Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeGuardT2I: Defending Text-to-Image Models from Adversarial Prompts
Recent advancements in Text-to-Image (T2I) models have raised significant safety concerns about their potential misuse for generating inappropriate or Not-Safe-For-Work (NSFW) contents, despite existing countermeasures such as NSFW classifiers or model fine-tuning for inappropriate concept removal. Addressing this challenge, our study unveils GuardT2I, a novel moderation framework that adopts a generative approach to enhance T2I models' robustness against adversarial prompts. Instead of making a binary classification, GuardT2I utilizes a Large Language Model (LLM) to conditionally transform text guidance embeddings within the T2I models into natural language for effective adversarial prompt detection, without compromising the models' inherent performance. Our extensive experiments reveal that GuardT2I outperforms leading commercial solutions like OpenAI-Moderation and Microsoft Azure Moderator by a significant margin across diverse adversarial scenarios. Our framework is available at https://github.com/cure-lab/GuardT2I.
Maybe I Should Not Answer That, but... Do LLMs Understand The Safety of Their Inputs?
Ensuring the safety of the Large Language Model (LLM) is critical, but currently used methods in most cases sacrifice the model performance to obtain increased safety or perform poorly on data outside of their adaptation distribution. We investigate existing methods for such generalization and find them insufficient. Surprisingly, while even plain LLMs recognize unsafe prompts, they may still generate unsafe responses. To avoid performance degradation and preserve safe performance, we advocate for a two-step framework, where we first identify unsafe prompts via a lightweight classifier, and apply a "safe" model only to such prompts. In particular, we explore the design of the safety detector in more detail, investigating the use of different classifier architectures and prompting techniques. Interestingly, we find that the final hidden state for the last token is enough to provide robust performance, minimizing false positives on benign data while performing well on malicious prompt detection. Additionally, we show that classifiers trained on the representations from different model layers perform comparably on the latest model layers, indicating that safety representation is present in the LLMs' hidden states at most model stages. Our work is a step towards efficient, representation-based safety mechanisms for LLMs.
SafeWork-R1: Coevolving Safety and Intelligence under the AI-45^{circ} Law
We introduce SafeWork-R1, a cutting-edge multimodal reasoning model that demonstrates the coevolution of capabilities and safety. It is developed by our proposed SafeLadder framework, which incorporates large-scale, progressive, safety-oriented reinforcement learning post-training, supported by a suite of multi-principled verifiers. Unlike previous alignment methods such as RLHF that simply learn human preferences, SafeLadder enables SafeWork-R1 to develop intrinsic safety reasoning and self-reflection abilities, giving rise to safety `aha' moments. Notably, SafeWork-R1 achieves an average improvement of 46.54% over its base model Qwen2.5-VL-72B on safety-related benchmarks without compromising general capabilities, and delivers state-of-the-art safety performance compared to leading proprietary models such as GPT-4.1 and Claude Opus 4. To further bolster its reliability, we implement two distinct inference-time intervention methods and a deliberative search mechanism, enforcing step-level verification. Finally, we further develop SafeWork-R1-InternVL3-78B, SafeWork-R1-DeepSeek-70B, and SafeWork-R1-Qwen2.5VL-7B. All resulting models demonstrate that safety and capability can co-evolve synergistically, highlighting the generalizability of our framework in building robust, reliable, and trustworthy general-purpose AI.
UnsafeBench: Benchmarking Image Safety Classifiers on Real-World and AI-Generated Images
Image safety classifiers play an important role in identifying and mitigating the spread of unsafe images online (e.g., images including violence, hateful rhetoric, etc.). At the same time, with the advent of text-to-image models and increasing concerns about the safety of AI models, developers are increasingly relying on image safety classifiers to safeguard their models. Yet, the performance of current image safety classifiers remains unknown for real-world and AI-generated images. To bridge this research gap, in this work, we propose UnsafeBench, a benchmarking framework that evaluates the effectiveness and robustness of image safety classifiers. First, we curate a large dataset of 10K real-world and AI-generated images that are annotated as safe or unsafe based on a set of 11 unsafe categories of images (sexual, violent, hateful, etc.). Then, we evaluate the effectiveness and robustness of five popular image safety classifiers, as well as three classifiers that are powered by general-purpose visual language models. Our assessment indicates that existing image safety classifiers are not comprehensive and effective enough in mitigating the multifaceted problem of unsafe images. Also, we find that classifiers trained only on real-world images tend to have degraded performance when applied to AI-generated images. Motivated by these findings, we design and implement a comprehensive image moderation tool called PerspectiveVision, which effectively identifies 11 categories of real-world and AI-generated unsafe images. The best PerspectiveVision model achieves an overall F1-Score of 0.810 on six evaluation datasets, which is comparable with closed-source and expensive state-of-the-art models like GPT-4V. UnsafeBench and PerspectiveVision can aid the research community in better understanding the landscape of image safety classification in the era of generative AI.
Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs
With the rapid evolution of large language models (LLMs), new and hard-to-predict harmful capabilities are emerging. This requires developers to be able to identify risks through the evaluation of "dangerous capabilities" in order to responsibly deploy LLMs. In this work, we collect the first open-source dataset to evaluate safeguards in LLMs, and deploy safer open-source LLMs at a low cost. Our dataset is curated and filtered to consist only of instructions that responsible language models should not follow. We annotate and assess the responses of six popular LLMs to these instructions. Based on our annotation, we proceed to train several BERT-like classifiers, and find that these small classifiers can achieve results that are comparable with GPT-4 on automatic safety evaluation. Warning: this paper contains example data that may be offensive, harmful, or biased.
Taxonomy of Machine Learning Safety: A Survey and Primer
The open-world deployment of Machine Learning (ML) algorithms in safety-critical applications such as autonomous vehicles needs to address a variety of ML vulnerabilities such as interpretability, verifiability, and performance limitations. Research explores different approaches to improve ML dependability by proposing new models and training techniques to reduce generalization error, achieve domain adaptation, and detect outlier examples and adversarial attacks. However, there is a missing connection between ongoing ML research and well-established safety principles. In this paper, we present a structured and comprehensive review of ML techniques to improve the dependability of ML algorithms in uncontrolled open-world settings. From this review, we propose the Taxonomy of ML Safety that maps state-of-the-art ML techniques to key engineering safety strategies. Our taxonomy of ML safety presents a safety-oriented categorization of ML techniques to provide guidance for improving dependability of the ML design and development. The proposed taxonomy can serve as a safety checklist to aid designers in improving coverage and diversity of safety strategies employed in any given ML system.
Aegis2.0: A Diverse AI Safety Dataset and Risks Taxonomy for Alignment of LLM Guardrails
As Large Language Models (LLMs) and generative AI become increasingly widespread, concerns about content safety have grown in parallel. Currently, there is a clear lack of high-quality, human-annotated datasets that address the full spectrum of LLM-related safety risks and are usable for commercial applications. To bridge this gap, we propose a comprehensive and adaptable taxonomy for categorizing safety risks, structured into 12 top-level hazard categories with an extension to 9 fine-grained subcategories. This taxonomy is designed to meet the diverse requirements of downstream users, offering more granular and flexible tools for managing various risk types. Using a hybrid data generation pipeline that combines human annotations with a multi-LLM "jury" system to assess the safety of responses, we obtain Aegis 2.0, a carefully curated collection of 34,248 samples of human-LLM interactions, annotated according to our proposed taxonomy. To validate its effectiveness, we demonstrate that several lightweight models, trained using parameter-efficient techniques on Aegis 2.0, achieve performance competitive with leading safety models fully fine-tuned on much larger, non-commercial datasets. In addition, we introduce a novel training blend that combines safety with topic following data.This approach enhances the adaptability of guard models, enabling them to generalize to new risk categories defined during inference. We plan to open-source Aegis 2.0 data and models to the research community to aid in the safety guardrailing of LLMs.
Classification with Conceptual Safeguards
We propose a new approach to promote safety in classification tasks with established concepts. Our approach -- called a conceptual safeguard -- acts as a verification layer for models that predict a target outcome by first predicting the presence of intermediate concepts. Given this architecture, a safeguard ensures that a model meets a minimal level of accuracy by abstaining from uncertain predictions. In contrast to a standard selective classifier, a safeguard provides an avenue to improve coverage by allowing a human to confirm the presence of uncertain concepts on instances on which it abstains. We develop methods to build safeguards that maximize coverage without compromising safety, namely techniques to propagate the uncertainty in concept predictions and to flag salient concepts for human review. We benchmark our approach on a collection of real-world and synthetic datasets, showing that it can improve performance and coverage in deep learning tasks.
RabakBench: Scaling Human Annotations to Construct Localized Multilingual Safety Benchmarks for Low-Resource Languages
Large language models (LLMs) and their safety classifiers often perform poorly on low-resource languages due to limited training data and evaluation benchmarks. This paper introduces RabakBench, a new multilingual safety benchmark localized to Singapore's unique linguistic context, covering Singlish, Chinese, Malay, and Tamil. RabakBench is constructed through a scalable three-stage pipeline: (i) Generate - adversarial example generation by augmenting real Singlish web content with LLM-driven red teaming; (ii) Label - semi-automated multi-label safety annotation using majority-voted LLM labelers aligned with human judgments; and (iii) Translate - high-fidelity translation preserving linguistic nuance and toxicity across languages. The final dataset comprises over 5,000 safety-labeled examples across four languages and six fine-grained safety categories with severity levels. Evaluations of 11 popular open-source and closed-source guardrail classifiers reveal significant performance degradation. RabakBench not only enables robust safety evaluation in Southeast Asian multilingual settings but also offers a reproducible framework for building localized safety datasets in low-resource environments. The benchmark dataset, including the human-verified translations, and evaluation code are publicly available.
A Text Classification Framework for Simple and Effective Early Depression Detection Over Social Media Streams
With the rise of the Internet, there is a growing need to build intelligent systems that are capable of efficiently dealing with early risk detection (ERD) problems on social media, such as early depression detection, early rumor detection or identification of sexual predators. These systems, nowadays mostly based on machine learning techniques, must be able to deal with data streams since users provide their data over time. In addition, these systems must be able to decide when the processed data is sufficient to actually classify users. Moreover, since ERD tasks involve risky decisions by which people's lives could be affected, such systems must also be able to justify their decisions. However, most standard and state-of-the-art supervised machine learning models are not well suited to deal with this scenario. This is due to the fact that they either act as black boxes or do not support incremental classification/learning. In this paper we introduce SS3, a novel supervised learning model for text classification that naturally supports these aspects. SS3 was designed to be used as a general framework to deal with ERD problems. We evaluated our model on the CLEF's eRisk2017 pilot task on early depression detection. Most of the 30 contributions submitted to this competition used state-of-the-art methods. Experimental results show that our classifier was able to outperform these models and standard classifiers, despite being less computationally expensive and having the ability to explain its rationale.
SafeScientist: Toward Risk-Aware Scientific Discoveries by LLM Agents
Recent advancements in large language model (LLM) agents have significantly accelerated scientific discovery automation, yet concurrently raised critical ethical and safety concerns. To systematically address these challenges, we introduce SafeScientist, an innovative AI scientist framework explicitly designed to enhance safety and ethical responsibility in AI-driven scientific exploration. SafeScientist proactively refuses ethically inappropriate or high-risk tasks and rigorously emphasizes safety throughout the research process. To achieve comprehensive safety oversight, we integrate multiple defensive mechanisms, including prompt monitoring, agent-collaboration monitoring, tool-use monitoring, and an ethical reviewer component. Complementing SafeScientist, we propose SciSafetyBench, a novel benchmark specifically designed to evaluate AI safety in scientific contexts, comprising 240 high-risk scientific tasks across 6 domains, alongside 30 specially designed scientific tools and 120 tool-related risk tasks. Extensive experiments demonstrate that SafeScientist significantly improves safety performance by 35\% compared to traditional AI scientist frameworks, without compromising scientific output quality. Additionally, we rigorously validate the robustness of our safety pipeline against diverse adversarial attack methods, further confirming the effectiveness of our integrated approach. The code and data will be available at https://github.com/ulab-uiuc/SafeScientist. red{Warning: this paper contains example data that may be offensive or harmful.}
When to Accept Automated Predictions and When to Defer to Human Judgment?
Ensuring the reliability and safety of automated decision-making is crucial. It is well-known that data distribution shifts in machine learning can produce unreliable outcomes. This paper proposes a new approach for measuring the reliability of predictions under distribution shifts. We analyze how the outputs of a trained neural network change using clustering to measure distances between outputs and class centroids. We propose this distance as a metric to evaluate the confidence of predictions under distribution shifts. We assign each prediction to a cluster with centroid representing the mean softmax output for all correct predictions of a given class. We then define a safety threshold for a class as the smallest distance from an incorrect prediction to the given class centroid. We evaluate the approach on the MNIST and CIFAR-10 datasets using a Convolutional Neural Network and a Vision Transformer, respectively. The results show that our approach is consistent across these data sets and network models, and indicate that the proposed metric can offer an efficient way of determining when automated predictions are acceptable and when they should be deferred to human operators given a distribution shift.
SafeRoute: Adaptive Model Selection for Efficient and Accurate Safety Guardrails in Large Language Models
Deploying large language models (LLMs) in real-world applications requires robust safety guard models to detect and block harmful user prompts. While large safety guard models achieve strong performance, their computational cost is substantial. To mitigate this, smaller distilled models are used, but they often underperform on "hard" examples where the larger model provides accurate predictions. We observe that many inputs can be reliably handled by the smaller model, while only a small fraction require the larger model's capacity. Motivated by this, we propose SafeRoute, a binary router that distinguishes hard examples from easy ones. Our method selectively applies the larger safety guard model to the data that the router considers hard, improving efficiency while maintaining accuracy compared to solely using the larger safety guard model. Experimental results on multiple benchmark datasets demonstrate that our adaptive model selection significantly enhances the trade-off between computational cost and safety performance, outperforming relevant baselines.
Evidential Turing Processes
A probabilistic classifier with reliable predictive uncertainties i) fits successfully to the target domain data, ii) provides calibrated class probabilities in difficult regions of the target domain (e.g.\ class overlap), and iii) accurately identifies queries coming out of the target domain and rejects them. We introduce an original combination of Evidential Deep Learning, Neural Processes, and Neural Turing Machines capable of providing all three essential properties mentioned above for total uncertainty quantification. We observe our method on five classification tasks to be the only one that can excel all three aspects of total calibration with a single standalone predictor. Our unified solution delivers an implementation-friendly and compute efficient recipe for safety clearance and provides intellectual economy to an investigation of algorithmic roots of epistemic awareness in deep neural nets.
Llama Guard: LLM-based Input-Output Safeguard for Human-AI Conversations
We introduce Llama Guard, an LLM-based input-output safeguard model geared towards Human-AI conversation use cases. Our model incorporates a safety risk taxonomy, a valuable tool for categorizing a specific set of safety risks found in LLM prompts (i.e., prompt classification). This taxonomy is also instrumental in classifying the responses generated by LLMs to these prompts, a process we refer to as response classification. For the purpose of both prompt and response classification, we have meticulously gathered a dataset of high quality. Llama Guard, a Llama2-7b model that is instruction-tuned on our collected dataset, albeit low in volume, demonstrates strong performance on existing benchmarks such as the OpenAI Moderation Evaluation dataset and ToxicChat, where its performance matches or exceeds that of currently available content moderation tools. Llama Guard functions as a language model, carrying out multi-class classification and generating binary decision scores. Furthermore, the instruction fine-tuning of Llama Guard allows for the customization of tasks and the adaptation of output formats. This feature enhances the model's capabilities, such as enabling the adjustment of taxonomy categories to align with specific use cases, and facilitating zero-shot or few-shot prompting with diverse taxonomies at the input. We are making Llama Guard model weights available and we encourage researchers to further develop and adapt them to meet the evolving needs of the community for AI safety.
Detecting and Filtering Unsafe Training Data via Data Attribution
Large language models (LLMs) are vulnerable to unsafe training data that even small amounts of unsafe data can lead to harmful model behaviors. Detecting and filtering such unsafe training data is essential for trustworthy model development. Current state-of-the-art (SOTA) approaches typically rely on training moderation classifiers which requires significant computational overhead and are limited to predefined taxonomies, making them less adaptable to evolving safety concerns. Moreover, these classifiers lack insight into the training process, limiting their effectiveness in filtering unsafe data. To address these limitations, we propose DABUF, leveraging data attribution to detect and filter unsafe training data by attributing harmful model outputs to influential training data points. DABUF enables flexible identification of various unsafe data types without predefined taxonomies. However, in practice, model outputs can be complex with combined safe linguistic features and unsafe content, leading to reduced attribution accuracy. In such cases, DABUF will integrate moderation classifiers to identify a minimal subset of unsafe training data for targeted attribution (such as jailbreak). When model outputs are relatively straightforward, DABUF uses model outputs directly as the attribution targets. We evaluate the performance on two different tasks: in filtering jailbreaking training data and in identifying and mitigating gender bias. DABUF outperforms SOTA approaches by up to 7.5\% in detection AUPRC in jailbreaking scenarios, and 44.1\% in detecting gender bias. Moreover, retraining on DABUF-filtered data leads to higher model safety across experiments, underscoring its versatility in addressing a broad spectrum of unsafe data issues.
PolyGuard: A Multilingual Safety Moderation Tool for 17 Languages
Truly multilingual safety moderation efforts for Large Language Models (LLMs) have been hindered by a narrow focus on a small set of languages (e.g., English, Chinese) as well as a limited scope of safety definition, resulting in significant gaps in moderation capabilities. To bridge these gaps, we release POLYGUARD, a new state-of-the-art multilingual safety model for safeguarding LLM generations, and the corresponding training and evaluation datasets. POLYGUARD is trained on POLYGUARDMIX, the largest multilingual safety training corpus to date containing 1.91M samples across 17 languages (e.g., Chinese, Czech, English, Hindi). We also introduce POLYGUARDPROMPTS, a high quality multilingual benchmark with 29K samples for the evaluation of safety guardrails. Created by combining naturally occurring multilingual human-LLM interactions and human-verified machine translations of an English-only safety dataset (WildGuardMix; Han et al., 2024), our datasets contain prompt-output pairs with labels of prompt harmfulness, response harmfulness, and response refusal. Through extensive evaluations across multiple safety and toxicity benchmarks, we demonstrate that POLYGUARD outperforms existing state-of-the-art open-weight and commercial safety classifiers by 5.5%. Our contributions advance efforts toward safer multilingual LLMs for all global users.
Comparative Study on the Performance of Categorical Variable Encoders in Classification and Regression Tasks
Categorical variables often appear in datasets for classification and regression tasks, and they need to be encoded into numerical values before training. Since many encoders have been developed and can significantly impact performance, choosing the appropriate encoder for a task becomes a time-consuming yet important practical issue. This study broadly classifies machine learning models into three categories: 1) ATI models that implicitly perform affine transformations on inputs, such as multi-layer perceptron neural network; 2) Tree-based models that are based on decision trees, such as random forest; and 3) the rest, such as kNN. Theoretically, we prove that the one-hot encoder is the best choice for ATI models in the sense that it can mimic any other encoders by learning suitable weights from the data. We also explain why the target encoder and its variants are the most suitable encoders for tree-based models. This study conducted comprehensive computational experiments to evaluate 14 encoders, including one-hot and target encoders, along with eight common machine-learning models on 28 datasets. The computational results agree with our theoretical analysis. The findings in this study shed light on how to select the suitable encoder for data scientists in fields such as fraud detection, disease diagnosis, etc.
STAR-1: Safer Alignment of Reasoning LLMs with 1K Data
This paper introduces STAR-1, a high-quality, just-1k-scale safety dataset specifically designed for large reasoning models (LRMs) like DeepSeek-R1. Built on three core principles -- diversity, deliberative reasoning, and rigorous filtering -- STAR-1 aims to address the critical needs for safety alignment in LRMs. Specifically, we begin by integrating existing open-source safety datasets from diverse sources. Then, we curate safety policies to generate policy-grounded deliberative reasoning samples. Lastly, we apply a GPT-4o-based safety scoring system to select training examples aligned with best practices. Experimental results show that fine-tuning LRMs with STAR-1 leads to an average 40% improvement in safety performance across four benchmarks, while only incurring a marginal decrease (e.g., an average of 1.1%) in reasoning ability measured across five reasoning tasks. Extensive ablation studies further validate the importance of our design principles in constructing STAR-1 and analyze its efficacy across both LRMs and traditional LLMs. Our project page is https://ucsc-vlaa.github.io/STAR-1.
