, it is prudent to assess whether safety measures remain effective even if LLMs intentionally try to bypass them. Previous work introduced control evaluations, an adversarial framework for testing deployment strategies of untrusted models (i.e., models which might be trying to bypass safety measures). While prior work treats a single failure as unacceptable, we perform control evaluations in a "distributed threat setting" -- a setting where no single action is catastrophic and no single action provides overwhelming evidence of misalignment. We approach this problem with a two-level deployment framework that uses an adaptive macro-protocol to choose between micro-protocols. Micro-protocols operate on a single task, using a less capable, but extensively tested (trusted) model to harness and monitor the untrusted model. Meanwhile, the macro-protocol maintains an adaptive credence on the untrusted model's alignment based on its past actions, using it to pick between safer and riskier micro-protocols. We evaluate our method in a code generation testbed where a red team attempts to generate subtly backdoored code with an LLM whose deployment is safeguarded by a blue team. We plot Pareto frontiers of safety (# of non-backdoored solutions) and usefulness (# of correct solutions). At a given level of usefulness, our adaptive deployment strategy reduces the number of backdoors by 80% compared to non-adaptive baselines.

  • 12 authors
·
Nov 26, 2024

Protect: Towards Robust Guardrailing Stack for Trustworthy Enterprise LLM Systems

The increasing deployment of Large Language Models (LLMs) across enterprise and mission-critical domains has underscored the urgent need for robust guardrailing systems that ensure safety, reliability, and compliance. Existing solutions often struggle with real-time oversight, multi-modal data handling, and explainability -- limitations that hinder their adoption in regulated environments. Existing guardrails largely operate in isolation, focused on text alone making them inadequate for multi-modal, production-scale environments. We introduce Protect, natively multi-modal guardrailing model designed to operate seamlessly across text, image, and audio inputs, designed for enterprise-grade deployment. Protect integrates fine-tuned, category-specific adapters trained via Low-Rank Adaptation (LoRA) on an extensive, multi-modal dataset covering four safety dimensions: toxicity, sexism, data privacy, and prompt injection. Our teacher-assisted annotation pipeline leverages reasoning and explanation traces to generate high-fidelity, context-aware labels across modalities. Experimental results demonstrate state-of-the-art performance across all safety dimensions, surpassing existing open and proprietary models such as WildGuard, LlamaGuard-4, and GPT-4.1. Protect establishes a strong foundation for trustworthy, auditable, and production-ready safety systems capable of operating across text, image, and audio modalities.

  • 3 authors
·
Oct 15

Membership Inference Attacks Against Text-to-image Generation Models

Text-to-image generation models have recently attracted unprecedented attention as they unlatch imaginative applications in all areas of life. However, developing such models requires huge amounts of data that might contain privacy-sensitive information, e.g., face identity. While privacy risks have been extensively demonstrated in the image classification and GAN generation domains, privacy risks in the text-to-image generation domain are largely unexplored. In this paper, we perform the first privacy analysis of text-to-image generation models through the lens of membership inference. Specifically, we propose three key intuitions about membership information and design four attack methodologies accordingly. We conduct comprehensive evaluations on two mainstream text-to-image generation models including sequence-to-sequence modeling and diffusion-based modeling. The empirical results show that all of the proposed attacks can achieve significant performance, in some cases even close to an accuracy of 1, and thus the corresponding risk is much more severe than that shown by existing membership inference attacks. We further conduct an extensive ablation study to analyze the factors that may affect the attack performance, which can guide developers and researchers to be alert to vulnerabilities in text-to-image generation models. All these findings indicate that our proposed attacks pose a realistic privacy threat to the text-to-image generation models.

  • 5 authors
·
Oct 3, 2022

An Anonymous Authentication and Communication Protocol for Wireless Mesh Networks

Wireless mesh networks (WMNs) have emerged as a key technology for next generation wireless broadband networks showing rapid progress and inspiring numerous compelling applications. A WMN comprises of a set of mesh routers (MRs) and mesh clients (MCs), where MRs are connected to the Internet backbone through the Internet gateways (IGWs). The MCs are wireless devices and communicate among themselves over possibly multi-hop paths with or without the involvement of MRs. User privacy and security have been primary concerns in WMNs due to their peer-to-peer network topology, shared wireless medium, stringent resource constraints, and highly dynamic environment. Moreover, to support real-time applications, WMNs must also be equipped with robust, reliable and efficient communication protocols so as to minimize the end-to-end latency and packet drops. Design of a secure and efficient communication protocol for WMNs, therefore, is of paramount importance. In this paper, we propose a security and privacy protocol that provides security and user anonymity while maintaining communication efficiency in a WMN. The security protocol ensures secure authentication and encryption in access and the backbone networks. The user anonymity, authentication and data privacy is achieved by application of a protocol that is based on Rivest's ring signature scheme. Simulation results demonstrate that while the protocols have minimal storage and communication overhead, they are robust and provide high level of security and privacy to the users of the network services.

  • 1 authors
·
Jul 27, 2011

Towards Building the Federated GPT: Federated Instruction Tuning

While ``instruction-tuned" generative large language models (LLMs) have demonstrated an impressive ability to generalize to new tasks, the training phases heavily rely on large amounts of diverse and high-quality instruction data (such as ChatGPT and GPT-4). Unfortunately, acquiring high-quality data, especially when it comes to human-written data, can pose significant challenges both in terms of cost and accessibility. Moreover, concerns related to privacy can further limit access to such data, making the process of obtaining it a complex and nuanced undertaking. Consequently, this hinders the generality of the tuned models and may restrict their effectiveness in certain contexts. To tackle this issue, our study introduces a new approach called Federated Instruction Tuning (FedIT), which leverages federated learning (FL) as the learning framework for the instruction tuning of LLMs. This marks the first exploration of FL-based instruction tuning for LLMs. This is especially important since text data is predominantly generated by end users. Therefore, it is imperative to design and adapt FL approaches to effectively leverage these users' diverse instructions stored on local devices, while preserving privacy and ensuring data security. In the current paper, by conducting widely used GPT-4 auto-evaluation, we demonstrate that by exploiting the heterogeneous and diverse sets of instructions on the client's end with the proposed framework FedIT, we improved the performance of LLMs compared to centralized training with only limited local instructions. Further, in this paper, we developed a Github repository named Shepherd. This repository offers a foundational framework for exploring federated fine-tuning of LLMs using heterogeneous instructions across diverse categories.

  • 7 authors
·
May 9, 2023

ILASR: Privacy-Preserving Incremental Learning for Automatic Speech Recognition at Production Scale

Incremental learning is one paradigm to enable model building and updating at scale with streaming data. For end-to-end automatic speech recognition (ASR) tasks, the absence of human annotated labels along with the need for privacy preserving policies for model building makes it a daunting challenge. Motivated by these challenges, in this paper we use a cloud based framework for production systems to demonstrate insights from privacy preserving incremental learning for automatic speech recognition (ILASR). By privacy preserving, we mean, usage of ephemeral data which are not human annotated. This system is a step forward for production levelASR models for incremental/continual learning that offers near real-time test-bed for experimentation in the cloud for end-to-end ASR, while adhering to privacy-preserving policies. We show that the proposed system can improve the production models significantly(3%) over a new time period of six months even in the absence of human annotated labels with varying levels of weak supervision and large batch sizes in incremental learning. This improvement is 20% over test sets with new words and phrases in the new time period. We demonstrate the effectiveness of model building in a privacy-preserving incremental fashion for ASR while further exploring the utility of having an effective teacher model and use of large batch sizes.

  • 14 authors
·
Jul 19, 2022