Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCtrl-Room: Controllable Text-to-3D Room Meshes Generation with Layout Constraints
Text-driven 3D indoor scene generation could be useful for gaming, film industry, and AR/VR applications. However, existing methods cannot faithfully capture the room layout, nor do they allow flexible editing of individual objects in the room. To address these problems, we present Ctrl-Room, which is able to generate convincing 3D rooms with designer-style layouts and high-fidelity textures from just a text prompt. Moreover, Ctrl-Room enables versatile interactive editing operations such as resizing or moving individual furniture items. Our key insight is to separate the modeling of layouts and appearance. %how to model the room that takes into account both scene texture and geometry at the same time. To this end, Our proposed method consists of two stages, a `Layout Generation Stage' and an `Appearance Generation Stage'. The `Layout Generation Stage' trains a text-conditional diffusion model to learn the layout distribution with our holistic scene code parameterization. Next, the `Appearance Generation Stage' employs a fine-tuned ControlNet to produce a vivid panoramic image of the room guided by the 3D scene layout and text prompt. In this way, we achieve a high-quality 3D room with convincing layouts and lively textures. Benefiting from the scene code parameterization, we can easily edit the generated room model through our mask-guided editing module, without expensive editing-specific training. Extensive experiments on the Structured3D dataset demonstrate that our method outperforms existing methods in producing more reasonable, view-consistent, and editable 3D rooms from natural language prompts.
SOGS: Second-Order Anchor for Advanced 3D Gaussian Splatting
Anchor-based 3D Gaussian splatting (3D-GS) exploits anchor features in 3D Gaussian prediction, which has achieved impressive 3D rendering quality with reduced Gaussian redundancy. On the other hand, it often encounters the dilemma among anchor features, model size, and rendering quality - large anchor features lead to large 3D models and high-quality rendering whereas reducing anchor features degrades Gaussian attribute prediction which leads to clear artifacts in the rendered textures and geometries. We design SOGS, an anchor-based 3D-GS technique that introduces second-order anchors to achieve superior rendering quality and reduced anchor features and model size simultaneously. Specifically, SOGS incorporates covariance-based second-order statistics and correlation across feature dimensions to augment features within each anchor, compensating for the reduced feature size and improving rendering quality effectively. In addition, it introduces a selective gradient loss to enhance the optimization of scene textures and scene geometries, leading to high-quality rendering with small anchor features. Extensive experiments over multiple widely adopted benchmarks show that SOGS achieves superior rendering quality in novel view synthesis with clearly reduced model size.
3D-FRONT: 3D Furnished Rooms with layOuts and semaNTics
We introduce 3D-FRONT (3D Furnished Rooms with layOuts and semaNTics), a new, large-scale, and comprehensive repository of synthetic indoor scenes highlighted by professionally designed layouts and a large number of rooms populated by high-quality textured 3D models with style compatibility. From layout semantics down to texture details of individual objects, our dataset is freely available to the academic community and beyond. Currently, 3D-FRONT contains 18,968 rooms diversely furnished by 3D objects, far surpassing all publicly available scene datasets. In addition, the 13,151 furniture objects all come with high-quality textures. While the floorplans and layout designs are directly sourced from professional creations, the interior designs in terms of furniture styles, color, and textures have been carefully curated based on a recommender system we develop to attain consistent styles as expert designs. Furthermore, we release Trescope, a light-weight rendering tool, to support benchmark rendering of 2D images and annotations from 3D-FRONT. We demonstrate two applications, interior scene synthesis and texture synthesis, that are especially tailored to the strengths of our new dataset. The project page is at: https://tianchi.aliyun.com/specials/promotion/alibaba-3d-scene-dataset.
NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision Research
A shared goal of several machine learning communities like continual learning, meta-learning and transfer learning, is to design algorithms and models that efficiently and robustly adapt to unseen tasks. An even more ambitious goal is to build models that never stop adapting, and that become increasingly more efficient through time by suitably transferring the accrued knowledge. Beyond the study of the actual learning algorithm and model architecture, there are several hurdles towards our quest to build such models, such as the choice of learning protocol, metric of success and data needed to validate research hypotheses. In this work, we introduce the Never-Ending VIsual-classification Stream (NEVIS'22), a benchmark consisting of a stream of over 100 visual classification tasks, sorted chronologically and extracted from papers sampled uniformly from computer vision proceedings spanning the last three decades. The resulting stream reflects what the research community thought was meaningful at any point in time, and it serves as an ideal test bed to assess how well models can adapt to new tasks, and do so better and more efficiently as time goes by. Despite being limited to classification, the resulting stream has a rich diversity of tasks from OCR, to texture analysis, scene recognition, and so forth. The diversity is also reflected in the wide range of dataset sizes, spanning over four orders of magnitude. Overall, NEVIS'22 poses an unprecedented challenge for current sequential learning approaches due to the scale and diversity of tasks, yet with a low entry barrier as it is limited to a single modality and well understood supervised learning problems. Moreover, we provide a reference implementation including strong baselines and an evaluation protocol to compare methods in terms of their trade-off between accuracy and compute.
Single-view 3D Scene Reconstruction with High-fidelity Shape and Texture
Reconstructing detailed 3D scenes from single-view images remains a challenging task due to limitations in existing approaches, which primarily focus on geometric shape recovery, overlooking object appearances and fine shape details. To address these challenges, we propose a novel framework for simultaneous high-fidelity recovery of object shapes and textures from single-view images. Our approach utilizes the proposed Single-view neural implicit Shape and Radiance field (SSR) representations to leverage both explicit 3D shape supervision and volume rendering of color, depth, and surface normal images. To overcome shape-appearance ambiguity under partial observations, we introduce a two-stage learning curriculum incorporating both 3D and 2D supervisions. A distinctive feature of our framework is its ability to generate fine-grained textured meshes while seamlessly integrating rendering capabilities into the single-view 3D reconstruction model. This integration enables not only improved textured 3D object reconstruction by 27.7% and 11.6% on the 3D-FRONT and Pix3D datasets, respectively, but also supports the rendering of images from novel viewpoints. Beyond individual objects, our approach facilitates composing object-level representations into flexible scene representations, thereby enabling applications such as holistic scene understanding and 3D scene editing. We conduct extensive experiments to demonstrate the effectiveness of our method.
SceneTex: High-Quality Texture Synthesis for Indoor Scenes via Diffusion Priors
We propose SceneTex, a novel method for effectively generating high-quality and style-consistent textures for indoor scenes using depth-to-image diffusion priors. Unlike previous methods that either iteratively warp 2D views onto a mesh surface or distillate diffusion latent features without accurate geometric and style cues, SceneTex formulates the texture synthesis task as an optimization problem in the RGB space where style and geometry consistency are properly reflected. At its core, SceneTex proposes a multiresolution texture field to implicitly encode the mesh appearance. We optimize the target texture via a score-distillation-based objective function in respective RGB renderings. To further secure the style consistency across views, we introduce a cross-attention decoder to predict the RGB values by cross-attending to the pre-sampled reference locations in each instance. SceneTex enables various and accurate texture synthesis for 3D-FRONT scenes, demonstrating significant improvements in visual quality and prompt fidelity over the prior texture generation methods.
RoomTex: Texturing Compositional Indoor Scenes via Iterative Inpainting
The advancement of diffusion models has pushed the boundary of text-to-3D object generation. While it is straightforward to composite objects into a scene with reasonable geometry, it is nontrivial to texture such a scene perfectly due to style inconsistency and occlusions between objects. To tackle these problems, we propose a coarse-to-fine 3D scene texturing framework, referred to as RoomTex, to generate high-fidelity and style-consistent textures for untextured compositional scene meshes. In the coarse stage, RoomTex first unwraps the scene mesh to a panoramic depth map and leverages ControlNet to generate a room panorama, which is regarded as the coarse reference to ensure the global texture consistency. In the fine stage, based on the panoramic image and perspective depth maps, RoomTex will refine and texture every single object in the room iteratively along a series of selected camera views, until this object is completely painted. Moreover, we propose to maintain superior alignment between RGB and depth spaces via subtle edge detection methods. Extensive experiments show our method is capable of generating high-quality and diverse room textures, and more importantly, supporting interactive fine-grained texture control and flexible scene editing thanks to our inpainting-based framework and compositional mesh input. Our project page is available at https://qwang666.github.io/RoomTex/.
Text2NeRF: Text-Driven 3D Scene Generation with Neural Radiance Fields
Text-driven 3D scene generation is widely applicable to video gaming, film industry, and metaverse applications that have a large demand for 3D scenes. However, existing text-to-3D generation methods are limited to producing 3D objects with simple geometries and dreamlike styles that lack realism. In this work, we present Text2NeRF, which is able to generate a wide range of 3D scenes with complicated geometric structures and high-fidelity textures purely from a text prompt. To this end, we adopt NeRF as the 3D representation and leverage a pre-trained text-to-image diffusion model to constrain the 3D reconstruction of the NeRF to reflect the scene description. Specifically, we employ the diffusion model to infer the text-related image as the content prior and use a monocular depth estimation method to offer the geometric prior. Both content and geometric priors are utilized to update the NeRF model. To guarantee textured and geometric consistency between different views, we introduce a progressive scene inpainting and updating strategy for novel view synthesis of the scene. Our method requires no additional training data but only a natural language description of the scene as the input. Extensive experiments demonstrate that our Text2NeRF outperforms existing methods in producing photo-realistic, multi-view consistent, and diverse 3D scenes from a variety of natural language prompts.
Scene-Conditional 3D Object Stylization and Composition
Recently, 3D generative models have made impressive progress, enabling the generation of almost arbitrary 3D assets from text or image inputs. However, these approaches generate objects in isolation without any consideration for the scene where they will eventually be placed. In this paper, we propose a framework that allows for the stylization of an existing 3D asset to fit into a given 2D scene, and additionally produce a photorealistic composition as if the asset was placed within the environment. This not only opens up a new level of control for object stylization, for example, the same assets can be stylized to reflect changes in the environment, such as summer to winter or fantasy versus futuristic settings-but also makes the object-scene composition more controllable. We achieve this by combining modeling and optimizing the object's texture and environmental lighting through differentiable ray tracing with image priors from pre-trained text-to-image diffusion models. We demonstrate that our method is applicable to a wide variety of indoor and outdoor scenes and arbitrary objects.
DreamEditor: Text-Driven 3D Scene Editing with Neural Fields
Neural fields have achieved impressive advancements in view synthesis and scene reconstruction. However, editing these neural fields remains challenging due to the implicit encoding of geometry and texture information. In this paper, we propose DreamEditor, a novel framework that enables users to perform controlled editing of neural fields using text prompts. By representing scenes as mesh-based neural fields, DreamEditor allows localized editing within specific regions. DreamEditor utilizes the text encoder of a pretrained text-to-Image diffusion model to automatically identify the regions to be edited based on the semantics of the text prompts. Subsequently, DreamEditor optimizes the editing region and aligns its geometry and texture with the text prompts through score distillation sampling [29]. Extensive experiments have demonstrated that DreamEditor can accurately edit neural fields of real-world scenes according to the given text prompts while ensuring consistency in irrelevant areas. DreamEditor generates highly realistic textures and geometry, significantly surpassing previous works in both quantitative and qualitative evaluations.
Reference-based Controllable Scene Stylization with Gaussian Splatting
Referenced-based scene stylization that edits the appearance based on a content-aligned reference image is an emerging research area. Starting with a pretrained neural radiance field (NeRF), existing methods typically learn a novel appearance that matches the given style. Despite their effectiveness, they inherently suffer from time-consuming volume rendering, and thus are impractical for many real-time applications. In this work, we propose ReGS, which adapts 3D Gaussian Splatting (3DGS) for reference-based stylization to enable real-time stylized view synthesis. Editing the appearance of a pretrained 3DGS is challenging as it uses discrete Gaussians as 3D representation, which tightly bind appearance with geometry. Simply optimizing the appearance as prior methods do is often insufficient for modeling continuous textures in the given reference image. To address this challenge, we propose a novel texture-guided control mechanism that adaptively adjusts local responsible Gaussians to a new geometric arrangement, serving for desired texture details. The proposed process is guided by texture clues for effective appearance editing, and regularized by scene depth for preserving original geometric structure. With these novel designs, we show ReGs can produce state-of-the-art stylization results that respect the reference texture while embracing real-time rendering speed for free-view navigation.
ImmerseGen: Agent-Guided Immersive World Generation with Alpha-Textured Proxies
Automatic creation of 3D scenes for immersive VR presence has been a significant research focus for decades. However, existing methods often rely on either high-poly mesh modeling with post-hoc simplification or massive 3D Gaussians, resulting in a complex pipeline or limited visual realism. In this paper, we demonstrate that such exhaustive modeling is unnecessary for achieving compelling immersive experience. We introduce ImmerseGen, a novel agent-guided framework for compact and photorealistic world modeling. ImmerseGen represents scenes as hierarchical compositions of lightweight geometric proxies, i.e., simplified terrain and billboard meshes, and generates photorealistic appearance by synthesizing RGBA textures onto these proxies. Specifically, we propose terrain-conditioned texturing for user-centric base world synthesis, and RGBA asset texturing for midground and foreground scenery. This reformulation offers several advantages: (i) it simplifies modeling by enabling agents to guide generative models in producing coherent textures that integrate seamlessly with the scene; (ii) it bypasses complex geometry creation and decimation by directly synthesizing photorealistic textures on proxies, preserving visual quality without degradation; (iii) it enables compact representations suitable for real-time rendering on mobile VR headsets. To automate scene creation from text prompts, we introduce VLM-based modeling agents enhanced with semantic grid-based analysis for improved spatial reasoning and accurate asset placement. ImmerseGen further enriches scenes with dynamic effects and ambient audio to support multisensory immersion. Experiments on scene generation and live VR showcases demonstrate that ImmerseGen achieves superior photorealism, spatial coherence and rendering efficiency compared to prior methods. Project webpage: https://immersegen.github.io.
ReStyle3D: Scene-Level Appearance Transfer with Semantic Correspondences
We introduce ReStyle3D, a novel framework for scene-level appearance transfer from a single style image to a real-world scene represented by multiple views. The method combines explicit semantic correspondences with multi-view consistency to achieve precise and coherent stylization. Unlike conventional stylization methods that apply a reference style globally, ReStyle3D uses open-vocabulary segmentation to establish dense, instance-level correspondences between the style and real-world images. This ensures that each object is stylized with semantically matched textures. It first transfers the style to a single view using a training-free semantic-attention mechanism in a diffusion model. It then lifts the stylization to additional views via a learned warp-and-refine network guided by monocular depth and pixel-wise correspondences. Experiments show that ReStyle3D consistently outperforms prior methods in structure preservation, perceptual style similarity, and multi-view coherence. User studies further validate its ability to produce photo-realistic, semantically faithful results. Our code, pretrained models, and dataset will be publicly released, to support new applications in interior design, virtual staging, and 3D-consistent stylization.
Text2Room: Extracting Textured 3D Meshes from 2D Text-to-Image Models
We present Text2Room, a method for generating room-scale textured 3D meshes from a given text prompt as input. To this end, we leverage pre-trained 2D text-to-image models to synthesize a sequence of images from different poses. In order to lift these outputs into a consistent 3D scene representation, we combine monocular depth estimation with a text-conditioned inpainting model. The core idea of our approach is a tailored viewpoint selection such that the content of each image can be fused into a seamless, textured 3D mesh. More specifically, we propose a continuous alignment strategy that iteratively fuses scene frames with the existing geometry to create a seamless mesh. Unlike existing works that focus on generating single objects or zoom-out trajectories from text, our method generates complete 3D scenes with multiple objects and explicit 3D geometry. We evaluate our approach using qualitative and quantitative metrics, demonstrating it as the first method to generate room-scale 3D geometry with compelling textures from only text as input.
DreamSpace: Dreaming Your Room Space with Text-Driven Panoramic Texture Propagation
Diffusion-based methods have achieved prominent success in generating 2D media. However, accomplishing similar proficiencies for scene-level mesh texturing in 3D spatial applications, e.g., XR/VR, remains constrained, primarily due to the intricate nature of 3D geometry and the necessity for immersive free-viewpoint rendering. In this paper, we propose a novel indoor scene texturing framework, which delivers text-driven texture generation with enchanting details and authentic spatial coherence. The key insight is to first imagine a stylized 360{\deg} panoramic texture from the central viewpoint of the scene, and then propagate it to the rest areas with inpainting and imitating techniques. To ensure meaningful and aligned textures to the scene, we develop a novel coarse-to-fine panoramic texture generation approach with dual texture alignment, which both considers the geometry and texture cues of the captured scenes. To survive from cluttered geometries during texture propagation, we design a separated strategy, which conducts texture inpainting in confidential regions and then learns an implicit imitating network to synthesize textures in occluded and tiny structural areas. Extensive experiments and the immersive VR application on real-world indoor scenes demonstrate the high quality of the generated textures and the engaging experience on VR headsets. Project webpage: https://ybbbbt.com/publication/dreamspace
Sat2Scene: 3D Urban Scene Generation from Satellite Images with Diffusion
Directly generating scenes from satellite imagery offers exciting possibilities for integration into applications like games and map services. However, challenges arise from significant view changes and scene scale. Previous efforts mainly focused on image or video generation, lacking exploration into the adaptability of scene generation for arbitrary views. Existing 3D generation works either operate at the object level or are difficult to utilize the geometry obtained from satellite imagery. To overcome these limitations, we propose a novel architecture for direct 3D scene generation by introducing diffusion models into 3D sparse representations and combining them with neural rendering techniques. Specifically, our approach generates texture colors at the point level for a given geometry using a 3D diffusion model first, which is then transformed into a scene representation in a feed-forward manner. The representation can be utilized to render arbitrary views which would excel in both single-frame quality and inter-frame consistency. Experiments in two city-scale datasets show that our model demonstrates proficiency in generating photo-realistic street-view image sequences and cross-view urban scenes from satellite imagery.