AEGIS: Online Adaptive AI Content Safety Moderation with Ensemble of LLM Experts
As Large Language Models (LLMs) and generative AI become more widespread, the content safety risks associated with their use also increase. We find a notable deficiency in high-quality content safety datasets and benchmarks that comprehensively cover a wide range of critical safety areas. To address this, we define a broad content safety risk taxonomy, comprising 13 critical risk and 9 sparse risk categories. Additionally, we curate AEGISSAFETYDATASET, a new dataset of approximately 26, 000 human-LLM interaction instances, complete with human annotations adhering to the taxonomy. We plan to release this dataset to the community to further research and to help benchmark LLM models for safety. To demonstrate the effectiveness of the dataset, we instruction-tune multiple LLM-based safety models. We show that our models (named AEGISSAFETYEXPERTS), not only surpass or perform competitively with the state-of-the-art LLM-based safety models and general purpose LLMs, but also exhibit robustness across multiple jail-break attack categories. We also show how using AEGISSAFETYDATASET during the LLM alignment phase does not negatively impact the performance of the aligned models on MT Bench scores. Furthermore, we propose AEGIS, a novel application of a no-regret online adaptation framework with strong theoretical guarantees, to perform content moderation with an ensemble of LLM content safety experts in deployment
Empirical study of Machine Learning Classifier Evaluation Metrics behavior in Massively Imbalanced and Noisy data
With growing credit card transaction volumes, the fraud percentages are also rising, including overhead costs for institutions to combat and compensate victims. The use of machine learning into the financial sector permits more effective protection against fraud and other economic crime. Suitably trained machine learning classifiers help proactive fraud detection, improving stakeholder trust and robustness against illicit transactions. However, the design of machine learning based fraud detection algorithms has been challenging and slow due the massively unbalanced nature of fraud data and the challenges of identifying the frauds accurately and completely to create a gold standard ground truth. Furthermore, there are no benchmarks or standard classifier evaluation metrics to measure and identify better performing classifiers, thus keeping researchers in the dark. In this work, we develop a theoretical foundation to model human annotation errors and extreme imbalance typical in real world fraud detection data sets. By conducting empirical experiments on a hypothetical classifier, with a synthetic data distribution approximated to a popular real world credit card fraud data set, we simulate human annotation errors and extreme imbalance to observe the behavior of popular machine learning classifier evaluation matrices. We demonstrate that a combined F1 score and g-mean, in that specific order, is the best evaluation metric for typical imbalanced fraud detection model classification.
MLLM-as-a-Judge for Image Safety without Human Labeling
Image content safety has become a significant challenge with the rise of visual media on online platforms. Meanwhile, in the age of AI-generated content (AIGC), many image generation models are capable of producing harmful content, such as images containing sexual or violent material. Thus, it becomes crucial to identify such unsafe images based on established safety rules. Pre-trained Multimodal Large Language Models (MLLMs) offer potential in this regard, given their strong pattern recognition abilities. Existing approaches typically fine-tune MLLMs with human-labeled datasets, which however brings a series of drawbacks. First, relying on human annotators to label data following intricate and detailed guidelines is both expensive and labor-intensive. Furthermore, users of safety judgment systems may need to frequently update safety rules, making fine-tuning on human-based annotation more challenging. This raises the research question: Can we detect unsafe images by querying MLLMs in a zero-shot setting using a predefined safety constitution (a set of safety rules)? Our research showed that simply querying pre-trained MLLMs does not yield satisfactory results. This lack of effectiveness stems from factors such as the subjectivity of safety rules, the complexity of lengthy constitutions, and the inherent biases in the models. To address these challenges, we propose a MLLM-based method includes objectifying safety rules, assessing the relevance between rules and images, making quick judgments based on debiased token probabilities with logically complete yet simplified precondition chains for safety rules, and conducting more in-depth reasoning with cascaded chain-of-thought processes if necessary. Experiment results demonstrate that our method is highly effective for zero-shot image safety judgment tasks.
Error Detection and Constraint Recovery in Hierarchical Multi-Label Classification without Prior Knowledge
Recent advances in Hierarchical Multi-label Classification (HMC), particularly neurosymbolic-based approaches, have demonstrated improved consistency and accuracy by enforcing constraints on a neural model during training. However, such work assumes the existence of such constraints a-priori. In this paper, we relax this strong assumption and present an approach based on Error Detection Rules (EDR) that allow for learning explainable rules about the failure modes of machine learning models. We show that these rules are not only effective in detecting when a machine learning classifier has made an error but also can be leveraged as constraints for HMC, thereby allowing the recovery of explainable constraints even if they are not provided. We show that our approach is effective in detecting machine learning errors and recovering constraints, is noise tolerant, and can function as a source of knowledge for neurosymbolic models on multiple datasets, including a newly introduced military vehicle recognition dataset.
Detectors for Safe and Reliable LLMs: Implementations, Uses, and Limitations
Large language models (LLMs) are susceptible to a variety of risks, from non-faithful output to biased and toxic generations. Due to several limiting factors surrounding LLMs (training cost, API access, data availability, etc.), it may not always be feasible to impose direct safety constraints on a deployed model. Therefore, an efficient and reliable alternative is required. To this end, we present our ongoing efforts to create and deploy a library of detectors: compact and easy-to-build classification models that provide labels for various harms. In addition to the detectors themselves, we discuss a wide range of uses for these detector models - from acting as guardrails to enabling effective AI governance. We also deep dive into inherent challenges in their development and discuss future work aimed at making the detectors more reliable and broadening their scope.
Competence-Level Prediction and Resume & Job Description Matching Using Context-Aware Transformer Models
This paper presents a comprehensive study on resume classification to reduce the time and labor needed to screen an overwhelming number of applications significantly, while improving the selection of suitable candidates. A total of 6,492 resumes are extracted from 24,933 job applications for 252 positions designated into four levels of experience for Clinical Research Coordinators (CRC). Each resume is manually annotated to its most appropriate CRC position by experts through several rounds of triple annotation to establish guidelines. As a result, a high Kappa score of 61% is achieved for inter-annotator agreement. Given this dataset, novel transformer-based classification models are developed for two tasks: the first task takes a resume and classifies it to a CRC level (T1), and the second task takes both a resume and a job description to apply and predicts if the application is suited to the job T2. Our best models using section encoding and multi-head attention decoding give results of 73.3% to T1 and 79.2% to T2. Our analysis shows that the prediction errors are mostly made among adjacent CRC levels, which are hard for even experts to distinguish, implying the practical value of our models in real HR platforms.
SLM as Guardian: Pioneering AI Safety with Small Language Models
Most prior safety research of large language models (LLMs) has focused on enhancing the alignment of LLMs to better suit the safety requirements of humans. However, internalizing such safeguard features into larger models brought challenges of higher training cost and unintended degradation of helpfulness. To overcome such challenges, a modular approach employing a smaller LLM to detect harmful user queries is regarded as a convenient solution in designing LLM-based system with safety requirements. In this paper, we leverage a smaller LLM for both harmful query detection and safeguard response generation. We introduce our safety requirements and the taxonomy of harmfulness categories, and then propose a multi-task learning mechanism fusing the two tasks into a single model. We demonstrate the effectiveness of our approach, providing on par or surpassing harmful query detection and safeguard response performance compared to the publicly available LLMs.
Prompting4Debugging: Red-Teaming Text-to-Image Diffusion Models by Finding Problematic Prompts
Text-to-image diffusion models, e.g. Stable Diffusion (SD), lately have shown remarkable ability in high-quality content generation, and become one of the representatives for the recent wave of transformative AI. Nevertheless, such advance comes with an intensifying concern about the misuse of this generative technology, especially for producing copyrighted or NSFW (i.e. not safe for work) images. Although efforts have been made to filter inappropriate images/prompts or remove undesirable concepts/styles via model fine-tuning, the reliability of these safety mechanisms against diversified problematic prompts remains largely unexplored. In this work, we propose Prompting4Debugging (P4D) as a debugging and red-teaming tool that automatically finds problematic prompts for diffusion models to test the reliability of a deployed safety mechanism. We demonstrate the efficacy of our P4D tool in uncovering new vulnerabilities of SD models with safety mechanisms. Particularly, our result shows that around half of prompts in existing safe prompting benchmarks which were originally considered "safe" can actually be manipulated to bypass many deployed safety mechanisms, including concept removal, negative prompt, and safety guidance. Our findings suggest that, without comprehensive testing, the evaluations on limited safe prompting benchmarks can lead to a false sense of safety for text-to-image models.
ShieldLM: Empowering LLMs as Aligned, Customizable and Explainable Safety Detectors
The safety of Large Language Models (LLMs) has gained increasing attention in recent years, but there still lacks a comprehensive approach for detecting safety issues within LLMs' responses in an aligned, customizable and explainable manner. In this paper, we propose ShieldLM, an LLM-based safety detector, which aligns with general human safety standards, supports customizable detection rules, and provides explanations for its decisions. To train ShieldLM, we compile a large bilingual dataset comprising 14,387 query-response pairs, annotating the safety of responses based on various safety standards. Through extensive experiments, we demonstrate that ShieldLM surpasses strong baselines across four test sets, showcasing remarkable customizability and explainability. Besides performing well on standard detection datasets, ShieldLM has also been shown to be effective in real-world situations as a safety evaluator for advanced LLMs. We release ShieldLM at https://github.com/thu-coai/ShieldLM to support accurate and explainable safety detection under various safety standards, contributing to the ongoing efforts to enhance the safety of LLMs.
SAFE: Machine Unlearning With Shard Graphs
We present Synergy Aware Forgetting Ensemble (SAFE), a method to adapt large models on a diverse collection of data while minimizing the expected cost to remove the influence of training samples from the trained model. This process, also known as selective forgetting or unlearning, is often conducted by partitioning a dataset into shards, training fully independent models on each, then ensembling the resulting models. Increasing the number of shards reduces the expected cost to forget but at the same time it increases inference cost and reduces the final accuracy of the model since synergistic information between samples is lost during the independent model training. Rather than treating each shard as independent, SAFE introduces the notion of a shard graph, which allows incorporating limited information from other shards during training, trading off a modest increase in expected forgetting cost with a significant increase in accuracy, all while still attaining complete removal of residual influence after forgetting. SAFE uses a lightweight system of adapters which can be trained while reusing most of the computations. This allows SAFE to be trained on shards an order-of-magnitude smaller than current state-of-the-art methods (thus reducing the forgetting costs) while also maintaining high accuracy, as we demonstrate empirically on fine-grained computer vision datasets.
A New Generation of Perspective API: Efficient Multilingual Character-level Transformers
On the world wide web, toxic content detectors are a crucial line of defense against potentially hateful and offensive messages. As such, building highly effective classifiers that enable a safer internet is an important research area. Moreover, the web is a highly multilingual, cross-cultural community that develops its own lingo over time. As such, it is crucial to develop models that are effective across a diverse range of languages, usages, and styles. In this paper, we present the fundamentals behind the next version of the Perspective API from Google Jigsaw. At the heart of the approach is a single multilingual token-free Charformer model that is applicable across a range of languages, domains, and tasks. We demonstrate that by forgoing static vocabularies, we gain flexibility across a variety of settings. We additionally outline the techniques employed to make such a byte-level model efficient and feasible for productionization. Through extensive experiments on multilingual toxic comment classification benchmarks derived from real API traffic and evaluation on an array of code-switching, covert toxicity, emoji-based hate, human-readable obfuscation, distribution shift, and bias evaluation settings, we show that our proposed approach outperforms strong baselines. Finally, we present our findings from deploying this system in production.
Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off
Machine learning models have recently found tremendous success in data-driven control systems. However, standard learning models often suffer from an accuracy-robustness trade-off, which is a limitation that must be overcome in the control of safety-critical systems that require both high performance and rigorous robustness guarantees. In this work, we build upon the recent "locally biased smoothing" method to develop classifiers that simultaneously inherit high accuracy from standard models and high robustness from robust models. Specifically, we extend locally biased smoothing to the multi-class setting, and then overcome its performance bottleneck by generalizing the formulation to "mix" the outputs of a standard neural network and a robust neural network. We prove that when the robustness of the robust base model is certifiable, within a closed-form ell_p radius, no alteration or attack on an input can result in misclassification of the mixed classifier; the proposed model inherits the certified robustness. Moreover, we use numerical experiments on the CIFAR-10 benchmark dataset to verify that the mixed model noticeably improves the accuracy-robustness trade-off.
Automating Microservices Test Failure Analysis using Kubernetes Cluster Logs
Kubernetes is a free, open-source container orchestration system for deploying and managing Docker containers that host microservices. Kubernetes cluster logs help in determining the reason for the failure. However, as systems become more complex, identifying failure reasons manually becomes more difficult and time-consuming. This study aims to identify effective and efficient classification algorithms to automatically determine the failure reason. We compare five classification algorithms, Support Vector Machines, K-Nearest Neighbors, Random Forest, Gradient Boosting Classifier, and Multilayer Perceptron. Our results indicate that Random Forest produces good accuracy while requiring fewer computational resources than other algorithms.
ResumeAtlas: Revisiting Resume Classification with Large-Scale Datasets and Large Language Models
The increasing reliance on online recruitment platforms coupled with the adoption of AI technologies has highlighted the critical need for efficient resume classification methods. However, challenges such as small datasets, lack of standardized resume templates, and privacy concerns hinder the accuracy and effectiveness of existing classification models. In this work, we address these challenges by presenting a comprehensive approach to resume classification. We curated a large-scale dataset of 13,389 resumes from diverse sources and employed Large Language Models (LLMs) such as BERT and Gemma1.1 2B for classification. Our results demonstrate significant improvements over traditional machine learning approaches, with our best model achieving a top-1 accuracy of 92\% and a top-5 accuracy of 97.5\%. These findings underscore the importance of dataset quality and advanced model architectures in enhancing the accuracy and robustness of resume classification systems, thus advancing the field of online recruitment practices.
ALERT: A Comprehensive Benchmark for Assessing Large Language Models' Safety through Red Teaming
When building Large Language Models (LLMs), it is paramount to bear safety in mind and protect them with guardrails. Indeed, LLMs should never generate content promoting or normalizing harmful, illegal, or unethical behavior that may contribute to harm to individuals or society. This principle applies to both normal and adversarial use. In response, we introduce ALERT, a large-scale benchmark to assess safety based on a novel fine-grained risk taxonomy. It is designed to evaluate the safety of LLMs through red teaming methodologies and consists of more than 45k instructions categorized using our novel taxonomy. By subjecting LLMs to adversarial testing scenarios, ALERT aims to identify vulnerabilities, inform improvements, and enhance the overall safety of the language models. Furthermore, the fine-grained taxonomy enables researchers to perform an in-depth evaluation that also helps one to assess the alignment with various policies. In our experiments, we extensively evaluate 10 popular open- and closed-source LLMs and demonstrate that many of them still struggle to attain reasonable levels of safety.
SafeChain: Safety of Language Models with Long Chain-of-Thought Reasoning Capabilities
Emerging large reasoning models (LRMs), such as DeepSeek-R1 models, leverage long chain-of-thought (CoT) reasoning to generate structured intermediate steps, enhancing their reasoning capabilities. However, long CoT does not inherently guarantee safe outputs, potentially leading to harmful consequences such as the introduction of security vulnerabilities in code or the spread of misinformation. Current research on large language model (LLM) safety usually focuses on short-answer responses, overlooking the long CoT style outputs of LRMs. To bridge this gap, we conduct a systematic study of LRM safety. First, we investigate safety evaluators calibrated against human annotations. Using our newly developed metrics, we thoroughly assess the safety of 12 state-of-the-art LRMs on StrongReject and WildJailbreak datasets. Our results show that LRMs are not safe compared to their reasoning advance. Further, we perform a fine-grained analysis of the reasoning trace and final answer. We find that three decoding strategies-ZeroThink, LessThink, and MoreThink-can improve model safety without additional training. However, these strategies either use constrained reasoning traces or incur high inference costs. To better strengthen LRM safety, we introduce SafeChain, the first-of-its-kind safety training dataset in CoT style. We fine-tune two LRMs with SafeChain, showing that it not only enhances model safety but also preserves performance across 6 reasoning benchmarks.
Toward Effective Automated Content Analysis via Crowdsourcing
Many computer scientists use the aggregated answers of online workers to represent ground truth. Prior work has shown that aggregation methods such as majority voting are effective for measuring relatively objective features. For subjective features such as semantic connotation, online workers, known for optimizing their hourly earnings, tend to deteriorate in the quality of their responses as they work longer. In this paper, we aim to address this issue by proposing a quality-aware semantic data annotation system. We observe that with timely feedback on workers' performance quantified by quality scores, better informed online workers can maintain the quality of their labeling throughout an extended period of time. We validate the effectiveness of the proposed annotation system through i) evaluating performance based on an expert-labeled dataset, and ii) demonstrating machine learning tasks that can lead to consistent learning behavior with 70%-80% accuracy. Our results suggest that with our system, researchers can collect high-quality answers of subjective semantic features at a large scale.
SafeInfer: Context Adaptive Decoding Time Safety Alignment for Large Language Models
Safety-aligned language models often exhibit fragile and imbalanced safety mechanisms, increasing the likelihood of generating unsafe content. In addition, incorporating new knowledge through editing techniques to language models can further compromise safety. To address these issues, we propose SafeInfer, a context-adaptive, decoding-time safety alignment strategy for generating safe responses to user queries. SafeInfer comprises two phases: the safety amplification phase, which employs safe demonstration examples to adjust the model's hidden states and increase the likelihood of safer outputs, and the safety-guided decoding phase, which influences token selection based on safety-optimized distributions, ensuring the generated content complies with ethical guidelines. Further, we present HarmEval, a novel benchmark for extensive safety evaluations, designed to address potential misuse scenarios in accordance with the policies of leading AI tech giants.
How Should We Enhance the Safety of Large Reasoning Models: An Empirical Study
Large Reasoning Models (LRMs) have achieved remarkable success on reasoning-intensive tasks such as mathematics and programming. However, their enhanced reasoning capabilities do not necessarily translate to improved safety performance-and in some cases, may even degrade it. This raises an important research question: how can we enhance the safety of LRMs? In this paper, we present a comprehensive empirical study on how to enhance the safety of LRMs through Supervised Fine-Tuning (SFT). Our investigation begins with an unexpected observation: directly distilling safe responses from DeepSeek-R1 fails to significantly enhance safety. We analyze this phenomenon and identify three key failure patterns that contribute to it. We then demonstrate that explicitly addressing these issues during the data distillation process can lead to substantial safety improvements. Next, we explore whether a long and complex reasoning process is necessary for achieving safety. Interestingly, we find that simply using short or template-based reasoning process can attain comparable safety performance-and are significantly easier for models to learn than more intricate reasoning chains. These findings prompt a deeper reflection on the role of reasoning in ensuring safety. Finally, we find that mixing math reasoning data during safety fine-tuning is helpful to balance safety and over-refusal. Overall, we hope our empirical study could provide a more holistic picture on enhancing the safety of LRMs. The code and data used in our experiments are released in https://github.com/thu-coai/LRM-Safety-Study.
On the Robustness of Randomized Ensembles to Adversarial Perturbations
Randomized ensemble classifiers (RECs), where one classifier is randomly selected during inference, have emerged as an attractive alternative to traditional ensembling methods for realizing adversarially robust classifiers with limited compute requirements. However, recent works have shown that existing methods for constructing RECs are more vulnerable than initially claimed, casting major doubts on their efficacy and prompting fundamental questions such as: "When are RECs useful?", "What are their limits?", and "How do we train them?". In this work, we first demystify RECs as we derive fundamental results regarding their theoretical limits, necessary and sufficient conditions for them to be useful, and more. Leveraging this new understanding, we propose a new boosting algorithm (BARRE) for training robust RECs, and empirically demonstrate its effectiveness at defending against strong ell_infty norm-bounded adversaries across various network architectures and datasets. Our code can be found at https://github.com/hsndbk4/BARRE.
