new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Aug 20

Flag Aggregator: Scalable Distributed Training under Failures and Augmented Losses using Convex Optimization

Modern ML applications increasingly rely on complex deep learning models and large datasets. There has been an exponential growth in the amount of computation needed to train the largest models. Therefore, to scale computation and data, these models are inevitably trained in a distributed manner in clusters of nodes, and their updates are aggregated before being applied to the model. However, a distributed setup is prone to Byzantine failures of individual nodes, components, and software. With data augmentation added to these settings, there is a critical need for robust and efficient aggregation systems. We define the quality of workers as reconstruction ratios in (0,1], and formulate aggregation as a Maximum Likelihood Estimation procedure using Beta densities. We show that the Regularized form of log-likelihood wrt subspace can be approximately solved using iterative least squares solver, and provide convergence guarantees using recent Convex Optimization landscape results. Our empirical findings demonstrate that our approach significantly enhances the robustness of state-of-the-art Byzantine resilient aggregators. We evaluate our method in a distributed setup with a parameter server, and show simultaneous improvements in communication efficiency and accuracy across various tasks. The code is publicly available at https://github.com/hamidralmasi/FlagAggregator

RSTAR: Rotational Streak Artifact Reduction in 4D CBCT using Separable and Circular Convolutions

Four-dimensional cone-beam computed tomography (4D CBCT) provides respiration-resolved images and can be used for image-guided radiation therapy. However, the ability to reveal respiratory motion comes at the cost of image artifacts. As raw projection data are sorted into multiple respiratory phases, the cone-beam projections become much sparser and the reconstructed 4D CBCT images will be covered by severe streak artifacts. Although several deep learning-based methods have been proposed to address this issue, most algorithms employ 2D network models as backbones, neglecting the intrinsic structural priors within 4D CBCT images. In this paper, we first explore the origin and appearance of streak artifacts in 4D CBCT images. We find that streak artifacts exhibit a unique rotational motion along with the patient's respiration, distinguishable from diaphragm-driven respiratory motion in the spatiotemporal domain. Therefore, we propose a novel 4D neural network model, RSTAR4D-Net, designed to address Rotational STreak Artifact Reduction by integrating the spatial and temporal information within 4D CBCT images. Specifically, we overcome the computational and training difficulties of a 4D neural network. The specially designed model adopts an efficient implementation of 4D convolutions to reduce computational costs and thus can process the whole 4D image in one pass. Additionally, a Tetris training strategy pertinent to the separable 4D convolutions is proposed to effectively train the model using limited 4D training samples. Extensive experiments substantiate the effectiveness of our proposed method, and the RSTAR4D-Net shows superior performance compared to other methods. The source code and dynamic demos are available at https://github.com/ivy9092111111/RSTAR.

VAD: Vectorized Scene Representation for Efficient Autonomous Driving

Autonomous driving requires a comprehensive understanding of the surrounding environment for reliable trajectory planning. Previous works rely on dense rasterized scene representation (e.g., agent occupancy and semantic map) to perform planning, which is computationally intensive and misses the instance-level structure information. In this paper, we propose VAD, an end-to-end vectorized paradigm for autonomous driving, which models the driving scene as a fully vectorized representation. The proposed vectorized paradigm has two significant advantages. On one hand, VAD exploits the vectorized agent motion and map elements as explicit instance-level planning constraints which effectively improves planning safety. On the other hand, VAD runs much faster than previous end-to-end planning methods by getting rid of computation-intensive rasterized representation and hand-designed post-processing steps. VAD achieves state-of-the-art end-to-end planning performance on the nuScenes dataset, outperforming the previous best method by a large margin. Our base model, VAD-Base, greatly reduces the average collision rate by 29.0% and runs 2.5x faster. Besides, a lightweight variant, VAD-Tiny, greatly improves the inference speed (up to 9.3x) while achieving comparable planning performance. We believe the excellent performance and the high efficiency of VAD are critical for the real-world deployment of an autonomous driving system. Code and models are available at https://github.com/hustvl/VAD for facilitating future research.

M-FAC: Efficient Matrix-Free Approximations of Second-Order Information

Efficiently approximating local curvature information of the loss function is a key tool for optimization and compression of deep neural networks. Yet, most existing methods to approximate second-order information have high computational or storage costs, which can limit their practicality. In this work, we investigate matrix-free, linear-time approaches for estimating Inverse-Hessian Vector Products (IHVPs) for the case when the Hessian can be approximated as a sum of rank-one matrices, as in the classic approximation of the Hessian by the empirical Fisher matrix. We propose two new algorithms as part of a framework called M-FAC: the first algorithm is tailored towards network compression and can compute the IHVP for dimension d, if the Hessian is given as a sum of m rank-one matrices, using O(dm^2) precomputation, O(dm) cost for computing the IHVP, and query cost O(m) for any single element of the inverse Hessian. The second algorithm targets an optimization setting, where we wish to compute the product between the inverse Hessian, estimated over a sliding window of optimization steps, and a given gradient direction, as required for preconditioned SGD. We give an algorithm with cost O(dm + m^2) for computing the IHVP and O(dm + m^3) for adding or removing any gradient from the sliding window. These two algorithms yield state-of-the-art results for network pruning and optimization with lower computational overhead relative to existing second-order methods. Implementations are available at [9] and [17].

Low Rank Matrix Completion via Robust Alternating Minimization in Nearly Linear Time

Given a matrix Min R^{mtimes n}, the low rank matrix completion problem asks us to find a rank-k approximation of M as UV^top for Uin R^{mtimes k} and Vin R^{ntimes k} by only observing a few entries specified by a set of entries Omegasubseteq [m]times [n]. In particular, we examine an approach that is widely used in practice -- the alternating minimization framework. Jain, Netrapalli and Sanghavi~jns13 showed that if M has incoherent rows and columns, then alternating minimization provably recovers the matrix M by observing a nearly linear in n number of entries. While the sample complexity has been subsequently improved~glz17, alternating minimization steps are required to be computed exactly. This hinders the development of more efficient algorithms and fails to depict the practical implementation of alternating minimization, where the updates are usually performed approximately in favor of efficiency. In this paper, we take a major step towards a more efficient and error-robust alternating minimization framework. To this end, we develop an analytical framework for alternating minimization that can tolerate moderate amount of errors caused by approximate updates. Moreover, our algorithm runs in time widetilde O(|Omega| k), which is nearly linear in the time to verify the solution while preserving the sample complexity. This improves upon all prior known alternating minimization approaches which require widetilde O(|Omega| k^2) time.

Discovery of interpretable structural model errors by combining Bayesian sparse regression and data assimilation: A chaotic Kuramoto-Sivashinsky test case

Models of many engineering and natural systems are imperfect. The discrepancy between the mathematical representations of a true physical system and its imperfect model is called the model error. These model errors can lead to substantial differences between the numerical solutions of the model and the state of the system, particularly in those involving nonlinear, multi-scale phenomena. Thus, there is increasing interest in reducing model errors, particularly by leveraging the rapidly growing observational data to understand their physics and sources. Here, we introduce a framework named MEDIDA: Model Error Discovery with Interpretability and Data Assimilation. MEDIDA only requires a working numerical solver of the model and a small number of noise-free or noisy sporadic observations of the system. In MEDIDA, first the model error is estimated from differences between the observed states and model-predicted states (the latter are obtained from a number of one-time-step numerical integrations from the previous observed states). If observations are noisy, a data assimilation (DA) technique such as ensemble Kalman filter (EnKF) is employed to provide the analysis state of the system, which is then used to estimate the model error. Finally, an equation-discovery technique, here the relevance vector machine (RVM), a sparsity-promoting Bayesian method, is used to identify an interpretable, parsimonious, and closed-form representation of the model error. Using the chaotic Kuramoto-Sivashinsky (KS) system as the test case, we demonstrate the excellent performance of MEDIDA in discovering different types of structural/parametric model errors, representing different types of missing physics, using noise-free and noisy observations.

RadioDiff-3D: A 3Dtimes3D Radio Map Dataset and Generative Diffusion Based Benchmark for 6G Environment-Aware Communication

Radio maps (RMs) serve as a critical foundation for enabling environment-aware wireless communication, as they provide the spatial distribution of wireless channel characteristics. Despite recent progress in RM construction using data-driven approaches, most existing methods focus solely on pathloss prediction in a fixed 2D plane, neglecting key parameters such as direction of arrival (DoA), time of arrival (ToA), and vertical spatial variations. Such a limitation is primarily due to the reliance on static learning paradigms, which hinder generalization beyond the training data distribution. To address these challenges, we propose UrbanRadio3D, a large-scale, high-resolution 3D RM dataset constructed via ray tracing in realistic urban environments. UrbanRadio3D is over 37times3 larger than previous datasets across a 3D space with 3 metrics as pathloss, DoA, and ToA, forming a novel 3Dtimes33D dataset with 7times3 more height layers than prior state-of-the-art (SOTA) dataset. To benchmark 3D RM construction, a UNet with 3D convolutional operators is proposed. Moreover, we further introduce RadioDiff-3D, a diffusion-model-based generative framework utilizing the 3D convolutional architecture. RadioDiff-3D supports both radiation-aware scenarios with known transmitter locations and radiation-unaware settings based on sparse spatial observations. Extensive evaluations on UrbanRadio3D validate that RadioDiff-3D achieves superior performance in constructing rich, high-dimensional radio maps under diverse environmental dynamics. This work provides a foundational dataset and benchmark for future research in 3D environment-aware communication. The dataset is available at https://github.com/UNIC-Lab/UrbanRadio3D.

Enhancing Worldwide Image Geolocation by Ensembling Satellite-Based Ground-Level Attribute Predictors

Geolocating images of a ground-level scene entails estimating the location on Earth where the picture was taken, in absence of GPS or other location metadata. Typically, methods are evaluated by measuring the Great Circle Distance (GCD) between a predicted location and ground truth. However, this measurement is limited because it only evaluates a single point, not estimates of regions or score heatmaps. This is especially important in applications to rural, wilderness and under-sampled areas, where finding the exact location may not be possible, and when used in aggregate systems that progressively narrow down locations. In this paper, we introduce a novel metric, Recall vs Area (RvA), which measures the accuracy of estimated distributions of locations. RvA treats image geolocation results similarly to document retrieval, measuring recall as a function of area: For a ranked list of (possibly non-contiguous) predicted regions, we measure the accumulated area required for the region to contain the ground truth coordinate. This produces a curve similar to a precision-recall curve, where "precision" is replaced by square kilometers area, allowing evaluation of performance for different downstream search area budgets. Following directly from this view of the problem, we then examine a simple ensembling approach to global-scale image geolocation, which incorporates information from multiple sources to help address domain shift, and can readily incorporate multiple models, attribute predictors, and data sources. We study its effectiveness by combining the geolocation models GeoEstimation and the current SOTA GeoCLIP, with attribute predictors based on ORNL LandScan and ESA-CCI Land Cover. We find significant improvements in image geolocation for areas that are under-represented in the training set, particularly non-urban areas, on both Im2GPS3k and Street View images.