DebSDF: Delving into the Details and Bias of Neural Indoor Scene Reconstruction
In recent years, the neural implicit surface has emerged as a powerful representation for multi-view surface reconstruction due to its simplicity and state-of-the-art performance. However, reconstructing smooth and detailed surfaces in indoor scenes from multi-view images presents unique challenges. Indoor scenes typically contain large texture-less regions, making the photometric loss unreliable for optimizing the implicit surface. Previous work utilizes monocular geometry priors to improve the reconstruction in indoor scenes. However, monocular priors often contain substantial errors in thin structure regions due to domain gaps and the inherent inconsistencies when derived independently from different views. This paper presents DebSDF to address these challenges, focusing on the utilization of uncertainty in monocular priors and the bias in SDF-based volume rendering. We propose an uncertainty modeling technique that associates larger uncertainties with larger errors in the monocular priors. High-uncertainty priors are then excluded from optimization to prevent bias. This uncertainty measure also informs an importance-guided ray sampling and adaptive smoothness regularization, enhancing the learning of fine structures. We further introduce a bias-aware signed distance function to density transformation that takes into account the curvature and the angle between the view direction and the SDF normals to reconstruct fine details better. Our approach has been validated through extensive experiments on several challenging datasets, demonstrating improved qualitative and quantitative results in reconstructing thin structures in indoor scenes, thereby outperforming previous work.
WaSt-3D: Wasserstein-2 Distance for Scene-to-Scene Stylization on 3D Gaussians
While style transfer techniques have been well-developed for 2D image stylization, the extension of these methods to 3D scenes remains relatively unexplored. Existing approaches demonstrate proficiency in transferring colors and textures but often struggle with replicating the geometry of the scenes. In our work, we leverage an explicit Gaussian Splatting (GS) representation and directly match the distributions of Gaussians between style and content scenes using the Earth Mover's Distance (EMD). By employing the entropy-regularized Wasserstein-2 distance, we ensure that the transformation maintains spatial smoothness. Additionally, we decompose the scene stylization problem into smaller chunks to enhance efficiency. This paradigm shift reframes stylization from a pure generative process driven by latent space losses to an explicit matching of distributions between two Gaussian representations. Our method achieves high-resolution 3D stylization by faithfully transferring details from 3D style scenes onto the content scene. Furthermore, WaSt-3D consistently delivers results across diverse content and style scenes without necessitating any training, as it relies solely on optimization-based techniques. See our project page for additional results and source code: https://compvis.github.io/wast3d/{https://compvis.github.io/wast3d/}.
Tex4D: Zero-shot 4D Scene Texturing with Video Diffusion Models
3D meshes are widely used in computer vision and graphics for their efficiency in animation and minimal memory use, playing a crucial role in movies, games, AR, and VR. However, creating temporally consistent and realistic textures for mesh sequences remains labor-intensive for professional artists. On the other hand, while video diffusion models excel at text-driven video generation, they often lack 3D geometry awareness and struggle with achieving multi-view consistent texturing for 3D meshes. In this work, we present Tex4D, a zero-shot approach that integrates inherent 3D geometry knowledge from mesh sequences with the expressiveness of video diffusion models to produce multi-view and temporally consistent 4D textures. Given an untextured mesh sequence and a text prompt as inputs, our method enhances multi-view consistency by synchronizing the diffusion process across different views through latent aggregation in the UV space. To ensure temporal consistency, we leverage prior knowledge from a conditional video generation model for texture synthesis. However, straightforwardly combining the video diffusion model and the UV texture aggregation leads to blurry results. We analyze the underlying causes and propose a simple yet effective modification to the DDIM sampling process to address this issue. Additionally, we introduce a reference latent texture to strengthen the correlation between frames during the denoising process. To the best of our knowledge, Tex4D is the first method specifically designed for 4D scene texturing. Extensive experiments demonstrate its superiority in producing multi-view and multi-frame consistent videos based on untextured mesh sequences.
The Surprisingly Straightforward Scene Text Removal Method With Gated Attention and Region of Interest Generation: A Comprehensive Prominent Model Analysis
Scene text removal (STR), a task of erasing text from natural scene images, has recently attracted attention as an important component of editing text or concealing private information such as ID, telephone, and license plate numbers. While there are a variety of different methods for STR actively being researched, it is difficult to evaluate superiority because previously proposed methods do not use the same standardized training/evaluation dataset. We use the same standardized training/testing dataset to evaluate the performance of several previous methods after standardized re-implementation. We also introduce a simple yet extremely effective Gated Attention (GA) and Region-of-Interest Generation (RoIG) methodology in this paper. GA uses attention to focus on the text stroke as well as the textures and colors of the surrounding regions to remove text from the input image much more precisely. RoIG is applied to focus on only the region with text instead of the entire image to train the model more efficiently. Experimental results on the benchmark dataset show that our method significantly outperforms existing state-of-the-art methods in almost all metrics with remarkably higher-quality results. Furthermore, because our model does not generate a text stroke mask explicitly, there is no need for additional refinement steps or sub-models, making our model extremely fast with fewer parameters. The dataset and code are available at this https://github.com/naver/garnet.
Decompositional Neural Scene Reconstruction with Generative Diffusion Prior
Decompositional reconstruction of 3D scenes, with complete shapes and detailed texture of all objects within, is intriguing for downstream applications but remains challenging, particularly with sparse views as input. Recent approaches incorporate semantic or geometric regularization to address this issue, but they suffer significant degradation in underconstrained areas and fail to recover occluded regions. We argue that the key to solving this problem lies in supplementing missing information for these areas. To this end, we propose DP-Recon, which employs diffusion priors in the form of Score Distillation Sampling (SDS) to optimize the neural representation of each individual object under novel views. This provides additional information for the underconstrained areas, but directly incorporating diffusion prior raises potential conflicts between the reconstruction and generative guidance. Therefore, we further introduce a visibility-guided approach to dynamically adjust the per-pixel SDS loss weights. Together these components enhance both geometry and appearance recovery while remaining faithful to input images. Extensive experiments across Replica and ScanNet++ demonstrate that our method significantly outperforms SOTA methods. Notably, it achieves better object reconstruction under 10 views than the baselines under 100 views. Our method enables seamless text-based editing for geometry and appearance through SDS optimization and produces decomposed object meshes with detailed UV maps that support photorealistic Visual effects (VFX) editing. The project page is available at https://dp-recon.github.io/.
LU-NeRF: Scene and Pose Estimation by Synchronizing Local Unposed NeRFs
A critical obstacle preventing NeRF models from being deployed broadly in the wild is their reliance on accurate camera poses. Consequently, there is growing interest in extending NeRF models to jointly optimize camera poses and scene representation, which offers an alternative to off-the-shelf SfM pipelines which have well-understood failure modes. Existing approaches for unposed NeRF operate under limited assumptions, such as a prior pose distribution or coarse pose initialization, making them less effective in a general setting. In this work, we propose a novel approach, LU-NeRF, that jointly estimates camera poses and neural radiance fields with relaxed assumptions on pose configuration. Our approach operates in a local-to-global manner, where we first optimize over local subsets of the data, dubbed mini-scenes. LU-NeRF estimates local pose and geometry for this challenging few-shot task. The mini-scene poses are brought into a global reference frame through a robust pose synchronization step, where a final global optimization of pose and scene can be performed. We show our LU-NeRF pipeline outperforms prior attempts at unposed NeRF without making restrictive assumptions on the pose prior. This allows us to operate in the general SE(3) pose setting, unlike the baselines. Our results also indicate our model can be complementary to feature-based SfM pipelines as it compares favorably to COLMAP on low-texture and low-resolution images.
Scene123: One Prompt to 3D Scene Generation via Video-Assisted and Consistency-Enhanced MAE
As Artificial Intelligence Generated Content (AIGC) advances, a variety of methods have been developed to generate text, images, videos, and 3D objects from single or multimodal inputs, contributing efforts to emulate human-like cognitive content creation. However, generating realistic large-scale scenes from a single input presents a challenge due to the complexities involved in ensuring consistency across extrapolated views generated by models. Benefiting from recent video generation models and implicit neural representations, we propose Scene123, a 3D scene generation model, that not only ensures realism and diversity through the video generation framework but also uses implicit neural fields combined with Masked Autoencoders (MAE) to effectively ensures the consistency of unseen areas across views. Specifically, we initially warp the input image (or an image generated from text) to simulate adjacent views, filling the invisible areas with the MAE model. However, these filled images usually fail to maintain view consistency, thus we utilize the produced views to optimize a neural radiance field, enhancing geometric consistency. Moreover, to further enhance the details and texture fidelity of generated views, we employ a GAN-based Loss against images derived from the input image through the video generation model. Extensive experiments demonstrate that our method can generate realistic and consistent scenes from a single prompt. Both qualitative and quantitative results indicate that our approach surpasses existing state-of-the-art methods. We show encourage video examples at https://yiyingyang12.github.io/Scene123.github.io/.
TwinTex: Geometry-aware Texture Generation for Abstracted 3D Architectural Models
Coarse architectural models are often generated at scales ranging from individual buildings to scenes for downstream applications such as Digital Twin City, Metaverse, LODs, etc. Such piece-wise planar models can be abstracted as twins from 3D dense reconstructions. However, these models typically lack realistic texture relative to the real building or scene, making them unsuitable for vivid display or direct reference. In this paper, we present TwinTex, the first automatic texture mapping framework to generate a photo-realistic texture for a piece-wise planar proxy. Our method addresses most challenges occurring in such twin texture generation. Specifically, for each primitive plane, we first select a small set of photos with greedy heuristics considering photometric quality, perspective quality and facade texture completeness. Then, different levels of line features (LoLs) are extracted from the set of selected photos to generate guidance for later steps. With LoLs, we employ optimization algorithms to align texture with geometry from local to global. Finally, we fine-tune a diffusion model with a multi-mask initialization component and a new dataset to inpaint the missing region. Experimental results on many buildings, indoor scenes and man-made objects of varying complexity demonstrate the generalization ability of our algorithm. Our approach surpasses state-of-the-art texture mapping methods in terms of high-fidelity quality and reaches a human-expert production level with much less effort. Project page: https://vcc.tech/research/2023/TwinTex.
Scene4U: Hierarchical Layered 3D Scene Reconstruction from Single Panoramic Image for Your Immerse Exploration
The reconstruction of immersive and realistic 3D scenes holds significant practical importance in various fields of computer vision and computer graphics. Typically, immersive and realistic scenes should be free from obstructions by dynamic objects, maintain global texture consistency, and allow for unrestricted exploration. The current mainstream methods for image-driven scene construction involves iteratively refining the initial image using a moving virtual camera to generate the scene. However, previous methods struggle with visual discontinuities due to global texture inconsistencies under varying camera poses, and they frequently exhibit scene voids caused by foreground-background occlusions. To this end, we propose a novel layered 3D scene reconstruction framework from panoramic image, named Scene4U. Specifically, Scene4U integrates an open-vocabulary segmentation model with a large language model to decompose a real panorama into multiple layers. Then, we employs a layered repair module based on diffusion model to restore occluded regions using visual cues and depth information, generating a hierarchical representation of the scene. The multi-layer panorama is then initialized as a 3D Gaussian Splatting representation, followed by layered optimization, which ultimately produces an immersive 3D scene with semantic and structural consistency that supports free exploration. Scene4U outperforms state-of-the-art method, improving by 24.24% in LPIPS and 24.40% in BRISQUE, while also achieving the fastest training speed. Additionally, to demonstrate the robustness of Scene4U and allow users to experience immersive scenes from various landmarks, we build WorldVista3D dataset for 3D scene reconstruction, which contains panoramic images of globally renowned sites. The implementation code and dataset will be released at https://github.com/LongHZ140516/Scene4U .
DSPNet: Dual-vision Scene Perception for Robust 3D Question Answering
3D Question Answering (3D QA) requires the model to comprehensively understand its situated 3D scene described by the text, then reason about its surrounding environment and answer a question under that situation. However, existing methods usually rely on global scene perception from pure 3D point clouds and overlook the importance of rich local texture details from multi-view images. Moreover, due to the inherent noise in camera poses and complex occlusions, there exists significant feature degradation and reduced feature robustness problems when aligning 3D point cloud with multi-view images. In this paper, we propose a Dual-vision Scene Perception Network (DSPNet), to comprehensively integrate multi-view and point cloud features to improve robustness in 3D QA. Our Text-guided Multi-view Fusion (TGMF) module prioritizes image views that closely match the semantic content of the text. To adaptively fuse back-projected multi-view images with point cloud features, we design the Adaptive Dual-vision Perception (ADVP) module, enhancing 3D scene comprehension. Additionally, our Multimodal Context-guided Reasoning (MCGR) module facilitates robust reasoning by integrating contextual information across visual and linguistic modalities. Experimental results on SQA3D and ScanQA datasets demonstrate the superiority of our DSPNet. Codes will be available at https://github.com/LZ-CH/DSPNet.
EchoScene: Indoor Scene Generation via Information Echo over Scene Graph Diffusion
We present EchoScene, an interactive and controllable generative model that generates 3D indoor scenes on scene graphs. EchoScene leverages a dual-branch diffusion model that dynamically adapts to scene graphs. Existing methods struggle to handle scene graphs due to varying numbers of nodes, multiple edge combinations, and manipulator-induced node-edge operations. EchoScene overcomes this by associating each node with a denoising process and enables collaborative information exchange, enhancing controllable and consistent generation aware of global constraints. This is achieved through an information echo scheme in both shape and layout branches. At every denoising step, all processes share their denoising data with an information exchange unit that combines these updates using graph convolution. The scheme ensures that the denoising processes are influenced by a holistic understanding of the scene graph, facilitating the generation of globally coherent scenes. The resulting scenes can be manipulated during inference by editing the input scene graph and sampling the noise in the diffusion model. Extensive experiments validate our approach, which maintains scene controllability and surpasses previous methods in generation fidelity. Moreover, the generated scenes are of high quality and thus directly compatible with off-the-shelf texture generation. Code and trained models are open-sourced.
Natural scene reconstruction from fMRI signals using generative latent diffusion
In neural decoding research, one of the most intriguing topics is the reconstruction of perceived natural images based on fMRI signals. Previous studies have succeeded in re-creating different aspects of the visuals, such as low-level properties (shape, texture, layout) or high-level features (category of objects, descriptive semantics of scenes) but have typically failed to reconstruct these properties together for complex scene images. Generative AI has recently made a leap forward with latent diffusion models capable of generating high-complexity images. Here, we investigate how to take advantage of this innovative technology for brain decoding. We present a two-stage scene reconstruction framework called ``Brain-Diffuser''. In the first stage, starting from fMRI signals, we reconstruct images that capture low-level properties and overall layout using a VDVAE (Very Deep Variational Autoencoder) model. In the second stage, we use the image-to-image framework of a latent diffusion model (Versatile Diffusion) conditioned on predicted multimodal (text and visual) features, to generate final reconstructed images. On the publicly available Natural Scenes Dataset benchmark, our method outperforms previous models both qualitatively and quantitatively. When applied to synthetic fMRI patterns generated from individual ROI (region-of-interest) masks, our trained model creates compelling ``ROI-optimal'' scenes consistent with neuroscientific knowledge. Thus, the proposed methodology can have an impact on both applied (e.g. brain-computer interface) and fundamental neuroscience.
3D Scene Graph: A Structure for Unified Semantics, 3D Space, and Camera
A comprehensive semantic understanding of a scene is important for many applications - but in what space should diverse semantic information (e.g., objects, scene categories, material types, texture, etc.) be grounded and what should be its structure? Aspiring to have one unified structure that hosts diverse types of semantics, we follow the Scene Graph paradigm in 3D, generating a 3D Scene Graph. Given a 3D mesh and registered panoramic images, we construct a graph that spans the entire building and includes semantics on objects (e.g., class, material, and other attributes), rooms (e.g., scene category, volume, etc.) and cameras (e.g., location, etc.), as well as the relationships among these entities. However, this process is prohibitively labor heavy if done manually. To alleviate this we devise a semi-automatic framework that employs existing detection methods and enhances them using two main constraints: I. framing of query images sampled on panoramas to maximize the performance of 2D detectors, and II. multi-view consistency enforcement across 2D detections that originate in different camera locations.
PanoDreamer: Consistent Text to 360-Degree Scene Generation
Automatically generating a complete 3D scene from a text description, a reference image, or both has significant applications in fields like virtual reality and gaming. However, current methods often generate low-quality textures and inconsistent 3D structures. This is especially true when extrapolating significantly beyond the field of view of the reference image. To address these challenges, we propose PanoDreamer, a novel framework for consistent, 3D scene generation with flexible text and image control. Our approach employs a large language model and a warp-refine pipeline, first generating an initial set of images and then compositing them into a 360-degree panorama. This panorama is then lifted into 3D to form an initial point cloud. We then use several approaches to generate additional images, from different viewpoints, that are consistent with the initial point cloud and expand/refine the initial point cloud. Given the resulting set of images, we utilize 3D Gaussian Splatting to create the final 3D scene, which can then be rendered from different viewpoints. Experiments demonstrate the effectiveness of PanoDreamer in generating high-quality, geometrically consistent 3D scenes.
Textured-GS: Gaussian Splatting with Spatially Defined Color and Opacity
In this paper, we introduce Textured-GS, an innovative method for rendering Gaussian splatting that incorporates spatially defined color and opacity variations using Spherical Harmonics (SH). This approach enables each Gaussian to exhibit a richer representation by accommodating varying colors and opacities across its surface, significantly enhancing rendering quality compared to traditional methods. To demonstrate the merits of our approach, we have adapted the Mini-Splatting architecture to integrate textured Gaussians without increasing the number of Gaussians. Our experiments across multiple real-world datasets show that Textured-GS consistently outperforms both the baseline Mini-Splatting and standard 3DGS in terms of visual fidelity. The results highlight the potential of Textured-GS to advance Gaussian-based rendering technologies, promising more efficient and high-quality scene reconstructions.
Green Screen Augmentation Enables Scene Generalisation in Robotic Manipulation
Generalising vision-based manipulation policies to novel environments remains a challenging area with limited exploration. Current practices involve collecting data in one location, training imitation learning or reinforcement learning policies with this data, and deploying the policy in the same location. However, this approach lacks scalability as it necessitates data collection in multiple locations for each task. This paper proposes a novel approach where data is collected in a location predominantly featuring green screens. We introduce Green-screen Augmentation (GreenAug), employing a chroma key algorithm to overlay background textures onto a green screen. Through extensive real-world empirical studies with over 850 training demonstrations and 8.2k evaluation episodes, we demonstrate that GreenAug surpasses no augmentation, standard computer vision augmentation, and prior generative augmentation methods in performance. While no algorithmic novelties are claimed, our paper advocates for a fundamental shift in data collection practices. We propose that real-world demonstrations in future research should utilise green screens, followed by the application of GreenAug. We believe GreenAug unlocks policy generalisation to visually distinct novel locations, addressing the current scene generalisation limitations in robot learning.