Safe RLHF-V: Safe Reinforcement Learning from Human Feedback in Multimodal Large Language Models
Multimodal large language models (MLLMs) are critical for developing general-purpose AI assistants, yet they face growing safety risks. How can we ensure that MLLMs are safely aligned to prevent undesired behaviors such as discrimination, misinformation, or violations of ethical standards? In a further step, we need to explore how to fine-tune MLLMs to enhance reasoning performance while ensuring they satisfy safety constraints. Fundamentally, this can be formulated as a min-max optimization problem. In this study, we propose Safe RLHF-V, the first multimodal safety alignment framework that jointly optimizes helpfulness and safety using separate multimodal reward and cost models within a Lagrangian-based constrained optimization framework. Given that there is a lack of preference datasets that separate helpfulness and safety in multimodal scenarios, we introduce BeaverTails-V, the first open-source dataset with dual preference annotations for helpfulness and safety, along with multi-level safety labels (minor, moderate, severe). Additionally, we design a Multi-level Guardrail System to proactively defend against unsafe queries and adversarial attacks. By applying the Beaver-Guard-V moderation for 5 rounds of filtering and re-generation on the precursor model, the overall safety of the upstream model is significantly improved by an average of 40.9%. Experimental results demonstrate that fine-tuning different MLLMs with Safe RLHF can effectively enhance model helpfulness while ensuring improved safety. Specifically, Safe RLHF-V improves model safety by 34.2% and helpfulness by 34.3%. All of datasets, models, and code can be found at https://github.com/SafeRLHF-V to support the safety development of MLLMs and reduce potential societal risks.
ShieldGemma: Generative AI Content Moderation Based on Gemma
We present ShieldGemma, a comprehensive suite of LLM-based safety content moderation models built upon Gemma2. These models provide robust, state-of-the-art predictions of safety risks across key harm types (sexually explicit, dangerous content, harassment, hate speech) in both user input and LLM-generated output. By evaluating on both public and internal benchmarks, we demonstrate superior performance compared to existing models, such as Llama Guard (+10.8\% AU-PRC on public benchmarks) and WildCard (+4.3\%). Additionally, we present a novel LLM-based data curation pipeline, adaptable to a variety of safety-related tasks and beyond. We have shown strong generalization performance for model trained mainly on synthetic data. By releasing ShieldGemma, we provide a valuable resource to the research community, advancing LLM safety and enabling the creation of more effective content moderation solutions for developers.
SafeKey: Amplifying Aha-Moment Insights for Safety Reasoning
Large Reasoning Models (LRMs) introduce a new generation paradigm of explicitly reasoning before answering, leading to remarkable improvements in complex tasks. However, they pose great safety risks against harmful queries and adversarial attacks. While recent mainstream safety efforts on LRMs, supervised fine-tuning (SFT), improve safety performance, we find that SFT-aligned models struggle to generalize to unseen jailbreak prompts. After thorough investigation of LRMs' generation, we identify a safety aha moment that can activate safety reasoning and lead to a safe response. This aha moment typically appears in the `key sentence', which follows models' query understanding process and can indicate whether the model will proceed safely. Based on these insights, we propose SafeKey, including two complementary objectives to better activate the safety aha moment in the key sentence: (1) a Dual-Path Safety Head to enhance the safety signal in the model's internal representations before the key sentence, and (2) a Query-Mask Modeling objective to improve the models' attention on its query understanding, which has important safety hints. Experiments across multiple safety benchmarks demonstrate that our methods significantly improve safety generalization to a wide range of jailbreak attacks and out-of-distribution harmful prompts, lowering the average harmfulness rate by 9.6\%, while maintaining general abilities. Our analysis reveals how SafeKey enhances safety by reshaping internal attention and improving the quality of hidden representations.
Building Safe and Reliable AI systems for Safety Critical Tasks with Vision-Language Processing
Although AI systems have been applied in various fields and achieved impressive performance, their safety and reliability are still a big concern. This is especially important for safety-critical tasks. One shared characteristic of these critical tasks is their risk sensitivity, where small mistakes can cause big consequences and even endanger life. There are several factors that could be guidelines for the successful deployment of AI systems in sensitive tasks: (i) failure detection and out-of-distribution (OOD) detection; (ii) overfitting identification; (iii) uncertainty quantification for predictions; (iv) robustness to data perturbations. These factors are also challenges of current AI systems, which are major blocks for building safe and reliable AI. Specifically, the current AI algorithms are unable to identify common causes for failure detection. Furthermore, additional techniques are required to quantify the quality of predictions. All these contribute to inaccurate uncertainty quantification, which lowers trust in predictions. Hence obtaining accurate model uncertainty quantification and its further improvement are challenging. To address these issues, many techniques have been proposed, such as regularization methods and learning strategies. As vision and language are the most typical data type and have many open source benchmark datasets, this thesis will focus on vision-language data processing for tasks like classification, image captioning, and vision question answering. In this thesis, we aim to build a safeguard by further developing current techniques to ensure the accurate model uncertainty for safety-critical tasks.
CHiSafetyBench: A Chinese Hierarchical Safety Benchmark for Large Language Models
With the profound development of large language models(LLMs), their safety concerns have garnered increasing attention. However, there is a scarcity of Chinese safety benchmarks for LLMs, and the existing safety taxonomies are inadequate, lacking comprehensive safety detection capabilities in authentic Chinese scenarios. In this work, we introduce CHiSafetyBench, a dedicated safety benchmark for evaluating LLMs' capabilities in identifying risky content and refusing answering risky questions in Chinese contexts. CHiSafetyBench incorporates a dataset that covers a hierarchical Chinese safety taxonomy consisting of 5 risk areas and 31 categories. This dataset comprises two types of tasks: multiple-choice questions and question-answering, evaluating LLMs from the perspectives of risk content identification and the ability to refuse answering risky questions respectively. Utilizing this benchmark, we validate the feasibility of automatic evaluation as a substitute for human evaluation and conduct comprehensive automatic safety assessments on mainstream Chinese LLMs. Our experiments reveal the varying performance of different models across various safety domains, indicating that all models possess considerable potential for improvement in Chinese safety capabilities. Our dataset is publicly available at https://github.com/UnicomAI/UnicomBenchmark/tree/main/CHiSafetyBench.
SaLoRA: Safety-Alignment Preserved Low-Rank Adaptation
As advancements in large language models (LLMs) continue and the demand for personalized models increases, parameter-efficient fine-tuning (PEFT) methods (e.g., LoRA) will become essential due to their efficiency in reducing computation costs. However, recent studies have raised alarming concerns that LoRA fine-tuning could potentially compromise the safety alignment in LLMs, posing significant risks for the model owner. In this paper, we first investigate the underlying mechanism by analyzing the changes in safety alignment related features before and after fine-tuning. Then, we propose a fixed safety module calculated by safety data and a task-specific initialization for trainable parameters in low-rank adaptations, termed Safety-alignment preserved Low-Rank Adaptation (SaLoRA). Unlike previous LoRA methods and their variants, SaLoRA enables targeted modifications to LLMs without disrupting their original alignments. Our experiments show that SaLoRA outperforms various adapters-based approaches across various evaluation metrics in different fine-tuning tasks.
Towards a Classification of Open-Source ML Models and Datasets for Software Engineering
Background: Open-Source Pre-Trained Models (PTMs) and datasets provide extensive resources for various Machine Learning (ML) tasks, yet these resources lack a classification tailored to Software Engineering (SE) needs. Aims: We apply an SE-oriented classification to PTMs and datasets on a popular open-source ML repository, Hugging Face (HF), and analyze the evolution of PTMs over time. Method: We conducted a repository mining study. We started with a systematically gathered database of PTMs and datasets from the HF API. Our selection was refined by analyzing model and dataset cards and metadata, such as tags, and confirming SE relevance using Gemini 1.5 Pro. All analyses are replicable, with a publicly accessible replication package. Results: The most common SE task among PTMs and datasets is code generation, with a primary focus on software development and limited attention to software management. Popular PTMs and datasets mainly target software development. Among ML tasks, text generation is the most common in SE PTMs and datasets. There has been a marked increase in PTMs for SE since 2023 Q2. Conclusions: This study underscores the need for broader task coverage to enhance the integration of ML within SE practices.
FARE: Provably Fair Representation Learning with Practical Certificates
Fair representation learning (FRL) is a popular class of methods aiming to produce fair classifiers via data preprocessing. Recent regulatory directives stress the need for FRL methods that provide practical certificates, i.e., provable upper bounds on the unfairness of any downstream classifier trained on preprocessed data, which directly provides assurance in a practical scenario. Creating such FRL methods is an important challenge that remains unsolved. In this work, we address that challenge and introduce FARE (Fairness with Restricted Encoders), the first FRL method with practical fairness certificates. FARE is based on our key insight that restricting the representation space of the encoder enables the derivation of practical guarantees, while still permitting favorable accuracy-fairness tradeoffs for suitable instantiations, such as one we propose based on fair trees. To produce a practical certificate, we develop and apply a statistical procedure that computes a finite sample high-confidence upper bound on the unfairness of any downstream classifier trained on FARE embeddings. In our comprehensive experimental evaluation, we demonstrate that FARE produces practical certificates that are tight and often even comparable with purely empirical results obtained by prior methods, which establishes the practical value of our approach.
Unmasking and Improving Data Credibility: A Study with Datasets for Training Harmless Language Models
Language models have shown promise in various tasks but can be affected by undesired data during training, fine-tuning, or alignment. For example, if some unsafe conversations are wrongly annotated as safe ones, the model fine-tuned on these samples may be harmful. Therefore, the correctness of annotations, i.e., the credibility of the dataset, is important. This study focuses on the credibility of real-world datasets, including the popular benchmarks Jigsaw Civil Comments, Anthropic Harmless & Red Team, PKU BeaverTails & SafeRLHF, that can be used for training a harmless language model. Given the cost and difficulty of cleaning these datasets by humans, we introduce a systematic framework for evaluating the credibility of datasets, identifying label errors, and evaluating the influence of noisy labels in the curated language data, specifically focusing on unsafe comments and conversation classification. With the framework, we find and fix an average of 6.16% label errors in 11 datasets constructed from the above benchmarks. The data credibility and downstream learning performance can be remarkably improved by directly fixing label errors, indicating the significance of cleaning existing real-world datasets. We provide an open-source tool, Docta, for data cleaning at https://github.com/Docta-ai/docta.
Adversarial Training for High-Stakes Reliability
In the future, powerful AI systems may be deployed in high-stakes settings, where a single failure could be catastrophic. One technique for improving AI safety in high-stakes settings is adversarial training, which uses an adversary to generate examples to train on in order to achieve better worst-case performance. In this work, we used a safe language generation task (``avoid injuries'') as a testbed for achieving high reliability through adversarial training. We created a series of adversarial training techniques -- including a tool that assists human adversaries -- to find and eliminate failures in a classifier that filters text completions suggested by a generator. In our task, we determined that we can set very conservative classifier thresholds without significantly impacting the quality of the filtered outputs. We found that adversarial training increased robustness to the adversarial attacks that we trained on -- doubling the time for our contractors to find adversarial examples both with our tool (from 13 to 26 minutes) and without (from 20 to 44 minutes) -- without affecting in-distribution performance. We hope to see further work in the high-stakes reliability setting, including more powerful tools for enhancing human adversaries and better ways to measure high levels of reliability, until we can confidently rule out the possibility of catastrophic deployment-time failures of powerful models.
Beyond the Selected Completely At Random Assumption for Learning from Positive and Unlabeled Data
Most positive and unlabeled data is subject to selection biases. The labeled examples can, for example, be selected from the positive set because they are easier to obtain or more obviously positive. This paper investigates how learning can be ena BHbled in this setting. We propose and theoretically analyze an empirical-risk-based method for incorporating the labeling mechanism. Additionally, we investigate under which assumptions learning is possible when the labeling mechanism is not fully understood and propose a practical method to enable this. Our empirical analysis supports the theoretical results and shows that taking into account the possibility of a selection bias, even when the labeling mechanism is unknown, improves the trained classifiers.
Plugin estimators for selective classification with out-of-distribution detection
Real-world classifiers can benefit from the option of abstaining from predicting on samples where they have low confidence. Such abstention is particularly useful on samples which are close to the learned decision boundary, or which are outliers with respect to the training sample. These settings have been the subject of extensive but disjoint study in the selective classification (SC) and out-of-distribution (OOD) detection literature. Recent work on selective classification with OOD detection (SCOD) has argued for the unified study of these problems; however, the formal underpinnings of this problem are still nascent, and existing techniques are heuristic in nature. In this paper, we propose new plugin estimators for SCOD that are theoretically grounded, effective, and generalise existing approaches from the SC and OOD detection literature. In the course of our analysis, we formally explicate how na\"{i}ve use of existing SC and OOD detection baselines may be inadequate for SCOD. We empirically demonstrate that our approaches yields competitive SC and OOD detection performance compared to baselines from both literatures.
Career Path Prediction using Resume Representation Learning and Skill-based Matching
The impact of person-job fit on job satisfaction and performance is widely acknowledged, which highlights the importance of providing workers with next steps at the right time in their career. This task of predicting the next step in a career is known as career path prediction, and has diverse applications such as turnover prevention and internal job mobility. Existing methods to career path prediction rely on large amounts of private career history data to model the interactions between job titles and companies. We propose leveraging the unexplored textual descriptions that are part of work experience sections in resumes. We introduce a structured dataset of 2,164 anonymized career histories, annotated with ESCO occupation labels. Based on this dataset, we present a novel representation learning approach, CareerBERT, specifically designed for work history data. We develop a skill-based model and a text-based model for career path prediction, which achieve 35.24% and 39.61% recall@10 respectively on our dataset. Finally, we show that both approaches are complementary as a hybrid approach achieves the strongest result with 43.01% recall@10.
A safety realignment framework via subspace-oriented model fusion for large language models
The current safeguard mechanisms for large language models (LLMs) are indeed susceptible to jailbreak attacks, making them inherently fragile. Even the process of fine-tuning on apparently benign data for downstream tasks can jeopardize safety. One potential solution is to conduct safety fine-tuning subsequent to downstream fine-tuning. However, there's a risk of catastrophic forgetting during safety fine-tuning, where LLMs may regain safety measures but lose the task-specific knowledge acquired during downstream fine-tuning. In this paper, we introduce a safety realignment framework through subspace-oriented model fusion (SOMF), aiming to combine the safeguard capabilities of initially aligned model and the current fine-tuned model into a realigned model. Our approach begins by disentangling all task vectors from the weights of each fine-tuned model. We then identify safety-related regions within these vectors by subspace masking techniques. Finally, we explore the fusion of the initial safely aligned LLM with all task vectors based on the identified safety subspace. We validate that our safety realignment framework satisfies the safety requirements of a single fine-tuned model as well as multiple models during their fusion. Our findings confirm that SOMF preserves safety without notably compromising performance on downstream tasks, including instruction following in Chinese, English, and Hindi, as well as problem-solving capabilities in Code and Math.
LabSafety Bench: Benchmarking LLMs on Safety Issues in Scientific Labs
Laboratory accidents pose significant risks to human life and property, underscoring the importance of robust safety protocols. Despite advancements in safety training, laboratory personnel may still unknowingly engage in unsafe practices. With the increasing reliance on large language models (LLMs) for guidance in various fields, including laboratory settings, there is a growing concern about their reliability in critical safety-related decision-making. Unlike trained human researchers, LLMs lack formal lab safety education, raising questions about their ability to provide safe and accurate guidance. Existing research on LLM trustworthiness primarily focuses on issues such as ethical compliance, truthfulness, and fairness but fails to fully cover safety-critical real-world applications, like lab safety. To address this gap, we propose the Laboratory Safety Benchmark (LabSafety Bench), a comprehensive evaluation framework based on a new taxonomy aligned with Occupational Safety and Health Administration (OSHA) protocols. This benchmark includes 765 multiple-choice questions verified by human experts, assessing LLMs and vision language models (VLMs) performance in lab safety contexts. Our evaluations demonstrate that while GPT-4o outperforms human participants, it is still prone to critical errors, highlighting the risks of relying on LLMs in safety-critical environments. Our findings emphasize the need for specialized benchmarks to accurately assess the trustworthiness of LLMs in real-world safety applications.
Kompetencer: Fine-grained Skill Classification in Danish Job Postings via Distant Supervision and Transfer Learning
Skill Classification (SC) is the task of classifying job competences from job postings. This work is the first in SC applied to Danish job vacancy data. We release the first Danish job posting dataset: Kompetencer (en: competences), annotated for nested spans of competences. To improve upon coarse-grained annotations, we make use of The European Skills, Competences, Qualifications and Occupations (ESCO; le Vrang et al., 2014) taxonomy API to obtain fine-grained labels via distant supervision. We study two setups: The zero-shot and few-shot classification setting. We fine-tune English-based models and RemBERT (Chung et al., 2020) and compare them to in-language Danish models. Our results show RemBERT significantly outperforms all other models in both the zero-shot and the few-shot setting.
Benchmarking Llama2, Mistral, Gemma and GPT for Factuality, Toxicity, Bias and Propensity for Hallucinations
This paper introduces fourteen novel datasets for the evaluation of Large Language Models' safety in the context of enterprise tasks. A method was devised to evaluate a model's safety, as determined by its ability to follow instructions and output factual, unbiased, grounded, and appropriate content. In this research, we used OpenAI GPT as point of comparison since it excels at all levels of safety. On the open-source side, for smaller models, Meta Llama2 performs well at factuality and toxicity but has the highest propensity for hallucination. Mistral hallucinates the least but cannot handle toxicity well. It performs well in a dataset mixing several tasks and safety vectors in a narrow vertical domain. Gemma, the newly introduced open-source model based on Google Gemini, is generally balanced but trailing behind. When engaging in back-and-forth conversation (multi-turn prompts), we find that the safety of open-source models degrades significantly. Aside from OpenAI's GPT, Mistral is the only model that still performed well in multi-turn tests.
Shrinking the Generation-Verification Gap with Weak Verifiers
Verifiers can improve language model capabilities by scoring and ranking responses from generated candidates. Currently, high-quality verifiers are either unscalable (e.g., humans) or limited in utility (e.g., tools like Lean). While LM judges and reward models have become broadly useful as general-purpose verifiers, a significant performance gap remains between them and oracle verifiers (verifiers with perfect accuracy). To help close this gap, we introduce Weaver, a framework for designing a strong verifier by combining multiple weak, imperfect verifiers. We find weighted ensembles of verifiers, which typically require learning from labeled data, significantly outperform unweighted combinations due to differences in verifier accuracies. To reduce dependency on labeled data, Weaver leverages weak supervision to estimate each verifier's accuracy and combines outputs into a unified score that better reflects true response quality. However, directly applying weak supervision algorithms poses challenges, including inconsistent verifier output formats and handling low-quality verifiers. Weaver addresses these using dataset statistics to normalize outputs and filter specific verifiers. We study Weaver's effectiveness in test-time repeated sampling, where a model generates multiple candidate responses and selects one. Our evaluations show Weaver significantly improves over Pass@1-performance when selecting the first candidate-across reasoning and math tasks, achieving o3-mini-level accuracy with Llama 3.3 70B Instruct as generator, and an ensemble of 70B or smaller judge and reward models as verifiers (87.7% average). This gain mirrors the jump between GPT-4o and o3-mini (69.0% vs. 86.7%), which required extensive finetuning and post-training. To reduce computational costs of verifier ensembles, we train a 400M cross-encoder using Weaver's combined output scores.
Targeting Alignment: Extracting Safety Classifiers of Aligned LLMs
Alignment in large language models (LLMs) is used to enforce guidelines such as safety. Yet, alignment fails in the face of jailbreak attacks that modify inputs to induce unsafe outputs. In this paper, we present and evaluate a method to assess the robustness of LLM alignment. We observe that alignment embeds a safety classifier in the target model that is responsible for deciding between refusal and compliance. We seek to extract an approximation of this classifier, called a surrogate classifier, from the LLM. We develop an algorithm for identifying candidate classifiers from subsets of the LLM model. We evaluate the degree to which the candidate classifiers approximate the model's embedded classifier in benign (F1 score) and adversarial (using surrogates in a white-box attack) settings. Our evaluation shows that the best candidates achieve accurate agreement (an F1 score above 80%) using as little as 20% of the model architecture. Further, we find attacks mounted on the surrogate models can be transferred with high accuracy. For example, a surrogate using only 50% of the Llama 2 model achieved an attack success rate (ASR) of 70%, a substantial improvement over attacking the LLM directly, where we only observed a 22% ASR. These results show that extracting surrogate classifiers is a viable (and highly effective) means for modeling (and therein addressing) the vulnerability of aligned models to jailbreaking attacks.