SLEDGE: Synthesizing Simulation Environments for Driving Agents with Generative Models

SLEDGE is the first generative simulator for vehicle motion planning trained on real-world driving logs. Its core component is a learned model that is able to generate agent bounding boxes and lane graphs. The model's outputs serve as an initial state for traffic simulation. The unique properties of the entities to be generated for SLEDGE, such as their connectivity and variable count per scene, render the naive application of most modern generative models to this task non-trivial. Therefore, together with a systematic study of existing lane graph representations, we introduce a novel raster-to-vector autoencoder (RVAE). It encodes agents and the lane graph into distinct channels in a rasterized latent map. This facilitates both lane-conditioned agent generation and combined generation of lanes and agents with a Diffusion Transformer. Using generated entities in SLEDGE enables greater control over the simulation, e.g. upsampling turns or increasing traffic density. Further, SLEDGE can support 500m long routes, a capability not found in existing data-driven simulators like nuPlan. It presents new challenges for planning algorithms, evidenced by failure rates of over 40% for PDM, the winner of the 2023 nuPlan challenge, when tested on hard routes and dense traffic generated by our model. Compared to nuPlan, SLEDGE requires 500times less storage to set up (<4GB), making it a more accessible option and helping with democratizing future research in this field.

Run-Off Election: Improved Provable Defense against Data Poisoning Attacks

In data poisoning attacks, an adversary tries to change a model's prediction by adding, modifying, or removing samples in the training data. Recently, ensemble-based approaches for obtaining provable defenses against data poisoning have been proposed where predictions are done by taking a majority vote across multiple base models. In this work, we show that merely considering the majority vote in ensemble defenses is wasteful as it does not effectively utilize available information in the logits layers of the base models. Instead, we propose Run-Off Election (ROE), a novel aggregation method based on a two-round election across the base models: In the first round, models vote for their preferred class and then a second, Run-Off election is held between the top two classes in the first round. Based on this approach, we propose DPA+ROE and FA+ROE defense methods based on Deep Partition Aggregation (DPA) and Finite Aggregation (FA) approaches from prior work. We evaluate our methods on MNIST, CIFAR-10, and GTSRB and obtain improvements in certified accuracy by up to 3%-4%. Also, by applying ROE on a boosted version of DPA, we gain improvements around 12%-27% comparing to the current state-of-the-art, establishing a new state-of-the-art in (pointwise) certified robustness against data poisoning. In many cases, our approach outperforms the state-of-the-art, even when using 32 times less computational power.

Refined Regret for Adversarial MDPs with Linear Function Approximation

We consider learning in an adversarial Markov Decision Process (MDP) where the loss functions can change arbitrarily over K episodes and the state space can be arbitrarily large. We assume that the Q-function of any policy is linear in some known features, that is, a linear function approximation exists. The best existing regret upper bound for this setting (Luo et al., 2021) is of order mathcal O(K^{2/3}) (omitting all other dependencies), given access to a simulator. This paper provides two algorithms that improve the regret to mathcal O(sqrt K) in the same setting. Our first algorithm makes use of a refined analysis of the Follow-the-Regularized-Leader (FTRL) algorithm with the log-barrier regularizer. This analysis allows the loss estimators to be arbitrarily negative and might be of independent interest. Our second algorithm develops a magnitude-reduced loss estimator, further removing the polynomial dependency on the number of actions in the first algorithm and leading to the optimal regret bound (up to logarithmic terms and dependency on the horizon). Moreover, we also extend the first algorithm to simulator-free linear MDPs, which achieves mathcal O(K^{8/9}) regret and greatly improves over the best existing bound mathcal O(K^{14/15}). This algorithm relies on a better alternative to the Matrix Geometric Resampling procedure by Neu & Olkhovskaya (2020), which could again be of independent interest.

Orthogonal Matrices for MBAT Vector Symbolic Architectures, and a "Soft" VSA Representation for JSON

Vector Symbolic Architectures (VSAs) give a way to represent a complex object as a single fixed-length vector, so that similar objects have similar vector representations. These vector representations then become easy to use for machine learning or nearest-neighbor search. We review a previously proposed VSA method, MBAT (Matrix Binding of Additive Terms), which uses multiplication by random matrices for binding related terms. However, multiplying by such matrices introduces instabilities which can harm performance. Making the random matrices be orthogonal matrices provably fixes this problem. With respect to larger scale applications, we see how to apply MBAT vector representations for any data expressed in JSON. JSON is used in numerous programming languages to express complex data, but its native format appears highly unsuited for machine learning. Expressing JSON as a fixed-length vector makes it readily usable for machine learning and nearest-neighbor search. Creating such JSON vectors also shows that a VSA needs to employ binding operations that are non-commutative. VSAs are now ready to try with full-scale practical applications, including healthcare, pharmaceuticals, and genomics. Keywords: MBAT (Matrix Binding of Additive Terms), VSA (Vector Symbolic Architecture), HDC (Hyperdimensional Computing), Distributed Representations, Binding, Orthogonal Matrices, Recurrent Connections, Machine Learning, Search, JSON, VSA Applications

Let's Make Block Coordinate Descent Converge Faster: Faster Greedy Rules, Message-Passing, Active-Set Complexity, and Superlinear Convergence

Block coordinate descent (BCD) methods are widely used for large-scale numerical optimization because of their cheap iteration costs, low memory requirements, amenability to parallelization, and ability to exploit problem structure. Three main algorithmic choices influence the performance of BCD methods: the block partitioning strategy, the block selection rule, and the block update rule. In this paper we explore all three of these building blocks and propose variations for each that can significantly improve the progress made by each BCD iteration. We (i) propose new greedy block-selection strategies that guarantee more progress per iteration than the Gauss-Southwell rule; (ii) explore practical issues like how to implement the new rules when using "variable" blocks; (iii) explore the use of message-passing to compute matrix or Newton updates efficiently on huge blocks for problems with sparse dependencies between variables; and (iv) consider optimal active manifold identification, which leads to bounds on the "active-set complexity" of BCD methods and leads to superlinear convergence for certain problems with sparse solutions (and in some cases finite termination at an optimal solution). We support all of our findings with numerical results for the classic machine learning problems of least squares, logistic regression, multi-class logistic regression, label propagation, and L1-regularization.

Improving Few-Shot Generalization by Exploring and Exploiting Auxiliary Data

Few-shot learning is valuable in many real-world applications, but learning a generalizable model without overfitting to the few labeled datapoints is challenging. In this work, we focus on Few-shot Learning with Auxiliary Data (FLAD), a training paradigm that assumes access to auxiliary data during few-shot learning in hopes of improving generalization. Previous works have proposed automated methods for mixing auxiliary and target data, but these methods typically scale linearly (or worse) with the number of auxiliary datasets, limiting their practicality. In this work we relate FLAD to the explore-exploit dilemma that is central to the multi-armed bandit setting and derive algorithms whose computational complexity is independent of the number of auxiliary datasets, allowing us to scale to 100x more auxiliary datasets than prior methods. We propose two algorithms -- EXP3-FLAD and UCB1-FLAD -- and compare them with prior FLAD methods that either explore or exploit, finding that the combination of exploration and exploitation is crucial. Through extensive experimentation we find that our methods outperform all pre-existing FLAD methods by 4% and lead to the first 3 billion parameter language models that outperform the 175 billion parameter GPT-3. Overall, our work suggests that the discovery of better, more efficient mixing strategies for FLAD may provide a viable path towards substantially improving generalization in few-shot learning.

Consistency-Aware Padding for Incomplete Multi-Modal Alignment Clustering Based on Self-Repellent Greedy Anchor Search

Multimodal representation is faithful and highly effective in describing real-world data samples' characteristics by describing their complementary information. However, the collected data often exhibits incomplete and misaligned characteristics due to factors such as inconsistent sensor frequencies and device malfunctions. Existing research has not effectively addressed the issue of filling missing data in scenarios where multiview data are both imbalanced and misaligned. Instead, it relies on class-level alignment of the available data. Thus, it results in some data samples not being well-matched, thereby affecting the quality of data fusion. In this paper, we propose the Consistency-Aware Padding for Incomplete Multimodal Alignment Clustering Based on Self-Repellent Greedy Anchor Search(CAPIMAC) to tackle the problem of filling imbalanced and misaligned data in multimodal datasets. Specifically, we propose a self-repellent greedy anchor search module(SRGASM), which employs a self-repellent random walk combined with a greedy algorithm to identify anchor points for re-representing incomplete and misaligned multimodal data. Subsequently, based on noise-contrastive learning, we design a consistency-aware padding module (CAPM) to effectively interpolate and align imbalanced and misaligned data, thereby improving the quality of multimodal data fusion. Experimental results demonstrate the superiority of our method over benchmark datasets. The code will be publicly released at https://github.com/Autism-mm/CAPIMAC.git.

ImageRAG: Enhancing Ultra High Resolution Remote Sensing Imagery Analysis with ImageRAG

Ultra High Resolution (UHR) remote sensing imagery (RSI) (e.g. 100,000 times 100,000 pixels or more) poses a significant challenge for current Remote Sensing Multimodal Large Language Models (RSMLLMs). If choose to resize the UHR image to standard input image size, the extensive spatial and contextual information that UHR images contain will be neglected. Otherwise, the original size of these images often exceeds the token limits of standard RSMLLMs, making it difficult to process the entire image and capture long-range dependencies to answer the query based on the abundant visual context. In this paper, we introduce ImageRAG for RS, a training-free framework to address the complexities of analyzing UHR remote sensing imagery. By transforming UHR remote sensing image analysis task to image's long context selection task, we design an innovative image contextual retrieval mechanism based on the Retrieval-Augmented Generation (RAG) technique, denoted as ImageRAG. ImageRAG's core innovation lies in its ability to selectively retrieve and focus on the most relevant portions of the UHR image as visual contexts that pertain to a given query. Fast path and slow path are proposed in this framework to handle this task efficiently and effectively. ImageRAG allows RSMLLMs to manage extensive context and spatial information from UHR RSI, ensuring the analysis is both accurate and efficient. Codebase will be released in https://github.com/om-ai-lab/ImageRAG

EXAdam: The Power of Adaptive Cross-Moments

This paper introduces EXAdam (EXtended Adam), a novel optimization algorithm that builds upon the widely-used Adam optimizer. EXAdam incorporates three key enhancements: (1) new debiasing terms for improved moment estimation, (2) a gradient-based acceleration mechanism for increased responsiveness to the current loss landscape, and (3) a dynamic step size formula that allows for continuous growth of the learning rate throughout training. These innovations work synergistically to address limitations of the original Adam algorithm, potentially offering improved convergence properties, enhanced ability to escape saddle points, and greater robustness to hyperparameter choices. I provide a theoretical analysis of EXAdam's components and their interactions, highlighting the algorithm's potential advantages in navigating complex optimization landscapes. Empirical evaluations demonstrate EXAdam's superiority over Adam, achieving 48.07% faster convergence and yielding improvements of 4.6%, 4.13%, and 2.39% in training, validation, and testing accuracies, respectively, when applied to a CNN trained on the CIFAR-10 dataset. While these results are promising, further empirical validation across diverse tasks is essential to fully gauge EXAdam's efficacy. Nevertheless, EXAdam represents a significant advancement in adaptive optimization techniques, with promising implications for a wide range of machine learning applications. This work aims to contribute to the ongoing development of more efficient, adaptive, and universally applicable optimization methods in the field of machine learning and artificial intelligence.