3D-FUTURE: 3D Furniture shape with TextURE
The 3D CAD shapes in current 3D benchmarks are mostly collected from online model repositories. Thus, they typically have insufficient geometric details and less informative textures, making them less attractive for comprehensive and subtle research in areas such as high-quality 3D mesh and texture recovery. This paper presents 3D Furniture shape with TextURE (3D-FUTURE): a richly-annotated and large-scale repository of 3D furniture shapes in the household scenario. At the time of this technical report, 3D-FUTURE contains 20,240 clean and realistic synthetic images of 5,000 different rooms. There are 9,992 unique detailed 3D instances of furniture with high-resolution textures. Experienced designers developed the room scenes, and the 3D CAD shapes in the scene are used for industrial production. Given the well-organized 3D-FUTURE, we provide baseline experiments on several widely studied tasks, such as joint 2D instance segmentation and 3D object pose estimation, image-based 3D shape retrieval, 3D object reconstruction from a single image, and texture recovery for 3D shapes, to facilitate related future researches on our database.
CAST: Component-Aligned 3D Scene Reconstruction from an RGB Image
Recovering high-quality 3D scenes from a single RGB image is a challenging task in computer graphics. Current methods often struggle with domain-specific limitations or low-quality object generation. To address these, we propose CAST (Component-Aligned 3D Scene Reconstruction from a Single RGB Image), a novel method for 3D scene reconstruction and recovery. CAST starts by extracting object-level 2D segmentation and relative depth information from the input image, followed by using a GPT-based model to analyze inter-object spatial relationships. This enables the understanding of how objects relate to each other within the scene, ensuring more coherent reconstruction. CAST then employs an occlusion-aware large-scale 3D generation model to independently generate each object's full geometry, using MAE and point cloud conditioning to mitigate the effects of occlusions and partial object information, ensuring accurate alignment with the source image's geometry and texture. To align each object with the scene, the alignment generation model computes the necessary transformations, allowing the generated meshes to be accurately placed and integrated into the scene's point cloud. Finally, CAST incorporates a physics-aware correction step that leverages a fine-grained relation graph to generate a constraint graph. This graph guides the optimization of object poses, ensuring physical consistency and spatial coherence. By utilizing Signed Distance Fields (SDF), the model effectively addresses issues such as occlusions, object penetration, and floating objects, ensuring that the generated scene accurately reflects real-world physical interactions. CAST can be leveraged in robotics, enabling efficient real-to-simulation workflows and providing realistic, scalable simulation environments for robotic systems.
SceneCraft: Layout-Guided 3D Scene Generation
The creation of complex 3D scenes tailored to user specifications has been a tedious and challenging task with traditional 3D modeling tools. Although some pioneering methods have achieved automatic text-to-3D generation, they are generally limited to small-scale scenes with restricted control over the shape and texture. We introduce SceneCraft, a novel method for generating detailed indoor scenes that adhere to textual descriptions and spatial layout preferences provided by users. Central to our method is a rendering-based technique, which converts 3D semantic layouts into multi-view 2D proxy maps. Furthermore, we design a semantic and depth conditioned diffusion model to generate multi-view images, which are used to learn a neural radiance field (NeRF) as the final scene representation. Without the constraints of panorama image generation, we surpass previous methods in supporting complicated indoor space generation beyond a single room, even as complicated as a whole multi-bedroom apartment with irregular shapes and layouts. Through experimental analysis, we demonstrate that our method significantly outperforms existing approaches in complex indoor scene generation with diverse textures, consistent geometry, and realistic visual quality. Code and more results are available at: https://orangesodahub.github.io/SceneCraft
DreamScene: 3D Gaussian-based Text-to-3D Scene Generation via Formation Pattern Sampling
Text-to-3D scene generation holds immense potential for the gaming, film, and architecture sectors. Despite significant progress, existing methods struggle with maintaining high quality, consistency, and editing flexibility. In this paper, we propose DreamScene, a 3D Gaussian-based novel text-to-3D scene generation framework, to tackle the aforementioned three challenges mainly via two strategies. First, DreamScene employs Formation Pattern Sampling (FPS), a multi-timestep sampling strategy guided by the formation patterns of 3D objects, to form fast, semantically rich, and high-quality representations. FPS uses 3D Gaussian filtering for optimization stability, and leverages reconstruction techniques to generate plausible textures. Second, DreamScene employs a progressive three-stage camera sampling strategy, specifically designed for both indoor and outdoor settings, to effectively ensure object-environment integration and scene-wide 3D consistency. Last, DreamScene enhances scene editing flexibility by integrating objects and environments, enabling targeted adjustments. Extensive experiments validate DreamScene's superiority over current state-of-the-art techniques, heralding its wide-ranging potential for diverse applications. Code and demos will be released at https://dreamscene-project.github.io .
Unified Perceptual Parsing for Scene Understanding
Humans recognize the visual world at multiple levels: we effortlessly categorize scenes and detect objects inside, while also identifying the textures and surfaces of the objects along with their different compositional parts. In this paper, we study a new task called Unified Perceptual Parsing, which requires the machine vision systems to recognize as many visual concepts as possible from a given image. A multi-task framework called UPerNet and a training strategy are developed to learn from heterogeneous image annotations. We benchmark our framework on Unified Perceptual Parsing and show that it is able to effectively segment a wide range of concepts from images. The trained networks are further applied to discover visual knowledge in natural scenes. Models are available at https://github.com/CSAILVision/unifiedparsing.
GALA3D: Towards Text-to-3D Complex Scene Generation via Layout-guided Generative Gaussian Splatting
We present GALA3D, generative 3D GAussians with LAyout-guided control, for effective compositional text-to-3D generation. We first utilize large language models (LLMs) to generate the initial layout and introduce a layout-guided 3D Gaussian representation for 3D content generation with adaptive geometric constraints. We then propose an object-scene compositional optimization mechanism with conditioned diffusion to collaboratively generate realistic 3D scenes with consistent geometry, texture, scale, and accurate interactions among multiple objects while simultaneously adjusting the coarse layout priors extracted from the LLMs to align with the generated scene. Experiments show that GALA3D is a user-friendly, end-to-end framework for state-of-the-art scene-level 3D content generation and controllable editing while ensuring the high fidelity of object-level entities within the scene. Source codes and models will be available at https://gala3d.github.io/.
FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models
3D scene reconstruction is a long-standing vision task. Existing approaches can be categorized into geometry-based and learning-based methods. The former leverages multi-view geometry but can face catastrophic failures due to the reliance on accurate pixel correspondence across views. The latter was proffered to mitigate these issues by learning 2D or 3D representation directly. However, without a large-scale video or 3D training data, it can hardly generalize to diverse real-world scenarios due to the presence of tens of millions or even billions of optimization parameters in the deep network. Recently, robust monocular depth estimation models trained with large-scale datasets have been proven to possess weak 3D geometry prior, but they are insufficient for reconstruction due to the unknown camera parameters, the affine-invariant property, and inter-frame inconsistency. Here, we propose a novel test-time optimization approach that can transfer the robustness of affine-invariant depth models such as LeReS to challenging diverse scenes while ensuring inter-frame consistency, with only dozens of parameters to optimize per video frame. Specifically, our approach involves freezing the pre-trained affine-invariant depth model's depth predictions, rectifying them by optimizing the unknown scale-shift values with a geometric consistency alignment module, and employing the resulting scale-consistent depth maps to robustly obtain camera poses and achieve dense scene reconstruction, even in low-texture regions. Experiments show that our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.
SyncNoise: Geometrically Consistent Noise Prediction for Text-based 3D Scene Editing
Text-based 2D diffusion models have demonstrated impressive capabilities in image generation and editing. Meanwhile, the 2D diffusion models also exhibit substantial potentials for 3D editing tasks. However, how to achieve consistent edits across multiple viewpoints remains a challenge. While the iterative dataset update method is capable of achieving global consistency, it suffers from slow convergence and over-smoothed textures. We propose SyncNoise, a novel geometry-guided multi-view consistent noise editing approach for high-fidelity 3D scene editing. SyncNoise synchronously edits multiple views with 2D diffusion models while enforcing multi-view noise predictions to be geometrically consistent, which ensures global consistency in both semantic structure and low-frequency appearance. To further enhance local consistency in high-frequency details, we set a group of anchor views and propagate them to their neighboring frames through cross-view reprojection. To improve the reliability of multi-view correspondences, we introduce depth supervision during training to enhance the reconstruction of precise geometries. Our method achieves high-quality 3D editing results respecting the textual instructions, especially in scenes with complex textures, by enhancing geometric consistency at the noise and pixel levels.
2DGS-Room: Seed-Guided 2D Gaussian Splatting with Geometric Constrains for High-Fidelity Indoor Scene Reconstruction
The reconstruction of indoor scenes remains challenging due to the inherent complexity of spatial structures and the prevalence of textureless regions. Recent advancements in 3D Gaussian Splatting have improved novel view synthesis with accelerated processing but have yet to deliver comparable performance in surface reconstruction. In this paper, we introduce 2DGS-Room, a novel method leveraging 2D Gaussian Splatting for high-fidelity indoor scene reconstruction. Specifically, we employ a seed-guided mechanism to control the distribution of 2D Gaussians, with the density of seed points dynamically optimized through adaptive growth and pruning mechanisms. To further improve geometric accuracy, we incorporate monocular depth and normal priors to provide constraints for details and textureless regions respectively. Additionally, multi-view consistency constraints are employed to mitigate artifacts and further enhance reconstruction quality. Extensive experiments on ScanNet and ScanNet++ datasets demonstrate that our method achieves state-of-the-art performance in indoor scene reconstruction.
ConsistDreamer: 3D-Consistent 2D Diffusion for High-Fidelity Scene Editing
This paper proposes ConsistDreamer - a novel framework that lifts 2D diffusion models with 3D awareness and 3D consistency, thus enabling high-fidelity instruction-guided scene editing. To overcome the fundamental limitation of missing 3D consistency in 2D diffusion models, our key insight is to introduce three synergetic strategies that augment the input of the 2D diffusion model to become 3D-aware and to explicitly enforce 3D consistency during the training process. Specifically, we design surrounding views as context-rich input for the 2D diffusion model, and generate 3D-consistent, structured noise instead of image-independent noise. Moreover, we introduce self-supervised consistency-enforcing training within the per-scene editing procedure. Extensive evaluation shows that our ConsistDreamer achieves state-of-the-art performance for instruction-guided scene editing across various scenes and editing instructions, particularly in complicated large-scale indoor scenes from ScanNet++, with significantly improved sharpness and fine-grained textures. Notably, ConsistDreamer stands as the first work capable of successfully editing complex (e.g., plaid/checkered) patterns. Our project page is at immortalco.github.io/ConsistDreamer.
Vid2Avatar: 3D Avatar Reconstruction from Videos in the Wild via Self-supervised Scene Decomposition
We present Vid2Avatar, a method to learn human avatars from monocular in-the-wild videos. Reconstructing humans that move naturally from monocular in-the-wild videos is difficult. Solving it requires accurately separating humans from arbitrary backgrounds. Moreover, it requires reconstructing detailed 3D surface from short video sequences, making it even more challenging. Despite these challenges, our method does not require any groundtruth supervision or priors extracted from large datasets of clothed human scans, nor do we rely on any external segmentation modules. Instead, it solves the tasks of scene decomposition and surface reconstruction directly in 3D by modeling both the human and the background in the scene jointly, parameterized via two separate neural fields. Specifically, we define a temporally consistent human representation in canonical space and formulate a global optimization over the background model, the canonical human shape and texture, and per-frame human pose parameters. A coarse-to-fine sampling strategy for volume rendering and novel objectives are introduced for a clean separation of dynamic human and static background, yielding detailed and robust 3D human geometry reconstructions. We evaluate our methods on publicly available datasets and show improvements over prior art.
Generative Blocks World: Moving Things Around in Pictures
We describe Generative Blocks World to interact with the scene of a generated image by manipulating simple geometric abstractions. Our method represents scenes as assemblies of convex 3D primitives, and the same scene can be represented by different numbers of primitives, allowing an editor to move either whole structures or small details. Once the scene geometry has been edited, the image is generated by a flow-based method which is conditioned on depth and a texture hint. Our texture hint takes into account the modified 3D primitives, exceeding texture-consistency provided by existing key-value caching techniques. These texture hints (a) allow accurate object and camera moves and (b) largely preserve the identity of objects depicted. Quantitative and qualitative experiments demonstrate that our approach outperforms prior works in visual fidelity, editability, and compositional generalization.
TEXTure: Text-Guided Texturing of 3D Shapes
In this paper, we present TEXTure, a novel method for text-guided generation, editing, and transfer of textures for 3D shapes. Leveraging a pretrained depth-to-image diffusion model, TEXTure applies an iterative scheme that paints a 3D model from different viewpoints. Yet, while depth-to-image models can create plausible textures from a single viewpoint, the stochastic nature of the generation process can cause many inconsistencies when texturing an entire 3D object. To tackle these problems, we dynamically define a trimap partitioning of the rendered image into three progression states, and present a novel elaborated diffusion sampling process that uses this trimap representation to generate seamless textures from different views. We then show that one can transfer the generated texture maps to new 3D geometries without requiring explicit surface-to-surface mapping, as well as extract semantic textures from a set of images without requiring any explicit reconstruction. Finally, we show that TEXTure can be used to not only generate new textures but also edit and refine existing textures using either a text prompt or user-provided scribbles. We demonstrate that our TEXTuring method excels at generating, transferring, and editing textures through extensive evaluation, and further close the gap between 2D image generation and 3D texturing.
Neural Photometry-guided Visual Attribute Transfer
We present a deep learning-based method for propagating spatially-varying visual material attributes (e.g. texture maps or image stylizations) to larger samples of the same or similar materials. For training, we leverage images of the material taken under multiple illuminations and a dedicated data augmentation policy, making the transfer robust to novel illumination conditions and affine deformations. Our model relies on a supervised image-to-image translation framework and is agnostic to the transferred domain; we showcase a semantic segmentation, a normal map, and a stylization. Following an image analogies approach, the method only requires the training data to contain the same visual structures as the input guidance. Our approach works at interactive rates, making it suitable for material edit applications. We thoroughly evaluate our learning methodology in a controlled setup providing quantitative measures of performance. Last, we demonstrate that training the model on a single material is enough to generalize to materials of the same type without the need for massive datasets.
FlashTex: Fast Relightable Mesh Texturing with LightControlNet
Manually creating textures for 3D meshes is time-consuming, even for expert visual content creators. We propose a fast approach for automatically texturing an input 3D mesh based on a user-provided text prompt. Importantly, our approach disentangles lighting from surface material/reflectance in the resulting texture so that the mesh can be properly relit and rendered in any lighting environment. We introduce LightControlNet, a new text-to-image model based on the ControlNet architecture, which allows the specification of the desired lighting as a conditioning image to the model. Our text-to-texture pipeline then constructs the texture in two stages. The first stage produces a sparse set of visually consistent reference views of the mesh using LightControlNet. The second stage applies a texture optimization based on Score Distillation Sampling (SDS) that works with LightControlNet to increase the texture quality while disentangling surface material from lighting. Our pipeline is significantly faster than previous text-to-texture methods, while producing high-quality and relightable textures.
Meta 3D TextureGen: Fast and Consistent Texture Generation for 3D Objects
The recent availability and adaptability of text-to-image models has sparked a new era in many related domains that benefit from the learned text priors as well as high-quality and fast generation capabilities, one of which is texture generation for 3D objects. Although recent texture generation methods achieve impressive results by using text-to-image networks, the combination of global consistency, quality, and speed, which is crucial for advancing texture generation to real-world applications, remains elusive. To that end, we introduce Meta 3D TextureGen: a new feedforward method comprised of two sequential networks aimed at generating high-quality and globally consistent textures for arbitrary geometries of any complexity degree in less than 20 seconds. Our method achieves state-of-the-art results in quality and speed by conditioning a text-to-image model on 3D semantics in 2D space and fusing them into a complete and high-resolution UV texture map, as demonstrated by extensive qualitative and quantitative evaluations. In addition, we introduce a texture enhancement network that is capable of up-scaling any texture by an arbitrary ratio, producing 4k pixel resolution textures.
The Scene Language: Representing Scenes with Programs, Words, and Embeddings
We introduce the Scene Language, a visual scene representation that concisely and precisely describes the structure, semantics, and identity of visual scenes. It represents a scene with three key components: a program that specifies the hierarchical and relational structure of entities in the scene, words in natural language that summarize the semantic class of each entity, and embeddings that capture the visual identity of each entity. This representation can be inferred from pre-trained language models via a training-free inference technique, given text or image inputs. The resulting scene can be rendered into images using traditional, neural, or hybrid graphics renderers. Together, this forms a robust, automated system for high-quality 3D and 4D scene generation. Compared with existing representations like scene graphs, our proposed Scene Language generates complex scenes with higher fidelity, while explicitly modeling the scene structures to enable precise control and editing.
TextureDiffusion: Target Prompt Disentangled Editing for Various Texture Transfer
Recently, text-guided image editing has achieved significant success. However, existing methods can only apply simple textures like wood or gold when changing the texture of an object. Complex textures such as cloud or fire pose a challenge. This limitation stems from that the target prompt needs to contain both the input image content and <texture>, restricting the texture representation. In this paper, we propose TextureDiffusion, a tuning-free image editing method applied to various texture transfer. Initially, the target prompt is directly set to "<texture>", making the texture disentangled from the input image content to enhance texture representation. Subsequently, query features in self-attention and features in residual blocks are utilized to preserve the structure of the input image. Finally, to maintain the background, we introduce an edit localization technique which blends the self-attention results and the intermediate latents. Comprehensive experiments demonstrate that TextureDiffusion can harmoniously transfer various textures with excellent structure and background preservation.
Deep filter banks for texture recognition, description, and segmentation
Visual textures have played a key role in image understanding because they convey important semantics of images, and because texture representations that pool local image descriptors in an orderless manner have had a tremendous impact in diverse applications. In this paper we make several contributions to texture understanding. First, instead of focusing on texture instance and material category recognition, we propose a human-interpretable vocabulary of texture attributes to describe common texture patterns, complemented by a new describable texture dataset for benchmarking. Second, we look at the problem of recognizing materials and texture attributes in realistic imaging conditions, including when textures appear in clutter, developing corresponding benchmarks on top of the recently proposed OpenSurfaces dataset. Third, we revisit classic texture representations, including bag-of-visual-words and the Fisher vectors, in the context of deep learning and show that these have excellent efficiency and generalization properties if the convolutional layers of a deep model are used as filter banks. We obtain in this manner state-of-the-art performance in numerous datasets well beyond textures, an efficient method to apply deep features to image regions, as well as benefit in transferring features from one domain to another.