An Empirical Study of Safetensors' Usage Trends and Developers' Perceptions
Developers are sharing pre-trained Machine Learning (ML) models through a variety of model sharing platforms, such as Hugging Face, in an effort to make ML development more collaborative. To share the models, they must first be serialized. While there are many methods of serialization in Python, most of them are unsafe. To tame this insecurity, Hugging Face released safetensors as a way to mitigate the threats posed by unsafe serialization formats. In this context, this paper investigates developer's shifts towards using safetensors on Hugging Face in an effort to understand security practices in the ML development community, as well as how developers react to new methods of serialization. Our results find that more developers are adopting safetensors, and many safetensor adoptions were made by automated conversions of existing models by Hugging Face's conversion tool. We also found, however, that a majority of developers ignore the conversion tool's pull requests, and that while many developers are facing issues with using safetensors, they are eager to learn about and adapt the format.
t-SS3: a text classifier with dynamic n-grams for early risk detection over text streams
A recently introduced classifier, called SS3, has shown to be well suited to deal with early risk detection (ERD) problems on text streams. It obtained state-of-the-art performance on early depression and anorexia detection on Reddit in the CLEF's eRisk open tasks. SS3 was created to deal with ERD problems naturally since: it supports incremental training and classification over text streams, and it can visually explain its rationale. However, SS3 processes the input using a bag-of-word model lacking the ability to recognize important word sequences. This aspect could negatively affect the classification performance and also reduces the descriptiveness of visual explanations. In the standard document classification field, it is very common to use word n-grams to try to overcome some of these limitations. Unfortunately, when working with text streams, using n-grams is not trivial since the system must learn and recognize which n-grams are important "on the fly". This paper introduces t-SS3, an extension of SS3 that allows it to recognize useful patterns over text streams dynamically. We evaluated our model in the eRisk 2017 and 2018 tasks on early depression and anorexia detection. Experimental results suggest that t-SS3 is able to improve both current results and the richness of visual explanations.
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
We consider the two related problems of detecting if an example is misclassified or out-of-distribution. We present a simple baseline that utilizes probabilities from softmax distributions. Correctly classified examples tend to have greater maximum softmax probabilities than erroneously classified and out-of-distribution examples, allowing for their detection. We assess performance by defining several tasks in computer vision, natural language processing, and automatic speech recognition, showing the effectiveness of this baseline across all. We then show the baseline can sometimes be surpassed, demonstrating the room for future research on these underexplored detection tasks.
How Jailbreak Defenses Work and Ensemble? A Mechanistic Investigation
Jailbreak attacks, where harmful prompts bypass generative models' built-in safety, raise serious concerns about model vulnerability. While many defense methods have been proposed, the trade-offs between safety and helpfulness, and their application to Large Vision-Language Models (LVLMs), are not well understood. This paper systematically examines jailbreak defenses by reframing the standard generation task as a binary classification problem to assess model refusal tendencies for both harmful and benign queries. We identify two key defense mechanisms: safety shift, which increases refusal rates across all queries, and harmfulness discrimination, which improves the model's ability to distinguish between harmful and benign inputs. Using these mechanisms, we develop two ensemble defense strategies-inter-mechanism ensembles and intra-mechanism ensembles-to balance safety and helpfulness. Experiments on the MM-SafetyBench and MOSSBench datasets with LLaVA-1.5 models show that these strategies effectively improve model safety or optimize the trade-off between safety and helpfulness.
Safety-Tuned LLaMAs: Lessons From Improving the Safety of Large Language Models that Follow Instructions
Training large language models to follow instructions makes them perform better on a wide range of tasks, generally becoming more helpful. However, a perfectly helpful model will follow even the most malicious instructions and readily generate harmful content. In this paper, we raise concerns over the safety of models that only emphasize helpfulness, not safety, in their instruction-tuning. We show that several popular instruction-tuned models are highly unsafe. Moreover, we show that adding just 3% safety examples (a few hundred demonstrations) in the training set when fine-tuning a model like LLaMA can substantially improve their safety. Our safety-tuning does not make models significantly less capable or helpful as measured by standard benchmarks. However, we do find a behavior of exaggerated safety, where too much safety-tuning makes models refuse to respond to reasonable prompts that superficially resemble unsafe ones. Our study sheds light on trade-offs in training LLMs to follow instructions and exhibit safe behavior.
Safeguard Fine-Tuned LLMs Through Pre- and Post-Tuning Model Merging
Fine-tuning large language models (LLMs) for downstream tasks is a widely adopted approach, but it often leads to safety degradation in safety-aligned LLMs. Currently, many solutions address this issue by incorporating additional safety data, which can be impractical in many cases. In this paper, we address the question: How can we improve downstream task performance while preserving safety in LLMs without relying on additional safety data? We propose a simple and effective method that maintains the inherent safety of LLMs while enhancing their downstream task performance: merging the weights of pre- and post-fine-tuned safety-aligned models. Experimental results across various downstream tasks, models, and merging methods demonstrate that this approach effectively mitigates safety degradation while improving downstream task performance, offering a practical solution for adapting safety-aligned LLMs.
Language Models in the Loop: Incorporating Prompting into Weak Supervision
We propose a new strategy for applying large pre-trained language models to novel tasks when labeled training data is limited. Rather than apply the model in a typical zero-shot or few-shot fashion, we treat the model as the basis for labeling functions in a weak supervision framework. To create a classifier, we first prompt the model to answer multiple distinct queries about an example and define how the possible responses should be mapped to votes for labels and abstentions. We then denoise these noisy label sources using the Snorkel system and train an end classifier with the resulting training data. Our experimental evaluation shows that prompting large language models within a weak supervision framework can provide significant gains in accuracy. On the WRENCH weak supervision benchmark, this approach can significantly improve over zero-shot performance, an average 19.5% reduction in errors. We also find that this approach produces classifiers with comparable or superior accuracy to those trained from hand-engineered rules.
Representer Point Selection for Explaining Regularized High-dimensional Models
We introduce a novel class of sample-based explanations we term high-dimensional representers, that can be used to explain the predictions of a regularized high-dimensional model in terms of importance weights for each of the training samples. Our workhorse is a novel representer theorem for general regularized high-dimensional models, which decomposes the model prediction in terms of contributions from each of the training samples: with positive (negative) values corresponding to positive (negative) impact training samples to the model's prediction. We derive consequences for the canonical instances of ell_1 regularized sparse models, and nuclear norm regularized low-rank models. As a case study, we further investigate the application of low-rank models in the context of collaborative filtering, where we instantiate high-dimensional representers for specific popular classes of models. Finally, we study the empirical performance of our proposed methods on three real-world binary classification datasets and two recommender system datasets. We also showcase the utility of high-dimensional representers in explaining model recommendations.
On the Role of Attention Heads in Large Language Model Safety
Large language models (LLMs) achieve state-of-the-art performance on multiple language tasks, yet their safety guardrails can be circumvented, leading to harmful generations. In light of this, recent research on safety mechanisms has emerged, revealing that when safety representations or component are suppressed, the safety capability of LLMs are compromised. However, existing research tends to overlook the safety impact of multi-head attention mechanisms, despite their crucial role in various model functionalities. Hence, in this paper, we aim to explore the connection between standard attention mechanisms and safety capability to fill this gap in the safety-related mechanistic interpretability. We propose a novel metric which tailored for multi-head attention, the Safety Head ImPortant Score (Ships), to assess the individual heads' contributions to model safety. Based on this, we generalize Ships to the dataset level and further introduce the Safety Attention Head AttRibution Algorithm (Sahara) to attribute the critical safety attention heads inside the model. Our findings show that the special attention head has a significant impact on safety. Ablating a single safety head allows aligned model (e.g., Llama-2-7b-chat) to respond to 16 times more harmful queries, while only modifying 0.006% of the parameters, in contrast to the ~ 5% modification required in previous studies. More importantly, we demonstrate that attention heads primarily function as feature extractors for safety and models fine-tuned from the same base model exhibit overlapping safety heads through comprehensive experiments. Together, our attribution approach and findings provide a novel perspective for unpacking the black box of safety mechanisms within large models.
Towards Benchmark Datasets for Machine Learning Based Website Phishing Detection: An experimental study
In this paper, we present a general scheme for building reproducible and extensible datasets for website phishing detection. The aim is to (1) enable comparison of systems using different features, (2) overtake the short-lived nature of phishing websites, and (3) keep track of the evolution of phishing tactics. For experimenting the proposed scheme, we start by adopting a refined classification of website phishing features and we systematically select a total of 87 commonly recognized ones, we classify them, and we made them subjects for relevance and runtime analysis. We use the collected set of features to build a dataset in light of the proposed scheme. Thereafter, we use a conceptual replication approach to check the genericity of former findings for the built dataset. Specifically, we evaluate the performance of classifiers on individual classes and on combinations of classes, we investigate different combinations of models, and we explore the effects of filter and wrapper methods on the selection of discriminative features. The results show that Random Forest is the most predictive classifier. Features gathered from external services are found the most discriminative where features extracted from web page contents are found less distinguishing. Besides external service based features, some web page content features are found time consuming and not suitable for runtime detection. The use of hybrid features provided the best accuracy score of 96.61%. By investigating different feature selection methods, filter-based ranking together with incremental removal of less important features improved the performance up to 96.83% better than wrapper methods.
Prototype Based Classification from Hierarchy to Fairness
Artificial neural nets can represent and classify many types of data but are often tailored to particular applications -- e.g., for "fair" or "hierarchical" classification. Once an architecture has been selected, it is often difficult for humans to adjust models for a new task; for example, a hierarchical classifier cannot be easily transformed into a fair classifier that shields a protected field. Our contribution in this work is a new neural network architecture, the concept subspace network (CSN), which generalizes existing specialized classifiers to produce a unified model capable of learning a spectrum of multi-concept relationships. We demonstrate that CSNs reproduce state-of-the-art results in fair classification when enforcing concept independence, may be transformed into hierarchical classifiers, or even reconcile fairness and hierarchy within a single classifier. The CSN is inspired by existing prototype-based classifiers that promote interpretability.
Penalizing Unfairness in Binary Classification
We present a new approach for mitigating unfairness in learned classifiers. In particular, we focus on binary classification tasks over individuals from two populations, where, as our criterion for fairness, we wish to achieve similar false positive rates in both populations, and similar false negative rates in both populations. As a proof of concept, we implement our approach and empirically evaluate its ability to achieve both fairness and accuracy, using datasets from the fields of criminal risk assessment, credit, lending, and college admissions.
Few-Shot Class-Incremental Learning via Training-Free Prototype Calibration
Real-world scenarios are usually accompanied by continuously appearing classes with scare labeled samples, which require the machine learning model to incrementally learn new classes and maintain the knowledge of base classes. In this Few-Shot Class-Incremental Learning (FSCIL) scenario, existing methods either introduce extra learnable components or rely on a frozen feature extractor to mitigate catastrophic forgetting and overfitting problems. However, we find a tendency for existing methods to misclassify the samples of new classes into base classes, which leads to the poor performance of new classes. In other words, the strong discriminability of base classes distracts the classification of new classes. To figure out this intriguing phenomenon, we observe that although the feature extractor is only trained on base classes, it can surprisingly represent the semantic similarity between the base and unseen new classes. Building upon these analyses, we propose a simple yet effective Training-frEE calibratioN (TEEN) strategy to enhance the discriminability of new classes by fusing the new prototypes (i.e., mean features of a class) with weighted base prototypes. In addition to standard benchmarks in FSCIL, TEEN demonstrates remarkable performance and consistent improvements over baseline methods in the few-shot learning scenario. Code is available at: https://github.com/wangkiw/TEEN
Learning Optimal Predictive Checklists
Checklists are simple decision aids that are often used to promote safety and reliability in clinical applications. In this paper, we present a method to learn checklists for clinical decision support. We represent predictive checklists as discrete linear classifiers with binary features and unit weights. We then learn globally optimal predictive checklists from data by solving an integer programming problem. Our method allows users to customize checklists to obey complex constraints, including constraints to enforce group fairness and to binarize real-valued features at training time. In addition, it pairs models with an optimality gap that can inform model development and determine the feasibility of learning sufficiently accurate checklists on a given dataset. We pair our method with specialized techniques that speed up its ability to train a predictive checklist that performs well and has a small optimality gap. We benchmark the performance of our method on seven clinical classification problems, and demonstrate its practical benefits by training a short-form checklist for PTSD screening. Our results show that our method can fit simple predictive checklists that perform well and that can easily be customized to obey a rich class of custom constraints.
Domain Generalization via Rationale Invariance
This paper offers a new perspective to ease the challenge of domain generalization, which involves maintaining robust results even in unseen environments. Our design focuses on the decision-making process in the final classifier layer. Specifically, we propose treating the element-wise contributions to the final results as the rationale for making a decision and representing the rationale for each sample as a matrix. For a well-generalized model, we suggest the rationale matrices for samples belonging to the same category should be similar, indicating the model relies on domain-invariant clues to make decisions, thereby ensuring robust results. To implement this idea, we introduce a rationale invariance loss as a simple regularization technique, requiring only a few lines of code. Our experiments demonstrate that the proposed approach achieves competitive results across various datasets, despite its simplicity. Code is available at https://github.com/liangchen527/RIDG.
SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal Behaviors
Evaluating aligned large language models' (LLMs) ability to recognize and reject unsafe user requests is crucial for safe, policy-compliant deployments. Existing evaluation efforts, however, face three limitations that we address with SORRY-Bench, our proposed benchmark. First, existing methods often use coarse-grained taxonomies of unsafe topics, and are over-representing some fine-grained topics. For example, among the ten existing datasets that we evaluated, tests for refusals of self-harm instructions are over 3x less represented than tests for fraudulent activities. SORRY-Bench improves on this by using a fine-grained taxonomy of 45 potentially unsafe topics, and 450 class-balanced unsafe instructions, compiled through human-in-the-loop methods. Second, linguistic characteristics and formatting of prompts are often overlooked, like different languages, dialects, and more -- which are only implicitly considered in many evaluations. We supplement SORRY-Bench with 20 diverse linguistic augmentations to systematically examine these effects. Third, existing evaluations rely on large LLMs (e.g., GPT-4) for evaluation, which can be computationally expensive. We investigate design choices for creating a fast, accurate automated safety evaluator. By collecting 7K+ human annotations and conducting a meta-evaluation of diverse LLM-as-a-judge designs, we show that fine-tuned 7B LLMs can achieve accuracy comparable to GPT-4 scale LLMs, with lower computational cost. Putting these together, we evaluate over 40 proprietary and open-source LLMs on SORRY-Bench, analyzing their distinctive refusal behaviors. We hope our effort provides a building block for systematic evaluations of LLMs' safety refusal capabilities, in a balanced, granular, and efficient manner.
PySS3: A Python package implementing a novel text classifier with visualization tools for Explainable AI
A recently introduced text classifier, called SS3, has obtained state-of-the-art performance on the CLEF's eRisk tasks. SS3 was created to deal with risk detection over text streams and, therefore, not only supports incremental training and classification but also can visually explain its rationale. However, little attention has been paid to the potential use of SS3 as a general classifier. We believe this could be due to the unavailability of an open-source implementation of SS3. In this work, we introduce PySS3, a package that implements SS3 and also comes with visualization tools that allow researchers to deploy robust, explainable, and trusty machine learning models for text classification.
Trustworthy Long-Tailed Classification
Classification on long-tailed distributed data is a challenging problem, which suffers from serious class-imbalance and accordingly unpromising performance especially on tail classes. Recently, the ensembling based methods achieve the state-of-the-art performance and show great potential. However, there are two limitations for current methods. First, their predictions are not trustworthy for failure-sensitive applications. This is especially harmful for the tail classes where the wrong predictions is basically frequent. Second, they assign unified numbers of experts to all samples, which is redundant for easy samples with excessive computational cost. To address these issues, we propose a Trustworthy Long-tailed Classification (TLC) method to jointly conduct classification and uncertainty estimation to identify hard samples in a multi-expert framework. Our TLC obtains the evidence-based uncertainty (EvU) and evidence for each expert, and then combines these uncertainties and evidences under the Dempster-Shafer Evidence Theory (DST). Moreover, we propose a dynamic expert engagement to reduce the number of engaged experts for easy samples and achieve efficiency while maintaining promising performances. Finally, we conduct comprehensive experiments on the tasks of classification, tail detection, OOD detection and failure prediction. The experimental results show that the proposed TLC outperforms existing methods and is trustworthy with reliable uncertainty.
CPPE-5: Medical Personal Protective Equipment Dataset
We present a new challenging dataset, CPPE - 5 (Medical Personal Protective Equipment), with the goal to allow the study of subordinate categorization of medical personal protective equipments, which is not possible with other popular data sets that focus on broad-level categories (such as PASCAL VOC, ImageNet, Microsoft COCO, OpenImages, etc). To make it easy for models trained on this dataset to be used in practical scenarios in complex scenes, our dataset mainly contains images that show complex scenes with several objects in each scene in their natural context. The image collection for this dataset focuses on: obtaining as many non-iconic images as possible and making sure all the images are real-life images, unlike other existing datasets in this area. Our dataset includes 5 object categories (coveralls, face shields, gloves, masks, and goggles), and each image is annotated with a set of bounding boxes and positive labels. We present a detailed analysis of the dataset in comparison to other popular broad category datasets as well as datasets focusing on personal protective equipments, we also find that at present there exist no such publicly available datasets. Finally, we also analyze performance and compare model complexities on baseline and state-of-the-art models for bounding box results. Our code, data, and trained models are available at https://git.io/cppe5-dataset.
An Empirical Analysis of Feature Engineering for Predictive Modeling
Machine learning models, such as neural networks, decision trees, random forests, and gradient boosting machines, accept a feature vector, and provide a prediction. These models learn in a supervised fashion where we provide feature vectors mapped to the expected output. It is common practice to engineer new features from the provided feature set. Such engineered features will either augment or replace portions of the existing feature vector. These engineered features are essentially calculated fields based on the values of the other features. Engineering such features is primarily a manual, time-consuming task. Additionally, each type of model will respond differently to different kinds of engineered features. This paper reports empirical research to demonstrate what kinds of engineered features are best suited to various machine learning model types. We provide this recommendation by generating several datasets that we designed to benefit from a particular type of engineered feature. The experiment demonstrates to what degree the machine learning model can synthesize the needed feature on its own. If a model can synthesize a planned feature, it is not necessary to provide that feature. The research demonstrated that the studied models do indeed perform differently with various types of engineered features.
DICES Dataset: Diversity in Conversational AI Evaluation for Safety
Machine learning approaches often require training and evaluation datasets with a clear separation between positive and negative examples. This risks simplifying and even obscuring the inherent subjectivity present in many tasks. Preserving such variance in content and diversity in datasets is often expensive and laborious. This is especially troubling when building safety datasets for conversational AI systems, as safety is both socially and culturally situated. To demonstrate this crucial aspect of conversational AI safety, and to facilitate in-depth model performance analyses, we introduce the DICES (Diversity In Conversational AI Evaluation for Safety) dataset that contains fine-grained demographic information about raters, high replication of ratings per item to ensure statistical power for analyses, and encodes rater votes as distributions across different demographics to allow for in-depth explorations of different aggregation strategies. In short, the DICES dataset enables the observation and measurement of variance, ambiguity, and diversity in the context of conversational AI safety. We also illustrate how the dataset offers a basis for establishing metrics to show how raters' ratings can intersects with demographic categories such as racial/ethnic groups, age groups, and genders. The goal of DICES is to be used as a shared resource and benchmark that respects diverse perspectives during safety evaluation of conversational AI systems.
Out-Of-Distribution Detection Is Not All You Need
The usage of deep neural networks in safety-critical systems is limited by our ability to guarantee their correct behavior. Runtime monitors are components aiming to identify unsafe predictions and discard them before they can lead to catastrophic consequences. Several recent works on runtime monitoring have focused on out-of-distribution (OOD) detection, i.e., identifying inputs that are different from the training data. In this work, we argue that OOD detection is not a well-suited framework to design efficient runtime monitors and that it is more relevant to evaluate monitors based on their ability to discard incorrect predictions. We call this setting out-ofmodel-scope detection and discuss the conceptual differences with OOD. We also conduct extensive experiments on popular datasets from the literature to show that studying monitors in the OOD setting can be misleading: 1. very good OOD results can give a false impression of safety, 2. comparison under the OOD setting does not allow identifying the best monitor to detect errors. Finally, we also show that removing erroneous training data samples helps to train better monitors.
Fair Densities via Boosting the Sufficient Statistics of Exponential Families
We introduce a boosting algorithm to pre-process data for fairness. Starting from an initial fair but inaccurate distribution, our approach shifts towards better data fitting while still ensuring a minimal fairness guarantee. To do so, it learns the sufficient statistics of an exponential family with boosting-compliant convergence. Importantly, we are able to theoretically prove that the learned distribution will have a representation rate and statistical rate data fairness guarantee. Unlike recent optimization based pre-processing methods, our approach can be easily adapted for continuous domain features. Furthermore, when the weak learners are specified to be decision trees, the sufficient statistics of the learned distribution can be examined to provide clues on sources of (un)fairness. Empirical results are present to display the quality of result on real-world data.