Neural Combinatorial Optimization for Real-World Routing

Vehicle Routing Problems (VRPs) are a class of NP-hard problems ubiquitous in several real-world logistics scenarios that pose significant challenges for optimization. Neural Combinatorial Optimization (NCO) has emerged as a promising alternative to classical approaches, as it can learn fast heuristics to solve VRPs. However, most research works in NCO for VRPs focus on simplified settings, which do not account for asymmetric distances and travel durations that cannot be derived by simple Euclidean distances and unrealistic data distributions, hindering real-world deployment. This work introduces RRNCO (Real Routing NCO) to bridge the gap of NCO between synthetic and real-world VRPs in the critical aspects of both data and modeling. First, we introduce a new, openly available dataset with real-world data containing a diverse dataset of locations, distances, and duration matrices from 100 cities, considering realistic settings with actual routing distances and durations obtained from Open Source Routing Machine (OSRM). Second, we propose a novel approach that efficiently processes both node and edge features through contextual gating, enabling the construction of more informed node embedding, and we finally incorporate an Adaptation Attention Free Module (AAFM) with neural adaptive bias mechanisms that effectively integrates not only distance matrices but also angular relationships between nodes, allowing our model to capture rich structural information. RRNCO achieves state-of-the-art results in real-world VRPs among NCO methods. We make our dataset and code publicly available at https://github.com/ai4co/real-routing-nco.

rSVDdpd: A Robust Scalable Video Surveillance Background Modelling Algorithm

A basic algorithmic task in automated video surveillance is to separate background and foreground objects. Camera tampering, noisy videos, low frame rate, etc., pose difficulties in solving the problem. A general approach that classifies the tampered frames, and performs subsequent analysis on the remaining frames after discarding the tampered ones, results in loss of information. Several robust methods based on robust principal component analysis (PCA) have been introduced to solve this problem. To date, considerable effort has been expended to develop robust PCA via Principal Component Pursuit (PCP) methods with reduced computational cost and visually appealing foreground detection. However, the convex optimizations used in these algorithms do not scale well to real-world large datasets due to large matrix inversion steps. Also, an integral component of these foreground detection algorithms is singular value decomposition which is nonrobust. In this paper, we present a new video surveillance background modelling algorithm based on a new robust singular value decomposition technique rSVDdpd which takes care of both these issues. We also demonstrate the superiority of our proposed algorithm on a benchmark dataset and a new real-life video surveillance dataset in the presence of camera tampering. Software codes and additional illustrations are made available at the accompanying website rSVDdpd Homepage (https://subroy13.github.io/rsvddpd-home/)

Accelerating Distributed Stochastic Optimization via Self-Repellent Random Walks

We study a family of distributed stochastic optimization algorithms where gradients are sampled by a token traversing a network of agents in random-walk fashion. Typically, these random-walks are chosen to be Markov chains that asymptotically sample from a desired target distribution, and play a critical role in the convergence of the optimization iterates. In this paper, we take a novel approach by replacing the standard linear Markovian token by one which follows a nonlinear Markov chain - namely the Self-Repellent Radom Walk (SRRW). Defined for any given 'base' Markov chain, the SRRW, parameterized by a positive scalar {\alpha}, is less likely to transition to states that were highly visited in the past, thus the name. In the context of MCMC sampling on a graph, a recent breakthrough in Doshi et al. (2023) shows that the SRRW achieves O(1/{\alpha}) decrease in the asymptotic variance for sampling. We propose the use of a 'generalized' version of the SRRW to drive token algorithms for distributed stochastic optimization in the form of stochastic approximation, termed SA-SRRW. We prove that the optimization iterate errors of the resulting SA-SRRW converge to zero almost surely and prove a central limit theorem, deriving the explicit form of the resulting asymptotic covariance matrix corresponding to iterate errors. This asymptotic covariance is always smaller than that of an algorithm driven by the base Markov chain and decreases at rate O(1/{\alpha}^2) - the performance benefit of using SRRW thereby amplified in the stochastic optimization context. Empirical results support our theoretical findings.

CAMP: Collaborative Attention Model with Profiles for Vehicle Routing Problems

The profiled vehicle routing problem (PVRP) is a generalization of the heterogeneous capacitated vehicle routing problem (HCVRP) in which the objective is to optimize the routes of vehicles to serve client demands subject to different vehicle profiles, with each having a preference or constraint on a per-client basis. While existing learning methods have shown promise for solving the HCVRP in real-time, no learning method exists to solve the more practical and challenging PVRP. In this paper, we propose a Collaborative Attention Model with Profiles (CAMP), a novel approach that learns efficient solvers for PVRP using multi-agent reinforcement learning. CAMP employs a specialized attention-based encoder architecture to embed profiled client embeddings in parallel for each vehicle profile. We design a communication layer between agents for collaborative decision-making across profiled embeddings at each decoding step and a batched pointer mechanism to attend to the profiled embeddings to evaluate the likelihood of the next actions. We evaluate CAMP on two variants of PVRPs: PVRP with preferences, which explicitly influence the reward function, and PVRP with zone constraints with different numbers of agents and clients, demonstrating that our learned solvers achieve competitive results compared to both classical state-of-the-art neural multi-agent models in terms of solution quality and computational efficiency. We make our code openly available at https://github.com/ai4co/camp.

diffGrad: An Optimization Method for Convolutional Neural Networks

Stochastic Gradient Decent (SGD) is one of the core techniques behind the success of deep neural networks. The gradient provides information on the direction in which a function has the steepest rate of change. The main problem with basic SGD is to change by equal sized steps for all parameters, irrespective of gradient behavior. Hence, an efficient way of deep network optimization is to make adaptive step sizes for each parameter. Recently, several attempts have been made to improve gradient descent methods such as AdaGrad, AdaDelta, RMSProp and Adam. These methods rely on the square roots of exponential moving averages of squared past gradients. Thus, these methods do not take advantage of local change in gradients. In this paper, a novel optimizer is proposed based on the difference between the present and the immediate past gradient (i.e., diffGrad). In the proposed diffGrad optimization technique, the step size is adjusted for each parameter in such a way that it should have a larger step size for faster gradient changing parameters and a lower step size for lower gradient changing parameters. The convergence analysis is done using the regret bound approach of online learning framework. Rigorous analysis is made in this paper over three synthetic complex non-convex functions. The image categorization experiments are also conducted over the CIFAR10 and CIFAR100 datasets to observe the performance of diffGrad with respect to the state-of-the-art optimizers such as SGDM, AdaGrad, AdaDelta, RMSProp, AMSGrad, and Adam. The residual unit (ResNet) based Convolutional Neural Networks (CNN) architecture is used in the experiments. The experiments show that diffGrad outperforms other optimizers. Also, we show that diffGrad performs uniformly well for training CNN using different activation functions. The source code is made publicly available at https://github.com/shivram1987/diffGrad.

Implicit Gaussian process representation of vector fields over arbitrary latent manifolds

Gaussian processes (GPs) are popular nonparametric statistical models for learning unknown functions and quantifying the spatiotemporal uncertainty in data. Recent works have extended GPs to model scalar and vector quantities distributed over non-Euclidean domains, including smooth manifolds appearing in numerous fields such as computer vision, dynamical systems, and neuroscience. However, these approaches assume that the manifold underlying the data is known, limiting their practical utility. We introduce RVGP, a generalisation of GPs for learning vector signals over latent Riemannian manifolds. Our method uses positional encoding with eigenfunctions of the connection Laplacian, associated with the tangent bundle, readily derived from common graph-based approximation of data. We demonstrate that RVGP possesses global regularity over the manifold, which allows it to super-resolve and inpaint vector fields while preserving singularities. Furthermore, we use RVGP to reconstruct high-density neural dynamics derived from low-density EEG recordings in healthy individuals and Alzheimer's patients. We show that vector field singularities are important disease markers and that their reconstruction leads to a comparable classification accuracy of disease states to high-density recordings. Thus, our method overcomes a significant practical limitation in experimental and clinical applications.

Learning to Normalize on the SPD Manifold under Bures-Wasserstein Geometry

Covariance matrices have proven highly effective across many scientific fields. Since these matrices lie within the Symmetric Positive Definite (SPD) manifold - a Riemannian space with intrinsic non-Euclidean geometry, the primary challenge in representation learning is to respect this underlying geometric structure. Drawing inspiration from the success of Euclidean deep learning, researchers have developed neural networks on the SPD manifolds for more faithful covariance embedding learning. A notable advancement in this area is the implementation of Riemannian batch normalization (RBN), which has been shown to improve the performance of SPD network models. Nonetheless, the Riemannian metric beneath the existing RBN might fail to effectively deal with the ill-conditioned SPD matrices (ICSM), undermining the effectiveness of RBN. In contrast, the Bures-Wasserstein metric (BWM) demonstrates superior performance for ill-conditioning. In addition, the recently introduced Generalized BWM (GBWM) parameterizes the vanilla BWM via an SPD matrix, allowing for a more nuanced representation of vibrant geometries of the SPD manifold. Therefore, we propose a novel RBN algorithm based on the GBW geometry, incorporating a learnable metric parameter. Moreover, the deformation of GBWM by matrix power is also introduced to further enhance the representational capacity of GBWM-based RBN. Experimental results on different datasets validate the effectiveness of our proposed method.

Discovering General Reinforcement Learning Algorithms with Adversarial Environment Design

The past decade has seen vast progress in deep reinforcement learning (RL) on the back of algorithms manually designed by human researchers. Recently, it has been shown that it is possible to meta-learn update rules, with the hope of discovering algorithms that can perform well on a wide range of RL tasks. Despite impressive initial results from algorithms such as Learned Policy Gradient (LPG), there remains a generalization gap when these algorithms are applied to unseen environments. In this work, we examine how characteristics of the meta-training distribution impact the generalization performance of these algorithms. Motivated by this analysis and building on ideas from Unsupervised Environment Design (UED), we propose a novel approach for automatically generating curricula to maximize the regret of a meta-learned optimizer, in addition to a novel approximation of regret, which we name algorithmic regret (AR). The result is our method, General RL Optimizers Obtained Via Environment Design (GROOVE). In a series of experiments, we show that GROOVE achieves superior generalization to LPG, and evaluate AR against baseline metrics from UED, identifying it as a critical component of environment design in this setting. We believe this approach is a step towards the discovery of truly general RL algorithms, capable of solving a wide range of real-world environments.