RoCoTex: A Robust Method for Consistent Texture Synthesis with Diffusion Models
Text-to-texture generation has recently attracted increasing attention, but existing methods often suffer from the problems of view inconsistencies, apparent seams, and misalignment between textures and the underlying mesh. In this paper, we propose a robust text-to-texture method for generating consistent and seamless textures that are well aligned with the mesh. Our method leverages state-of-the-art 2D diffusion models, including SDXL and multiple ControlNets, to capture structural features and intricate details in the generated textures. The method also employs a symmetrical view synthesis strategy combined with regional prompts for enhancing view consistency. Additionally, it introduces novel texture blending and soft-inpainting techniques, which significantly reduce the seam regions. Extensive experiments demonstrate that our method outperforms existing state-of-the-art methods.
InsTex: Indoor Scenes Stylized Texture Synthesis
Generating high-quality textures for 3D scenes is crucial for applications in interior design, gaming, and augmented/virtual reality (AR/VR). Although recent advancements in 3D generative models have enhanced content creation, significant challenges remain in achieving broad generalization and maintaining style consistency across multiple viewpoints. Current methods, such as 2D diffusion models adapted for 3D texturing, suffer from lengthy processing times and visual artifacts, while approaches driven by 3D data often fail to generalize effectively. To overcome these challenges, we introduce InsTex, a two-stage architecture designed to generate high-quality, style-consistent textures for 3D indoor scenes. InsTex utilizes depth-to-image diffusion priors in a coarse-to-fine pipeline, first generating multi-view images with a pre-trained 2D diffusion model and subsequently refining the textures for consistency. Our method supports both textual and visual prompts, achieving state-of-the-art results in visual quality and quantitative metrics, and demonstrates its effectiveness across various 3D texturing applications.
Improving Diffusion Models for Scene Text Editing with Dual Encoders
Scene text editing is a challenging task that involves modifying or inserting specified texts in an image while maintaining its natural and realistic appearance. Most previous approaches to this task rely on style-transfer models that crop out text regions and feed them into image transfer models, such as GANs. However, these methods are limited in their ability to change text style and are unable to insert texts into images. Recent advances in diffusion models have shown promise in overcoming these limitations with text-conditional image editing. However, our empirical analysis reveals that state-of-the-art diffusion models struggle with rendering correct text and controlling text style. To address these problems, we propose DIFFSTE to improve pre-trained diffusion models with a dual encoder design, which includes a character encoder for better text legibility and an instruction encoder for better style control. An instruction tuning framework is introduced to train our model to learn the mapping from the text instruction to the corresponding image with either the specified style or the style of the surrounding texts in the background. Such a training method further brings our method the zero-shot generalization ability to the following three scenarios: generating text with unseen font variation, e.g., italic and bold, mixing different fonts to construct a new font, and using more relaxed forms of natural language as the instructions to guide the generation task. We evaluate our approach on five datasets and demonstrate its superior performance in terms of text correctness, image naturalness, and style controllability. Our code is publicly available. https://github.com/UCSB-NLP-Chang/DiffSTE
TUVF: Learning Generalizable Texture UV Radiance Fields
Textures are a vital aspect of creating visually appealing and realistic 3D models. In this paper, we study the problem of generating high-fidelity texture given shapes of 3D assets, which has been relatively less explored compared with generic 3D shape modeling. Our goal is to facilitate a controllable texture generation process, such that one texture code can correspond to a particular appearance style independent of any input shapes from a category. We introduce Texture UV Radiance Fields (TUVF) that generate textures in a learnable UV sphere space rather than directly on the 3D shape. This allows the texture to be disentangled from the underlying shape and transferable to other shapes that share the same UV space, i.e., from the same category. We integrate the UV sphere space with the radiance field, which provides a more efficient and accurate representation of textures than traditional texture maps. We perform our experiments on real-world object datasets where we achieve not only realistic synthesis but also substantial improvements over state-of-the-arts on texture controlling and editing. Project Page: https://www.anjiecheng.me/TUVF
Make-A-Texture: Fast Shape-Aware Texture Generation in 3 Seconds
We present Make-A-Texture, a new framework that efficiently synthesizes high-resolution texture maps from textual prompts for given 3D geometries. Our approach progressively generates textures that are consistent across multiple viewpoints with a depth-aware inpainting diffusion model, in an optimized sequence of viewpoints determined by an automatic view selection algorithm. A significant feature of our method is its remarkable efficiency, achieving a full texture generation within an end-to-end runtime of just 3.07 seconds on a single NVIDIA H100 GPU, significantly outperforming existing methods. Such an acceleration is achieved by optimizations in the diffusion model and a specialized backprojection method. Moreover, our method reduces the artifacts in the backprojection phase, by selectively masking out non-frontal faces, and internal faces of open-surfaced objects. Experimental results demonstrate that Make-A-Texture matches or exceeds the quality of other state-of-the-art methods. Our work significantly improves the applicability and practicality of texture generation models for real-world 3D content creation, including interactive creation and text-guided texture editing.
GenesisTex: Adapting Image Denoising Diffusion to Texture Space
We present GenesisTex, a novel method for synthesizing textures for 3D geometries from text descriptions. GenesisTex adapts the pretrained image diffusion model to texture space by texture space sampling. Specifically, we maintain a latent texture map for each viewpoint, which is updated with predicted noise on the rendering of the corresponding viewpoint. The sampled latent texture maps are then decoded into a final texture map. During the sampling process, we focus on both global and local consistency across multiple viewpoints: global consistency is achieved through the integration of style consistency mechanisms within the noise prediction network, and low-level consistency is achieved by dynamically aligning latent textures. Finally, we apply reference-based inpainting and img2img on denser views for texture refinement. Our approach overcomes the limitations of slow optimization in distillation-based methods and instability in inpainting-based methods. Experiments on meshes from various sources demonstrate that our method surpasses the baseline methods quantitatively and qualitatively.
Text-Guided Texturing by Synchronized Multi-View Diffusion
This paper introduces a novel approach to synthesize texture to dress up a given 3D object, given a text prompt. Based on the pretrained text-to-image (T2I) diffusion model, existing methods usually employ a project-and-inpaint approach, in which a view of the given object is first generated and warped to another view for inpainting. But it tends to generate inconsistent texture due to the asynchronous diffusion of multiple views. We believe such asynchronous diffusion and insufficient information sharing among views are the root causes of the inconsistent artifact. In this paper, we propose a synchronized multi-view diffusion approach that allows the diffusion processes from different views to reach a consensus of the generated content early in the process, and hence ensures the texture consistency. To synchronize the diffusion, we share the denoised content among different views in each denoising step, specifically blending the latent content in the texture domain from views with overlap. Our method demonstrates superior performance in generating consistent, seamless, highly detailed textures, comparing to state-of-the-art methods.
RoNet: Rotation-oriented Continuous Image Translation
The generation of smooth and continuous images between domains has recently drawn much attention in image-to-image (I2I) translation. Linear relationship acts as the basic assumption in most existing approaches, while applied to different aspects including features, models or labels. However, the linear assumption is hard to conform with the element dimension increases and suffers from the limit that having to obtain both ends of the line. In this paper, we propose a novel rotation-oriented solution and model the continuous generation with an in-plane rotation over the style representation of an image, achieving a network named RoNet. A rotation module is implanted in the generation network to automatically learn the proper plane while disentangling the content and the style of an image. To encourage realistic texture, we also design a patch-based semantic style loss that learns the different styles of the similar object in different domains. We conduct experiments on forest scenes (where the complex texture makes the generation very challenging), faces, streetscapes and the iphone2dslr task. The results validate the superiority of our method in terms of visual quality and continuity.
MatAtlas: Text-driven Consistent Geometry Texturing and Material Assignment
We present MatAtlas, a method for consistent text-guided 3D model texturing. Following recent progress we leverage a large scale text-to-image generation model (e.g., Stable Diffusion) as a prior to texture a 3D model. We carefully design an RGB texturing pipeline that leverages a grid pattern diffusion, driven by depth and edges. By proposing a multi-step texture refinement process, we significantly improve the quality and 3D consistency of the texturing output. To further address the problem of baked-in lighting, we move beyond RGB colors and pursue assigning parametric materials to the assets. Given the high-quality initial RGB texture, we propose a novel material retrieval method capitalized on Large Language Models (LLM), enabling editabiliy and relightability. We evaluate our method on a wide variety of geometries and show that our method significantly outperform prior arts. We also analyze the role of each component through a detailed ablation study.
Emergent Properties of Foveated Perceptual Systems
The goal of this work is to characterize the representational impact that foveation operations have for machine vision systems, inspired by the foveated human visual system, which has higher acuity at the center of gaze and texture-like encoding in the periphery. To do so, we introduce models consisting of a first-stage fixed image transform followed by a second-stage learnable convolutional neural network, and we varied the first stage component. The primary model has a foveated-textural input stage, which we compare to a model with foveated-blurred input and a model with spatially-uniform blurred input (both matched for perceptual compression), and a final reference model with minimal input-based compression. We find that: 1) the foveated-texture model shows similar scene classification accuracy as the reference model despite its compressed input, with greater i.i.d. generalization than the other models; 2) the foveated-texture model has greater sensitivity to high-spatial frequency information and greater robustness to occlusion, w.r.t the comparison models; 3) both the foveated systems, show a stronger center image-bias relative to the spatially-uniform systems even with a weight sharing constraint. Critically, these results are preserved over different classical CNN architectures throughout their learning dynamics. Altogether, this suggests that foveation with peripheral texture-based computations yields an efficient, distinct, and robust representational format of scene information, and provides symbiotic computational insight into the representational consequences that texture-based peripheral encoding may have for processing in the human visual system, while also potentially inspiring the next generation of computer vision models via spatially-adaptive computation. Code + Data available here: https://github.com/ArturoDeza/EmergentProperties
Aladdin: Zero-Shot Hallucination of Stylized 3D Assets from Abstract Scene Descriptions
What constitutes the "vibe" of a particular scene? What should one find in "a busy, dirty city street", "an idyllic countryside", or "a crime scene in an abandoned living room"? The translation from abstract scene descriptions to stylized scene elements cannot be done with any generality by extant systems trained on rigid and limited indoor datasets. In this paper, we propose to leverage the knowledge captured by foundation models to accomplish this translation. We present a system that can serve as a tool to generate stylized assets for 3D scenes described by a short phrase, without the need to enumerate the objects to be found within the scene or give instructions on their appearance. Additionally, it is robust to open-world concepts in a way that traditional methods trained on limited data are not, affording more creative freedom to the 3D artist. Our system demonstrates this using a foundation model "team" composed of a large language model, a vision-language model and several image diffusion models, which communicate using an interpretable and user-editable intermediate representation, thus allowing for more versatile and controllable stylized asset generation for 3D artists. We introduce novel metrics for this task, and show through human evaluations that in 91% of the cases, our system outputs are judged more faithful to the semantics of the input scene description than the baseline, thus highlighting the potential of this approach to radically accelerate the 3D content creation process for 3D artists.
AssetField: Assets Mining and Reconfiguration in Ground Feature Plane Representation
Both indoor and outdoor environments are inherently structured and repetitive. Traditional modeling pipelines keep an asset library storing unique object templates, which is both versatile and memory efficient in practice. Inspired by this observation, we propose AssetField, a novel neural scene representation that learns a set of object-aware ground feature planes to represent the scene, where an asset library storing template feature patches can be constructed in an unsupervised manner. Unlike existing methods which require object masks to query spatial points for object editing, our ground feature plane representation offers a natural visualization of the scene in the bird-eye view, allowing a variety of operations (e.g. translation, duplication, deformation) on objects to configure a new scene. With the template feature patches, group editing is enabled for scenes with many recurring items to avoid repetitive work on object individuals. We show that AssetField not only achieves competitive performance for novel-view synthesis but also generates realistic renderings for new scene configurations.
MD-Splatting: Learning Metric Deformation from 4D Gaussians in Highly Deformable Scenes
Accurate 3D tracking in highly deformable scenes with occlusions and shadows can facilitate new applications in robotics, augmented reality, and generative AI. However, tracking under these conditions is extremely challenging due to the ambiguity that arises with large deformations, shadows, and occlusions. We introduce MD-Splatting, an approach for simultaneous 3D tracking and novel view synthesis, using video captures of a dynamic scene from various camera poses. MD-Splatting builds on recent advances in Gaussian splatting, a method that learns the properties of a large number of Gaussians for state-of-the-art and fast novel view synthesis. MD-Splatting learns a deformation function to project a set of Gaussians with non-metric, thus canonical, properties into metric space. The deformation function uses a neural-voxel encoding and a multilayer perceptron (MLP) to infer Gaussian position, rotation, and a shadow scalar. We enforce physics-inspired regularization terms based on local rigidity, conservation of momentum, and isometry, which leads to trajectories with smaller trajectory errors. MD-Splatting achieves high-quality 3D tracking on highly deformable scenes with shadows and occlusions. Compared to state-of-the-art, we improve 3D tracking by an average of 23.9 %, while simultaneously achieving high-quality novel view synthesis. With sufficient texture such as in scene 6, MD-Splatting achieves a median tracking error of 3.39 mm on a cloth of 1 x 1 meters in size. Project website: https://md-splatting.github.io/.
Habitat-Matterport 3D Dataset (HM3D): 1000 Large-scale 3D Environments for Embodied AI
We present the Habitat-Matterport 3D (HM3D) dataset. HM3D is a large-scale dataset of 1,000 building-scale 3D reconstructions from a diverse set of real-world locations. Each scene in the dataset consists of a textured 3D mesh reconstruction of interiors such as multi-floor residences, stores, and other private indoor spaces. HM3D surpasses existing datasets available for academic research in terms of physical scale, completeness of the reconstruction, and visual fidelity. HM3D contains 112.5k m^2 of navigable space, which is 1.4 - 3.7x larger than other building-scale datasets such as MP3D and Gibson. When compared to existing photorealistic 3D datasets such as Replica, MP3D, Gibson, and ScanNet, images rendered from HM3D have 20 - 85% higher visual fidelity w.r.t. counterpart images captured with real cameras, and HM3D meshes have 34 - 91% fewer artifacts due to incomplete surface reconstruction. The increased scale, fidelity, and diversity of HM3D directly impacts the performance of embodied AI agents trained using it. In fact, we find that HM3D is `pareto optimal' in the following sense -- agents trained to perform PointGoal navigation on HM3D achieve the highest performance regardless of whether they are evaluated on HM3D, Gibson, or MP3D. No similar claim can be made about training on other datasets. HM3D-trained PointNav agents achieve 100% performance on Gibson-test dataset, suggesting that it might be time to retire that episode dataset.
SceneEval: Evaluating Semantic Coherence in Text-Conditioned 3D Indoor Scene Synthesis
Despite recent advances in text-conditioned 3D indoor scene generation, there remain gaps in the evaluation of these methods. Existing metrics primarily assess the realism of generated scenes by comparing them to a set of ground-truth scenes, often overlooking alignment with the input text - a critical factor in determining how effectively a method meets user requirements. We present SceneEval, an evaluation framework designed to address this limitation. SceneEval includes metrics for both explicit user requirements, such as the presence of specific objects and their attributes described in the input text, and implicit expectations, like the absence of object collisions, providing a comprehensive assessment of scene quality. To facilitate evaluation, we introduce SceneEval-100, a dataset of scene descriptions with annotated ground-truth scene properties. We evaluate recent scene generation methods using SceneEval and demonstrate its ability to provide detailed assessments of the generated scenes, highlighting strengths and areas for improvement across multiple dimensions. Our results show that current methods struggle at generating scenes that meet user requirements, underscoring the need for further research in this direction.
ArtiScene: Language-Driven Artistic 3D Scene Generation Through Image Intermediary
Designing 3D scenes is traditionally a challenging task that demands both artistic expertise and proficiency with complex software. Recent advances in text-to-3D generation have greatly simplified this process by letting users create scenes based on simple text descriptions. However, as these methods generally require extra training or in-context learning, their performance is often hindered by the limited availability of high-quality 3D data. In contrast, modern text-to-image models learned from web-scale images can generate scenes with diverse, reliable spatial layouts and consistent, visually appealing styles. Our key insight is that instead of learning directly from 3D scenes, we can leverage generated 2D images as an intermediary to guide 3D synthesis. In light of this, we introduce ArtiScene, a training-free automated pipeline for scene design that integrates the flexibility of free-form text-to-image generation with the diversity and reliability of 2D intermediary layouts. First, we generate 2D images from a scene description, then extract the shape and appearance of objects to create 3D models. These models are assembled into the final scene using geometry, position, and pose information derived from the same intermediary image. Being generalizable to a wide range of scenes and styles, ArtiScene outperforms state-of-the-art benchmarks by a large margin in layout and aesthetic quality by quantitative metrics. It also averages a 74.89% winning rate in extensive user studies and 95.07% in GPT-4o evaluation. Project page: https://artiscene-cvpr.github.io/
GenRC: Generative 3D Room Completion from Sparse Image Collections
Sparse RGBD scene completion is a challenging task especially when considering consistent textures and geometries throughout the entire scene. Different from existing solutions that rely on human-designed text prompts or predefined camera trajectories, we propose GenRC, an automated training-free pipeline to complete a room-scale 3D mesh with high-fidelity textures. To achieve this, we first project the sparse RGBD images to a highly incomplete 3D mesh. Instead of iteratively generating novel views to fill in the void, we utilized our proposed E-Diffusion to generate a view-consistent panoramic RGBD image which ensures global geometry and appearance consistency. Furthermore, we maintain the input-output scene stylistic consistency through textual inversion to replace human-designed text prompts. To bridge the domain gap among datasets, E-Diffusion leverages models trained on large-scale datasets to generate diverse appearances. GenRC outperforms state-of-the-art methods under most appearance and geometric metrics on ScanNet and ARKitScenes datasets, even though GenRC is not trained on these datasets nor using predefined camera trajectories. Project page: https://minfenli.github.io/GenRC
Material Palette: Extraction of Materials from a Single Image
In this paper, we propose a method to extract physically-based rendering (PBR) materials from a single real-world image. We do so in two steps: first, we map regions of the image to material concepts using a diffusion model, which allows the sampling of texture images resembling each material in the scene. Second, we benefit from a separate network to decompose the generated textures into Spatially Varying BRDFs (SVBRDFs), providing us with materials ready to be used in rendering applications. Our approach builds on existing synthetic material libraries with SVBRDF ground truth, but also exploits a diffusion-generated RGB texture dataset to allow generalization to new samples using unsupervised domain adaptation (UDA). Our contributions are thoroughly evaluated on synthetic and real-world datasets. We further demonstrate the applicability of our method for editing 3D scenes with materials estimated from real photographs. The code and models will be made open-source. Project page: https://astra-vision.github.io/MaterialPalette/
GausSurf: Geometry-Guided 3D Gaussian Splatting for Surface Reconstruction
3D Gaussian Splatting has achieved impressive performance in novel view synthesis with real-time rendering capabilities. However, reconstructing high-quality surfaces with fine details using 3D Gaussians remains a challenging task. In this work, we introduce GausSurf, a novel approach to high-quality surface reconstruction by employing geometry guidance from multi-view consistency in texture-rich areas and normal priors in texture-less areas of a scene. We observe that a scene can be mainly divided into two primary regions: 1) texture-rich and 2) texture-less areas. To enforce multi-view consistency at texture-rich areas, we enhance the reconstruction quality by incorporating a traditional patch-match based Multi-View Stereo (MVS) approach to guide the geometry optimization in an iterative scheme. This scheme allows for mutual reinforcement between the optimization of Gaussians and patch-match refinement, which significantly improves the reconstruction results and accelerates the training process. Meanwhile, for the texture-less areas, we leverage normal priors from a pre-trained normal estimation model to guide optimization. Extensive experiments on the DTU and Tanks and Temples datasets demonstrate that our method surpasses state-of-the-art methods in terms of reconstruction quality and computation time.