SafetyAnalyst: Interpretable, transparent, and steerable LLM safety moderation
The ideal LLM content moderation system would be both structurally interpretable (so its decisions can be explained to users) and steerable (to reflect a community's values or align to safety standards). However, current systems fall short on both of these dimensions. To address this gap, we present SafetyAnalyst, a novel LLM safety moderation framework. Given a prompt, SafetyAnalyst creates a structured "harm-benefit tree," which identifies 1) the actions that could be taken if a compliant response were provided, 2) the harmful and beneficial effects of those actions (along with their likelihood, severity, and immediacy), and 3) the stakeholders that would be impacted by those effects. It then aggregates this structured representation into a harmfulness score based on a parameterized set of safety preferences, which can be transparently aligned to particular values. Using extensive harm-benefit features generated by SOTA LLMs on 19k prompts, we fine-tuned an open-weight LM to specialize in generating harm-benefit trees through symbolic knowledge distillation. On a comprehensive set of prompt safety benchmarks, we show that our system (average F1=0.75) outperforms existing LLM safety moderation systems (average F1<0.72) on prompt harmfulness classification, while offering the additional advantages of interpretability and steerability.
Can Pre-trained Networks Detect Familiar Out-of-Distribution Data?
Out-of-distribution (OOD) detection is critical for safety-sensitive machine learning applications and has been extensively studied, yielding a plethora of methods developed in the literature. However, most studies for OOD detection did not use pre-trained models and trained a backbone from scratch. In recent years, transferring knowledge from large pre-trained models to downstream tasks by lightweight tuning has become mainstream for training in-distribution (ID) classifiers. To bridge the gap between the practice of OOD detection and current classifiers, the unique and crucial problem is that the samples whose information networks know often come as OOD input. We consider that such data may significantly affect the performance of large pre-trained networks because the discriminability of these OOD data depends on the pre-training algorithm. Here, we define such OOD data as PT-OOD (Pre-Trained OOD) data. In this paper, we aim to reveal the effect of PT-OOD on the OOD detection performance of pre-trained networks from the perspective of pre-training algorithms. To achieve this, we explore the PT-OOD detection performance of supervised and self-supervised pre-training algorithms with linear-probing tuning, the most common efficient tuning method. Through our experiments and analysis, we find that the low linear separability of PT-OOD in the feature space heavily degrades the PT-OOD detection performance, and self-supervised models are more vulnerable to PT-OOD than supervised pre-trained models, even with state-of-the-art detection methods. To solve this vulnerability, we further propose a unique solution to large-scale pre-trained models: Leveraging powerful instance-by-instance discriminative representations of pre-trained models and detecting OOD in the feature space independent of the ID decision boundaries. The code will be available via https://github.com/AtsuMiyai/PT-OOD.
SafeEraser: Enhancing Safety in Multimodal Large Language Models through Multimodal Machine Unlearning
As Multimodal Large Language Models (MLLMs) develop, their potential security issues have become increasingly prominent. Machine Unlearning (MU), as an effective strategy for forgetting specific knowledge in training data, has been widely used in privacy protection. However, MU for safety in MLLM has yet to be fully explored. To address this issue, we propose SAFEERASER, a safety unlearning benchmark for MLLMs, consisting of 3,000 images and 28.8K VQA pairs. We comprehensively evaluate unlearning methods from two perspectives: forget quality and model utility. Our findings show that existing MU methods struggle to maintain model performance while implementing the forget operation and often suffer from over-forgetting. Hence, we introduce Prompt Decouple (PD) Loss to alleviate over-forgetting through decouple prompt during unlearning process. To quantitatively measure over-forgetting mitigated by PD Loss, we propose a new metric called Safe Answer Refusal Rate (SARR). Experimental results demonstrate that combining PD Loss with existing unlearning methods can effectively prevent over-forgetting and achieve a decrease of 79.5% in the SARR metric of LLaVA-7B and LLaVA-13B, while maintaining forget quality and model utility. Our code and dataset will be released upon acceptance. Warning: This paper contains examples of harmful language and images, and reader discretion is recommended.
UnsafeChain: Enhancing Reasoning Model Safety via Hard Cases
As large reasoning models (LRMs) grow more capable, chain-of-thought (CoT) reasoning introduces new safety challenges. Existing SFT-based safety alignment studies dominantly focused on filtering prompts with safe, high-quality responses, while overlooking hard prompts that always elicit harmful outputs. To fill this gap, we introduce UnsafeChain, a safety alignment dataset constructed from hard prompts with diverse sources, where unsafe completions are identified and explicitly corrected into safe responses. By exposing models to unsafe behaviors and guiding their correction, UnsafeChain enhances safety while preserving general reasoning ability. We fine-tune three LRMs on UnsafeChain and compare them against recent SafeChain and STAR-1 across six out-of-distribution and five in-distribution benchmarks. UnsafeChain consistently outperforms prior datasets, with even a 1K subset matching or surpassing baseline performance, demonstrating the effectiveness and generalizability of correction-based supervision. We release our dataset and code at https://github.com/mbzuai-nlp/UnsafeChain
Safe Pruning LoRA: Robust Distance-Guided Pruning for Safety Alignment in Adaptation of LLMs
Fine-tuning Large Language Models (LLMs) with Low-Rank Adaptation (LoRA) enhances adaptability while reducing computational costs. However, fine-tuning can compromise safety alignment, even with benign data, increasing susceptibility to harmful outputs. Existing safety alignment methods struggle to capture complex parameter shifts, leading to suboptimal safety-utility trade-offs. To address this issue, we propose Safe Pruning LoRA (SPLoRA), a novel pruning-based approach that selectively removes LoRA layers that weaken safety alignment, improving safety while preserving performance. At its core, we introduce Empirical-DIEM (E-DIEM), a dimension-insensitive similarity metric that effectively detects safety misalignment in LoRA-adapted models. We conduct extensive experiments on LLMs fine-tuned with mixed of benign and malicious data, and purely benign datasets, evaluating SPLoRA across utility, safety, and reliability metrics. Results demonstrate that SPLoRA outperforms state-of-the-art safety alignment techniques, significantly reducing safety risks while maintaining or improving model performance and reliability. Additionally, SPLoRA reduces inference overhead, making it a scalable and efficient solution for deploying safer and more reliable LLMs. The code is available at https://github.com/AoShuang92/SPLoRA.
A Flexible Large Language Models Guardrail Development Methodology Applied to Off-Topic Prompt Detection
Large Language Models are prone to off-topic misuse, where users may prompt these models to perform tasks beyond their intended scope. Current guardrails, which often rely on curated examples or custom classifiers, suffer from high false-positive rates, limited adaptability, and the impracticality of requiring real-world data that is not available in pre-production. In this paper, we introduce a flexible, data-free guardrail development methodology that addresses these challenges. By thoroughly defining the problem space qualitatively and passing this to an LLM to generate diverse prompts, we construct a synthetic dataset to benchmark and train off-topic guardrails that outperform heuristic approaches. Additionally, by framing the task as classifying whether the user prompt is relevant with respect to the system prompt, our guardrails effectively generalize to other misuse categories, including jailbreak and harmful prompts. Lastly, we further contribute to the field by open-sourcing both the synthetic dataset and the off-topic guardrail models, providing valuable resources for developing guardrails in pre-production environments and supporting future research and development in LLM safety.
SafeWatch: An Efficient Safety-Policy Following Video Guardrail Model with Transparent Explanations
With the rise of generative AI and rapid growth of high-quality video generation, video guardrails have become more crucial than ever to ensure safety and security across platforms. Current video guardrails, however, are either overly simplistic, relying on pure classification models trained on simple policies with limited unsafe categories, which lack detailed explanations, or prompting multimodal large language models (MLLMs) with long safety guidelines, which are inefficient and impractical for guardrailing real-world content. To bridge this gap, we propose SafeWatch, an efficient MLLM-based video guardrail model designed to follow customized safety policies and provide multi-label video guardrail outputs with content-specific explanations in a zero-shot manner. In particular, unlike traditional MLLM-based guardrails that encode all safety policies autoregressively, causing inefficiency and bias, SafeWatch uniquely encodes each policy chunk in parallel and eliminates their position bias such that all policies are attended simultaneously with equal importance. In addition, to improve efficiency and accuracy, SafeWatch incorporates a policy-aware visual token pruning algorithm that adaptively selects the most relevant video tokens for each policy, discarding noisy or irrelevant information. This allows for more focused, policy-compliant guardrail with significantly reduced computational overhead. Considering the limitations of existing video guardrail benchmarks, we propose SafeWatch-Bench, a large-scale video guardrail benchmark comprising over 2M videos spanning six safety categories which covers over 30 tasks to ensure a comprehensive coverage of all potential safety scenarios. SafeWatch outperforms SOTA by 28.2% on SafeWatch-Bench, 13.6% on benchmarks, cuts costs by 10%, and delivers top-tier explanations validated by LLM and human reviews.
To Each Metric Its Decoding: Post-Hoc Optimal Decision Rules of Probabilistic Hierarchical Classifiers
Hierarchical classification offers an approach to incorporate the concept of mistake severity by leveraging a structured, labeled hierarchy. However, decoding in such settings frequently relies on heuristic decision rules, which may not align with task-specific evaluation metrics. In this work, we propose a framework for the optimal decoding of an output probability distribution with respect to a target metric. We derive optimal decision rules for increasingly complex prediction settings, providing universal algorithms when candidates are limited to the set of nodes. In the most general case of predicting a subset of nodes, we focus on rules dedicated to the hierarchical hF_{beta} scores, tailored to hierarchical settings. To demonstrate the practical utility of our approach, we conduct extensive empirical evaluations, showcasing the superiority of our proposed optimal strategies, particularly in underdetermined scenarios. These results highlight the potential of our methods to enhance the performance and reliability of hierarchical classifiers in real-world applications. The code is available at https://github.com/RomanPlaud/hierarchical_decision_rules
Early Time Classification with Accumulated Accuracy Gap Control
Early time classification algorithms aim to label a stream of features without processing the full input stream, while maintaining accuracy comparable to that achieved by applying the classifier to the entire input. In this paper, we introduce a statistical framework that can be applied to any sequential classifier, formulating a calibrated stopping rule. This data-driven rule attains finite-sample, distribution-free control of the accuracy gap between full and early-time classification. We start by presenting a novel method that builds on the Learn-then-Test calibration framework to control this gap marginally, on average over i.i.d. instances. As this algorithm tends to yield an excessively high accuracy gap for early halt times, our main contribution is the proposal of a framework that controls a stronger notion of error, where the accuracy gap is controlled conditionally on the accumulated halt times. Numerical experiments demonstrate the effectiveness, applicability, and usefulness of our method. We show that our proposed early stopping mechanism reduces up to 94% of timesteps used for classification while achieving rigorous accuracy gap control.
Developing Safe and Responsible Large Language Models -- A Comprehensive Framework
Given the growing concerns around the safety and risks of Large Language Models (LLMs), it is essential to develop methods for mitigating these issues. We introduce Safe and Responsible Large Language Model (SR_{LLM}) , a model designed to enhance the safety of language generation using LLMs. Our approach incorporates a comprehensive LLM safety risk taxonomy and utilizes a dataset annotated by experts that align with this taxonomy. SR_{LLM} is designed to identify potentially unsafe content and produce benign variations. It employs instruction-based and parameter-efficient fine-tuning methods, making the model not only effective in enhancing safety but also resource-efficient and straightforward to adjust. Through our testing on five benchmark datasets and two proprietary datasets, we observed notable reductions in the generation of unsafe content. Moreover, following the implementation of safety measures, there was a significant improvement in the production of safe content. We detail our fine-tuning processes and how we benchmark safety for SR_{LLM} with the community engagement and promote the responsible advancement of LLMs. All the data and code are available anonymous at https://github.com/shainarazavi/Safe-Responsible-LLM .
The Optimality of Kernel Classifiers in Sobolev Space
Kernel methods are widely used in machine learning, especially for classification problems. However, the theoretical analysis of kernel classification is still limited. This paper investigates the statistical performances of kernel classifiers. With some mild assumptions on the conditional probability eta(x)=P(Y=1mid X=x), we derive an upper bound on the classification excess risk of a kernel classifier using recent advances in the theory of kernel regression. We also obtain a minimax lower bound for Sobolev spaces, which shows the optimality of the proposed classifier. Our theoretical results can be extended to the generalization error of overparameterized neural network classifiers. To make our theoretical results more applicable in realistic settings, we also propose a simple method to estimate the interpolation smoothness of 2eta(x)-1 and apply the method to real datasets.
SafeArena: Evaluating the Safety of Autonomous Web Agents
LLM-based agents are becoming increasingly proficient at solving web-based tasks. With this capability comes a greater risk of misuse for malicious purposes, such as posting misinformation in an online forum or selling illicit substances on a website. To evaluate these risks, we propose SafeArena, the first benchmark to focus on the deliberate misuse of web agents. SafeArena comprises 250 safe and 250 harmful tasks across four websites. We classify the harmful tasks into five harm categories -- misinformation, illegal activity, harassment, cybercrime, and social bias, designed to assess realistic misuses of web agents. We evaluate leading LLM-based web agents, including GPT-4o, Claude-3.5 Sonnet, Qwen-2-VL 72B, and Llama-3.2 90B, on our benchmark. To systematically assess their susceptibility to harmful tasks, we introduce the Agent Risk Assessment framework that categorizes agent behavior across four risk levels. We find agents are surprisingly compliant with malicious requests, with GPT-4o and Qwen-2 completing 34.7% and 27.3% of harmful requests, respectively. Our findings highlight the urgent need for safety alignment procedures for web agents. Our benchmark is available here: https://safearena.github.io
Towards Safer Operations: An Expert-involved Dataset of High-Pressure Gas Incidents for Preventing Future Failures
This paper introduces a new IncidentAI dataset for safety prevention. Different from prior corpora that usually contain a single task, our dataset comprises three tasks: named entity recognition, cause-effect extraction, and information retrieval. The dataset is annotated by domain experts who have at least six years of practical experience as high-pressure gas conservation managers. We validate the contribution of the dataset in the scenario of safety prevention. Preliminary results on the three tasks show that NLP techniques are beneficial for analyzing incident reports to prevent future failures. The dataset facilitates future research in NLP and incident management communities. The access to the dataset is also provided (the IncidentAI dataset is available at: https://github.com/Cinnamon/incident-ai-dataset).
SMOTE: Synthetic Minority Over-sampling Technique
An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of "normal" examples with only a small percentage of "abnormal" or "interesting" examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of over-sampling the minority (abnormal) class and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space) than only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.
SimpleSafetyTests: a Test Suite for Identifying Critical Safety Risks in Large Language Models
The past year has seen rapid acceleration in the development of large language models (LLMs). However, without proper steering and safeguards, LLMs will readily follow malicious instructions, provide unsafe advice, and generate toxic content. We introduce SimpleSafetyTests (SST) as a new test suite for rapidly and systematically identifying such critical safety risks. The test suite comprises 100 test prompts across five harm areas that LLMs, for the vast majority of applications, should refuse to comply with. We test 11 open-access and open-source LLMs and four closed-source LLMs, and find critical safety weaknesses. While some of the models do not give a single unsafe response, most give unsafe responses to more than 20% of the prompts, with over 50% unsafe responses in the extreme. Prepending a safety-emphasising system prompt substantially reduces the occurrence of unsafe responses, but does not completely stop them from happening. Trained annotators labelled every model response to SST (n = 3,000). We use these annotations to evaluate five AI safety filters (which assess whether a models' response is unsafe given a prompt) as a way of automatically evaluating models' performance on SST. The filters' performance varies considerably. There are also differences across the five harm areas, and on the unsafe versus safe responses. The widely-used Perspective API has 72% accuracy and a newly-created zero-shot prompt to OpenAI's GPT-4 performs best with 89% accuracy. Content Warning: This paper contains prompts and responses that relate to child abuse, suicide, self-harm and eating disorders, scams and fraud, illegal items, and physical harm.
FEAMOE: Fair, Explainable and Adaptive Mixture of Experts
Three key properties that are desired of trustworthy machine learning models deployed in high-stakes environments are fairness, explainability, and an ability to account for various kinds of "drift". While drifts in model accuracy, for example due to covariate shift, have been widely investigated, drifts in fairness metrics over time remain largely unexplored. In this paper, we propose FEAMOE, a novel "mixture-of-experts" inspired framework aimed at learning fairer, more explainable/interpretable models that can also rapidly adjust to drifts in both the accuracy and the fairness of a classifier. We illustrate our framework for three popular fairness measures and demonstrate how drift can be handled with respect to these fairness constraints. Experiments on multiple datasets show that our framework as applied to a mixture of linear experts is able to perform comparably to neural networks in terms of accuracy while producing fairer models. We then use the large-scale HMDA dataset and show that while various models trained on HMDA demonstrate drift with respect to both accuracy and fairness, FEAMOE can ably handle these drifts with respect to all the considered fairness measures and maintain model accuracy as well. We also prove that the proposed framework allows for producing fast Shapley value explanations, which makes computationally efficient feature attribution based explanations of model decisions readily available via FEAMOE.
SafeLawBench: Towards Safe Alignment of Large Language Models
With the growing prevalence of large language models (LLMs), the safety of LLMs has raised significant concerns. However, there is still a lack of definitive standards for evaluating their safety due to the subjective nature of current safety benchmarks. To address this gap, we conducted the first exploration of LLMs' safety evaluation from a legal perspective by proposing the SafeLawBench benchmark. SafeLawBench categorizes safety risks into three levels based on legal standards, providing a systematic and comprehensive framework for evaluation. It comprises 24,860 multi-choice questions and 1,106 open-domain question-answering (QA) tasks. Our evaluation included 2 closed-source LLMs and 18 open-source LLMs using zero-shot and few-shot prompting, highlighting the safety features of each model. We also evaluated the LLMs' safety-related reasoning stability and refusal behavior. Additionally, we found that a majority voting mechanism can enhance model performance. Notably, even leading SOTA models like Claude-3.5-Sonnet and GPT-4o have not exceeded 80.5% accuracy in multi-choice tasks on SafeLawBench, while the average accuracy of 20 LLMs remains at 68.8\%. We urge the community to prioritize research on the safety of LLMs.
Automating Safety Enhancement for LLM-based Agents with Synthetic Risk Scenarios
Large Language Model (LLM)-based agents are increasingly deployed in real-world applications such as "digital assistants, autonomous customer service, and decision-support systems", where their ability to "interact in multi-turn, tool-augmented environments" makes them indispensable. However, ensuring the safety of these agents remains a significant challenge due to the diverse and complex risks arising from dynamic user interactions, external tool usage, and the potential for unintended harmful behaviors. To address this critical issue, we propose AutoSafe, the first framework that systematically enhances agent safety through fully automated synthetic data generation. Concretely, 1) we introduce an open and extensible threat model, OTS, which formalizes how unsafe behaviors emerge from the interplay of user instructions, interaction contexts, and agent actions. This enables precise modeling of safety risks across diverse scenarios. 2) we develop a fully automated data generation pipeline that simulates unsafe user behaviors, applies self-reflective reasoning to generate safe responses, and constructs a large-scale, diverse, and high-quality safety training dataset-eliminating the need for hazardous real-world data collection. To evaluate the effectiveness of our framework, we design comprehensive experiments on both synthetic and real-world safety benchmarks. Results demonstrate that AutoSafe boosts safety scores by 45% on average and achieves a 28.91% improvement on real-world tasks, validating the generalization ability of our learned safety strategies. These results highlight the practical advancement and scalability of AutoSafe in building safer LLM-based agents for real-world deployment. We have released the project page at https://auto-safe.github.io/.
ThinkGuard: Deliberative Slow Thinking Leads to Cautious Guardrails
Ensuring the safety of large language models (LLMs) is critical as they are deployed in real-world applications. Existing guardrails rely on rule-based filtering or single-pass classification, limiting their ability to handle nuanced safety violations. To address this, we propose ThinkGuard, a critique-augmented guardrail model that distills knowledge from high-capacity LLMs by generating structured critiques alongside safety labels. Fine-tuned on critique-augmented data, the captured deliberative thinking ability drastically enhances the guardrail's cautiousness and interpretability. Evaluated on multiple safety benchmarks, ThinkGuard achieves the highest average F1 and AUPRC, outperforming all baselines. Compared to LLaMA Guard 3, ThinkGuard improves accuracy by 16.1% and macro F1 by 27.0%. Moreover, it surpasses label-only fine-tuned models, confirming that structured critiques enhance both classification precision and nuanced safety reasoning while maintaining computational efficiency.