HMAR: Efficient Hierarchical Masked Auto-Regressive Image Generation

Visual Auto-Regressive modeling (VAR) has shown promise in bridging the speed and quality gap between autoregressive image models and diffusion models. VAR reformulates autoregressive modeling by decomposing an image into successive resolution scales. During inference, an image is generated by predicting all the tokens in the next (higher-resolution) scale, conditioned on all tokens in all previous (lower-resolution) scales. However, this formulation suffers from reduced image quality due to the parallel generation of all tokens in a resolution scale; has sequence lengths scaling superlinearly in image resolution; and requires retraining to change the sampling schedule. We introduce Hierarchical Masked Auto-Regressive modeling (HMAR), a new image generation algorithm that alleviates these issues using next-scale prediction and masked prediction to generate high-quality images with fast sampling. HMAR reformulates next-scale prediction as a Markovian process, wherein the prediction of each resolution scale is conditioned only on tokens in its immediate predecessor instead of the tokens in all predecessor resolutions. When predicting a resolution scale, HMAR uses a controllable multi-step masked generation procedure to generate a subset of the tokens in each step. On ImageNet 256x256 and 512x512 benchmarks, HMAR models match or outperform parameter-matched VAR, diffusion, and autoregressive baselines. We develop efficient IO-aware block-sparse attention kernels that allow HMAR to achieve faster training and inference times over VAR by over 2.5x and 1.75x respectively, as well as over 3x lower inference memory footprint. Finally, HMAR yields additional flexibility over VAR; its sampling schedule can be changed without further training, and it can be applied to image editing tasks in a zero-shot manner.

Image-level Regression for Uncertainty-aware Retinal Image Segmentation

Accurate retinal vessel (RV) segmentation is a crucial step in the quantitative assessment of retinal vasculature, which is needed for the early detection of retinal diseases and other conditions. Numerous studies have been conducted to tackle the problem of segmenting vessels automatically using a pixel-wise classification approach. The common practice of creating ground truth labels is to categorize pixels as foreground and background. This approach is, however, biased, and it ignores the uncertainty of a human annotator when it comes to annotating e.g. thin vessels. In this work, we propose a simple and effective method that casts the RV segmentation task as an image-level regression. For this purpose, we first introduce a novel Segmentation Annotation Uncertainty-Aware (SAUNA) transform, which adds pixel uncertainty to the ground truth using the pixel's closeness to the annotation boundary and vessel thickness. To train our model with soft labels, we generalize the earlier proposed Jaccard metric loss to arbitrary hypercubes for soft Jaccard index (Intersection-over-Union) optimization. Additionally, we employ a stable version of the Focal-L1 loss for pixel-wise regression. We conduct thorough experiments and compare our method to a diverse set of baselines across 5 retinal image datasets. Our empirical results indicate that the integration of the SAUNA transform and these segmentation losses led to significant performance boosts for different segmentation models. Particularly, our methodology enables UNet-like architectures to substantially outperform computational-intensive baselines. Our implementation is available at https://github.com/Oulu-IMEDS/SAUNA.

AdamP: Slowing Down the Slowdown for Momentum Optimizers on Scale-invariant Weights

Normalization techniques are a boon for modern deep learning. They let weights converge more quickly with often better generalization performances. It has been argued that the normalization-induced scale invariance among the weights provides an advantageous ground for gradient descent (GD) optimizers: the effective step sizes are automatically reduced over time, stabilizing the overall training procedure. It is often overlooked, however, that the additional introduction of momentum in GD optimizers results in a far more rapid reduction in effective step sizes for scale-invariant weights, a phenomenon that has not yet been studied and may have caused unwanted side effects in the current practice. This is a crucial issue because arguably the vast majority of modern deep neural networks consist of (1) momentum-based GD (e.g. SGD or Adam) and (2) scale-invariant parameters. In this paper, we verify that the widely-adopted combination of the two ingredients lead to the premature decay of effective step sizes and sub-optimal model performances. We propose a simple and effective remedy, SGDP and AdamP: get rid of the radial component, or the norm-increasing direction, at each optimizer step. Because of the scale invariance, this modification only alters the effective step sizes without changing the effective update directions, thus enjoying the original convergence properties of GD optimizers. Given the ubiquity of momentum GD and scale invariance in machine learning, we have evaluated our methods against the baselines on 13 benchmarks. They range from vision tasks like classification (e.g. ImageNet), retrieval (e.g. CUB and SOP), and detection (e.g. COCO) to language modelling (e.g. WikiText) and audio classification (e.g. DCASE) tasks. We verify that our solution brings about uniform gains in those benchmarks. Source code is available at https://github.com/clovaai/AdamP.

Stereo-based 3D Anomaly Object Detection for Autonomous Driving: A New Dataset and Baseline

3D detection technology is widely used in the field of autonomous driving, with its application scenarios gradually expanding from enclosed highways to open conventional roads. For rare anomaly categories that appear on the road, 3D detection models trained on closed sets often misdetect or fail to detect anomaly objects. To address this risk, it is necessary to enhance the generalization ability of 3D detection models for targets of arbitrary shapes and to possess the capability to filter out anomalies. The generalization of 3D detection is limited by two factors: the coupled training of 2D and 3D, and the insufficient diversity in the scale distribution of training samples. This paper proposes a Stereo-based 3D Anomaly object Detection (S3AD) algorithm, which decouples the training strategy of 3D and 2D to release the generalization ability for arbitrary 3D foreground detection, and proposes an anomaly scoring algorithm based on foreground confidence prediction, achieving target-level anomaly scoring. In order to further verify and enhance the generalization of anomaly detection, we use a 3D rendering method to synthesize two augmented reality binocular stereo 3D detection datasets which named KITTI-AR. KITTI-AR extends upon KITTI by adding 97 new categories, totaling 6k pairs of stereo images. The KITTI-AR-ExD subset includes 39 common categories as extra training data to address the sparse sample distribution issue. Additionally, 58 rare categories form the KITTI-AR-OoD subset, which are not used in training to simulate zero-shot scenarios in real-world settings, solely for evaluating 3D anomaly detection. Finally, the performance of the algorithm and the dataset is verified in the experiments. (Code and dataset can be obtained at https://github.com/shiyi-mu/S3AD-Code).

Real-World Remote Sensing Image Dehazing: Benchmark and Baseline

Remote Sensing Image Dehazing (RSID) poses significant challenges in real-world scenarios due to the complex atmospheric conditions and severe color distortions that degrade image quality. The scarcity of real-world remote sensing hazy image pairs has compelled existing methods to rely primarily on synthetic datasets. However, these methods struggle with real-world applications due to the inherent domain gap between synthetic and real data. To address this, we introduce Real-World Remote Sensing Hazy Image Dataset (RRSHID), the first large-scale dataset featuring real-world hazy and dehazed image pairs across diverse atmospheric conditions. Based on this, we propose MCAF-Net, a novel framework tailored for real-world RSID. Its effectiveness arises from three innovative components: Multi-branch Feature Integration Block Aggregator (MFIBA), which enables robust feature extraction through cascaded integration blocks and parallel multi-branch processing; Color-Calibrated Self-Supervised Attention Module (CSAM), which mitigates complex color distortions via self-supervised learning and attention-guided refinement; and Multi-Scale Feature Adaptive Fusion Module (MFAFM), which integrates features effectively while preserving local details and global context. Extensive experiments validate that MCAF-Net demonstrates state-of-the-art performance in real-world RSID, while maintaining competitive performance on synthetic datasets. The introduction of RRSHID and MCAF-Net sets new benchmarks for real-world RSID research, advancing practical solutions for this complex task. The code and dataset are publicly available at https://github.com/lwCVer/RRSHID.

Does Sparsity Help in Learning Misspecified Linear Bandits?

Recently, the study of linear misspecified bandits has generated intriguing implications of the hardness of learning in bandits and reinforcement learning (RL). In particular, Du et al. (2020) show that even if a learner is given linear features in R^d that approximate the rewards in a bandit or RL with a uniform error of varepsilon, searching for an O(varepsilon)-optimal action requires pulling at least Omega(exp(d)) queries. Furthermore, Lattimore et al. (2020) show that a degraded O(varepsilond)-optimal solution can be learned within poly(d/varepsilon) queries. Yet it is unknown whether a structural assumption on the ground-truth parameter, such as sparsity, could break the varepsilond barrier. In this paper, we address this question by showing that algorithms can obtain O(varepsilon)-optimal actions by querying O(varepsilon^{-s}d^s) actions, where s is the sparsity parameter, removing the exp(d)-dependence. We then establish information-theoretical lower bounds, i.e., Omega(exp(s)), to show that our upper bound on sample complexity is nearly tight if one demands an error O(s^{delta}varepsilon) for 0<delta<1. For deltageq 1, we further show that poly(s/varepsilon) queries are possible when the linear features are "good" and even in general settings. These results provide a nearly complete picture of how sparsity can help in misspecified bandit learning and provide a deeper understanding of when linear features are "useful" for bandit and reinforcement learning with misspecification.

Making RL with Preference-based Feedback Efficient via Randomization

Reinforcement Learning algorithms that learn from human feedback (RLHF) need to be efficient in terms of statistical complexity, computational complexity, and query complexity. In this work, we consider the RLHF setting where the feedback is given in the format of preferences over pairs of trajectories. In the linear MDP model, using randomization in algorithm design, we present an algorithm that is sample efficient (i.e., has near-optimal worst-case regret bounds) and has polynomial running time (i.e., computational complexity is polynomial with respect to relevant parameters). Our algorithm further minimizes the query complexity through a novel randomized active learning procedure. In particular, our algorithm demonstrates a near-optimal tradeoff between the regret bound and the query complexity. To extend the results to more general nonlinear function approximation, we design a model-based randomized algorithm inspired by the idea of Thompson sampling. Our algorithm minimizes Bayesian regret bound and query complexity, again achieving a near-optimal tradeoff between these two quantities. Computation-wise, similar to the prior Thompson sampling algorithms under the regular RL setting, the main computation primitives of our algorithm are Bayesian supervised learning oracles which have been heavily investigated on the empirical side when applying Thompson sampling algorithms to RL benchmark problems.