Pandora3D: A Comprehensive Framework for High-Quality 3D Shape and Texture Generation
This report presents a comprehensive framework for generating high-quality 3D shapes and textures from diverse input prompts, including single images, multi-view images, and text descriptions. The framework consists of 3D shape generation and texture generation. (1). The 3D shape generation pipeline employs a Variational Autoencoder (VAE) to encode implicit 3D geometries into a latent space and a diffusion network to generate latents conditioned on input prompts, with modifications to enhance model capacity. An alternative Artist-Created Mesh (AM) generation approach is also explored, yielding promising results for simpler geometries. (2). Texture generation involves a multi-stage process starting with frontal images generation followed by multi-view images generation, RGB-to-PBR texture conversion, and high-resolution multi-view texture refinement. A consistency scheduler is plugged into every stage, to enforce pixel-wise consistency among multi-view textures during inference, ensuring seamless integration. The pipeline demonstrates effective handling of diverse input formats, leveraging advanced neural architectures and novel methodologies to produce high-quality 3D content. This report details the system architecture, experimental results, and potential future directions to improve and expand the framework. The source code and pretrained weights are released at: https://github.com/Tencent/Tencent-XR-3DGen.
SUM Parts: Benchmarking Part-Level Semantic Segmentation of Urban Meshes
Semantic segmentation in urban scene analysis has mainly focused on images or point clouds, while textured meshes - offering richer spatial representation - remain underexplored. This paper introduces SUM Parts, the first large-scale dataset for urban textured meshes with part-level semantic labels, covering about 2.5 km2 with 21 classes. The dataset was created using our own annotation tool, which supports both face- and texture-based annotations with efficient interactive selection. We also provide a comprehensive evaluation of 3D semantic segmentation and interactive annotation methods on this dataset. Our project page is available at https://tudelft3d.github.io/SUMParts/.
R3D3: Dense 3D Reconstruction of Dynamic Scenes from Multiple Cameras
Dense 3D reconstruction and ego-motion estimation are key challenges in autonomous driving and robotics. Compared to the complex, multi-modal systems deployed today, multi-camera systems provide a simpler, low-cost alternative. However, camera-based 3D reconstruction of complex dynamic scenes has proven extremely difficult, as existing solutions often produce incomplete or incoherent results. We propose R3D3, a multi-camera system for dense 3D reconstruction and ego-motion estimation. Our approach iterates between geometric estimation that exploits spatial-temporal information from multiple cameras, and monocular depth refinement. We integrate multi-camera feature correlation and dense bundle adjustment operators that yield robust geometric depth and pose estimates. To improve reconstruction where geometric depth is unreliable, e.g. for moving objects or low-textured regions, we introduce learnable scene priors via a depth refinement network. We show that this design enables a dense, consistent 3D reconstruction of challenging, dynamic outdoor environments. Consequently, we achieve state-of-the-art dense depth prediction on the DDAD and NuScenes benchmarks.
AV-GS: Learning Material and Geometry Aware Priors for Novel View Acoustic Synthesis
Novel view acoustic synthesis (NVAS) aims to render binaural audio at any target viewpoint, given a mono audio emitted by a sound source at a 3D scene. Existing methods have proposed NeRF-based implicit models to exploit visual cues as a condition for synthesizing binaural audio. However, in addition to low efficiency originating from heavy NeRF rendering, these methods all have a limited ability of characterizing the entire scene environment such as room geometry, material properties, and the spatial relation between the listener and sound source. To address these issues, we propose a novel Audio-Visual Gaussian Splatting (AV-GS) model. To obtain a material-aware and geometry-aware condition for audio synthesis, we learn an explicit point-based scene representation with an audio-guidance parameter on locally initialized Gaussian points, taking into account the space relation from the listener and sound source. To make the visual scene model audio adaptive, we propose a point densification and pruning strategy to optimally distribute the Gaussian points, with the per-point contribution in sound propagation (e.g., more points needed for texture-less wall surfaces as they affect sound path diversion). Extensive experiments validate the superiority of our AV-GS over existing alternatives on the real-world RWAS and simulation-based SoundSpaces datasets.
Localized Gaussian Splatting Editing with Contextual Awareness
Recent text-guided generation of individual 3D object has achieved great success using diffusion priors. However, these methods are not suitable for object insertion and replacement tasks as they do not consider the background, leading to illumination mismatches within the environment. To bridge the gap, we introduce an illumination-aware 3D scene editing pipeline for 3D Gaussian Splatting (3DGS) representation. Our key observation is that inpainting by the state-of-the-art conditional 2D diffusion model is consistent with background in lighting. To leverage the prior knowledge from the well-trained diffusion models for 3D object generation, our approach employs a coarse-to-fine objection optimization pipeline with inpainted views. In the first coarse step, we achieve image-to-3D lifting given an ideal inpainted view. The process employs 3D-aware diffusion prior from a view-conditioned diffusion model, which preserves illumination present in the conditioning image. To acquire an ideal inpainted image, we introduce an Anchor View Proposal (AVP) algorithm to find a single view that best represents the scene illumination in target region. In the second Texture Enhancement step, we introduce a novel Depth-guided Inpainting Score Distillation Sampling (DI-SDS), which enhances geometry and texture details with the inpainting diffusion prior, beyond the scope of the 3D-aware diffusion prior knowledge in the first coarse step. DI-SDS not only provides fine-grained texture enhancement, but also urges optimization to respect scene lighting. Our approach efficiently achieves local editing with global illumination consistency without explicitly modeling light transport. We demonstrate robustness of our method by evaluating editing in real scenes containing explicit highlight and shadows, and compare against the state-of-the-art text-to-3D editing methods.
TransRef: Multi-Scale Reference Embedding Transformer for Reference-Guided Image Inpainting
Image inpainting for completing complicated semantic environments and diverse hole patterns of corrupted images is challenging even for state-of-the-art learning-based inpainting methods trained on large-scale data. A reference image capturing the same scene of a corrupted image offers informative guidance for completing the corrupted image as it shares similar texture and structure priors to that of the holes of the corrupted image. In this work, we propose a transformer-based encoder-decoder network, named TransRef, for reference-guided image inpainting. Specifically, the guidance is conducted progressively through a reference embedding procedure, in which the referencing features are subsequently aligned and fused with the features of the corrupted image. For precise utilization of the reference features for guidance, a reference-patch alignment (Ref-PA) module is proposed to align the patch features of the reference and corrupted images and harmonize their style differences, while a reference-patch transformer (Ref-PT) module is proposed to refine the embedded reference feature. Moreover, to facilitate the research of reference-guided image restoration tasks, we construct a publicly accessible benchmark dataset containing 50K pairs of input and reference images. Both quantitative and qualitative evaluations demonstrate the efficacy of the reference information and the proposed method over the state-of-the-art methods in completing complex holes. Code and dataset can be accessed at https://github.com/Cameltr/TransRef.
Guidance and Evaluation: Semantic-Aware Image Inpainting for Mixed Scenes
Completing a corrupted image with correct structures and reasonable textures for a mixed scene remains an elusive challenge. Since the missing hole in a mixed scene of a corrupted image often contains various semantic information, conventional two-stage approaches utilizing structural information often lead to the problem of unreliable structural prediction and ambiguous image texture generation. In this paper, we propose a Semantic Guidance and Evaluation Network (SGE-Net) to iteratively update the structural priors and the inpainted image in an interplay framework of semantics extraction and image inpainting. It utilizes semantic segmentation map as guidance in each scale of inpainting, under which location-dependent inferences are re-evaluated, and, accordingly, poorly-inferred regions are refined in subsequent scales. Extensive experiments on real-world images of mixed scenes demonstrated the superiority of our proposed method over state-of-the-art approaches, in terms of clear boundaries and photo-realistic textures.
StyleMe3D: Stylization with Disentangled Priors by Multiple Encoders on 3D Gaussians
3D Gaussian Splatting (3DGS) excels in photorealistic scene reconstruction but struggles with stylized scenarios (e.g., cartoons, games) due to fragmented textures, semantic misalignment, and limited adaptability to abstract aesthetics. We propose StyleMe3D, a holistic framework for 3D GS style transfer that integrates multi-modal style conditioning, multi-level semantic alignment, and perceptual quality enhancement. Our key insights include: (1) optimizing only RGB attributes preserves geometric integrity during stylization; (2) disentangling low-, medium-, and high-level semantics is critical for coherent style transfer; (3) scalability across isolated objects and complex scenes is essential for practical deployment. StyleMe3D introduces four novel components: Dynamic Style Score Distillation (DSSD), leveraging Stable Diffusion's latent space for semantic alignment; Contrastive Style Descriptor (CSD) for localized, content-aware texture transfer; Simultaneously Optimized Scale (SOS) to decouple style details and structural coherence; and 3D Gaussian Quality Assessment (3DG-QA), a differentiable aesthetic prior trained on human-rated data to suppress artifacts and enhance visual harmony. Evaluated on NeRF synthetic dataset (objects) and tandt db (scenes) datasets, StyleMe3D outperforms state-of-the-art methods in preserving geometric details (e.g., carvings on sculptures) and ensuring stylistic consistency across scenes (e.g., coherent lighting in landscapes), while maintaining real-time rendering. This work bridges photorealistic 3D GS and artistic stylization, unlocking applications in gaming, virtual worlds, and digital art.
Tiled Multiplane Images for Practical 3D Photography
The task of synthesizing novel views from a single image has useful applications in virtual reality and mobile computing, and a number of approaches to the problem have been proposed in recent years. A Multiplane Image (MPI) estimates the scene as a stack of RGBA layers, and can model complex appearance effects, anti-alias depth errors and synthesize soft edges better than methods that use textured meshes or layered depth images. And unlike neural radiance fields, an MPI can be efficiently rendered on graphics hardware. However, MPIs are highly redundant and require a large number of depth layers to achieve plausible results. Based on the observation that the depth complexity in local image regions is lower than that over the entire image, we split an MPI into many small, tiled regions, each with only a few depth planes. We call this representation a Tiled Multiplane Image (TMPI). We propose a method for generating a TMPI with adaptive depth planes for single-view 3D photography in the wild. Our synthesized results are comparable to state-of-the-art single-view MPI methods while having lower computational overhead.
High resolution neural texture synthesis with long range constraints
The field of texture synthesis has witnessed important progresses over the last years, most notably through the use of Convolutional Neural Networks. However, neural synthesis methods still struggle to reproduce large scale structures, especially with high resolution textures. To address this issue, we first introduce a simple multi-resolution framework that efficiently accounts for long-range dependency. Then, we show that additional statistical constraints further improve the reproduction of textures with strong regularity. This can be achieved by constraining both the Gram matrices of a neural network and the power spectrum of the image. Alternatively one may constrain only the autocorrelation of the features of the network and drop the Gram matrices constraints. In an experimental part, the proposed methods are then extensively tested and compared to alternative approaches, both in an unsupervised way and through a user study. Experiments show the interest of the multi-scale scheme for high resolution textures and the interest of combining it with additional constraints for regular textures.
AllWeatherNet:Unified Image Enhancement for Autonomous Driving under Adverse Weather and Lowlight-conditions
Adverse conditions like snow, rain, nighttime, and fog, pose challenges for autonomous driving perception systems. Existing methods have limited effectiveness in improving essential computer vision tasks, such as semantic segmentation, and often focus on only one specific condition, such as removing rain or translating nighttime images into daytime ones. To address these limitations, we propose a method to improve the visual quality and clarity degraded by such adverse conditions. Our method, AllWeather-Net, utilizes a novel hierarchical architecture to enhance images across all adverse conditions. This architecture incorporates information at three semantic levels: scene, object, and texture, by discriminating patches at each level. Furthermore, we introduce a Scaled Illumination-aware Attention Mechanism (SIAM) that guides the learning towards road elements critical for autonomous driving perception. SIAM exhibits robustness, remaining unaffected by changes in weather conditions or environmental scenes. AllWeather-Net effectively transforms images into normal weather and daytime scenes, demonstrating superior image enhancement results and subsequently enhancing the performance of semantic segmentation, with up to a 5.3% improvement in mIoU in the trained domain. We also show our model's generalization ability by applying it to unseen domains without re-training, achieving up to 3.9% mIoU improvement. Code can be accessed at: https://github.com/Jumponthemoon/AllWeatherNet.
LatentEditor: Text Driven Local Editing of 3D Scenes
While neural fields have made significant strides in view synthesis and scene reconstruction, editing them poses a formidable challenge due to their implicit encoding of geometry and texture information from multi-view inputs. In this paper, we introduce LatentEditor, an innovative framework designed to empower users with the ability to perform precise and locally controlled editing of neural fields using text prompts. Leveraging denoising diffusion models, we successfully embed real-world scenes into the latent space, resulting in a faster and more adaptable NeRF backbone for editing compared to traditional methods. To enhance editing precision, we introduce a delta score to calculate the 2D mask in the latent space that serves as a guide for local modifications while preserving irrelevant regions. Our novel pixel-level scoring approach harnesses the power of InstructPix2Pix (IP2P) to discern the disparity between IP2P conditional and unconditional noise predictions in the latent space. The edited latents conditioned on the 2D masks are then iteratively updated in the training set to achieve 3D local editing. Our approach achieves faster editing speeds and superior output quality compared to existing 3D editing models, bridging the gap between textual instructions and high-quality 3D scene editing in latent space. We show the superiority of our approach on four benchmark 3D datasets, LLFF, IN2N, NeRFStudio and NeRF-Art.
VQ-NeRF: Vector Quantization Enhances Implicit Neural Representations
Recent advancements in implicit neural representations have contributed to high-fidelity surface reconstruction and photorealistic novel view synthesis. However, the computational complexity inherent in these methodologies presents a substantial impediment, constraining the attainable frame rates and resolutions in practical applications. In response to this predicament, we propose VQ-NeRF, an effective and efficient pipeline for enhancing implicit neural representations via vector quantization. The essence of our method involves reducing the sampling space of NeRF to a lower resolution and subsequently reinstating it to the original size utilizing a pre-trained VAE decoder, thereby effectively mitigating the sampling time bottleneck encountered during rendering. Although the codebook furnishes representative features, reconstructing fine texture details of the scene remains challenging due to high compression rates. To overcome this constraint, we design an innovative multi-scale NeRF sampling scheme that concurrently optimizes the NeRF model at both compressed and original scales to enhance the network's ability to preserve fine details. Furthermore, we incorporate a semantic loss function to improve the geometric fidelity and semantic coherence of our 3D reconstructions. Extensive experiments demonstrate the effectiveness of our model in achieving the optimal trade-off between rendering quality and efficiency. Evaluation on the DTU, BlendMVS, and H3DS datasets confirms the superior performance of our approach.
Differentiable Blocks World: Qualitative 3D Decomposition by Rendering Primitives
Given a set of calibrated images of a scene, we present an approach that produces a simple, compact, and actionable 3D world representation by means of 3D primitives. While many approaches focus on recovering high-fidelity 3D scenes, we focus on parsing a scene into mid-level 3D representations made of a small set of textured primitives. Such representations are interpretable, easy to manipulate and suited for physics-based simulations. Moreover, unlike existing primitive decomposition methods that rely on 3D input data, our approach operates directly on images through differentiable rendering. Specifically, we model primitives as textured superquadric meshes and optimize their parameters from scratch with an image rendering loss. We highlight the importance of modeling transparency for each primitive, which is critical for optimization and also enables handling varying numbers of primitives. We show that the resulting textured primitives faithfully reconstruct the input images and accurately model the visible 3D points, while providing amodal shape completions of unseen object regions. We compare our approach to the state of the art on diverse scenes from DTU, and demonstrate its robustness on real-life captures from BlendedMVS and Nerfstudio. We also showcase how our results can be used to effortlessly edit a scene or perform physical simulations. Code and video results are available at https://www.tmonnier.com/DBW .
Seeing the World through Your Eyes
The reflective nature of the human eye is an underappreciated source of information about what the world around us looks like. By imaging the eyes of a moving person, we can collect multiple views of a scene outside the camera's direct line of sight through the reflections in the eyes. In this paper, we reconstruct a 3D scene beyond the camera's line of sight using portrait images containing eye reflections. This task is challenging due to 1) the difficulty of accurately estimating eye poses and 2) the entangled appearance of the eye iris and the scene reflections. Our method jointly refines the cornea poses, the radiance field depicting the scene, and the observer's eye iris texture. We further propose a simple regularization prior on the iris texture pattern to improve reconstruction quality. Through various experiments on synthetic and real-world captures featuring people with varied eye colors, we demonstrate the feasibility of our approach to recover 3D scenes using eye reflections.
MVDiffusion: Enabling Holistic Multi-view Image Generation with Correspondence-Aware Diffusion
This paper introduces MVDiffusion, a simple yet effective multi-view image generation method for scenarios where pixel-to-pixel correspondences are available, such as perspective crops from panorama or multi-view images given geometry (depth maps and poses). Unlike prior models that rely on iterative image warping and inpainting, MVDiffusion concurrently generates all images with a global awareness, encompassing high resolution and rich content, effectively addressing the error accumulation prevalent in preceding models. MVDiffusion specifically incorporates a correspondence-aware attention mechanism, enabling effective cross-view interaction. This mechanism underpins three pivotal modules: 1) a generation module that produces low-resolution images while maintaining global correspondence, 2) an interpolation module that densifies spatial coverage between images, and 3) a super-resolution module that upscales into high-resolution outputs. In terms of panoramic imagery, MVDiffusion can generate high-resolution photorealistic images up to 1024times1024 pixels. For geometry-conditioned multi-view image generation, MVDiffusion demonstrates the first method capable of generating a textured map of a scene mesh. The project page is at https://mvdiffusion.github.io.