Well-classified Examples are Underestimated in Classification with Deep Neural Networks
The conventional wisdom behind learning deep classification models is to focus on bad-classified examples and ignore well-classified examples that are far from the decision boundary. For instance, when training with cross-entropy loss, examples with higher likelihoods (i.e., well-classified examples) contribute smaller gradients in back-propagation. However, we theoretically show that this common practice hinders representation learning, energy optimization, and margin growth. To counteract this deficiency, we propose to reward well-classified examples with additive bonuses to revive their contribution to the learning process. This counterexample theoretically addresses these three issues. We empirically support this claim by directly verifying the theoretical results or significant performance improvement with our counterexample on diverse tasks, including image classification, graph classification, and machine translation. Furthermore, this paper shows that we can deal with complex scenarios, such as imbalanced classification, OOD detection, and applications under adversarial attacks because our idea can solve these three issues. Code is available at: https://github.com/lancopku/well-classified-examples-are-underestimated.
Deep Safe Multi-Task Learning
In recent years, Multi-Task Learning (MTL) has attracted much attention due to its good performance in many applications. However, many existing MTL models cannot guarantee that their performance is no worse than their single-task counterparts on each task. Though some works have empirically observed this phenomenon, little work aims to handle the resulting problem. In this paper, we formally define this phenomenon as negative sharing and define safe multi-task learning where no negative sharing occurs. To achieve safe multi-task learning, we propose a Deep Safe Multi-Task Learning (DSMTL) model with two learning strategies: individual learning and joint learning. We theoretically study the safeness of both learning strategies in the DSMTL model to show that the proposed methods can achieve some versions of safe multi-task learning. Moreover, to improve the scalability of the DSMTL model, we propose an extension, which automatically learns a compact architecture and empirically achieves safe multi-task learning. Extensive experiments on benchmark datasets verify the safeness of the proposed methods.
Benchmarking datasets for Anomaly-based Network Intrusion Detection: KDD CUP 99 alternatives
Machine Learning has been steadily gaining traction for its use in Anomaly-based Network Intrusion Detection Systems (A-NIDS). Research into this domain is frequently performed using the KDD~CUP~99 dataset as a benchmark. Several studies question its usability while constructing a contemporary NIDS, due to the skewed response distribution, non-stationarity, and failure to incorporate modern attacks. In this paper, we compare the performance for KDD-99 alternatives when trained using classification models commonly found in literature: Neural Network, Support Vector Machine, Decision Tree, Random Forest, Naive Bayes and K-Means. Applying the SMOTE oversampling technique and random undersampling, we create a balanced version of NSL-KDD and prove that skewed target classes in KDD-99 and NSL-KDD hamper the efficacy of classifiers on minority classes (U2R and R2L), leading to possible security risks. We explore UNSW-NB15, a modern substitute to KDD-99 with greater uniformity of pattern distribution. We benchmark this dataset before and after SMOTE oversampling to observe the effect on minority performance. Our results indicate that classifiers trained on UNSW-NB15 match or better the Weighted F1-Score of those trained on NSL-KDD and KDD-99 in the binary case, thus advocating UNSW-NB15 as a modern substitute to these datasets.
HarmAug: Effective Data Augmentation for Knowledge Distillation of Safety Guard Models
Safety guard models that detect malicious queries aimed at large language models (LLMs) are essential for ensuring the secure and responsible deployment of LLMs in real-world applications. However, deploying existing safety guard models with billions of parameters alongside LLMs on mobile devices is impractical due to substantial memory requirements and latency. To reduce this cost, we distill a large teacher safety guard model into a smaller one using a labeled dataset of instruction-response pairs with binary harmfulness labels. Due to the limited diversity of harmful instructions in the existing labeled dataset, naively distilled models tend to underperform compared to larger models. To bridge the gap between small and large models, we propose HarmAug, a simple yet effective data augmentation method that involves jailbreaking an LLM and prompting it to generate harmful instructions. Given a prompt such as, "Make a single harmful instruction prompt that would elicit offensive content", we add an affirmative prefix (e.g., "I have an idea for a prompt:") to the LLM's response. This encourages the LLM to continue generating the rest of the response, leading to sampling harmful instructions. Another LLM generates a response to the harmful instruction, and the teacher model labels the instruction-response pair. We empirically show that our HarmAug outperforms other relevant baselines. Moreover, a 435-million-parameter safety guard model trained with HarmAug achieves an F1 score comparable to larger models with over 7 billion parameters, and even outperforms them in AUPRC, while operating at less than 25% of their computational cost.
Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline Algorithm: Application to the ICU Length of Stay Prediction
This paper uses the MIMIC-IV dataset to examine the fairness and bias in an XGBoost binary classification model predicting the Intensive Care Unit (ICU) length of stay (LOS). Highlighting the critical role of the ICU in managing critically ill patients, the study addresses the growing strain on ICU capacity. It emphasizes the significance of LOS prediction for resource allocation. The research reveals class imbalances in the dataset across demographic attributes and employs data preprocessing and feature extraction. While the XGBoost model performs well overall, disparities across race and insurance attributes reflect the need for tailored assessments and continuous monitoring. The paper concludes with recommendations for fairness-aware machine learning techniques for mitigating biases and the need for collaborative efforts among healthcare professionals and data scientists.
How Does Unlabeled Data Provably Help Out-of-Distribution Detection?
Using unlabeled data to regularize the machine learning models has demonstrated promise for improving safety and reliability in detecting out-of-distribution (OOD) data. Harnessing the power of unlabeled in-the-wild data is non-trivial due to the heterogeneity of both in-distribution (ID) and OOD data. This lack of a clean set of OOD samples poses significant challenges in learning an optimal OOD classifier. Currently, there is a lack of research on formally understanding how unlabeled data helps OOD detection. This paper bridges the gap by introducing a new learning framework SAL (Separate And Learn) that offers both strong theoretical guarantees and empirical effectiveness. The framework separates candidate outliers from the unlabeled data and then trains an OOD classifier using the candidate outliers and the labeled ID data. Theoretically, we provide rigorous error bounds from the lens of separability and learnability, formally justifying the two components in our algorithm. Our theory shows that SAL can separate the candidate outliers with small error rates, which leads to a generalization guarantee for the learned OOD classifier. Empirically, SAL achieves state-of-the-art performance on common benchmarks, reinforcing our theoretical insights. Code is publicly available at https://github.com/deeplearning-wisc/sal.
Unsafe's Betrayal: Abusing Unsafe Rust in Binary Reverse Engineering via Machine Learning
Memory-safety bugs introduce critical software-security issues. Rust provides memory-safe mechanisms to avoid memory-safety bugs in programming, while still allowing unsafe escape hatches via unsafe code. However, the unsafe code that enhances the usability of Rust provides clear spots for finding memory-safety bugs in Rust source code. In this paper, we claim that these unsafe spots can still be identifiable in Rust binary code via machine learning and be leveraged for finding memory-safety bugs. To support our claim, we propose the tool textttrustspot, that enables reverse engineering to learn an unsafe classifier that proposes a list of functions in Rust binaries for downstream analysis. We empirically show that the function proposals by textttrustspot can recall 92.92% of memory-safety bugs, while it covers only 16.79% of the entire binary code. As an application, we demonstrate that the function proposals are used in targeted fuzzing on Rust packages, which contribute to reducing the fuzzing time compared to non-targeted fuzzing.
Wide and Deep Neural Networks Achieve Optimality for Classification
While neural networks are used for classification tasks across domains, a long-standing open problem in machine learning is determining whether neural networks trained using standard procedures are optimal for classification, i.e., whether such models minimize the probability of misclassification for arbitrary data distributions. In this work, we identify and construct an explicit set of neural network classifiers that achieve optimality. Since effective neural networks in practice are typically both wide and deep, we analyze infinitely wide networks that are also infinitely deep. In particular, using the recent connection between infinitely wide neural networks and Neural Tangent Kernels, we provide explicit activation functions that can be used to construct networks that achieve optimality. Interestingly, these activation functions are simple and easy to implement, yet differ from commonly used activations such as ReLU or sigmoid. More generally, we create a taxonomy of infinitely wide and deep networks and show that these models implement one of three well-known classifiers depending on the activation function used: (1) 1-nearest neighbor (model predictions are given by the label of the nearest training example); (2) majority vote (model predictions are given by the label of the class with greatest representation in the training set); or (3) singular kernel classifiers (a set of classifiers containing those that achieve optimality). Our results highlight the benefit of using deep networks for classification tasks, in contrast to regression tasks, where excessive depth is harmful.
State-of-the-Art in Nudity Classification: A Comparative Analysis
This paper presents a comparative analysis of existing nudity classification techniques for classifying images based on the presence of nudity, with a focus on their application in content moderation. The evaluation focuses on CNN-based models, vision transformer, and popular open-source safety checkers from Stable Diffusion and Large-scale Artificial Intelligence Open Network (LAION). The study identifies the limitations of current evaluation datasets and highlights the need for more diverse and challenging datasets. The paper discusses the potential implications of these findings for developing more accurate and effective image classification systems on online platforms. Overall, the study emphasizes the importance of continually improving image classification models to ensure the safety and well-being of platform users. The project page, including the demonstrations and results is publicly available at https://github.com/fcakyon/content-moderation-deep-learning.
Multi-annotator Deep Learning: A Probabilistic Framework for Classification
Solving complex classification tasks using deep neural networks typically requires large amounts of annotated data. However, corresponding class labels are noisy when provided by error-prone annotators, e.g., crowd workers. Training standard deep neural networks leads to subpar performances in such multi-annotator supervised learning settings. We address this issue by presenting a probabilistic training framework named multi-annotator deep learning (MaDL). A ground truth and an annotator performance model are jointly trained in an end-to-end learning approach. The ground truth model learns to predict instances' true class labels, while the annotator performance model infers probabilistic estimates of annotators' performances. A modular network architecture enables us to make varying assumptions regarding annotators' performances, e.g., an optional class or instance dependency. Further, we learn annotator embeddings to estimate annotators' densities within a latent space as proxies of their potentially correlated annotations. Together with a weighted loss function, we improve the learning from correlated annotation patterns. In a comprehensive evaluation, we examine three research questions about multi-annotator supervised learning. Our findings indicate MaDL's state-of-the-art performance and robustness against many correlated, spamming annotators.
On the Calibration of Probabilistic Classifier Sets
Multi-class classification methods that produce sets of probabilistic classifiers, such as ensemble learning methods, are able to model aleatoric and epistemic uncertainty. Aleatoric uncertainty is then typically quantified via the Bayes error, and epistemic uncertainty via the size of the set. In this paper, we extend the notion of calibration, which is commonly used to evaluate the validity of the aleatoric uncertainty representation of a single probabilistic classifier, to assess the validity of an epistemic uncertainty representation obtained by sets of probabilistic classifiers. Broadly speaking, we call a set of probabilistic classifiers calibrated if one can find a calibrated convex combination of these classifiers. To evaluate this notion of calibration, we propose a novel nonparametric calibration test that generalizes an existing test for single probabilistic classifiers to the case of sets of probabilistic classifiers. Making use of this test, we empirically show that ensembles of deep neural networks are often not well calibrated.
Think in Safety: Unveiling and Mitigating Safety Alignment Collapse in Multimodal Large Reasoning Model
The rapid development of Multimodal Large Reasoning Models (MLRMs) has demonstrated broad application potential, yet their safety and reliability remain critical concerns that require systematic exploration. To address this gap, we conduct a comprehensive and systematic safety evaluation of 11 MLRMs across 5 benchmarks and unveil prevalent safety degradation phenomena in most advanced models. Moreover, our analysis reveals distinct safety patterns across different benchmarks: significant safety degradation is observed across jailbreak robustness benchmarks, whereas safety-awareness benchmarks demonstrate less pronounced degradation. In particular, the long thought process in some scenarios even enhances safety performance. Therefore, it is a potential approach to address safety issues in MLRMs by leveraging the intrinsic reasoning capabilities of the model to detect unsafe intent. To operationalize this insight, we construct a multimodal tuning dataset that incorporates a safety-oriented thought process. Experimental results from fine-tuning existing MLRMs with this dataset effectively enhances the safety on both jailbreak robustness and safety-awareness benchmarks. This study provides a new perspective for developing safe MLRMs. Our dataset is available at https://github.com/xinyuelou/Think-in-Safety.
Efficient Failure Pattern Identification of Predictive Algorithms
Given a (machine learning) classifier and a collection of unlabeled data, how can we efficiently identify misclassification patterns presented in this dataset? To address this problem, we propose a human-machine collaborative framework that consists of a team of human annotators and a sequential recommendation algorithm. The recommendation algorithm is conceptualized as a stochastic sampler that, in each round, queries the annotators a subset of samples for their true labels and obtains the feedback information on whether the samples are misclassified. The sampling mechanism needs to balance between discovering new patterns of misclassification (exploration) and confirming the potential patterns of classification (exploitation). We construct a determinantal point process, whose intensity balances the exploration-exploitation trade-off through the weighted update of the posterior at each round to form the generator of the stochastic sampler. The numerical results empirically demonstrate the competitive performance of our framework on multiple datasets at various signal-to-noise ratios.
Toxicity of the Commons: Curating Open-Source Pre-Training Data
Open-source large language models are becoming increasingly available and popular among researchers and practitioners. While significant progress has been made on open-weight models, open training data is a practice yet to be adopted by the leading open-weight models creators. At the same time, there researchers are working to make language models safer. We propose a data curation pipeline to reduce harmful outputs by models trained on public domain data. There are unique challenges to working with public domain data, as these sources differ from web text in both form and content. Many sources are historical documents and are the result of Optical Character Recognition (OCR). Consequently, current state-of-the-art approaches to toxicity filtering are often infeasible or inappropriate for open data models. In this paper, we introduce a new fully open-source pipeline for open-data toxicity filtering. Our contributions are threefold. We create a custom training dataset, ToxicCommons, which is composed of texts which have been classified across five different dimensions (racial/origin-based, gender/sex-based, religious, ability-based discrimination, and violence). We use this dataset to train a custom classifier, Celadon, that can be used to detect toxic content in open data more efficiently at a larger scale. Finally, we describe the balanced approach to content filtration that optimizes safety filtering with respect to the filtered data available for training.
Parametric Classification for Generalized Category Discovery: A Baseline Study
Generalized Category Discovery (GCD) aims to discover novel categories in unlabelled datasets using knowledge learned from labelled samples. Previous studies argued that parametric classifiers are prone to overfitting to seen categories, and endorsed using a non-parametric classifier formed with semi-supervised k-means. However, in this study, we investigate the failure of parametric classifiers, verify the effectiveness of previous design choices when high-quality supervision is available, and identify unreliable pseudo-labels as a key problem. We demonstrate that two prediction biases exist: the classifier tends to predict seen classes more often, and produces an imbalanced distribution across seen and novel categories. Based on these findings, we propose a simple yet effective parametric classification method that benefits from entropy regularisation, achieves state-of-the-art performance on multiple GCD benchmarks and shows strong robustness to unknown class numbers. We hope the investigation and proposed simple framework can serve as a strong baseline to facilitate future studies in this field. Our code is available at: https://github.com/CVMI-Lab/SimGCD.
Foundation models for electronic health records: representation dynamics and transferability
Foundation models (FMs) trained on electronic health records (EHRs) have shown strong performance on a range of clinical prediction tasks. However, adapting these models to local health systems remains challenging due to limited data availability and resource constraints. In this study, we investigated what these models learn and evaluated the transferability of an FM trained on MIMIC-IV to an institutional EHR dataset at the University of Chicago Medical Center. We assessed their ability to identify outlier patients and examined representation-space patient trajectories in relation to future clinical outcomes. We also evaluated the performance of supervised fine-tuned classifiers on both source and target datasets. Our findings offer insights into the adaptability of FMs across different healthcare systems, highlight considerations for their effective implementation, and provide an empirical analysis of the underlying factors that contribute to their predictive performance.
Identifying Incorrect Annotations in Multi-Label Classification Data
In multi-label classification, each example in a dataset may be annotated as belonging to one or more classes (or none of the classes). Example applications include image (or document) tagging where each possible tag either applies to a particular image (or document) or not. With many possible classes to consider, data annotators are likely to make errors when labeling such data in practice. Here we consider algorithms for finding mislabeled examples in multi-label classification datasets. We propose an extension of the Confident Learning framework to this setting, as well as a label quality score that ranks examples with label errors much higher than those which are correctly labeled. Both approaches can utilize any trained classifier. After demonstrating that our methodology empirically outperforms other algorithms for label error detection, we apply our approach to discover many label errors in the CelebA image tagging dataset.
Explore, Establish, Exploit: Red Teaming Language Models from Scratch
Deploying Large language models (LLMs) can pose hazards from harmful outputs such as toxic or dishonest speech. Prior work has introduced tools that elicit harmful outputs in order to identify and mitigate these risks. While this is a valuable step toward securing language models, these approaches typically rely on a pre-existing classifier for undesired outputs. This limits their application to situations where the type of harmful behavior is known with precision beforehand. However, this skips a central challenge of red teaming: developing a contextual understanding of the behaviors that a model can exhibit. Furthermore, when such a classifier already exists, red teaming has limited marginal value because the classifier could simply be used to filter training data or model outputs. In this work, we consider red teaming under the assumption that the adversary is working from a high-level, abstract specification of undesired behavior. The red team is expected to refine/extend this specification and identify methods to elicit this behavior from the model. Our red teaming framework consists of three steps: 1) Exploring the model's behavior in the desired context; 2) Establishing a measurement of undesired behavior (e.g., a classifier trained to reflect human evaluations); and 3) Exploiting the model's flaws using this measure and an established red teaming methodology. We apply this approach to red team GPT-2 and GPT-3 models to systematically discover classes of prompts that elicit toxic and dishonest statements. In doing so, we also construct and release the CommonClaim dataset of 20,000 statements that have been labeled by human subjects as common-knowledge-true, common-knowledge-false, or neither. Code is available at https://github.com/thestephencasper/explore_establish_exploit_llms. CommonClaim is available at https://github.com/thestephencasper/common_claim.
Automated categorization of pre-trained models for software engineering: A case study with a Hugging Face dataset
Software engineering (SE) activities have been revolutionized by the advent of pre-trained models (PTMs), defined as large machine learning (ML) models that can be fine-tuned to perform specific SE tasks. However, users with limited expertise may need help to select the appropriate model for their current task. To tackle the issue, the Hugging Face (HF) platform simplifies the use of PTMs by collecting, storing, and curating several models. Nevertheless, the platform currently lacks a comprehensive categorization of PTMs designed specifically for SE, i.e., the existing tags are more suited to generic ML categories. This paper introduces an approach to address this gap by enabling the automatic classification of PTMs for SE tasks. First, we utilize a public dump of HF to extract PTMs information, including model documentation and associated tags. Then, we employ a semi-automated method to identify SE tasks and their corresponding PTMs from existing literature. The approach involves creating an initial mapping between HF tags and specific SE tasks, using a similarity-based strategy to identify PTMs with relevant tags. The evaluation shows that model cards are informative enough to classify PTMs considering the pipeline tag. Moreover, we provide a mapping between SE tasks and stored PTMs by relying on model names.
The Success of AdaBoost and Its Application in Portfolio Management
We develop a novel approach to explain why AdaBoost is a successful classifier. By introducing a measure of the influence of the noise points (ION) in the training data for the binary classification problem, we prove that there is a strong connection between the ION and the test error. We further identify that the ION of AdaBoost decreases as the iteration number or the complexity of the base learners increases. We confirm that it is impossible to obtain a consistent classifier without deep trees as the base learners of AdaBoost in some complicated situations. We apply AdaBoost in portfolio management via empirical studies in the Chinese market, which corroborates our theoretical propositions.