MixVPR: Feature Mixing for Visual Place Recognition

Visual Place Recognition (VPR) is a crucial part of mobile robotics and autonomous driving as well as other computer vision tasks. It refers to the process of identifying a place depicted in a query image using only computer vision. At large scale, repetitive structures, weather and illumination changes pose a real challenge, as appearances can drastically change over time. Along with tackling these challenges, an efficient VPR technique must also be practical in real-world scenarios where latency matters. To address this, we introduce MixVPR, a new holistic feature aggregation technique that takes feature maps from pre-trained backbones as a set of global features. Then, it incorporates a global relationship between elements in each feature map in a cascade of feature mixing, eliminating the need for local or pyramidal aggregation as done in NetVLAD or TransVPR. We demonstrate the effectiveness of our technique through extensive experiments on multiple large-scale benchmarks. Our method outperforms all existing techniques by a large margin while having less than half the number of parameters compared to CosPlace and NetVLAD. We achieve a new all-time high recall@1 score of 94.6% on Pitts250k-test, 88.0% on MapillarySLS, and more importantly, 58.4% on Nordland. Finally, our method outperforms two-stage retrieval techniques such as Patch-NetVLAD, TransVPR and SuperGLUE all while being orders of magnitude faster. Our code and trained models are available at https://github.com/amaralibey/MixVPR.

From Logistic Regression to the Perceptron Algorithm: Exploring Gradient Descent with Large Step Sizes

We focus on the classification problem with a separable dataset, one of the most important and classical problems from machine learning. The standard approach to this task is logistic regression with gradient descent (LR+GD). Recent studies have observed that LR+GD can find a solution with arbitrarily large step sizes, defying conventional optimization theory. Our work investigates this phenomenon and makes three interconnected key observations about LR+GD with large step sizes. First, we find a remarkably simple explanation of why LR+GD with large step sizes solves the classification problem: LR+GD reduces to a batch version of the celebrated perceptron algorithm when the step size gamma to infty. Second, we observe that larger step sizes lead LR+GD to higher logistic losses when it tends to the perceptron algorithm, but larger step sizes also lead to faster convergence to a solution for the classification problem, meaning that logistic loss is an unreliable metric of the proximity to a solution. Surprisingly, high loss values can actually indicate faster convergence. Third, since the convergence rate in terms of loss function values of LR+GD is unreliable, we examine the iteration complexity required by LR+GD with large step sizes to solve the classification problem and prove that this complexity is suboptimal. To address this, we propose a new method, Normalized LR+GD - based on the connection between LR+GD and the perceptron algorithm - with much better theoretical guarantees.

Geo2SigMap: High-Fidelity RF Signal Mapping Using Geographic Databases

Radio frequency (RF) signal mapping, which is the process of analyzing and predicting the RF signal strength and distribution across specific areas, is crucial for cellular network planning and deployment. Traditional approaches to RF signal mapping rely on statistical models constructed based on measurement data, which offer low complexity but often lack accuracy, or ray tracing tools, which provide enhanced precision for the target area but suffer from increased computational complexity. Recently, machine learning (ML) has emerged as a data-driven method for modeling RF signal propagation, which leverages models trained on synthetic datasets to perform RF signal mapping in "unseen" areas. In this paper, we present Geo2SigMap, an ML-based framework for efficient and high-fidelity RF signal mapping using geographic databases. First, we develop an automated framework that seamlessly integrates three open-source tools: OpenStreetMap (geographic databases), Blender (computer graphics), and Sionna (ray tracing), enabling the efficient generation of large-scale 3D building maps and ray tracing models. Second, we propose a cascaded U-Net model, which is pre-trained on synthetic datasets and employed to generate detailed RF signal maps, leveraging environmental information and sparse measurement data. Finally, we evaluate the performance of Geo2SigMap via a real-world measurement campaign, where three types of user equipment (UE) collect over 45,000 data points related to cellular information from six LTE cells operating in the citizens broadband radio service (CBRS) band. Our results show that Geo2SigMap achieves an average root-mean-square-error (RMSE) of 6.04 dB for predicting the reference signal received power (RSRP) at the UE, representing an average RMSE improvement of 3.59 dB compared to existing methods.

Fat Polygonal Partitions with Applications to Visualization and Embeddings

Let T be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in R^d. We use these partitions with slack for embedding ultrametrics into d-dimensional Euclidean space: we give a rm polylog(Delta)-approximation algorithm for embedding n-point ultrametrics into R^d with minimum distortion, where Delta denotes the spread of the metric, i.e., the ratio between the largest and the smallest distance between two points. The previously best-known approximation ratio for this problem was polynomial in n. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.

MetricGrids: Arbitrary Nonlinear Approximation with Elementary Metric Grids based Implicit Neural Representation

This paper presents MetricGrids, a novel grid-based neural representation that combines elementary metric grids in various metric spaces to approximate complex nonlinear signals. While grid-based representations are widely adopted for their efficiency and scalability, the existing feature grids with linear indexing for continuous-space points can only provide degenerate linear latent space representations, and such representations cannot be adequately compensated to represent complex nonlinear signals by the following compact decoder. To address this problem while keeping the simplicity of a regular grid structure, our approach builds upon the standard grid-based paradigm by constructing multiple elementary metric grids as high-order terms to approximate complex nonlinearities, following the Taylor expansion principle. Furthermore, we enhance model compactness with hash encoding based on different sparsities of the grids to prevent detrimental hash collisions, and a high-order extrapolation decoder to reduce explicit grid storage requirements. experimental results on both 2D and 3D reconstructions demonstrate the superior fitting and rendering accuracy of the proposed method across diverse signal types, validating its robustness and generalizability. Code is available at https://github.com/wangshu31/MetricGrids}{https://github.com/wangshu31/MetricGrids.

Accelerating Sinkhorn Algorithm with Sparse Newton Iterations

Computing the optimal transport distance between statistical distributions is a fundamental task in machine learning. One remarkable recent advancement is entropic regularization and the Sinkhorn algorithm, which utilizes only matrix scaling and guarantees an approximated solution with near-linear runtime. Despite the success of the Sinkhorn algorithm, its runtime may still be slow due to the potentially large number of iterations needed for convergence. To achieve possibly super-exponential convergence, we present Sinkhorn-Newton-Sparse (SNS), an extension to the Sinkhorn algorithm, by introducing early stopping for the matrix scaling steps and a second stage featuring a Newton-type subroutine. Adopting the variational viewpoint that the Sinkhorn algorithm maximizes a concave Lyapunov potential, we offer the insight that the Hessian matrix of the potential function is approximately sparse. Sparsification of the Hessian results in a fast O(n^2) per-iteration complexity, the same as the Sinkhorn algorithm. In terms of total iteration count, we observe that the SNS algorithm converges orders of magnitude faster across a wide range of practical cases, including optimal transportation between empirical distributions and calculating the Wasserstein W_1, W_2 distance of discretized densities. The empirical performance is corroborated by a rigorous bound on the approximate sparsity of the Hessian matrix.

An Efficient Tester-Learner for Halfspaces

We give the first efficient algorithm for learning halfspaces in the testable learning model recently defined by Rubinfeld and Vasilyan (2023). In this model, a learner certifies that the accuracy of its output hypothesis is near optimal whenever the training set passes an associated test, and training sets drawn from some target distribution -- e.g., the Gaussian -- must pass the test. This model is more challenging than distribution-specific agnostic or Massart noise models where the learner is allowed to fail arbitrarily if the distributional assumption does not hold. We consider the setting where the target distribution is Gaussian (or more generally any strongly log-concave distribution) in d dimensions and the noise model is either Massart or adversarial (agnostic). For Massart noise, our tester-learner runs in polynomial time and outputs a hypothesis with (information-theoretically optimal) error opt + epsilon for any strongly log-concave target distribution. For adversarial noise, our tester-learner obtains error O(opt) + epsilon in polynomial time when the target distribution is Gaussian; for strongly log-concave distributions, we obtain O(opt) + epsilon in quasipolynomial time. Prior work on testable learning ignores the labels in the training set and checks that the empirical moments of the covariates are close to the moments of the base distribution. Here we develop new tests of independent interest that make critical use of the labels and combine them with the moment-matching approach of Gollakota et al. (2023). This enables us to simulate a variant of the algorithm of Diakonikolas et al. (2020) for learning noisy halfspaces using nonconvex SGD but in the testable learning setting.

Bayesian active learning for optimization and uncertainty quantification in protein docking

Motivation: Ab initio protein docking represents a major challenge for optimizing a noisy and costly "black box"-like function in a high-dimensional space. Despite progress in this field, there is no docking method available for rigorous uncertainty quantification (UQ) of its solution quality (e.g. interface RMSD or iRMSD). Results: We introduce a novel algorithm, Bayesian Active Learning (BAL), for optimization and UQ of such black-box functions and flexible protein docking. BAL directly models the posterior distribution of the global optimum (or native structures for protein docking) with active sampling and posterior estimation iteratively feeding each other. Furthermore, we use complex normal modes to represent a homogeneous Euclidean conformation space suitable for high-dimension optimization and construct funnel-like energy models for encounter complexes. Over a protein docking benchmark set and a CAPRI set including homology docking, we establish that BAL significantly improve against both starting points by rigid docking and refinements by particle swarm optimization, providing for one third targets a top-3 near-native prediction. BAL also generates tight confidence intervals with half range around 25% of iRMSD and confidence level at 85%. Its estimated probability of a prediction being native or not achieves binary classification AUROC at 0.93 and AUPRC over 0.60 (compared to 0.14 by chance); and also found to help ranking predictions. To the best of our knowledge, this study represents the first uncertainty quantification solution for protein docking, with theoretical rigor and comprehensive assessment. Source codes are available at https://github.com/Shen-Lab/BAL.

How Over-Parameterization Slows Down Gradient Descent in Matrix Sensing: The Curses of Symmetry and Initialization

This paper rigorously shows how over-parameterization changes the convergence behaviors of gradient descent (GD) for the matrix sensing problem, where the goal is to recover an unknown low-rank ground-truth matrix from near-isotropic linear measurements. First, we consider the symmetric setting with the symmetric parameterization where M^* in R^{n times n} is a positive semi-definite unknown matrix of rank r ll n, and one uses a symmetric parameterization XX^top to learn M^*. Here X in R^{n times k} with k > r is the factor matrix. We give a novel Omega (1/T^2) lower bound of randomly initialized GD for the over-parameterized case (k >r) where T is the number of iterations. This is in stark contrast to the exact-parameterization scenario (k=r) where the convergence rate is exp (-Omega (T)). Next, we study asymmetric setting where M^* in R^{n_1 times n_2} is the unknown matrix of rank r ll min{n_1,n_2}, and one uses an asymmetric parameterization FG^top to learn M^* where F in R^{n_1 times k} and G in R^{n_2 times k}. Building on prior work, we give a global exact convergence result of randomly initialized GD for the exact-parameterization case (k=r) with an exp (-Omega(T)) rate. Furthermore, we give the first global exact convergence result for the over-parameterization case (k>r) with an exp(-Omega(alpha^2 T)) rate where alpha is the initialization scale. This linear convergence result in the over-parameterization case is especially significant because one can apply the asymmetric parameterization to the symmetric setting to speed up from Omega (1/T^2) to linear convergence. On the other hand, we propose a novel method that only modifies one step of GD and obtains a convergence rate independent of alpha, recovering the rate in the exact-parameterization case.