Pixel-Aware Stable Diffusion for Realistic Image Super-resolution and Personalized Stylization
Realistic image super-resolution (Real-ISR) aims to reproduce perceptually realistic image details from a low-quality input. The commonly used adversarial training based Real-ISR methods often introduce unnatural visual artifacts and fail to generate realistic textures for natural scene images. The recently developed generative stable diffusion models provide a potential solution to Real-ISR with pre-learned strong image priors. However, the existing methods along this line either fail to keep faithful pixel-wise image structures or resort to extra skipped connections to reproduce details, which requires additional training in image space and limits their extension to other related tasks in latent space such as image stylization. In this work, we propose a pixel-aware stable diffusion (PASD) network to achieve robust Real-ISR as well as personalized stylization. In specific, a pixel-aware cross attention module is introduced to enable diffusion models perceiving image local structures in pixel-wise level, while a degradation removal module is used to extract degradation insensitive features to guide the diffusion process together with image high level information. By simply replacing the base diffusion model with a personalized one, our method can generate diverse stylized images without the need to collect pairwise training data. PASD can be easily integrated into existing diffusion models such as Stable Diffusion. Experiments on Real-ISR and personalized stylization demonstrate the effectiveness of our proposed approach. The source code and models can be found at https://github.com/yangxy/PASD.
CrossViewDiff: A Cross-View Diffusion Model for Satellite-to-Street View Synthesis
Satellite-to-street view synthesis aims at generating a realistic street-view image from its corresponding satellite-view image. Although stable diffusion models have exhibit remarkable performance in a variety of image generation applications, their reliance on similar-view inputs to control the generated structure or texture restricts their application to the challenging cross-view synthesis task. In this work, we propose CrossViewDiff, a cross-view diffusion model for satellite-to-street view synthesis. To address the challenges posed by the large discrepancy across views, we design the satellite scene structure estimation and cross-view texture mapping modules to construct the structural and textural controls for street-view image synthesis. We further design a cross-view control guided denoising process that incorporates the above controls via an enhanced cross-view attention module. To achieve a more comprehensive evaluation of the synthesis results, we additionally design a GPT-based scoring method as a supplement to standard evaluation metrics. We also explore the effect of different data sources (e.g., text, maps, building heights, and multi-temporal satellite imagery) on this task. Results on three public cross-view datasets show that CrossViewDiff outperforms current state-of-the-art on both standard and GPT-based evaluation metrics, generating high-quality street-view panoramas with more realistic structures and textures across rural, suburban, and urban scenes. The code and models of this work will be released at https://opendatalab.github.io/CrossViewDiff/.
Blended-NeRF: Zero-Shot Object Generation and Blending in Existing Neural Radiance Fields
Editing a local region or a specific object in a 3D scene represented by a NeRF is challenging, mainly due to the implicit nature of the scene representation. Consistently blending a new realistic object into the scene adds an additional level of difficulty. We present Blended-NeRF, a robust and flexible framework for editing a specific region of interest in an existing NeRF scene, based on text prompts or image patches, along with a 3D ROI box. Our method leverages a pretrained language-image model to steer the synthesis towards a user-provided text prompt or image patch, along with a 3D MLP model initialized on an existing NeRF scene to generate the object and blend it into a specified region in the original scene. We allow local editing by localizing a 3D ROI box in the input scene, and seamlessly blend the content synthesized inside the ROI with the existing scene using a novel volumetric blending technique. To obtain natural looking and view-consistent results, we leverage existing and new geometric priors and 3D augmentations for improving the visual fidelity of the final result. We test our framework both qualitatively and quantitatively on a variety of real 3D scenes and text prompts, demonstrating realistic multi-view consistent results with much flexibility and diversity compared to the baselines. Finally, we show the applicability of our framework for several 3D editing applications, including adding new objects to a scene, removing/replacing/altering existing objects, and texture conversion.
DreamEdit: Subject-driven Image Editing
Subject-driven image generation aims at generating images containing customized subjects, which has recently drawn enormous attention from the research community. However, the previous works cannot precisely control the background and position of the target subject. In this work, we aspire to fill the void and propose two novel subject-driven sub-tasks, i.e., Subject Replacement and Subject Addition. The new tasks are challenging in multiple aspects: replacing a subject with a customized one can change its shape, texture, and color, while adding a target subject to a designated position in a provided scene necessitates a context-aware posture. To conquer these two novel tasks, we first manually curate a new dataset DreamEditBench containing 22 different types of subjects, and 440 source images with different difficulty levels. We plan to host DreamEditBench as a platform and hire trained evaluators for standard human evaluation. We also devise an innovative method DreamEditor to resolve these tasks by performing iterative generation, which enables a smooth adaptation to the customized subject. In this project, we conduct automatic and human evaluations to understand the performance of DreamEditor and baselines on DreamEditBench. For Subject Replacement, we found that the existing models are sensitive to the shape and color of the original subject. The model failure rate will dramatically increase when the source and target subjects are highly different. For Subject Addition, we found that the existing models cannot easily blend the customized subjects into the background smoothly, leading to noticeable artifacts in the generated image. We hope DreamEditBench can become a standard platform to enable future investigations toward building more controllable subject-driven image editing. Our project homepage is https://dreameditbenchteam.github.io/.
Simulating Fluids in Real-World Still Images
In this work, we tackle the problem of real-world fluid animation from a still image. The key of our system is a surface-based layered representation deriving from video decomposition, where the scene is decoupled into a surface fluid layer and an impervious background layer with corresponding transparencies to characterize the composition of the two layers. The animated video can be produced by warping only the surface fluid layer according to the estimation of fluid motions and recombining it with the background. In addition, we introduce surface-only fluid simulation, a 2.5D fluid calculation version, as a replacement for motion estimation. Specifically, we leverage the triangular mesh based on a monocular depth estimator to represent the fluid surface layer and simulate the motion in the physics-based framework with the inspiration of the classic theory of the hybrid Lagrangian-Eulerian method, along with a learnable network so as to adapt to complex real-world image textures. We demonstrate the effectiveness of the proposed system through comparison with existing methods in both standard objective metrics and subjective ranking scores. Extensive experiments not only indicate our method's competitive performance for common fluid scenes but also better robustness and reasonability under complex transparent fluid scenarios. Moreover, as the proposed surface-based layer representation and surface-only fluid simulation naturally disentangle the scene, interactive editing such as adding objects to the river and texture replacing could be easily achieved with realistic results.
TexTailor: Customized Text-aligned Texturing via Effective Resampling
We present TexTailor, a novel method for generating consistent object textures from textual descriptions. Existing text-to-texture synthesis approaches utilize depth-aware diffusion models to progressively generate images and synthesize textures across predefined multiple viewpoints. However, these approaches lead to a gradual shift in texture properties across viewpoints due to (1) insufficient integration of previously synthesized textures at each viewpoint during the diffusion process and (2) the autoregressive nature of the texture synthesis process. Moreover, the predefined selection of camera positions, which does not account for the object's geometry, limits the effective use of texture information synthesized from different viewpoints, ultimately degrading overall texture consistency. In TexTailor, we address these issues by (1) applying a resampling scheme that repeatedly integrates information from previously synthesized textures within the diffusion process, and (2) fine-tuning a depth-aware diffusion model on these resampled textures. During this process, we observed that using only a few training images restricts the model's original ability to generate high-fidelity images aligned with the conditioning, and therefore propose an performance preservation loss to mitigate this issue. Additionally, we improve the synthesis of view-consistent textures by adaptively adjusting camera positions based on the object's geometry. Experiments on a subset of the Objaverse dataset and the ShapeNet car dataset demonstrate that TexTailor outperforms state-of-the-art methods in synthesizing view-consistent textures. The source code for TexTailor is available at https://github.com/Adios42/Textailor
EmbodiedGen: Towards a Generative 3D World Engine for Embodied Intelligence
Constructing a physically realistic and accurately scaled simulated 3D world is crucial for the training and evaluation of embodied intelligence tasks. The diversity, realism, low cost accessibility and affordability of 3D data assets are critical for achieving generalization and scalability in embodied AI. However, most current embodied intelligence tasks still rely heavily on traditional 3D computer graphics assets manually created and annotated, which suffer from high production costs and limited realism. These limitations significantly hinder the scalability of data driven approaches. We present EmbodiedGen, a foundational platform for interactive 3D world generation. It enables the scalable generation of high-quality, controllable and photorealistic 3D assets with accurate physical properties and real-world scale in the Unified Robotics Description Format (URDF) at low cost. These assets can be directly imported into various physics simulation engines for fine-grained physical control, supporting downstream tasks in training and evaluation. EmbodiedGen is an easy-to-use, full-featured toolkit composed of six key modules: Image-to-3D, Text-to-3D, Texture Generation, Articulated Object Generation, Scene Generation and Layout Generation. EmbodiedGen generates diverse and interactive 3D worlds composed of generative 3D assets, leveraging generative AI to address the challenges of generalization and evaluation to the needs of embodied intelligence related research. Code is available at https://horizonrobotics.github.io/robot_lab/embodied_gen/index.html.
Generative AI meets 3D: A Survey on Text-to-3D in AIGC Era
Generative AI (AIGC, a.k.a. AI generated content) has made remarkable progress in the past few years, among which text-guided content generation is the most practical one since it enables the interaction between human instruction and AIGC. Due to the development in text-to-image as well 3D modeling technologies (like NeRF), text-to-3D has become a newly emerging yet highly active research field. Our work conducts the first yet comprehensive survey on text-to-3D to help readers interested in this direction quickly catch up with its fast development. First, we introduce 3D data representations, including both Euclidean data and non-Euclidean data. On top of that, we introduce various foundation technologies as well as summarize how recent works combine those foundation technologies to realize satisfactory text-to-3D. Moreover, we summarize how text-to-3D technology is used in various applications, including avatar generation, texture generation, shape transformation, and scene generation.
Temporal Residual Guided Diffusion Framework for Event-Driven Video Reconstruction
Event-based video reconstruction has garnered increasing attention due to its advantages, such as high dynamic range and rapid motion capture capabilities. However, current methods often prioritize the extraction of temporal information from continuous event flow, leading to an overemphasis on low-frequency texture features in the scene, resulting in over-smoothing and blurry artifacts. Addressing this challenge necessitates the integration of conditional information, encompassing temporal features, low-frequency texture, and high-frequency events, to guide the Denoising Diffusion Probabilistic Model (DDPM) in producing accurate and natural outputs. To tackle this issue, we introduce a novel approach, the Temporal Residual Guided Diffusion Framework, which effectively leverages both temporal and frequency-based event priors. Our framework incorporates three key conditioning modules: a pre-trained low-frequency intensity estimation module, a temporal recurrent encoder module, and an attention-based high-frequency prior enhancement module. In order to capture temporal scene variations from the events at the current moment, we employ a temporal-domain residual image as the target for the diffusion model. Through the combination of these three conditioning paths and the temporal residual framework, our framework excels in reconstructing high-quality videos from event flow, mitigating issues such as artifacts and over-smoothing commonly observed in previous approaches. Extensive experiments conducted on multiple benchmark datasets validate the superior performance of our framework compared to prior event-based reconstruction methods.
Text2LIVE: Text-Driven Layered Image and Video Editing
We present a method for zero-shot, text-driven appearance manipulation in natural images and videos. Given an input image or video and a target text prompt, our goal is to edit the appearance of existing objects (e.g., object's texture) or augment the scene with visual effects (e.g., smoke, fire) in a semantically meaningful manner. We train a generator using an internal dataset of training examples, extracted from a single input (image or video and target text prompt), while leveraging an external pre-trained CLIP model to establish our losses. Rather than directly generating the edited output, our key idea is to generate an edit layer (color+opacity) that is composited over the original input. This allows us to constrain the generation process and maintain high fidelity to the original input via novel text-driven losses that are applied directly to the edit layer. Our method neither relies on a pre-trained generator nor requires user-provided edit masks. We demonstrate localized, semantic edits on high-resolution natural images and videos across a variety of objects and scenes.
StyleTex: Style Image-Guided Texture Generation for 3D Models
Style-guided texture generation aims to generate a texture that is harmonious with both the style of the reference image and the geometry of the input mesh, given a reference style image and a 3D mesh with its text description. Although diffusion-based 3D texture generation methods, such as distillation sampling, have numerous promising applications in stylized games and films, it requires addressing two challenges: 1) decouple style and content completely from the reference image for 3D models, and 2) align the generated texture with the color tone, style of the reference image, and the given text prompt. To this end, we introduce StyleTex, an innovative diffusion-model-based framework for creating stylized textures for 3D models. Our key insight is to decouple style information from the reference image while disregarding content in diffusion-based distillation sampling. Specifically, given a reference image, we first decompose its style feature from the image CLIP embedding by subtracting the embedding's orthogonal projection in the direction of the content feature, which is represented by a text CLIP embedding. Our novel approach to disentangling the reference image's style and content information allows us to generate distinct style and content features. We then inject the style feature into the cross-attention mechanism to incorporate it into the generation process, while utilizing the content feature as a negative prompt to further dissociate content information. Finally, we incorporate these strategies into StyleTex to obtain stylized textures. The resulting textures generated by StyleTex retain the style of the reference image, while also aligning with the text prompts and intrinsic details of the given 3D mesh. Quantitative and qualitative experiments show that our method outperforms existing baseline methods by a significant margin.
InLoc: Indoor Visual Localization with Dense Matching and View Synthesis
We seek to predict the 6 degree-of-freedom (6DoF) pose of a query photograph with respect to a large indoor 3D map. The contributions of this work are three-fold. First, we develop a new large-scale visual localization method targeted for indoor environments. The method proceeds along three steps: (i) efficient retrieval of candidate poses that ensures scalability to large-scale environments, (ii) pose estimation using dense matching rather than local features to deal with textureless indoor scenes, and (iii) pose verification by virtual view synthesis to cope with significant changes in viewpoint, scene layout, and occluders. Second, we collect a new dataset with reference 6DoF poses for large-scale indoor localization. Query photographs are captured by mobile phones at a different time than the reference 3D map, thus presenting a realistic indoor localization scenario. Third, we demonstrate that our method significantly outperforms current state-of-the-art indoor localization approaches on this new challenging data.
LLM Blueprint: Enabling Text-to-Image Generation with Complex and Detailed Prompts
Diffusion-based generative models have significantly advanced text-to-image generation but encounter challenges when processing lengthy and intricate text prompts describing complex scenes with multiple objects. While excelling in generating images from short, single-object descriptions, these models often struggle to faithfully capture all the nuanced details within longer and more elaborate textual inputs. In response, we present a novel approach leveraging Large Language Models (LLMs) to extract critical components from text prompts, including bounding box coordinates for foreground objects, detailed textual descriptions for individual objects, and a succinct background context. These components form the foundation of our layout-to-image generation model, which operates in two phases. The initial Global Scene Generation utilizes object layouts and background context to create an initial scene but often falls short in faithfully representing object characteristics as specified in the prompts. To address this limitation, we introduce an Iterative Refinement Scheme that iteratively evaluates and refines box-level content to align them with their textual descriptions, recomposing objects as needed to ensure consistency. Our evaluation on complex prompts featuring multiple objects demonstrates a substantial improvement in recall compared to baseline diffusion models. This is further validated by a user study, underscoring the efficacy of our approach in generating coherent and detailed scenes from intricate textual inputs.
SGEdit: Bridging LLM with Text2Image Generative Model for Scene Graph-based Image Editing
Scene graphs offer a structured, hierarchical representation of images, with nodes and edges symbolizing objects and the relationships among them. It can serve as a natural interface for image editing, dramatically improving precision and flexibility. Leveraging this benefit, we introduce a new framework that integrates large language model (LLM) with Text2Image generative model for scene graph-based image editing. This integration enables precise modifications at the object level and creative recomposition of scenes without compromising overall image integrity. Our approach involves two primary stages: 1) Utilizing a LLM-driven scene parser, we construct an image's scene graph, capturing key objects and their interrelationships, as well as parsing fine-grained attributes such as object masks and descriptions. These annotations facilitate concept learning with a fine-tuned diffusion model, representing each object with an optimized token and detailed description prompt. 2) During the image editing phase, a LLM editing controller guides the edits towards specific areas. These edits are then implemented by an attention-modulated diffusion editor, utilizing the fine-tuned model to perform object additions, deletions, replacements, and adjustments. Through extensive experiments, we demonstrate that our framework significantly outperforms existing image editing methods in terms of editing precision and scene aesthetics.
Generative Image Inpainting with Contextual Attention
Recent deep learning based approaches have shown promising results for the challenging task of inpainting large missing regions in an image. These methods can generate visually plausible image structures and textures, but often create distorted structures or blurry textures inconsistent with surrounding areas. This is mainly due to ineffectiveness of convolutional neural networks in explicitly borrowing or copying information from distant spatial locations. On the other hand, traditional texture and patch synthesis approaches are particularly suitable when it needs to borrow textures from the surrounding regions. Motivated by these observations, we propose a new deep generative model-based approach which can not only synthesize novel image structures but also explicitly utilize surrounding image features as references during network training to make better predictions. The model is a feed-forward, fully convolutional neural network which can process images with multiple holes at arbitrary locations and with variable sizes during the test time. Experiments on multiple datasets including faces (CelebA, CelebA-HQ), textures (DTD) and natural images (ImageNet, Places2) demonstrate that our proposed approach generates higher-quality inpainting results than existing ones. Code, demo and models are available at: https://github.com/JiahuiYu/generative_inpainting.
Mesh2Tex: Generating Mesh Textures from Image Queries
Remarkable advances have been achieved recently in learning neural representations that characterize object geometry, while generating textured objects suitable for downstream applications and 3D rendering remains at an early stage. In particular, reconstructing textured geometry from images of real objects is a significant challenge -- reconstructed geometry is often inexact, making realistic texturing a significant challenge. We present Mesh2Tex, which learns a realistic object texture manifold from uncorrelated collections of 3D object geometry and photorealistic RGB images, by leveraging a hybrid mesh-neural-field texture representation. Our texture representation enables compact encoding of high-resolution textures as a neural field in the barycentric coordinate system of the mesh faces. The learned texture manifold enables effective navigation to generate an object texture for a given 3D object geometry that matches to an input RGB image, which maintains robustness even under challenging real-world scenarios where the mesh geometry approximates an inexact match to the underlying geometry in the RGB image. Mesh2Tex can effectively generate realistic object textures for an object mesh to match real images observations towards digitization of real environments, significantly improving over previous state of the art.