Ensuring Safe and High-Quality Outputs: A Guideline Library Approach for Language Models
Large Language Models (LLMs) exhibit impressive capabilities but also present risks such as biased content generation and privacy issues. One of the current alignment techniques includes principle-driven integration, but it faces challenges arising from the imprecision of manually crafted rules and inadequate risk perception in models without safety training. To address these, we introduce Guide-Align, a two-stage approach. Initially, a safety-trained model identifies potential risks and formulates specific guidelines for various inputs, establishing a comprehensive library of guidelines and a model for input-guidelines retrieval. Subsequently, the retrieval model correlates new inputs with relevant guidelines, which guide LLMs in response generation to ensure safe and high-quality outputs, thereby aligning with human values. An additional optional stage involves fine-tuning a model with well-aligned datasets generated through the process implemented in the second stage. Our method customizes guidelines to accommodate diverse inputs, thereby enhancing the fine-grainedness and comprehensiveness of the guideline library. Furthermore, it incorporates safety expertise from a safety-trained LLM through a lightweight retrieval model. We evaluate our approach on three benchmarks, demonstrating significant improvements in LLM security and quality. Notably, our fine-tuned model, Labrador, even at 13 billion parameters, outperforms GPT-3.5-turbo and surpasses GPT-4 in alignment capabilities.
On Invariance Penalties for Risk Minimization
The Invariant Risk Minimization (IRM) principle was first proposed by Arjovsky et al. [2019] to address the domain generalization problem by leveraging data heterogeneity from differing experimental conditions. Specifically, IRM seeks to find a data representation under which an optimal classifier remains invariant across all domains. Despite the conceptual appeal of IRM, the effectiveness of the originally proposed invariance penalty has recently been brought into question. In particular, there exists counterexamples for which that invariance penalty can be arbitrarily small for non-invariant data representations. We propose an alternative invariance penalty by revisiting the Gramian matrix of the data representation. We discuss the role of its eigenvalues in the relationship between the risk and the invariance penalty, and demonstrate that it is ill-conditioned for said counterexamples. The proposed approach is guaranteed to recover an invariant representation for linear settings under mild non-degeneracy conditions. Its effectiveness is substantiated by experiments on DomainBed and InvarianceUnitTest, two extensive test beds for domain generalization.
Keeping LLMs Aligned After Fine-tuning: The Crucial Role of Prompt Templates
Public LLMs such as the Llama 2-Chat have driven huge activity in LLM research. These models underwent alignment training and were considered safe. Recently Qi et al. (2023) reported that even benign fine-tuning (e.g., on seemingly safe datasets) can give rise to unsafe behaviors in the models. The current paper is about methods and best practices to mitigate such loss of alignment. Through extensive experiments on several chat models (Meta's Llama 2-Chat, Mistral AI's Mistral 7B Instruct v0.2, and OpenAI's GPT-3.5 Turbo), this paper uncovers that the prompt templates used during fine-tuning and inference play a crucial role in preserving safety alignment, and proposes the "Pure Tuning, Safe Testing" (PTST) principle -- fine-tune models without a safety prompt, but include it at test time. Fine-tuning experiments on GSM8K, ChatDoctor, and OpenOrca show that PTST significantly reduces the rise of unsafe behaviors, and even almost eliminates them in some cases.
Robust and Interpretable Medical Image Classifiers via Concept Bottleneck Models
Medical image classification is a critical problem for healthcare, with the potential to alleviate the workload of doctors and facilitate diagnoses of patients. However, two challenges arise when deploying deep learning models to real-world healthcare applications. First, neural models tend to learn spurious correlations instead of desired features, which could fall short when generalizing to new domains (e.g., patients with different ages). Second, these black-box models lack interpretability. When making diagnostic predictions, it is important to understand why a model makes a decision for trustworthy and safety considerations. In this paper, to address these two limitations, we propose a new paradigm to build robust and interpretable medical image classifiers with natural language concepts. Specifically, we first query clinical concepts from GPT-4, then transform latent image features into explicit concepts with a vision-language model. We systematically evaluate our method on eight medical image classification datasets to verify its effectiveness. On challenging datasets with strong confounding factors, our method can mitigate spurious correlations thus substantially outperform standard visual encoders and other baselines. Finally, we show how classification with a small number of concepts brings a level of interpretability for understanding model decisions through case studies in real medical data.
Rule-Based Error Detection and Correction to Operationalize Movement Trajectory Classification
Classification of movement trajectories has many applications in transportation. Supervised neural models represent the current state-of-the-art. Recent security applications require this task to be rapidly employed in environments that may differ from the data used to train such models for which there is little training data. We provide a neuro-symbolic rule-based framework to conduct error correction and detection of these models to support eventual deployment in security applications. We provide a suite of experiments on several recent and state-of-the-art models and show an accuracy improvement of 1.7% over the SOTA model in the case where all classes are present in training and when 40% of classes are omitted from training, we obtain a 5.2% improvement (zero-shot) and 23.9% (few-shot) improvement over the SOTA model without resorting to retraining of the base model.
MSTS: A Multimodal Safety Test Suite for Vision-Language Models
Vision-language models (VLMs), which process image and text inputs, are increasingly integrated into chat assistants and other consumer AI applications. Without proper safeguards, however, VLMs may give harmful advice (e.g. how to self-harm) or encourage unsafe behaviours (e.g. to consume drugs). Despite these clear hazards, little work so far has evaluated VLM safety and the novel risks created by multimodal inputs. To address this gap, we introduce MSTS, a Multimodal Safety Test Suite for VLMs. MSTS comprises 400 test prompts across 40 fine-grained hazard categories. Each test prompt consists of a text and an image that only in combination reveal their full unsafe meaning. With MSTS, we find clear safety issues in several open VLMs. We also find some VLMs to be safe by accident, meaning that they are safe because they fail to understand even simple test prompts. We translate MSTS into ten languages, showing non-English prompts to increase the rate of unsafe model responses. We also show models to be safer when tested with text only rather than multimodal prompts. Finally, we explore the automation of VLM safety assessments, finding even the best safety classifiers to be lacking.
Reasoning as an Adaptive Defense for Safety
Reasoning methods that adaptively allocate test-time compute have advanced LLM performance on easy to verify domains such as math and code. In this work, we study how to utilize this approach to train models that exhibit a degree of robustness to safety vulnerabilities, and show that doing so can provide benefits. We build a recipe called TARS (Training Adaptive Reasoners for Safety), a reinforcement learning (RL) approach that trains models to reason about safety using chain-of-thought traces and a reward signal that balances safety with task completion. To build TARS, we identify three critical design choices: (1) a "lightweight" warmstart SFT stage, (2) a mix of harmful, harmless, and ambiguous prompts to prevent shortcut behaviors such as too many refusals, and (3) a reward function to prevent degeneration of reasoning capabilities during training. Models trained with TARS exhibit adaptive behaviors by spending more compute on ambiguous queries, leading to better safety-refusal trade-offs. They also internally learn to better distinguish between safe and unsafe prompts and attain greater robustness to both white-box (e.g., GCG) and black-box attacks (e.g., PAIR). Overall, our work provides an effective, open recipe for training LLMs against jailbreaks and harmful requests by reasoning per prompt.
Improving the Accuracy-Robustness Trade-Off of Classifiers via Adaptive Smoothing
While prior research has proposed a plethora of methods that build neural classifiers robust against adversarial robustness, practitioners are still reluctant to adopt them due to their unacceptably severe clean accuracy penalties. This paper significantly alleviates this accuracy-robustness trade-off by mixing the output probabilities of a standard classifier and a robust classifier, where the standard network is optimized for clean accuracy and is not robust in general. We show that the robust base classifier's confidence difference for correct and incorrect examples is the key to this improvement. In addition to providing intuitions and empirical evidence, we theoretically certify the robustness of the mixed classifier under realistic assumptions. Furthermore, we adapt an adversarial input detector into a mixing network that adaptively adjusts the mixture of the two base models, further reducing the accuracy penalty of achieving robustness. The proposed flexible method, termed "adaptive smoothing", can work in conjunction with existing or even future methods that improve clean accuracy, robustness, or adversary detection. Our empirical evaluation considers strong attack methods, including AutoAttack and adaptive attack. On the CIFAR-100 dataset, our method achieves an 85.21% clean accuracy while maintaining a 38.72% ell_infty-AutoAttacked (epsilon = 8/255) accuracy, becoming the second most robust method on the RobustBench CIFAR-100 benchmark as of submission, while improving the clean accuracy by ten percentage points compared with all listed models. The code that implements our method is available at https://github.com/Bai-YT/AdaptiveSmoothing.
Granite Guardian
We introduce the Granite Guardian models, a suite of safeguards designed to provide risk detection for prompts and responses, enabling safe and responsible use in combination with any large language model (LLM). These models offer comprehensive coverage across multiple risk dimensions, including social bias, profanity, violence, sexual content, unethical behavior, jailbreaking, and hallucination-related risks such as context relevance, groundedness, and answer relevance for retrieval-augmented generation (RAG). Trained on a unique dataset combining human annotations from diverse sources and synthetic data, Granite Guardian models address risks typically overlooked by traditional risk detection models, such as jailbreaks and RAG-specific issues. With AUC scores of 0.871 and 0.854 on harmful content and RAG-hallucination-related benchmarks respectively, Granite Guardian is the most generalizable and competitive model available in the space. Released as open-source, Granite Guardian aims to promote responsible AI development across the community. https://github.com/ibm-granite/granite-guardian
Legend: Leveraging Representation Engineering to Annotate Safety Margin for Preference Datasets
The success of the reward model in distinguishing between responses with subtle safety differences depends critically on the high-quality preference dataset, which should capture the fine-grained nuances of harmful and harmless responses. This motivates the need to develop a dataset involving preference margins, which accurately quantify how harmless one response is compared to another. In this paper, we take the first step to propose an effective and cost-efficient framework to promote the margin-enhanced preference dataset development. Our framework, Legend, Leverages representation engineering to annotate preference datasets. It constructs the specific direction within the LLM's embedding space that represents safety. By leveraging this safety direction, Legend can then leverage the semantic distances of paired responses along this direction to annotate margins automatically. We experimentally demonstrate our effectiveness in both reward modeling and harmless alignment for LLMs. Legend also stands out for its efficiency, requiring only the inference time rather than additional training. This efficiency allows for easier implementation and scalability, making Legend particularly valuable for practical applications in aligning LLMs with safe conversations.
LLavaGuard: VLM-based Safeguards for Vision Dataset Curation and Safety Assessment
We introduce LlavaGuard, a family of VLM-based safeguard models, offering a versatile framework for evaluating the safety compliance of visual content. Specifically, we designed LlavaGuard for dataset annotation and generative model safeguarding. To this end, we collected and annotated a high-quality visual dataset incorporating a broad safety taxonomy, which we use to tune VLMs on context-aware safety risks. As a key innovation, LlavaGuard's new responses contain comprehensive information, including a safety rating, the violated safety categories, and an in-depth rationale. Further, our introduced customizable taxonomy categories enable the context-specific alignment of LlavaGuard to various scenarios. Our experiments highlight the capabilities of LlavaGuard in complex and real-world applications. We provide checkpoints ranging from 7B to 34B parameters demonstrating state-of-the-art performance, with even the smallest models outperforming baselines like GPT-4. We make our dataset and model weights publicly available and invite further research to address the diverse needs of communities and contexts.
Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To!
Optimizing large language models (LLMs) for downstream use cases often involves the customization of pre-trained LLMs through further fine-tuning. Meta's open release of Llama models and OpenAI's APIs for fine-tuning GPT-3.5 Turbo on custom datasets also encourage this practice. But, what are the safety costs associated with such custom fine-tuning? We note that while existing safety alignment infrastructures can restrict harmful behaviors of LLMs at inference time, they do not cover safety risks when fine-tuning privileges are extended to end-users. Our red teaming studies find that the safety alignment of LLMs can be compromised by fine-tuning with only a few adversarially designed training examples. For instance, we jailbreak GPT-3.5 Turbo's safety guardrails by fine-tuning it on only 10 such examples at a cost of less than $0.20 via OpenAI's APIs, making the model responsive to nearly any harmful instructions. Disconcertingly, our research also reveals that, even without malicious intent, simply fine-tuning with benign and commonly used datasets can also inadvertently degrade the safety alignment of LLMs, though to a lesser extent. These findings suggest that fine-tuning aligned LLMs introduces new safety risks that current safety infrastructures fall short of addressing -- even if a model's initial safety alignment is impeccable, it is not necessarily to be maintained after custom fine-tuning. We outline and critically analyze potential mitigations and advocate for further research efforts toward reinforcing safety protocols for the custom fine-tuning of aligned LLMs.
When Noisy Labels Meet Long Tail Dilemmas: A Representation Calibration Method
Real-world large-scale datasets are both noisily labeled and class-imbalanced. The issues seriously hurt the generalization of trained models. It is hence significant to address the simultaneous incorrect labeling and class-imbalance, i.e., the problem of learning with noisy labels on long-tailed data. Previous works develop several methods for the problem. However, they always rely on strong assumptions that are invalid or hard to be checked in practice. In this paper, to handle the problem and address the limitations of prior works, we propose a representation calibration method RCAL. Specifically, RCAL works with the representations extracted by unsupervised contrastive learning. We assume that without incorrect labeling and class imbalance, the representations of instances in each class conform to a multivariate Gaussian distribution, which is much milder and easier to be checked. Based on the assumption, we recover underlying representation distributions from polluted ones resulting from mislabeled and class-imbalanced data. Additional data points are then sampled from the recovered distributions to help generalization. Moreover, during classifier training, representation learning takes advantage of representation robustness brought by contrastive learning, which further improves the classifier performance. We derive theoretical results to discuss the effectiveness of our representation calibration. Experiments on multiple benchmarks justify our claims and confirm the superiority of the proposed method.
HoloDetect: Few-Shot Learning for Error Detection
We introduce a few-shot learning framework for error detection. We show that data augmentation (a form of weak supervision) is key to training high-quality, ML-based error detection models that require minimal human involvement. Our framework consists of two parts: (1) an expressive model to learn rich representations that capture the inherent syntactic and semantic heterogeneity of errors; and (2) a data augmentation model that, given a small seed of clean records, uses dataset-specific transformations to automatically generate additional training data. Our key insight is to learn data augmentation policies from the noisy input dataset in a weakly supervised manner. We show that our framework detects errors with an average precision of ~94% and an average recall of ~93% across a diverse array of datasets that exhibit different types and amounts of errors. We compare our approach to a comprehensive collection of error detection methods, ranging from traditional rule-based methods to ensemble-based and active learning approaches. We show that data augmentation yields an average improvement of 20 F1 points while it requires access to 3x fewer labeled examples compared to other ML approaches.
Unsolved Problems in ML Safety
Machine learning (ML) systems are rapidly increasing in size, are acquiring new capabilities, and are increasingly deployed in high-stakes settings. As with other powerful technologies, safety for ML should be a leading research priority. In response to emerging safety challenges in ML, such as those introduced by recent large-scale models, we provide a new roadmap for ML Safety and refine the technical problems that the field needs to address. We present four problems ready for research, namely withstanding hazards ("Robustness"), identifying hazards ("Monitoring"), reducing inherent model hazards ("Alignment"), and reducing systemic hazards ("Systemic Safety"). Throughout, we clarify each problem's motivation and provide concrete research directions.
ASSERT: Automated Safety Scenario Red Teaming for Evaluating the Robustness of Large Language Models
As large language models are integrated into society, robustness toward a suite of prompts is increasingly important to maintain reliability in a high-variance environment.Robustness evaluations must comprehensively encapsulate the various settings in which a user may invoke an intelligent system. This paper proposes ASSERT, Automated Safety Scenario Red Teaming, consisting of three methods -- semantically aligned augmentation, target bootstrapping, and adversarial knowledge injection. For robust safety evaluation, we apply these methods in the critical domain of AI safety to algorithmically generate a test suite of prompts covering diverse robustness settings -- semantic equivalence, related scenarios, and adversarial. We partition our prompts into four safety domains for a fine-grained analysis of how the domain affects model performance. Despite dedicated safeguards in existing state-of-the-art models, we find statistically significant performance differences of up to 11% in absolute classification accuracy among semantically related scenarios and error rates of up to 19% absolute error in zero-shot adversarial settings, raising concerns for users' physical safety.
When Personalization Harms: Reconsidering the Use of Group Attributes in Prediction
Machine learning models are often personalized with categorical attributes that are protected, sensitive, self-reported, or costly to acquire. In this work, we show models that are personalized with group attributes can reduce performance at a group level. We propose formal conditions to ensure the "fair use" of group attributes in prediction tasks by training one additional model -- i.e., collective preference guarantees to ensure that each group who provides personal data will receive a tailored gain in performance in return. We present sufficient conditions to ensure fair use in empirical risk minimization and characterize failure modes that lead to fair use violations due to standard practices in model development and deployment. We present a comprehensive empirical study of fair use in clinical prediction tasks. Our results demonstrate the prevalence of fair use violations in practice and illustrate simple interventions to mitigate their harm.
SurrogatePrompt: Bypassing the Safety Filter of Text-To-Image Models via Substitution
Advanced text-to-image models such as DALL-E 2 and Midjourney possess the capacity to generate highly realistic images, raising significant concerns regarding the potential proliferation of unsafe content. This includes adult, violent, or deceptive imagery of political figures. Despite claims of rigorous safety mechanisms implemented in these models to restrict the generation of not-safe-for-work (NSFW) content, we successfully devise and exhibit the first prompt attacks on Midjourney, resulting in the production of abundant photorealistic NSFW images. We reveal the fundamental principles of such prompt attacks and suggest strategically substituting high-risk sections within a suspect prompt to evade closed-source safety measures. Our novel framework, SurrogatePrompt, systematically generates attack prompts, utilizing large language models, image-to-text, and image-to-image modules to automate attack prompt creation at scale. Evaluation results disclose an 88% success rate in bypassing Midjourney's proprietary safety filter with our attack prompts, leading to the generation of counterfeit images depicting political figures in violent scenarios. Both subjective and objective assessments validate that the images generated from our attack prompts present considerable safety hazards.
Novel Class Discovery: an Introduction and Key Concepts
Novel Class Discovery (NCD) is a growing field where we are given during training a labeled set of known classes and an unlabeled set of different classes that must be discovered. In recent years, many methods have been proposed to address this problem, and the field has begun to mature. In this paper, we provide a comprehensive survey of the state-of-the-art NCD methods. We start by formally defining the NCD problem and introducing important notions. We then give an overview of the different families of approaches, organized by the way they transfer knowledge from the labeled set to the unlabeled set. We find that they either learn in two stages, by first extracting knowledge from the labeled data only and then applying it to the unlabeled data, or in one stage by conjointly learning on both sets. For each family, we describe their general principle and detail a few representative methods. Then, we briefly introduce some new related tasks inspired by the increasing number of NCD works. We also present some common tools and techniques used in NCD, such as pseudo labeling, self-supervised learning and contrastive learning. Finally, to help readers unfamiliar with the NCD problem differentiate it from other closely related domains, we summarize some of the closest areas of research and discuss their main differences.
LLMs Encode Harmfulness and Refusal Separately
LLMs are trained to refuse harmful instructions, but do they truly understand harmfulness beyond just refusing? Prior work has shown that LLMs' refusal behaviors can be mediated by a one-dimensional subspace, i.e., a refusal direction. In this work, we identify a new dimension to analyze safety mechanisms in LLMs, i.e., harmfulness, which is encoded internally as a separate concept from refusal. There exists a harmfulness direction that is distinct from the refusal direction. As causal evidence, steering along the harmfulness direction can lead LLMs to interpret harmless instructions as harmful, but steering along the refusal direction tends to elicit refusal responses directly without reversing the model's judgment on harmfulness. Furthermore, using our identified harmfulness concept, we find that certain jailbreak methods work by reducing the refusal signals without reversing the model's internal belief of harmfulness. We also find that adversarially finetuning models to accept harmful instructions has minimal impact on the model's internal belief of harmfulness. These insights lead to a practical safety application: The model's latent harmfulness representation can serve as an intrinsic safeguard (Latent Guard) for detecting unsafe inputs and reducing over-refusals that is robust to finetuning attacks. For instance, our Latent Guard achieves performance comparable to or better than Llama Guard 3 8B, a dedicated finetuned safeguard model, across different jailbreak methods. Our findings suggest that LLMs' internal understanding of harmfulness is more robust than their refusal decision to diverse input instructions, offering a new perspective to study AI safety
LionGuard: Building a Contextualized Moderation Classifier to Tackle Localized Unsafe Content
As large language models (LLMs) become increasingly prevalent in a wide variety of applications, concerns about the safety of their outputs have become more significant. Most efforts at safety-tuning or moderation today take on a predominantly Western-centric view of safety, especially for toxic, hateful, or violent speech. In this paper, we describe LionGuard, a Singapore-contextualized moderation classifier that can serve as guardrails against unsafe LLM outputs. When assessed on Singlish data, LionGuard outperforms existing widely-used moderation APIs, which are not finetuned for the Singapore context, by 14% (binary) and up to 51% (multi-label). Our work highlights the benefits of localization for moderation classifiers and presents a practical and scalable approach for low-resource languages.