RowDetr: End-to-End Row Detection Using Polynomials

Crop row detection is essential for enabling autonomous navigation in GPS-denied environments, such as under-canopy agricultural settings. Traditional methods often struggle with occlusions, variable lighting conditions, and the structural variability of crop rows. To address these challenges, RowDetr, a novel end-to-end neural network architecture, is introduced for robust and efficient row detection. A new dataset of approximately 6,900 images is curated, capturing a diverse range of real-world agricultural conditions, including occluded rows, uneven terrain, and varying crop densities. Unlike previous approaches, RowDetr leverages smooth polynomial functions to precisely delineate crop boundaries in the image space, ensuring a more structured and interpretable representation of row geometry. A key innovation of this approach is PolyOptLoss, a novel energy-based loss function designed to enhance learning robustness, even in the presence of noisy or imperfect labels. This loss function significantly improves model stability and generalization by optimizing polynomial curve fitting directly in image space. Extensive experiments demonstrate that RowDetr significantly outperforms existing frameworks, including Agronav and RowColAttention, across key performance metrics. Additionally, RowDetr achieves a sixfold speedup over Agronav, making it highly suitable for real-time deployment on resource-constrained edge devices. To facilitate better comparisons across future studies, lane detection metrics from autonomous driving research are adapted, providing a more standardized and meaningful evaluation framework for crop row detection. This work establishes a new benchmark in under-canopy

Robust Offline Reinforcement Learning with Linearly Structured f-Divergence Regularization

The Distributionally Robust Markov Decision Process (DRMDP) is a popular framework for addressing dynamics shift in reinforcement learning by learning policies robust to the worst-case transition dynamics within a constrained set. However, solving its dual optimization oracle poses significant challenges, limiting theoretical analysis and computational efficiency. The recently proposed Robust Regularized Markov Decision Process (RRMDP) replaces the uncertainty set constraint with a regularization term on the value function, offering improved scalability and theoretical insights. Yet, existing RRMDP methods rely on unstructured regularization, often leading to overly conservative policies by considering transitions that are unrealistic. To address these issues, we propose a novel framework, the d-rectangular linear robust regularized Markov decision process (d-RRMDP), which introduces a linear latent structure into both transition kernels and regularization. For the offline RL setting, where an agent learns robust policies from a pre-collected dataset in the nominal environment, we develop a family of algorithms, Robust Regularized Pessimistic Value Iteration (R2PVI), employing linear function approximation and f-divergence based regularization terms on transition kernels. We provide instance-dependent upper bounds on the suboptimality gap of R2PVI policies, showing these bounds depend on how well the dataset covers state-action spaces visited by the optimal robust policy under robustly admissible transitions. This term is further shown to be fundamental to d-RRMDPs via information-theoretic lower bounds. Finally, numerical experiments validate that R2PVI learns robust policies and is computationally more efficient than methods for constrained DRMDPs.

ArchGym: An Open-Source Gymnasium for Machine Learning Assisted Architecture Design

Machine learning is a prevalent approach to tame the complexity of design space exploration for domain-specific architectures. Using ML for design space exploration poses challenges. First, it's not straightforward to identify the suitable algorithm from an increasing pool of ML methods. Second, assessing the trade-offs between performance and sample efficiency across these methods is inconclusive. Finally, lack of a holistic framework for fair, reproducible, and objective comparison across these methods hinders progress of adopting ML-aided architecture design space exploration and impedes creating repeatable artifacts. To mitigate these challenges, we introduce ArchGym, an open-source gym and easy-to-extend framework that connects diverse search algorithms to architecture simulators. To demonstrate utility, we evaluate ArchGym across multiple vanilla and domain-specific search algorithms in designing custom memory controller, deep neural network accelerators, and custom SoC for AR/VR workloads, encompassing over 21K experiments. Results suggest that with unlimited samples, ML algorithms are equally favorable to meet user-defined target specification if hyperparameters are tuned; no solution is necessarily better than another (e.g., reinforcement learning vs. Bayesian methods). We coin the term hyperparameter lottery to describe the chance for a search algorithm to find an optimal design provided meticulously selected hyperparameters. The ease of data collection and aggregation in ArchGym facilitates research in ML-aided architecture design space exploration. As a case study, we show this advantage by developing a proxy cost model with an RMSE of 0.61% that offers a 2,000-fold reduction in simulation time. Code and data for ArchGym is available at https://bit.ly/ArchGym.

Blockwise Stochastic Variance-Reduced Methods with Parallel Speedup for Multi-Block Bilevel Optimization

In this paper, we consider non-convex multi-block bilevel optimization (MBBO) problems, which involve mgg 1 lower level problems and have important applications in machine learning. Designing a stochastic gradient and controlling its variance is more intricate due to the hierarchical sampling of blocks and data and the unique challenge of estimating hyper-gradient. We aim to achieve three nice properties for our algorithm: (a) matching the state-of-the-art complexity of standard BO problems with a single block; (b) achieving parallel speedup by sampling I blocks and sampling B samples for each sampled block per-iteration; (c) avoiding the computation of the inverse of a high-dimensional Hessian matrix estimator. However, it is non-trivial to achieve all of these by observing that existing works only achieve one or two of these properties. To address the involved challenges for achieving (a, b, c), we propose two stochastic algorithms by using advanced blockwise variance-reduction techniques for tracking the Hessian matrices (for low-dimensional problems) or the Hessian-vector products (for high-dimensional problems), and prove an iteration complexity of O(mepsilon^{-3I(I<m)}{II} + mepsilon^{-3}{IB}) for finding an epsilon-stationary point under appropriate conditions. We also conduct experiments to verify the effectiveness of the proposed algorithms comparing with existing MBBO algorithms.

Mitigating the Curse of Dimensionality for Certified Robustness via Dual Randomized Smoothing

Randomized Smoothing (RS) has been proven a promising method for endowing an arbitrary image classifier with certified robustness. However, the substantial uncertainty inherent in the high-dimensional isotropic Gaussian noise imposes the curse of dimensionality on RS. Specifically, the upper bound of {ell_2} certified robustness radius provided by RS exhibits a diminishing trend with the expansion of the input dimension d, proportionally decreasing at a rate of 1/d. This paper explores the feasibility of providing {ell_2} certified robustness for high-dimensional input through the utilization of dual smoothing in the lower-dimensional space. The proposed Dual Randomized Smoothing (DRS) down-samples the input image into two sub-images and smooths the two sub-images in lower dimensions. Theoretically, we prove that DRS guarantees a tight {ell_2} certified robustness radius for the original input and reveal that DRS attains a superior upper bound on the {ell_2} robustness radius, which decreases proportionally at a rate of (1/sqrt m + 1/sqrt n ) with m+n=d. Extensive experiments demonstrate the generalizability and effectiveness of DRS, which exhibits a notable capability to integrate with established methodologies, yielding substantial improvements in both accuracy and {ell_2} certified robustness baselines of RS on the CIFAR-10 and ImageNet datasets. Code is available at https://github.com/xiasong0501/DRS.

Improving the Training of Rectified Flows

Diffusion models have shown great promise for image and video generation, but sampling from state-of-the-art models requires expensive numerical integration of a generative ODE. One approach for tackling this problem is rectified flows, which iteratively learn smooth ODE paths that are less susceptible to truncation error. However, rectified flows still require a relatively large number of function evaluations (NFEs). In this work, we propose improved techniques for training rectified flows, allowing them to compete with knowledge distillation methods even in the low NFE setting. Our main insight is that under realistic settings, a single iteration of the Reflow algorithm for training rectified flows is sufficient to learn nearly straight trajectories; hence, the current practice of using multiple Reflow iterations is unnecessary. We thus propose techniques to improve one-round training of rectified flows, including a U-shaped timestep distribution and LPIPS-Huber premetric. With these techniques, we improve the FID of the previous 2-rectified flow by up to 72% in the 1 NFE setting on CIFAR-10. On ImageNet 64times64, our improved rectified flow outperforms the state-of-the-art distillation methods such as consistency distillation and progressive distillation in both one-step and two-step settings and rivals the performance of improved consistency training (iCT) in FID. Code is available at https://github.com/sangyun884/rfpp.

SEAL: A Framework for Systematic Evaluation of Real-World Super-Resolution

Real-world Super-Resolution (Real-SR) methods focus on dealing with diverse real-world images and have attracted increasing attention in recent years. The key idea is to use a complex and high-order degradation model to mimic real-world degradations. Although they have achieved impressive results in various scenarios, they are faced with the obstacle of evaluation. Currently, these methods are only assessed by their average performance on a small set of degradation cases randomly selected from a large space, which fails to provide a comprehensive understanding of their overall performance and often yields inconsistent and potentially misleading results. To overcome the limitation in evaluation, we propose SEAL, a framework for systematic evaluation of real-SR. In particular, we cluster the extensive degradation space to create a set of representative degradation cases, which serves as a comprehensive test set. Next, we propose a coarse-to-fine evaluation protocol to measure the distributed and relative performance of real-SR methods on the test set. The protocol incorporates two new metrics: acceptance rate (AR) and relative performance ratio (RPR), derived from acceptance and excellence lines. Under SEAL, we benchmark existing real-SR methods, obtain new observations and insights into their performance, and develop a new strong baseline. We consider SEAL as the first step towards creating a comprehensive real-SR evaluation platform, which can promote the development of real-SR. The source code is available at https://github.com/XPixelGroup/SEAL

AeroGen: Enhancing Remote Sensing Object Detection with Diffusion-Driven Data Generation

Remote sensing image object detection (RSIOD) aims to identify and locate specific objects within satellite or aerial imagery. However, there is a scarcity of labeled data in current RSIOD datasets, which significantly limits the performance of current detection algorithms. Although existing techniques, e.g., data augmentation and semi-supervised learning, can mitigate this scarcity issue to some extent, they are heavily dependent on high-quality labeled data and perform worse in rare object classes. To address this issue, this paper proposes a layout-controllable diffusion generative model (i.e. AeroGen) tailored for RSIOD. To our knowledge, AeroGen is the first model to simultaneously support horizontal and rotated bounding box condition generation, thus enabling the generation of high-quality synthetic images that meet specific layout and object category requirements. Additionally, we propose an end-to-end data augmentation framework that integrates a diversity-conditioned generator and a filtering mechanism to enhance both the diversity and quality of generated data. Experimental results demonstrate that the synthetic data produced by our method are of high quality and diversity. Furthermore, the synthetic RSIOD data can significantly improve the detection performance of existing RSIOD models, i.e., the mAP metrics on DIOR, DIOR-R, and HRSC datasets are improved by 3.7%, 4.3%, and 2.43%, respectively. The code is available at https://github.com/Sonettoo/AeroGen.

Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction

Max sliced Wasserstein (Max-SW) distance has been widely known as a solution for less discriminative projections of sliced Wasserstein (SW) distance. In applications that have various independent pairs of probability measures, amortized projection optimization is utilized to predict the ``max" projecting directions given two input measures instead of using projected gradient ascent multiple times. Despite being efficient, Max-SW and its amortized version cannot guarantee metricity property due to the sub-optimality of the projected gradient ascent and the amortization gap. Therefore, we propose to replace Max-SW with distributional sliced Wasserstein distance with von Mises-Fisher (vMF) projecting distribution (v-DSW). Since v-DSW is a metric with any non-degenerate vMF distribution, its amortized version can guarantee the metricity when performing amortization. Furthermore, current amortized models are not permutation invariant and symmetric. To address the issue, we design amortized models based on self-attention architecture. In particular, we adopt efficient self-attention architectures to make the computation linear in the number of supports. With the two improvements, we derive self-attention amortized distributional projection optimization and show its appealing performance in point-cloud reconstruction and its downstream applications.

Distributional Soft Actor-Critic with Three Refinements

Reinforcement learning (RL) has shown remarkable success in solving complex decision-making and control tasks. However, many model-free RL algorithms experience performance degradation due to inaccurate value estimation, particularly the overestimation of Q-values, which can lead to suboptimal policies. To address this issue, we previously proposed the Distributional Soft Actor-Critic (DSAC or DSACv1), an off-policy RL algorithm that enhances value estimation accuracy by learning a continuous Gaussian value distribution. Despite its effectiveness, DSACv1 faces challenges such as training instability and sensitivity to reward scaling, caused by high variance in critic gradients due to return randomness. In this paper, we introduce three key refinements to DSACv1 to overcome these limitations and further improve Q-value estimation accuracy: expected value substitution, twin value distribution learning, and variance-based critic gradient adjustment. The enhanced algorithm, termed DSAC with Three refinements (DSAC-T or DSACv2), is systematically evaluated across a diverse set of benchmark tasks. Without the need for task-specific hyperparameter tuning, DSAC-T consistently matches or outperforms leading model-free RL algorithms, including SAC, TD3, DDPG, TRPO, and PPO, in all tested environments. Additionally, DSAC-T ensures a stable learning process and maintains robust performance across varying reward scales. Its effectiveness is further demonstrated through real-world application in controlling a wheeled robot, highlighting its potential for deployment in practical robotic tasks.

sharpDARTS: Faster and More Accurate Differentiable Architecture Search

Neural Architecture Search (NAS) has been a source of dramatic improvements in neural network design, with recent results meeting or exceeding the performance of hand-tuned architectures. However, our understanding of how to represent the search space for neural net architectures and how to search that space efficiently are both still in their infancy. We have performed an in-depth analysis to identify limitations in a widely used search space and a recent architecture search method, Differentiable Architecture Search (DARTS). These findings led us to introduce novel network blocks with a more general, balanced, and consistent design; a better-optimized Cosine Power Annealing learning rate schedule; and other improvements. Our resulting sharpDARTS search is 50% faster with a 20-30% relative improvement in final model error on CIFAR-10 when compared to DARTS. Our best single model run has 1.93% (1.98+/-0.07) validation error on CIFAR-10 and 5.5% error (5.8+/-0.3) on the recently released CIFAR-10.1 test set. To our knowledge, both are state of the art for models of similar size. This model also generalizes competitively to ImageNet at 25.1% top-1 (7.8% top-5) error. We found improvements for existing search spaces but does DARTS generalize to new domains? We propose Differentiable Hyperparameter Grid Search and the HyperCuboid search space, which are representations designed to leverage DARTS for more general parameter optimization. Here we find that DARTS fails to generalize when compared against a human's one shot choice of models. We look back to the DARTS and sharpDARTS search spaces to understand why, and an ablation study reveals an unusual generalization gap. We finally propose Max-W regularization to solve this problem, which proves significantly better than the handmade design. Code will be made available.

Dynamic Constrained Submodular Optimization with Polylogarithmic Update Time

Maximizing a monotone submodular function under cardinality constraint k is a core problem in machine learning and database with many basic applications, including video and data summarization, recommendation systems, feature extraction, exemplar clustering, and coverage problems. We study this classic problem in the fully dynamic model where a stream of insertions and deletions of elements of an underlying ground set is given and the goal is to maintain an approximate solution using a fast update time. A recent paper at NeurIPS'20 by Lattanzi, Mitrovic, Norouzi{-}Fard, Tarnawski, Zadimoghaddam claims to obtain a dynamic algorithm for this problem with a 1{2} -epsilon approximation ratio and a query complexity bounded by poly(log(n),log(k),epsilon^{-1}). However, as we explain in this paper, the analysis has some important gaps. Having a dynamic algorithm for the problem with polylogarithmic update time is even more important in light of a recent result by Chen and Peng at STOC'22 who show a matching lower bound for the problem -- any randomized algorithm with a 1{2}+epsilon approximation ratio must have an amortized query complexity that is polynomial in n. In this paper, we develop a simpler algorithm for the problem that maintains a (1{2}-epsilon)-approximate solution for submodular maximization under cardinality constraint k using a polylogarithmic amortized update time.

In defense of parameter sharing for model-compression

When considering a model architecture, there are several ways to reduce its memory footprint. Historically, popular approaches included selecting smaller architectures and creating sparse networks through pruning. More recently, randomized parameter-sharing (RPS) methods have gained traction for model compression at start of training. In this paper, we comprehensively assess the trade-off between memory and accuracy across RPS, pruning techniques, and building smaller models. Our findings demonstrate that RPS, which is both data and model-agnostic, consistently outperforms/matches smaller models and all moderately informed pruning strategies, such as MAG, SNIP, SYNFLOW, and GRASP, across the entire compression range. This advantage becomes particularly pronounced in higher compression scenarios. Notably, even when compared to highly informed pruning techniques like Lottery Ticket Rewinding (LTR), RPS exhibits superior performance in high compression settings. This points out inherent capacity advantage that RPS enjoys over sparse models. Theoretically, we establish RPS as a superior technique in terms of memory-efficient representation when compared to pruning for linear models. This paper argues in favor of paradigm shift towards RPS based models. During our rigorous evaluation of RPS, we identified issues in the state-of-the-art RPS technique ROAST, specifically regarding stability (ROAST's sensitivity to initialization hyperparameters, often leading to divergence) and Pareto-continuity (ROAST's inability to recover the accuracy of the original model at zero compression). We provably address both of these issues. We refer to the modified RPS, which incorporates our improvements, as STABLE-RPS.

Accelerating Data Generation for Neural Operators via Krylov Subspace Recycling

Learning neural operators for solving partial differential equations (PDEs) has attracted great attention due to its high inference efficiency. However, training such operators requires generating a substantial amount of labeled data, i.e., PDE problems together with their solutions. The data generation process is exceptionally time-consuming, as it involves solving numerous systems of linear equations to obtain numerical solutions to the PDEs. Many existing methods solve these systems independently without considering their inherent similarities, resulting in extremely redundant computations. To tackle this problem, we propose a novel method, namely Sorting Krylov Recycling (SKR), to boost the efficiency of solving these systems, thus significantly accelerating data generation for neural operators training. To the best of our knowledge, SKR is the first attempt to address the time-consuming nature of data generation for learning neural operators. The working horse of SKR is Krylov subspace recycling, a powerful technique for solving a series of interrelated systems by leveraging their inherent similarities. Specifically, SKR employs a sorting algorithm to arrange these systems in a sequence, where adjacent systems exhibit high similarities. Then it equips a solver with Krylov subspace recycling to solve the systems sequentially instead of independently, thus effectively enhancing the solving efficiency. Both theoretical analysis and extensive experiments demonstrate that SKR can significantly accelerate neural operator data generation, achieving a remarkable speedup of up to 13.9 times.

When, Why and How Much? Adaptive Learning Rate Scheduling by Refinement

Learning rate schedules used in practice bear little resemblance to those recommended by theory. We close much of this theory/practice gap, and as a consequence are able to derive new problem-adaptive learning rate schedules. Our key technical contribution is a refined analysis of learning rate schedules for a wide class of optimization algorithms (including SGD). In contrast to most prior works that study the convergence of the average iterate, we study the last iterate, which is what most people use in practice. When considering only worst-case analysis, our theory predicts that the best choice is the linear decay schedule: a popular choice in practice that sets the stepsize proportionally to 1 - t/T, where t is the current iteration and T is the total number of steps. To go beyond this worst-case analysis, we use the observed gradient norms to derive schedules refined for any particular task. These refined schedules exhibit learning rate warm-up and rapid learning rate annealing near the end of training. Ours is the first systematic approach to automatically yield both of these properties. We perform the most comprehensive evaluation of learning rate schedules to date, evaluating across 10 diverse deep learning problems, a series of LLMs, and a suite of logistic regression problems. We validate that overall, the linear-decay schedule matches or outperforms all commonly used default schedules including cosine annealing, and that our schedule refinement method gives further improvements.

Sample-efficient Learning of Infinite-horizon Average-reward MDPs with General Function Approximation

We study infinite-horizon average-reward Markov decision processes (AMDPs) in the context of general function approximation. Specifically, we propose a novel algorithmic framework named Local-fitted Optimization with OPtimism (LOOP), which incorporates both model-based and value-based incarnations. In particular, LOOP features a novel construction of confidence sets and a low-switching policy updating scheme, which are tailored to the average-reward and function approximation setting. Moreover, for AMDPs, we propose a novel complexity measure -- average-reward generalized eluder coefficient (AGEC) -- which captures the challenge of exploration in AMDPs with general function approximation. Such a complexity measure encompasses almost all previously known tractable AMDP models, such as linear AMDPs and linear mixture AMDPs, and also includes newly identified cases such as kernel AMDPs and AMDPs with Bellman eluder dimensions. Using AGEC, we prove that LOOP achieves a sublinear mathcal{O}(poly(d, sp(V^*)) Tbeta ) regret, where d and beta correspond to AGEC and log-covering number of the hypothesis class respectively, sp(V^*) is the span of the optimal state bias function, T denotes the number of steps, and mathcal{O} (cdot) omits logarithmic factors. When specialized to concrete AMDP models, our regret bounds are comparable to those established by the existing algorithms designed specifically for these special cases. To the best of our knowledge, this paper presents the first comprehensive theoretical framework capable of handling nearly all AMDPs.