Metropolis Theorem and Its Applications in Single Image Detail Enhancement
Traditional image detail enhancement is local filter-based or global filter-based. In both approaches, the original image is first divided into the base layer and the detail layer, and then the enhanced image is obtained by amplifying the detail layer. Our method is different, and its innovation lies in the special way to get the image detail layer. The detail layer in our method is obtained by updating the residual features, and the updating mechanism is usually based on searching and matching similar patches. However, due to the diversity of image texture features, perfect matching is often not possible. In this paper, the process of searching and matching is treated as a thermodynamic process, where the Metropolis theorem can minimize the internal energy and get the global optimal solution of this task, that is, to find a more suitable feature for a better detail enhancement performance. Extensive experiments have proven that our algorithm can achieve better results in quantitative metrics testing and visual effects evaluation. The source code can be obtained from the link.
DreamPolish: Domain Score Distillation With Progressive Geometry Generation
We introduce DreamPolish, a text-to-3D generation model that excels in producing refined geometry and high-quality textures. In the geometry construction phase, our approach leverages multiple neural representations to enhance the stability of the synthesis process. Instead of relying solely on a view-conditioned diffusion prior in the novel sampled views, which often leads to undesired artifacts in the geometric surface, we incorporate an additional normal estimator to polish the geometry details, conditioned on viewpoints with varying field-of-views. We propose to add a surface polishing stage with only a few training steps, which can effectively refine the artifacts attributed to limited guidance from previous stages and produce 3D objects with more desirable geometry. The key topic of texture generation using pretrained text-to-image models is to find a suitable domain in the vast latent distribution of these models that contains photorealistic and consistent renderings. In the texture generation phase, we introduce a novel score distillation objective, namely domain score distillation (DSD), to guide neural representations toward such a domain. We draw inspiration from the classifier-free guidance (CFG) in textconditioned image generation tasks and show that CFG and variational distribution guidance represent distinct aspects in gradient guidance and are both imperative domains for the enhancement of texture quality. Extensive experiments show our proposed model can produce 3D assets with polished surfaces and photorealistic textures, outperforming existing state-of-the-art methods.
TexGen: Text-Guided 3D Texture Generation with Multi-view Sampling and Resampling
Given a 3D mesh, we aim to synthesize 3D textures that correspond to arbitrary textual descriptions. Current methods for generating and assembling textures from sampled views often result in prominent seams or excessive smoothing. To tackle these issues, we present TexGen, a novel multi-view sampling and resampling framework for texture generation leveraging a pre-trained text-to-image diffusion model. For view consistent sampling, first of all we maintain a texture map in RGB space that is parameterized by the denoising step and updated after each sampling step of the diffusion model to progressively reduce the view discrepancy. An attention-guided multi-view sampling strategy is exploited to broadcast the appearance information across views. To preserve texture details, we develop a noise resampling technique that aids in the estimation of noise, generating inputs for subsequent denoising steps, as directed by the text prompt and current texture map. Through an extensive amount of qualitative and quantitative evaluations, we demonstrate that our proposed method produces significantly better texture quality for diverse 3D objects with a high degree of view consistency and rich appearance details, outperforming current state-of-the-art methods. Furthermore, our proposed texture generation technique can also be applied to texture editing while preserving the original identity. More experimental results are available at https://dong-huo.github.io/TexGen/
TextureDreamer: Image-guided Texture Synthesis through Geometry-aware Diffusion
We present TextureDreamer, a novel image-guided texture synthesis method to transfer relightable textures from a small number of input images (3 to 5) to target 3D shapes across arbitrary categories. Texture creation is a pivotal challenge in vision and graphics. Industrial companies hire experienced artists to manually craft textures for 3D assets. Classical methods require densely sampled views and accurately aligned geometry, while learning-based methods are confined to category-specific shapes within the dataset. In contrast, TextureDreamer can transfer highly detailed, intricate textures from real-world environments to arbitrary objects with only a few casually captured images, potentially significantly democratizing texture creation. Our core idea, personalized geometry-aware score distillation (PGSD), draws inspiration from recent advancements in diffuse models, including personalized modeling for texture information extraction, variational score distillation for detailed appearance synthesis, and explicit geometry guidance with ControlNet. Our integration and several essential modifications substantially improve the texture quality. Experiments on real images spanning different categories show that TextureDreamer can successfully transfer highly realistic, semantic meaningful texture to arbitrary objects, surpassing the visual quality of previous state-of-the-art.
Cora: Correspondence-aware image editing using few step diffusion
Image editing is an important task in computer graphics, vision, and VFX, with recent diffusion-based methods achieving fast and high-quality results. However, edits requiring significant structural changes, such as non-rigid deformations, object modifications, or content generation, remain challenging. Existing few step editing approaches produce artifacts such as irrelevant texture or struggle to preserve key attributes of the source image (e.g., pose). We introduce Cora, a novel editing framework that addresses these limitations by introducing correspondence-aware noise correction and interpolated attention maps. Our method aligns textures and structures between the source and target images through semantic correspondence, enabling accurate texture transfer while generating new content when necessary. Cora offers control over the balance between content generation and preservation. Extensive experiments demonstrate that, quantitatively and qualitatively, Cora excels in maintaining structure, textures, and identity across diverse edits, including pose changes, object addition, and texture refinements. User studies confirm that Cora delivers superior results, outperforming alternatives.
COOCO -- Common Objects Out-of-Context -- Semantic Violation in Scenes: Investigating Multimodal Context in Referential Communication
Natural scenes provide us with rich contexts for object recognition and reference. In particular, knowing what type of scene one is looking at generates expectations about which objects will occur, and what their spatial configuration should be. Do Vision-Language Models (VLMs) learn to rely on scene contexts in a similar way, when generating references to objects? To address this question, we introduce the Common Objects Out-of-Context (COOCO) dataset and test to what extent VLMs rely on scene context to refer to objects under different degrees of scene-object congruency, and different perturbations. Our findings show that models leverage scene context adaptively, depending on both the semantic relatedness between object and scene and the level of noise. In particular, models rely more on context under high target-scene congruence or when objects are degraded. Attention analysis reveals that successful object categorisation involves increased focus on the target in mid-level layers, especially under moderate noise, suggesting that VLMs dynamically balance local and contextual information for reference generation. We make our dataset, code and models available at https://github.com/cs-nlp-uu/scenereg{https://github.com/cs-nlp-uu/scenereg}.
DiLightNet: Fine-grained Lighting Control for Diffusion-based Image Generation
This paper presents a novel method for exerting fine-grained lighting control during text-driven diffusion-based image generation. While existing diffusion models already have the ability to generate images under any lighting condition, without additional guidance these models tend to correlate image content and lighting. Moreover, text prompts lack the necessary expressional power to describe detailed lighting setups. To provide the content creator with fine-grained control over the lighting during image generation, we augment the text-prompt with detailed lighting information in the form of radiance hints, i.e., visualizations of the scene geometry with a homogeneous canonical material under the target lighting. However, the scene geometry needed to produce the radiance hints is unknown. Our key observation is that we only need to guide the diffusion process, hence exact radiance hints are not necessary; we only need to point the diffusion model in the right direction. Based on this observation, we introduce a three stage method for controlling the lighting during image generation. In the first stage, we leverage a standard pretrained diffusion model to generate a provisional image under uncontrolled lighting. Next, in the second stage, we resynthesize and refine the foreground object in the generated image by passing the target lighting to a refined diffusion model, named DiLightNet, using radiance hints computed on a coarse shape of the foreground object inferred from the provisional image. To retain the texture details, we multiply the radiance hints with a neural encoding of the provisional synthesized image before passing it to DiLightNet. Finally, in the third stage, we resynthesize the background to be consistent with the lighting on the foreground object. We demonstrate and validate our lighting controlled diffusion model on a variety of text prompts and lighting conditions.
Decorum: A Language-Based Approach For Style-Conditioned Synthesis of Indoor 3D Scenes
3D indoor scene generation is an important problem for the design of digital and real-world environments. To automate this process, a scene generation model should be able to not only generate plausible scene layouts, but also take into consideration visual features and style preferences. Existing methods for this task exhibit very limited control over these attributes, only allowing text inputs in the form of simple object-level descriptions or pairwise spatial relationships. Our proposed method Decorum enables users to control the scene generation process with natural language by adopting language-based representations at each stage. This enables us to harness recent advancements in Large Language Models (LLMs) to model language-to-language mappings. In addition, we show that using a text-based representation allows us to select furniture for our scenes using a novel object retrieval method based on multimodal LLMs. Evaluations on the benchmark 3D-FRONT dataset show that our methods achieve improvements over existing work in text-conditioned scene synthesis and object retrieval.
Understanding Cross-modal Interactions in V&L Models that Generate Scene Descriptions
Image captioning models tend to describe images in an object-centric way, emphasising visible objects. But image descriptions can also abstract away from objects and describe the type of scene depicted. In this paper, we explore the potential of a state-of-the-art Vision and Language model, VinVL, to caption images at the scene level using (1) a novel dataset which pairs images with both object-centric and scene descriptions. Through (2) an in-depth analysis of the effect of the fine-tuning, we show (3) that a small amount of curated data suffices to generate scene descriptions without losing the capability to identify object-level concepts in the scene; the model acquires a more holistic view of the image compared to when object-centric descriptions are generated. We discuss the parallels between these results and insights from computational and cognitive science research on scene perception.
IntrinsiX: High-Quality PBR Generation using Image Priors
We introduce IntrinsiX, a novel method that generates high-quality intrinsic images from text description. In contrast to existing text-to-image models whose outputs contain baked-in scene lighting, our approach predicts physically-based rendering (PBR) maps. This enables the generated outputs to be used for content creation scenarios in core graphics applications that facilitate re-lighting, editing, and texture generation tasks. In order to train our generator, we exploit strong image priors, and pre-train separate models for each PBR material component (albedo, roughness, metallic, normals). We then align these models with a new cross-intrinsic attention formulation that concatenates key and value features in a consistent fashion. This allows us to exchange information between each output modality and to obtain semantically coherent PBR predictions. To ground each intrinsic component, we propose a rendering loss which provides image-space signals to constrain the model, thus facilitating sharp details also in the output BRDF properties. Our results demonstrate detailed intrinsic generation with strong generalization capabilities that outperforms existing intrinsic image decomposition methods used with generated images by a significant margin. Finally, we show a series of applications, including re-lighting, editing, and text-conditioned room-scale PBR texture generation.
GlyphMastero: A Glyph Encoder for High-Fidelity Scene Text Editing
Scene text editing, a subfield of image editing, requires modifying texts in images while preserving style consistency and visual coherence with the surrounding environment. While diffusion-based methods have shown promise in text generation, they still struggle to produce high-quality results. These methods often generate distorted or unrecognizable characters, particularly when dealing with complex characters like Chinese. In such systems, characters are composed of intricate stroke patterns and spatial relationships that must be precisely maintained. We present GlyphMastero, a specialized glyph encoder designed to guide the latent diffusion model for generating texts with stroke-level precision. Our key insight is that existing methods, despite using pretrained OCR models for feature extraction, fail to capture the hierarchical nature of text structures - from individual strokes to stroke-level interactions to overall character-level structure. To address this, our glyph encoder explicitly models and captures the cross-level interactions between local-level individual characters and global-level text lines through our novel glyph attention module. Meanwhile, our model implements a feature pyramid network to fuse the multi-scale OCR backbone features at the global-level. Through these cross-level and multi-scale fusions, we obtain more detailed glyph-aware guidance, enabling precise control over the scene text generation process. Our method achieves an 18.02\% improvement in sentence accuracy over the state-of-the-art multi-lingual scene text editing baseline, while simultaneously reducing the text-region Fr\'echet inception distance by 53.28\%.
Boosting 3D Object Generation through PBR Materials
Automatic 3D content creation has gained increasing attention recently, due to its potential in various applications such as video games, film industry, and AR/VR. Recent advancements in diffusion models and multimodal models have notably improved the quality and efficiency of 3D object generation given a single RGB image. However, 3D objects generated even by state-of-the-art methods are still unsatisfactory compared to human-created assets. Considering only textures instead of materials makes these methods encounter challenges in photo-realistic rendering, relighting, and flexible appearance editing. And they also suffer from severe misalignment between geometry and high-frequency texture details. In this work, we propose a novel approach to boost the quality of generated 3D objects from the perspective of Physics-Based Rendering (PBR) materials. By analyzing the components of PBR materials, we choose to consider albedo, roughness, metalness, and bump maps. For albedo and bump maps, we leverage Stable Diffusion fine-tuned on synthetic data to extract these values, with novel usages of these fine-tuned models to obtain 3D consistent albedo UV and bump UV for generated objects. In terms of roughness and metalness maps, we adopt a semi-automatic process to provide room for interactive adjustment, which we believe is more practical. Extensive experiments demonstrate that our model is generally beneficial for various state-of-the-art generation methods, significantly boosting the quality and realism of their generated 3D objects, with natural relighting effects and substantially improved geometry.
SeqTex: Generate Mesh Textures in Video Sequence
Training native 3D texture generative models remains a fundamental yet challenging problem, largely due to the limited availability of large-scale, high-quality 3D texture datasets. This scarcity hinders generalization to real-world scenarios. To address this, most existing methods finetune foundation image generative models to exploit their learned visual priors. However, these approaches typically generate only multi-view images and rely on post-processing to produce UV texture maps -- an essential representation in modern graphics pipelines. Such two-stage pipelines often suffer from error accumulation and spatial inconsistencies across the 3D surface. In this paper, we introduce SeqTex, a novel end-to-end framework that leverages the visual knowledge encoded in pretrained video foundation models to directly generate complete UV texture maps. Unlike previous methods that model the distribution of UV textures in isolation, SeqTex reformulates the task as a sequence generation problem, enabling the model to learn the joint distribution of multi-view renderings and UV textures. This design effectively transfers the consistent image-space priors from video foundation models into the UV domain. To further enhance performance, we propose several architectural innovations: a decoupled multi-view and UV branch design, geometry-informed attention to guide cross-domain feature alignment, and adaptive token resolution to preserve fine texture details while maintaining computational efficiency. Together, these components allow SeqTex to fully utilize pretrained video priors and synthesize high-fidelity UV texture maps without the need for post-processing. Extensive experiments show that SeqTex achieves state-of-the-art performance on both image-conditioned and text-conditioned 3D texture generation tasks, with superior 3D consistency, texture-geometry alignment, and real-world generalization.
TopNet: Transformer-based Object Placement Network for Image Compositing
We investigate the problem of automatically placing an object into a background image for image compositing. Given a background image and a segmented object, the goal is to train a model to predict plausible placements (location and scale) of the object for compositing. The quality of the composite image highly depends on the predicted location/scale. Existing works either generate candidate bounding boxes or apply sliding-window search using global representations from background and object images, which fail to model local information in background images. However, local clues in background images are important to determine the compatibility of placing the objects with certain locations/scales. In this paper, we propose to learn the correlation between object features and all local background features with a transformer module so that detailed information can be provided on all possible location/scale configurations. A sparse contrastive loss is further proposed to train our model with sparse supervision. Our new formulation generates a 3D heatmap indicating the plausibility of all location/scale combinations in one network forward pass, which is over 10 times faster than the previous sliding-window method. It also supports interactive search when users provide a pre-defined location or scale. The proposed method can be trained with explicit annotation or in a self-supervised manner using an off-the-shelf inpainting model, and it outperforms state-of-the-art methods significantly. The user study shows that the trained model generalizes well to real-world images with diverse challenging scenes and object categories.
Advancing high-fidelity 3D and Texture Generation with 2.5D latents
Despite the availability of large-scale 3D datasets and advancements in 3D generative models, the complexity and uneven quality of 3D geometry and texture data continue to hinder the performance of 3D generation techniques. In most existing approaches, 3D geometry and texture are generated in separate stages using different models and non-unified representations, frequently leading to unsatisfactory coherence between geometry and texture. To address these challenges, we propose a novel framework for joint generation of 3D geometry and texture. Specifically, we focus in generate a versatile 2.5D representations that can be seamlessly transformed between 2D and 3D. Our approach begins by integrating multiview RGB, normal, and coordinate images into a unified representation, termed as 2.5D latents. Next, we adapt pre-trained 2D foundation models for high-fidelity 2.5D generation, utilizing both text and image conditions. Finally, we introduce a lightweight 2.5D-to-3D refiner-decoder framework that efficiently generates detailed 3D representations from 2.5D images. Extensive experiments demonstrate that our model not only excels in generating high-quality 3D objects with coherent structure and color from text and image inputs but also significantly outperforms existing methods in geometry-conditioned texture generation.
3D Paintbrush: Local Stylization of 3D Shapes with Cascaded Score Distillation
In this work we develop 3D Paintbrush, a technique for automatically texturing local semantic regions on meshes via text descriptions. Our method is designed to operate directly on meshes, producing texture maps which seamlessly integrate into standard graphics pipelines. We opt to simultaneously produce a localization map (to specify the edit region) and a texture map which conforms to it. This synergistic approach improves the quality of both the localization and the stylization. To enhance the details and resolution of the textured area, we leverage multiple stages of a cascaded diffusion model to supervise our local editing technique with generative priors learned from images at different resolutions. Our technique, referred to as Cascaded Score Distillation (CSD), simultaneously distills scores at multiple resolutions in a cascaded fashion, enabling control over both the granularity and global understanding of the supervision. We demonstrate the effectiveness of 3D Paintbrush to locally texture a variety of shapes within different semantic regions. Project page: https://threedle.github.io/3d-paintbrush
Sketch-Guided Scene Image Generation
Text-to-image models are showcasing the impressive ability to create high-quality and diverse generative images. Nevertheless, the transition from freehand sketches to complex scene images remains challenging using diffusion models. In this study, we propose a novel sketch-guided scene image generation framework, decomposing the task of scene image scene generation from sketch inputs into object-level cross-domain generation and scene-level image construction. We employ pre-trained diffusion models to convert each single object drawing into an image of the object, inferring additional details while maintaining the sparse sketch structure. In order to maintain the conceptual fidelity of the foreground during scene generation, we invert the visual features of object images into identity embeddings for scene generation. In scene-level image construction, we generate the latent representation of the scene image using the separated background prompts, and then blend the generated foreground objects according to the layout of the sketch input. To ensure the foreground objects' details remain unchanged while naturally composing the scene image, we infer the scene image on the blended latent representation using a global prompt that includes the trained identity tokens. Through qualitative and quantitative experiments, we demonstrate the ability of the proposed approach to generate scene images from hand-drawn sketches surpasses the state-of-the-art approaches.
