- All You Need is Beyond a Good Init: Exploring Better Solution for Training Extremely Deep Convolutional Neural Networks with Orthonormality and Modulation Deep neural network is difficult to train and this predicament becomes worse as the depth increases. The essence of this problem exists in the magnitude of backpropagated errors that will result in gradient vanishing or exploding phenomenon. We show that a variant of regularizer which utilizes orthonormality among different filter banks can alleviate this problem. Moreover, we design a backward error modulation mechanism based on the quasi-isometry assumption between two consecutive parametric layers. Equipped with these two ingredients, we propose several novel optimization solutions that can be utilized for training a specific-structured (repetitively triple modules of Conv-BNReLU) extremely deep convolutional neural network (CNN) WITHOUT any shortcuts/ identity mappings from scratch. Experiments show that our proposed solutions can achieve distinct improvements for a 44-layer and a 110-layer plain networks on both the CIFAR-10 and ImageNet datasets. Moreover, we can successfully train plain CNNs to match the performance of the residual counterparts. Besides, we propose new principles for designing network structure from the insights evoked by orthonormality. Combined with residual structure, we achieve comparative performance on the ImageNet dataset. 3 authors · Mar 6, 2017
1 Multi-frequency antenna for quasi-isotropic radiator and 6G massive IoT An isotropic antenna radiates and receives electromagnetic wave uniformly in magnitude in 3D space. A multi-frequency quasi-isotropic antenna can serve as a practically feasible solution to emulate an ideal multi-frequency isotropic radiator. It is also an essential technology for mobile smart devices for massive IoT in the upcoming 6G. However, ever since the quasi-isotropic antenna was proposed and achieved more than half a century ago, at most two discrete narrow frequency bands can be achieved, because of the significantly increased structural complexity from multi-frequency isotropic radiation. This limitation impedes numerous related electromagnetic experiments and the advances in wireless communication. Here, for the first time, a design method for multi-band (>2) quasi-isotropic antennas is proposed. An exemplified quasi-isotropic antenna with the desired four frequency bands is also presented for demonstration. The measured results validate excellent performance on both electromagnetics and wireless communications for this antenna. 3 authors · Dec 18, 2023
- REACTO: Reconstructing Articulated Objects from a Single Video In this paper, we address the challenge of reconstructing general articulated 3D objects from a single video. Existing works employing dynamic neural radiance fields have advanced the modeling of articulated objects like humans and animals from videos, but face challenges with piece-wise rigid general articulated objects due to limitations in their deformation models. To tackle this, we propose Quasi-Rigid Blend Skinning, a novel deformation model that enhances the rigidity of each part while maintaining flexible deformation of the joints. Our primary insight combines three distinct approaches: 1) an enhanced bone rigging system for improved component modeling, 2) the use of quasi-sparse skinning weights to boost part rigidity and reconstruction fidelity, and 3) the application of geodesic point assignment for precise motion and seamless deformation. Our method outperforms previous works in producing higher-fidelity 3D reconstructions of general articulated objects, as demonstrated on both real and synthetic datasets. Project page: https://chaoyuesong.github.io/REACTO. 5 authors · Apr 17, 2024