Fast and Accurate Network Embeddings via Very Sparse Random Projection

We present FastRP, a scalable and performant algorithm for learning distributed node representations in a graph. FastRP is over 4,000 times faster than state-of-the-art methods such as DeepWalk and node2vec, while achieving comparable or even better performance as evaluated on several real-world networks on various downstream tasks. We observe that most network embedding methods consist of two components: construct a node similarity matrix and then apply dimension reduction techniques to this matrix. We show that the success of these methods should be attributed to the proper construction of this similarity matrix, rather than the dimension reduction method employed. FastRP is proposed as a scalable algorithm for network embeddings. Two key features of FastRP are: 1) it explicitly constructs a node similarity matrix that captures transitive relationships in a graph and normalizes matrix entries based on node degrees; 2) it utilizes very sparse random projection, which is a scalable optimization-free method for dimension reduction. An extra benefit from combining these two design choices is that it allows the iterative computation of node embeddings so that the similarity matrix need not be explicitly constructed, which further speeds up FastRP. FastRP is also advantageous for its ease of implementation, parallelization and hyperparameter tuning. The source code is available at https://github.com/GTmac/FastRP.

Tight Regret Bounds for Single-pass Streaming Multi-armed Bandits

Regret minimization in streaming multi-armed bandits (MABs) has been studied extensively in recent years. In the single-pass setting with K arms and T trials, a regret lower bound of Omega(T^{2/3}) has been proved for any algorithm with o(K) memory (Maiti et al. [NeurIPS'21]; Agarwal at al. [COLT'22]). On the other hand, however, the previous best regret upper bound is still O(K^{1/3} T^{2/3}log^{1/3}(T)), which is achieved by the streaming implementation of the simple uniform exploration. The O(K^{1/3}log^{1/3}(T)) gap leaves the open question of the tight regret bound in the single-pass MABs with sublinear arm memory. In this paper, we answer this open problem and complete the picture of regret minimization in single-pass streaming MABs. We first improve the regret lower bound to Omega(K^{1/3}T^{2/3}) for algorithms with o(K) memory, which matches the uniform exploration regret up to a logarithm factor in T. We then show that the log^{1/3}(T) factor is not necessary, and we can achieve O(K^{1/3}T^{2/3}) regret by finding an varepsilon-best arm and committing to it in the rest of the trials. For regret minimization with high constant probability, we can apply the single-memory varepsilon-best arm algorithms in Jin et al. [ICML'21] to obtain the optimal bound. Furthermore, for the expected regret minimization, we design an algorithm with a single-arm memory that achieves O(K^{1/3} T^{2/3}log(K)) regret, and an algorithm with O(log^{*}(n))-memory with the optimal O(K^{1/3} T^{2/3}) regret following the varepsilon-best arm algorithm in Assadi and Wang [STOC'20]. We further tested the empirical performances of our algorithms. The simulation results show that the proposed algorithms consistently outperform the benchmark uniform exploration algorithm by a large margin, and on occasion, reduce the regret by up to 70%.

A Nearly-Optimal Bound for Fast Regression with ell_infty Guarantee

Given a matrix Ain R^{ntimes d} and a vector bin R^n, we consider the regression problem with ell_infty guarantees: finding a vector x'in R^d such that |x'-x^*|_infty leq epsilon{d}cdot |Ax^*-b|_2cdot |A^dagger| where x^*=argmin_{xin R^d}|Ax-b|_2. One popular approach for solving such ell_2 regression problem is via sketching: picking a structured random matrix Sin R^{mtimes n} with mll n and SA can be quickly computed, solve the ``sketched'' regression problem argmin_{xin R^d} |SAx-Sb|_2. In this paper, we show that in order to obtain such ell_infty guarantee for ell_2 regression, one has to use sketching matrices that are dense. To the best of our knowledge, this is the first user case in which dense sketching matrices are necessary. On the algorithmic side, we prove that there exists a distribution of dense sketching matrices with m=epsilon^{-2}dlog^3(n/delta) such that solving the sketched regression problem gives the ell_infty guarantee, with probability at least 1-delta. Moreover, the matrix SA can be computed in time O(ndlog n). Our row count is nearly-optimal up to logarithmic factors, and significantly improves the result in [Price, Song and Woodruff, ICALP'17], in which a super-linear in d rows, m=Omega(epsilon^{-2}d^{1+gamma}) for gamma=Theta(frac{loglog n{log d}}) is required. We also develop a novel analytical framework for ell_infty guarantee regression that utilizes the Oblivious Coordinate-wise Embedding (OCE) property introduced in [Song and Yu, ICML'21]. Our analysis is arguably much simpler and more general than [Price, Song and Woodruff, ICALP'17], and it extends to dense sketches for tensor product of vectors.

Robustifying and Boosting Training-Free Neural Architecture Search

Neural architecture search (NAS) has become a key component of AutoML and a standard tool to automate the design of deep neural networks. Recently, training-free NAS as an emerging paradigm has successfully reduced the search costs of standard training-based NAS by estimating the true architecture performance with only training-free metrics. Nevertheless, the estimation ability of these metrics typically varies across different tasks, making it challenging to achieve robust and consistently good search performance on diverse tasks with only a single training-free metric. Meanwhile, the estimation gap between training-free metrics and the true architecture performances limits training-free NAS to achieve superior performance. To address these challenges, we propose the robustifying and boosting training-free NAS (RoBoT) algorithm which (a) employs the optimized combination of existing training-free metrics explored from Bayesian optimization to develop a robust and consistently better-performing metric on diverse tasks, and (b) applies greedy search, i.e., the exploitation, on the newly developed metric to bridge the aforementioned gap and consequently to boost the search performance of standard training-free NAS further. Remarkably, the expected performance of our RoBoT can be theoretically guaranteed, which improves over the existing training-free NAS under mild conditions with additional interesting insights. Our extensive experiments on various NAS benchmark tasks yield substantial empirical evidence to support our theoretical results.

Efficient Global Optimization of Two-layer ReLU Networks: Quadratic-time Algorithms and Adversarial Training

The non-convexity of the artificial neural network (ANN) training landscape brings inherent optimization difficulties. While the traditional back-propagation stochastic gradient descent (SGD) algorithm and its variants are effective in certain cases, they can become stuck at spurious local minima and are sensitive to initializations and hyperparameters. Recent work has shown that the training of an ANN with ReLU activations can be reformulated as a convex program, bringing hope to globally optimizing interpretable ANNs. However, naively solving the convex training formulation has an exponential complexity, and even an approximation heuristic requires cubic time. In this work, we characterize the quality of this approximation and develop two efficient algorithms that train ANNs with global convergence guarantees. The first algorithm is based on the alternating direction method of multiplier (ADMM). It solves both the exact convex formulation and the approximate counterpart. Linear global convergence is achieved, and the initial several iterations often yield a solution with high prediction accuracy. When solving the approximate formulation, the per-iteration time complexity is quadratic. The second algorithm, based on the "sampled convex programs" theory, is simpler to implement. It solves unconstrained convex formulations and converges to an approximately globally optimal classifier. The non-convexity of the ANN training landscape exacerbates when adversarial training is considered. We apply the robust convex optimization theory to convex training and develop convex formulations that train ANNs robust to adversarial inputs. Our analysis explicitly focuses on one-hidden-layer fully connected ANNs, but can extend to more sophisticated architectures.

Hyperbolic Category Discovery

Generalized Category Discovery (GCD) is an intriguing open-world problem that has garnered increasing attention. Given a dataset that includes both labelled and unlabelled images, GCD aims to categorize all images in the unlabelled subset, regardless of whether they belong to known or unknown classes. In GCD, the common practice typically involves applying a spherical projection operator at the end of the self-supervised pretrained backbone, operating within Euclidean or spherical space. However, both of these spaces have been shown to be suboptimal for encoding samples that possesses hierarchical structures. In contrast, hyperbolic space exhibits exponential volume growth relative to radius, making it inherently strong at capturing the hierarchical structure of samples from both seen and unseen categories. Therefore, we propose to tackle the category discovery challenge in the hyperbolic space. We introduce HypCD, a simple Hyperbolic framework for learning hierarchy-aware representations and classifiers for generalized Category Discovery. HypCD first transforms the Euclidean embedding space of the backbone network into hyperbolic space, facilitating subsequent representation and classification learning by considering both hyperbolic distance and the angle between samples. This approach is particularly helpful for knowledge transfer from known to unknown categories in GCD. We thoroughly evaluate HypCD on public GCD benchmarks, by applying it to various baseline and state-of-the-art methods, consistently achieving significant improvements.

Stochastic Policy Gradient Methods: Improved Sample Complexity for Fisher-non-degenerate Policies

Recently, the impressive empirical success of policy gradient (PG) methods has catalyzed the development of their theoretical foundations. Despite the huge efforts directed at the design of efficient stochastic PG-type algorithms, the understanding of their convergence to a globally optimal policy is still limited. In this work, we develop improved global convergence guarantees for a general class of Fisher-non-degenerate parameterized policies which allows to address the case of continuous state action spaces. First, we propose a Normalized Policy Gradient method with Implicit Gradient Transport (N-PG-IGT) and derive a mathcal{O}(varepsilon^{-2.5}) sample complexity of this method for finding a global varepsilon-optimal policy. Improving over the previously known mathcal{O}(varepsilon^{-3}) complexity, this algorithm does not require the use of importance sampling or second-order information and samples only one trajectory per iteration. Second, we further improve this complexity to mathcal{mathcal{O} }(varepsilon^{-2}) by considering a Hessian-Aided Recursive Policy Gradient ((N)-HARPG) algorithm enhanced with a correction based on a Hessian-vector product. Interestingly, both algorithms are (i) simple and easy to implement: single-loop, do not require large batches of trajectories and sample at most two trajectories per iteration; (ii) computationally and memory efficient: they do not require expensive subroutines at each iteration and can be implemented with memory linear in the dimension of parameters.

CGBA: Curvature-aware Geometric Black-box Attack

Decision-based black-box attacks often necessitate a large number of queries to craft an adversarial example. Moreover, decision-based attacks based on querying boundary points in the estimated normal vector direction often suffer from inefficiency and convergence issues. In this paper, we propose a novel query-efficient curvature-aware geometric decision-based black-box attack (CGBA) that conducts boundary search along a semicircular path on a restricted 2D plane to ensure finding a boundary point successfully irrespective of the boundary curvature. While the proposed CGBA attack can work effectively for an arbitrary decision boundary, it is particularly efficient in exploiting the low curvature to craft high-quality adversarial examples, which is widely seen and experimentally verified in commonly used classifiers under non-targeted attacks. In contrast, the decision boundaries often exhibit higher curvature under targeted attacks. Thus, we develop a new query-efficient variant, CGBA-H, that is adapted for the targeted attack. In addition, we further design an algorithm to obtain a better initial boundary point at the expense of some extra queries, which considerably enhances the performance of the targeted attack. Extensive experiments are conducted to evaluate the performance of our proposed methods against some well-known classifiers on the ImageNet and CIFAR10 datasets, demonstrating the superiority of CGBA and CGBA-H over state-of-the-art non-targeted and targeted attacks, respectively. The source code is available at https://github.com/Farhamdur/CGBA.