How Alignment and Jailbreak Work: Explain LLM Safety through Intermediate Hidden States
Large language models (LLMs) rely on safety alignment to avoid responding to malicious user inputs. Unfortunately, jailbreak can circumvent safety guardrails, resulting in LLMs generating harmful content and raising concerns about LLM safety. Due to language models with intensive parameters often regarded as black boxes, the mechanisms of alignment and jailbreak are challenging to elucidate. In this paper, we employ weak classifiers to explain LLM safety through the intermediate hidden states. We first confirm that LLMs learn ethical concepts during pre-training rather than alignment and can identify malicious and normal inputs in the early layers. Alignment actually associates the early concepts with emotion guesses in the middle layers and then refines them to the specific reject tokens for safe generations. Jailbreak disturbs the transformation of early unethical classification into negative emotions. We conduct experiments on models from 7B to 70B across various model families to prove our conclusion. Overall, our paper indicates the intrinsical mechanism of LLM safety and how jailbreaks circumvent safety guardrails, offering a new perspective on LLM safety and reducing concerns. Our code is available at https://github.com/ydyjya/LLM-IHS-Explanation.
MOTIF: A Large Malware Reference Dataset with Ground Truth Family Labels
Malware family classification is a significant issue with public safety and research implications that has been hindered by the high cost of expert labels. The vast majority of corpora use noisy labeling approaches that obstruct definitive quantification of results and study of deeper interactions. In order to provide the data needed to advance further, we have created the Malware Open-source Threat Intelligence Family (MOTIF) dataset. MOTIF contains 3,095 malware samples from 454 families, making it the largest and most diverse public malware dataset with ground truth family labels to date, nearly 3x larger than any prior expert-labeled corpus and 36x larger than the prior Windows malware corpus. MOTIF also comes with a mapping from malware samples to threat reports published by reputable industry sources, which both validates the labels and opens new research opportunities in connecting opaque malware samples to human-readable descriptions. This enables important evaluations that are normally infeasible due to non-standardized reporting in industry. For example, we provide aliases of the different names used to describe the same malware family, allowing us to benchmark for the first time accuracy of existing tools when names are obtained from differing sources. Evaluation results obtained using the MOTIF dataset indicate that existing tasks have significant room for improvement, with accuracy of antivirus majority voting measured at only 62.10% and the well-known AVClass tool having just 46.78% accuracy. Our findings indicate that malware family classification suffers a type of labeling noise unlike that studied in most ML literature, due to the large open set of classes that may not be known from the sample under consideration
Yi-Lightning Technical Report
This technical report presents Yi-Lightning, our latest flagship large language model (LLM). It achieves exceptional performance, ranking 6th overall on Chatbot Arena, with particularly strong results (2nd to 4th place) in specialized categories including Chinese, Math, Coding, and Hard Prompts. Yi-Lightning leverages an enhanced Mixture-of-Experts (MoE) architecture, featuring advanced expert segmentation and routing mechanisms coupled with optimized KV-caching techniques. Our development process encompasses comprehensive pre-training, supervised fine-tuning (SFT), and reinforcement learning from human feedback (RLHF), where we devise deliberate strategies for multi-stage training, synthetic data construction, and reward modeling. Furthermore, we implement RAISE (Responsible AI Safety Engine), a four-component framework to address safety issues across pre-training, post-training, and serving phases. Empowered by our scalable super-computing infrastructure, all these innovations substantially reduce training, deployment and inference costs while maintaining high-performance standards. With further evaluations on public academic benchmarks, Yi-Lightning demonstrates competitive performance against top-tier LLMs, while we observe a notable disparity between traditional, static benchmark results and real-world, dynamic human preferences. This observation prompts a critical reassessment of conventional benchmarks' utility in guiding the development of more intelligent and powerful AI systems for practical applications. Yi-Lightning is now available through our developer platform at https://platform.lingyiwanwu.com.
Benchmarking Traditional Machine Learning and Deep Learning Models for Fault Detection in Power Transformers
Accurate diagnosis of power transformer faults is essential for ensuring the stability and safety of electrical power systems. This study presents a comparative analysis of conventional machine learning (ML) algorithms and deep learning (DL) algorithms for fault classification of power transformers. Using a condition-monitored dataset spanning 10 months, various gas concentration features were normalized and used to train five ML classifiers: Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Random Forest (RF), XGBoost, and Artificial Neural Network (ANN). In addition, four DL models were evaluated: Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), One-Dimensional Convolutional Neural Network (1D-CNN), and TabNet. Experimental results show that both ML and DL approaches performed comparably. The RF model achieved the highest ML accuracy at 86.82%, while the 1D-CNN model attained a close 86.30%.
T-Miner: A Generative Approach to Defend Against Trojan Attacks on DNN-based Text Classification
Deep Neural Network (DNN) classifiers are known to be vulnerable to Trojan or backdoor attacks, where the classifier is manipulated such that it misclassifies any input containing an attacker-determined Trojan trigger. Backdoors compromise a model's integrity, thereby posing a severe threat to the landscape of DNN-based classification. While multiple defenses against such attacks exist for classifiers in the image domain, there have been limited efforts to protect classifiers in the text domain. We present Trojan-Miner (T-Miner) -- a defense framework for Trojan attacks on DNN-based text classifiers. T-Miner employs a sequence-to-sequence (seq-2-seq) generative model that probes the suspicious classifier and learns to produce text sequences that are likely to contain the Trojan trigger. T-Miner then analyzes the text produced by the generative model to determine if they contain trigger phrases, and correspondingly, whether the tested classifier has a backdoor. T-Miner requires no access to the training dataset or clean inputs of the suspicious classifier, and instead uses synthetically crafted "nonsensical" text inputs to train the generative model. We extensively evaluate T-Miner on 1100 model instances spanning 3 ubiquitous DNN model architectures, 5 different classification tasks, and a variety of trigger phrases. We show that T-Miner detects Trojan and clean models with a 98.75% overall accuracy, while achieving low false positives on clean models. We also show that T-Miner is robust against a variety of targeted, advanced attacks from an adaptive attacker.
Credit card fraud detection - Classifier selection strategy
Machine learning has opened up new tools for financial fraud detection. Using a sample of annotated transactions, a machine learning classification algorithm learns to detect frauds. With growing credit card transaction volumes and rising fraud percentages there is growing interest in finding appropriate machine learning classifiers for detection. However, fraud data sets are diverse and exhibit inconsistent characteristics. As a result, a model effective on a given data set is not guaranteed to perform on another. Further, the possibility of temporal drift in data patterns and characteristics over time is high. Additionally, fraud data has massive and varying imbalance. In this work, we evaluate sampling methods as a viable pre-processing mechanism to handle imbalance and propose a data-driven classifier selection strategy for characteristic highly imbalanced fraud detection data sets. The model derived based on our selection strategy surpasses peer models, whilst working in more realistic conditions, establishing the effectiveness of the strategy.
Jailbroken: How Does LLM Safety Training Fail?
Large language models trained for safety and harmlessness remain susceptible to adversarial misuse, as evidenced by the prevalence of "jailbreak" attacks on early releases of ChatGPT that elicit undesired behavior. Going beyond recognition of the issue, we investigate why such attacks succeed and how they can be created. We hypothesize two failure modes of safety training: competing objectives and mismatched generalization. Competing objectives arise when a model's capabilities and safety goals conflict, while mismatched generalization occurs when safety training fails to generalize to a domain for which capabilities exist. We use these failure modes to guide jailbreak design and then evaluate state-of-the-art models, including OpenAI's GPT-4 and Anthropic's Claude v1.3, against both existing and newly designed attacks. We find that vulnerabilities persist despite the extensive red-teaming and safety-training efforts behind these models. Notably, new attacks utilizing our failure modes succeed on every prompt in a collection of unsafe requests from the models' red-teaming evaluation sets and outperform existing ad hoc jailbreaks. Our analysis emphasizes the need for safety-capability parity -- that safety mechanisms should be as sophisticated as the underlying model -- and argues against the idea that scaling alone can resolve these safety failure modes.
Forbidden Science: Dual-Use AI Challenge Benchmark and Scientific Refusal Tests
The development of robust safety benchmarks for large language models requires open, reproducible datasets that can measure both appropriate refusal of harmful content and potential over-restriction of legitimate scientific discourse. We present an open-source dataset and testing framework for evaluating LLM safety mechanisms across mainly controlled substance queries, analyzing four major models' responses to systematically varied prompts. Our results reveal distinct safety profiles: Claude-3.5-sonnet demonstrated the most conservative approach with 73% refusals and 27% allowances, while Mistral attempted to answer 100% of queries. GPT-3.5-turbo showed moderate restriction with 10% refusals and 90% allowances, and Grok-2 registered 20% refusals and 80% allowances. Testing prompt variation strategies revealed decreasing response consistency, from 85% with single prompts to 65% with five variations. This publicly available benchmark enables systematic evaluation of the critical balance between necessary safety restrictions and potential over-censorship of legitimate scientific inquiry, while providing a foundation for measuring progress in AI safety implementation. Chain-of-thought analysis reveals potential vulnerabilities in safety mechanisms, highlighting the complexity of implementing robust safeguards without unduly restricting desirable and valid scientific discourse.
Leveraging Uncertainty Estimates To Improve Classifier Performance
Binary classification involves predicting the label of an instance based on whether the model score for the positive class exceeds a threshold chosen based on the application requirements (e.g., maximizing recall for a precision bound). However, model scores are often not aligned with the true positivity rate. This is especially true when the training involves a differential sampling across classes or there is distributional drift between train and test settings. In this paper, we provide theoretical analysis and empirical evidence of the dependence of model score estimation bias on both uncertainty and score itself. Further, we formulate the decision boundary selection in terms of both model score and uncertainty, prove that it is NP-hard, and present algorithms based on dynamic programming and isotonic regression. Evaluation of the proposed algorithms on three real-world datasets yield 25%-40% gain in recall at high precision bounds over the traditional approach of using model score alone, highlighting the benefits of leveraging uncertainty.
MBIAS: Mitigating Bias in Large Language Models While Retaining Context
In addressing the critical need for safety in Large Language Models (LLMs), it is crucial to ensure that the outputs are not only safe but also retain their contextual accuracy. Many existing LLMs are safe fine-tuned either with safety demonstrations, or rely only on adversarial testing. While able to get safe outputs, they often risk losing contextual meaning as they mitigate bias and toxicity. In response, we present MBIAS, a LLM framework instruction fine-tuned on a custom dataset specifically designed for safety interventions. MBIAS aims to address the significant issues of bias and toxicity in LLMs generations that typically manifest as underrepresentation or negative portrayals across various demographics, including inappropriate linguistic mentions and biased content in social media. We experiment on MBIAS for safety interventions using various configurations, and demonstrate more than a 30\% reduction in overall bias and toxicity while successfully retaining key information. Additionally, a demographic analysis on an out-of-distribution test set confirms the robustness of our approach, with reductions in bias and toxicity exceeding 90\% across various demographics. The dataset and instruction fine-tuned MBIAS are made available to the research community at https://huggingface.co/newsmediabias/MBIAS.
LongSafety: Evaluating Long-Context Safety of Large Language Models
As Large Language Models (LLMs) continue to advance in understanding and generating long sequences, new safety concerns have been introduced through the long context. However, the safety of LLMs in long-context tasks remains under-explored, leaving a significant gap in both evaluation and improvement of their safety. To address this, we introduce LongSafety, the first comprehensive benchmark specifically designed to evaluate LLM safety in open-ended long-context tasks. LongSafety encompasses 7 categories of safety issues and 6 user-oriented long-context tasks, with a total of 1,543 test cases, averaging 5,424 words per context. Our evaluation towards 16 representative LLMs reveals significant safety vulnerabilities, with most models achieving safety rates below 55%. Our findings also indicate that strong safety performance in short-context scenarios does not necessarily correlate with safety in long-context tasks, emphasizing the unique challenges and urgency of improving long-context safety. Moreover, through extensive analysis, we identify challenging safety issues and task types for long-context models. Furthermore, we find that relevant context and extended input sequences can exacerbate safety risks in long-context scenarios, highlighting the critical need for ongoing attention to long-context safety challenges. Our code and data are available at https://github.com/thu-coai/LongSafety.
Knowledge Augmented Machine Learning with Applications in Autonomous Driving: A Survey
The availability of representative datasets is an essential prerequisite for many successful artificial intelligence and machine learning models. However, in real life applications these models often encounter scenarios that are inadequately represented in the data used for training. There are various reasons for the absence of sufficient data, ranging from time and cost constraints to ethical considerations. As a consequence, the reliable usage of these models, especially in safety-critical applications, is still a tremendous challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches. Knowledge augmented machine learning approaches offer the possibility of compensating for deficiencies, errors, or ambiguities in the data, thus increasing the generalization capability of the applied models. Even more, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-driven models with existing knowledge. The identified approaches are structured according to the categories knowledge integration, extraction and conformity. In particular, we address the application of the presented methods in the field of autonomous driving.
All Languages Matter: On the Multilingual Safety of Large Language Models
Safety lies at the core of developing and deploying large language models (LLMs). However, previous safety benchmarks only concern the safety in one language, e.g. the majority language in the pretraining data such as English. In this work, we build the first multilingual safety benchmark for LLMs, XSafety, in response to the global deployment of LLMs in practice. XSafety covers 14 kinds of commonly used safety issues across 10 languages that span several language families. We utilize XSafety to empirically study the multilingual safety for 4 widely-used LLMs, including both close-API and open-source models. Experimental results show that all LLMs produce significantly more unsafe responses for non-English queries than English ones, indicating the necessity of developing safety alignment for non-English languages. In addition, we propose several simple and effective prompting methods to improve the multilingual safety of ChatGPT by evoking safety knowledge and improving cross-lingual generalization of safety alignment. Our prompting method can significantly reduce the ratio of unsafe responses from 19.1% to 9.7% for non-English queries. We release our data at https://github.com/Jarviswang94/Multilingual_safety_benchmark.
Learning Optimized Risk Scores
Risk scores are simple classification models that let users make quick risk predictions by adding and subtracting a few small numbers. These models are widely used in medicine and criminal justice, but are difficult to learn from data because they need to be calibrated, sparse, use small integer coefficients, and obey application-specific operational constraints. In this paper, we present a new machine learning approach to learn risk scores. We formulate the risk score problem as a mixed integer nonlinear program, and present a cutting plane algorithm for non-convex settings to efficiently recover its optimal solution. We improve our algorithm with specialized techniques to generate feasible solutions, narrow the optimality gap, and reduce data-related computation. Our approach can fit risk scores in a way that scales linearly in the number of samples, provides a certificate of optimality, and obeys real-world constraints without parameter tuning or post-processing. We benchmark the performance benefits of this approach through an extensive set of numerical experiments, comparing to risk scores built using heuristic approaches. We also discuss its practical benefits through a real-world application where we build a customized risk score for ICU seizure prediction in collaboration with the Massachusetts General Hospital.
EERO: Early Exit with Reject Option for Efficient Classification with limited budget
The increasing complexity of advanced machine learning models requires innovative approaches to manage computational resources effectively. One such method is the Early Exit strategy, which allows for adaptive computation by providing a mechanism to shorten the processing path for simpler data instances. In this paper, we propose EERO, a new methodology to translate the problem of early exiting to a problem of using multiple classifiers with reject option in order to better select the exiting head for each instance. We calibrate the probabilities of exiting at the different heads using aggregation with exponential weights to guarantee a fixed budget .We consider factors such as Bayesian risk, budget constraints, and head-specific budget consumption. Experimental results, conducted using a ResNet-18 model and a ConvNext architecture on Cifar and ImageNet datasets, demonstrate that our method not only effectively manages budget allocation but also enhances accuracy in overthinking scenarios.
Separate the Wheat from the Chaff: A Post-Hoc Approach to Safety Re-Alignment for Fine-Tuned Language Models
Although large language models (LLMs) achieve effective safety alignment at the time of release, they still face various safety challenges. A key issue is that fine-tuning often compromises the safety alignment of LLMs. To address this issue, we propose a method named IRR (Identify, Remove, and Recalibrate for Safety Realignment) that performs safety realignment for LLMs. The core of IRR is to identify and remove unsafe delta parameters from the fine-tuned models, while recalibrating the retained ones. We evaluate the effectiveness of IRR across various datasets, including both full fine-tuning and LoRA methods. Our results demonstrate that IRR significantly enhances the safety performance of fine-tuned models on safety benchmarks, such as harmful queries and jailbreak attacks, while maintaining their performance on downstream tasks. The source code is available at: https://anonymous.4open.science/r/IRR-BD4F.
WebGuard: Building a Generalizable Guardrail for Web Agents
The rapid development of autonomous web agents powered by Large Language Models (LLMs), while greatly elevating efficiency, exposes the frontier risk of taking unintended or harmful actions. This situation underscores an urgent need for effective safety measures, akin to access controls for human users. To address this critical challenge, we introduce WebGuard, the first comprehensive dataset designed to support the assessment of web agent action risks and facilitate the development of guardrails for real-world online environments. In doing so, WebGuard specifically focuses on predicting the outcome of state-changing actions and contains 4,939 human-annotated actions from 193 websites across 22 diverse domains, including often-overlooked long-tail websites. These actions are categorized using a novel three-tier risk schema: SAFE, LOW, and HIGH. The dataset includes designated training and test splits to support evaluation under diverse generalization settings. Our initial evaluations reveal a concerning deficiency: even frontier LLMs achieve less than 60% accuracy in predicting action outcomes and less than 60% recall in lagging HIGH-risk actions, highlighting the risks of deploying current-generation agents without dedicated safeguards. We therefore investigate fine-tuning specialized guardrail models using WebGuard. We conduct comprehensive evaluations across multiple generalization settings and find that a fine-tuned Qwen2.5VL-7B model yields a substantial improvement in performance, boosting accuracy from 37% to 80% and HIGH-risk action recall from 20% to 76%. Despite these improvements, the performance still falls short of the reliability required for high-stakes deployment, where guardrails must approach near-perfect accuracy and recall.
Open-Set Recognition: a Good Closed-Set Classifier is All You Need?
The ability to identify whether or not a test sample belongs to one of the semantic classes in a classifier's training set is critical to practical deployment of the model. This task is termed open-set recognition (OSR) and has received significant attention in recent years. In this paper, we first demonstrate that the ability of a classifier to make the 'none-of-above' decision is highly correlated with its accuracy on the closed-set classes. We find that this relationship holds across loss objectives and architectures, and further demonstrate the trend both on the standard OSR benchmarks as well as on a large-scale ImageNet evaluation. Second, we use this correlation to boost the performance of a maximum logit score OSR 'baseline' by improving its closed-set accuracy, and with this strong baseline achieve state-of-the-art on a number of OSR benchmarks. Similarly, we boost the performance of the existing state-of-the-art method by improving its closed-set accuracy, but the resulting discrepancy with the strong baseline is marginal. Our third contribution is to present the 'Semantic Shift Benchmark' (SSB), which better respects the task of detecting semantic novelty, in contrast to other forms of distribution shift also considered in related sub-fields, such as out-of-distribution detection. On this new evaluation, we again demonstrate that there is negligible difference between the strong baseline and the existing state-of-the-art. Project Page: https://www.robots.ox.ac.uk/~vgg/research/osr/
From Judgment to Interference: Early Stopping LLM Harmful Outputs via Streaming Content Monitoring
Though safety alignment has been applied to most large language models (LLMs), LLM service providers generally deploy a subsequent moderation as the external safety guardrail in real-world products. Existing moderators mainly practice a conventional full detection, which determines the harmfulness based on the complete LLM output, causing high service latency. Recent works pay more attention to partial detection where moderators oversee the generation midway and early stop the output if harmfulness is detected, but they directly apply moderators trained with the full detection paradigm to incomplete outputs, introducing a training-inference gap that lowers the performance. In this paper, we explore how to form a data-and-model solution that natively supports partial detection. For the data, we construct FineHarm, a dataset consisting of 29K prompt-response pairs with fine-grained annotations to provide reasonable supervision for token-level training. Then, we propose the streaming content monitor, which is trained with dual supervision of response- and token-level labels and can follow the output stream of LLM to make a timely judgment of harmfulness. Experiments show that SCM gains 0.95+ in macro F1 score that is comparable to full detection, by only seeing the first 18% of tokens in responses on average. Moreover, the SCM can serve as a pseudo-harmfulness annotator for improving safety alignment and lead to a higher harmlessness score than DPO.