Text2Tex: Text-driven Texture Synthesis via Diffusion Models
We present Text2Tex, a novel method for generating high-quality textures for 3D meshes from the given text prompts. Our method incorporates inpainting into a pre-trained depth-aware image diffusion model to progressively synthesize high resolution partial textures from multiple viewpoints. To avoid accumulating inconsistent and stretched artifacts across views, we dynamically segment the rendered view into a generation mask, which represents the generation status of each visible texel. This partitioned view representation guides the depth-aware inpainting model to generate and update partial textures for the corresponding regions. Furthermore, we propose an automatic view sequence generation scheme to determine the next best view for updating the partial texture. Extensive experiments demonstrate that our method significantly outperforms the existing text-driven approaches and GAN-based methods.
Photorealistic Object Insertion with Diffusion-Guided Inverse Rendering
The correct insertion of virtual objects in images of real-world scenes requires a deep understanding of the scene's lighting, geometry and materials, as well as the image formation process. While recent large-scale diffusion models have shown strong generative and inpainting capabilities, we find that current models do not sufficiently "understand" the scene shown in a single picture to generate consistent lighting effects (shadows, bright reflections, etc.) while preserving the identity and details of the composited object. We propose using a personalized large diffusion model as guidance to a physically based inverse rendering process. Our method recovers scene lighting and tone-mapping parameters, allowing the photorealistic composition of arbitrary virtual objects in single frames or videos of indoor or outdoor scenes. Our physically based pipeline further enables automatic materials and tone-mapping refinement.
Scene relighting with illumination estimation in the latent space on an encoder-decoder scheme
The image relighting task of transferring illumination conditions between two images offers an interesting and difficult challenge with potential applications in photography, cinematography and computer graphics. In this report we present methods that we tried to achieve that goal. Our models are trained on a rendered dataset of artificial locations with varied scene content, light source location and color temperature. With this dataset, we used a network with illumination estimation component aiming to infer and replace light conditions in the latent space representation of the concerned scenes.
Feature Splatting: Language-Driven Physics-Based Scene Synthesis and Editing
Scene representations using 3D Gaussian primitives have produced excellent results in modeling the appearance of static and dynamic 3D scenes. Many graphics applications, however, demand the ability to manipulate both the appearance and the physical properties of objects. We introduce Feature Splatting, an approach that unifies physics-based dynamic scene synthesis with rich semantics from vision language foundation models that are grounded by natural language. Our first contribution is a way to distill high-quality, object-centric vision-language features into 3D Gaussians, that enables semi-automatic scene decomposition using text queries. Our second contribution is a way to synthesize physics-based dynamics from an otherwise static scene using a particle-based simulator, in which material properties are assigned automatically via text queries. We ablate key techniques used in this pipeline, to illustrate the challenge and opportunities in using feature-carrying 3D Gaussians as a unified format for appearance, geometry, material properties and semantics grounded on natural language. Project website: https://feature-splatting.github.io/
Jointly Generating Multi-view Consistent PBR Textures using Collaborative Control
Multi-view consistency remains a challenge for image diffusion models. Even within the Text-to-Texture problem, where perfect geometric correspondences are known a priori, many methods fail to yield aligned predictions across views, necessitating non-trivial fusion methods to incorporate the results onto the original mesh. We explore this issue for a Collaborative Control workflow specifically in PBR Text-to-Texture. Collaborative Control directly models PBR image probability distributions, including normal bump maps; to our knowledge, the only diffusion model to directly output full PBR stacks. We discuss the design decisions involved in making this model multi-view consistent, and demonstrate the effectiveness of our approach in ablation studies, as well as practical applications.
TEXGen: a Generative Diffusion Model for Mesh Textures
While high-quality texture maps are essential for realistic 3D asset rendering, few studies have explored learning directly in the texture space, especially on large-scale datasets. In this work, we depart from the conventional approach of relying on pre-trained 2D diffusion models for test-time optimization of 3D textures. Instead, we focus on the fundamental problem of learning in the UV texture space itself. For the first time, we train a large diffusion model capable of directly generating high-resolution texture maps in a feed-forward manner. To facilitate efficient learning in high-resolution UV spaces, we propose a scalable network architecture that interleaves convolutions on UV maps with attention layers on point clouds. Leveraging this architectural design, we train a 700 million parameter diffusion model that can generate UV texture maps guided by text prompts and single-view images. Once trained, our model naturally supports various extended applications, including text-guided texture inpainting, sparse-view texture completion, and text-driven texture synthesis. Project page is at http://cvmi-lab.github.io/TEXGen/.
Semantic-Aware Scene Recognition
Scene recognition is currently one of the top-challenging research fields in computer vision. This may be due to the ambiguity between classes: images of several scene classes may share similar objects, which causes confusion among them. The problem is aggravated when images of a particular scene class are notably different. Convolutional Neural Networks (CNNs) have significantly boosted performance in scene recognition, albeit it is still far below from other recognition tasks (e.g., object or image recognition). In this paper, we describe a novel approach for scene recognition based on an end-to-end multi-modal CNN that combines image and context information by means of an attention module. Context information, in the shape of semantic segmentation, is used to gate features extracted from the RGB image by leveraging on information encoded in the semantic representation: the set of scene objects and stuff, and their relative locations. This gating process reinforces the learning of indicative scene content and enhances scene disambiguation by refocusing the receptive fields of the CNN towards them. Experimental results on four publicly available datasets show that the proposed approach outperforms every other state-of-the-art method while significantly reducing the number of network parameters. All the code and data used along this paper is available at https://github.com/vpulab/Semantic-Aware-Scene-Recognition
3DTopia: Large Text-to-3D Generation Model with Hybrid Diffusion Priors
We present a two-stage text-to-3D generation system, namely 3DTopia, which generates high-quality general 3D assets within 5 minutes using hybrid diffusion priors. The first stage samples from a 3D diffusion prior directly learned from 3D data. Specifically, it is powered by a text-conditioned tri-plane latent diffusion model, which quickly generates coarse 3D samples for fast prototyping. The second stage utilizes 2D diffusion priors to further refine the texture of coarse 3D models from the first stage. The refinement consists of both latent and pixel space optimization for high-quality texture generation. To facilitate the training of the proposed system, we clean and caption the largest open-source 3D dataset, Objaverse, by combining the power of vision language models and large language models. Experiment results are reported qualitatively and quantitatively to show the performance of the proposed system. Our codes and models are available at https://github.com/3DTopia/3DTopia
Specifying Object Attributes and Relations in Interactive Scene Generation
We introduce a method for the generation of images from an input scene graph. The method separates between a layout embedding and an appearance embedding. The dual embedding leads to generated images that better match the scene graph, have higher visual quality, and support more complex scene graphs. In addition, the embedding scheme supports multiple and diverse output images per scene graph, which can be further controlled by the user. We demonstrate two modes of per-object control: (i) importing elements from other images, and (ii) navigation in the object space, by selecting an appearance archetype. Our code is publicly available at https://www.github.com/ashual/scene_generation
Make-It-Vivid: Dressing Your Animatable Biped Cartoon Characters from Text
Creating and animating 3D biped cartoon characters is crucial and valuable in various applications. Compared with geometry, the diverse texture design plays an important role in making 3D biped cartoon characters vivid and charming. Therefore, we focus on automatic texture design for cartoon characters based on input instructions. This is challenging for domain-specific requirements and a lack of high-quality data. To address this challenge, we propose Make-It-Vivid, the first attempt to enable high-quality texture generation from text in UV space. We prepare a detailed text-texture paired data for 3D characters by using vision-question-answering agents. Then we customize a pretrained text-to-image model to generate texture map with template structure while preserving the natural 2D image knowledge. Furthermore, to enhance fine-grained details, we propose a novel adversarial learning scheme to shorten the domain gap between original dataset and realistic texture domain. Extensive experiments show that our approach outperforms current texture generation methods, resulting in efficient character texturing and faithful generation with prompts. Besides, we showcase various applications such as out of domain generation and texture stylization. We also provide an efficient generation system for automatic text-guided textured character generation and animation.
Enhancing Photorealism Enhancement
We present an approach to enhancing the realism of synthetic images. The images are enhanced by a convolutional network that leverages intermediate representations produced by conventional rendering pipelines. The network is trained via a novel adversarial objective, which provides strong supervision at multiple perceptual levels. We analyze scene layout distributions in commonly used datasets and find that they differ in important ways. We hypothesize that this is one of the causes of strong artifacts that can be observed in the results of many prior methods. To address this we propose a new strategy for sampling image patches during training. We also introduce multiple architectural improvements in the deep network modules used for photorealism enhancement. We confirm the benefits of our contributions in controlled experiments and report substantial gains in stability and realism in comparison to recent image-to-image translation methods and a variety of other baselines.
Knowledge Mining with Scene Text for Fine-Grained Recognition
Recently, the semantics of scene text has been proven to be essential in fine-grained image classification. However, the existing methods mainly exploit the literal meaning of scene text for fine-grained recognition, which might be irrelevant when it is not significantly related to objects/scenes. We propose an end-to-end trainable network that mines implicit contextual knowledge behind scene text image and enhance the semantics and correlation to fine-tune the image representation. Unlike the existing methods, our model integrates three modalities: visual feature extraction, text semantics extraction, and correlating background knowledge to fine-grained image classification. Specifically, we employ KnowBert to retrieve relevant knowledge for semantic representation and combine it with image features for fine-grained classification. Experiments on two benchmark datasets, Con-Text, and Drink Bottle, show that our method outperforms the state-of-the-art by 3.72\% mAP and 5.39\% mAP, respectively. To further validate the effectiveness of the proposed method, we create a new dataset on crowd activity recognition for the evaluation. The source code and new dataset of this work are available at https://github.com/lanfeng4659/KnowledgeMiningWithSceneText.
Texture Generation on 3D Meshes with Point-UV Diffusion
In this work, we focus on synthesizing high-quality textures on 3D meshes. We present Point-UV diffusion, a coarse-to-fine pipeline that marries the denoising diffusion model with UV mapping to generate 3D consistent and high-quality texture images in UV space. We start with introducing a point diffusion model to synthesize low-frequency texture components with our tailored style guidance to tackle the biased color distribution. The derived coarse texture offers global consistency and serves as a condition for the subsequent UV diffusion stage, aiding in regularizing the model to generate a 3D consistent UV texture image. Then, a UV diffusion model with hybrid conditions is developed to enhance the texture fidelity in the 2D UV space. Our method can process meshes of any genus, generating diversified, geometry-compatible, and high-fidelity textures. Code is available at https://cvmi-lab.github.io/Point-UV-Diffusion
ITEM3D: Illumination-Aware Directional Texture Editing for 3D Models
Texture editing is a crucial task in 3D modeling that allows users to automatically manipulate the surface materials of 3D models. However, the inherent complexity of 3D models and the ambiguous text description lead to the challenge in this task. To address this challenge, we propose ITEM3D, an illumination-aware model for automatic 3D object editing according to the text prompts. Leveraging the diffusion models and the differentiable rendering, ITEM3D takes the rendered images as the bridge of text and 3D representation, and further optimizes the disentangled texture and environment map. Previous methods adopt the absolute editing direction namely score distillation sampling (SDS) as the optimization objective, which unfortunately results in the noisy appearance and text inconsistency. To solve the problem caused by the ambiguous text, we introduce a relative editing direction, an optimization objective defined by the noise difference between the source and target texts, to release the semantic ambiguity between the texts and images. Additionally, we gradually adjust the direction during optimization to further address the unexpected deviation in the texture domain. Qualitative and quantitative experiments show that our ITEM3D outperforms the state-of-the-art methods on various 3D objects. We also perform text-guided relighting to show explicit control over lighting.
PixelHacker: Image Inpainting with Structural and Semantic Consistency
Image inpainting is a fundamental research area between image editing and image generation. Recent state-of-the-art (SOTA) methods have explored novel attention mechanisms, lightweight architectures, and context-aware modeling, demonstrating impressive performance. However, they often struggle with complex structure (e.g., texture, shape, spatial relations) and semantics (e.g., color consistency, object restoration, and logical correctness), leading to artifacts and inappropriate generation. To address this challenge, we design a simple yet effective inpainting paradigm called latent categories guidance, and further propose a diffusion-based model named PixelHacker. Specifically, we first construct a large dataset containing 14 million image-mask pairs by annotating foreground and background (potential 116 and 21 categories, respectively). Then, we encode potential foreground and background representations separately through two fixed-size embeddings, and intermittently inject these features into the denoising process via linear attention. Finally, by pre-training on our dataset and fine-tuning on open-source benchmarks, we obtain PixelHacker. Extensive experiments show that PixelHacker comprehensively outperforms the SOTA on a wide range of datasets (Places2, CelebA-HQ, and FFHQ) and exhibits remarkable consistency in both structure and semantics. Project page at https://hustvl.github.io/PixelHacker.
TextMastero: Mastering High-Quality Scene Text Editing in Diverse Languages and Styles
Scene text editing aims to modify texts on images while maintaining the style of newly generated text similar to the original. Given an image, a target area, and target text, the task produces an output image with the target text in the selected area, replacing the original. This task has been studied extensively, with initial success using Generative Adversarial Networks (GANs) to balance text fidelity and style similarity. However, GAN-based methods struggled with complex backgrounds or text styles. Recent works leverage diffusion models, showing improved results, yet still face challenges, especially with non-Latin languages like CJK characters (Chinese, Japanese, Korean) that have complex glyphs, often producing inaccurate or unrecognizable characters. To address these issues, we present TextMastero - a carefully designed multilingual scene text editing architecture based on latent diffusion models (LDMs). TextMastero introduces two key modules: a glyph conditioning module for fine-grained content control in generating accurate texts, and a latent guidance module for providing comprehensive style information to ensure similarity before and after editing. Both qualitative and quantitative experiments demonstrate that our method surpasses all known existing works in text fidelity and style similarity.
InTeX: Interactive Text-to-texture Synthesis via Unified Depth-aware Inpainting
Text-to-texture synthesis has become a new frontier in 3D content creation thanks to the recent advances in text-to-image models. Existing methods primarily adopt a combination of pretrained depth-aware diffusion and inpainting models, yet they exhibit shortcomings such as 3D inconsistency and limited controllability. To address these challenges, we introduce InteX, a novel framework for interactive text-to-texture synthesis. 1) InteX includes a user-friendly interface that facilitates interaction and control throughout the synthesis process, enabling region-specific repainting and precise texture editing. 2) Additionally, we develop a unified depth-aware inpainting model that integrates depth information with inpainting cues, effectively mitigating 3D inconsistencies and improving generation speed. Through extensive experiments, our framework has proven to be both practical and effective in text-to-texture synthesis, paving the way for high-quality 3D content creation.
Alchemist: Parametric Control of Material Properties with Diffusion Models
We propose a method to control material attributes of objects like roughness, metallic, albedo, and transparency in real images. Our method capitalizes on the generative prior of text-to-image models known for photorealism, employing a scalar value and instructions to alter low-level material properties. Addressing the lack of datasets with controlled material attributes, we generated an object-centric synthetic dataset with physically-based materials. Fine-tuning a modified pre-trained text-to-image model on this synthetic dataset enables us to edit material properties in real-world images while preserving all other attributes. We show the potential application of our model to material edited NeRFs.
Class-Aware Mask-Guided Feature Refinement for Scene Text Recognition
Scene text recognition is a rapidly developing field that faces numerous challenges due to the complexity and diversity of scene text, including complex backgrounds, diverse fonts, flexible arrangements, and accidental occlusions. In this paper, we propose a novel approach called Class-Aware Mask-guided feature refinement (CAM) to address these challenges. Our approach introduces canonical class-aware glyph masks generated from a standard font to effectively suppress background and text style noise, thereby enhancing feature discrimination. Additionally, we design a feature alignment and fusion module to incorporate the canonical mask guidance for further feature refinement for text recognition. By enhancing the alignment between the canonical mask feature and the text feature, the module ensures more effective fusion, ultimately leading to improved recognition performance. We first evaluate CAM on six standard text recognition benchmarks to demonstrate its effectiveness. Furthermore, CAM exhibits superiority over the state-of-the-art method by an average performance gain of 4.1% across six more challenging datasets, despite utilizing a smaller model size. Our study highlights the importance of incorporating canonical mask guidance and aligned feature refinement techniques for robust scene text recognition. The code is available at https://github.com/MelosY/CAM.
TexDreamer: Towards Zero-Shot High-Fidelity 3D Human Texture Generation
Texturing 3D humans with semantic UV maps remains a challenge due to the difficulty of acquiring reasonably unfolded UV. Despite recent text-to-3D advancements in supervising multi-view renderings using large text-to-image (T2I) models, issues persist with generation speed, text consistency, and texture quality, resulting in data scarcity among existing datasets. We present TexDreamer, the first zero-shot multimodal high-fidelity 3D human texture generation model. Utilizing an efficient texture adaptation finetuning strategy, we adapt large T2I model to a semantic UV structure while preserving its original generalization capability. Leveraging a novel feature translator module, the trained model is capable of generating high-fidelity 3D human textures from either text or image within seconds. Furthermore, we introduce ArTicuLated humAn textureS (ATLAS), the largest high-resolution (1024 X 1024) 3D human texture dataset which contains 50k high-fidelity textures with text descriptions.
Generating Compositional Scenes via Text-to-image RGBA Instance Generation
Text-to-image diffusion generative models can generate high quality images at the cost of tedious prompt engineering. Controllability can be improved by introducing layout conditioning, however existing methods lack layout editing ability and fine-grained control over object attributes. The concept of multi-layer generation holds great potential to address these limitations, however generating image instances concurrently to scene composition limits control over fine-grained object attributes, relative positioning in 3D space and scene manipulation abilities. In this work, we propose a novel multi-stage generation paradigm that is designed for fine-grained control, flexibility and interactivity. To ensure control over instance attributes, we devise a novel training paradigm to adapt a diffusion model to generate isolated scene components as RGBA images with transparency information. To build complex images, we employ these pre-generated instances and introduce a multi-layer composite generation process that smoothly assembles components in realistic scenes. Our experiments show that our RGBA diffusion model is capable of generating diverse and high quality instances with precise control over object attributes. Through multi-layer composition, we demonstrate that our approach allows to build and manipulate images from highly complex prompts with fine-grained control over object appearance and location, granting a higher degree of control than competing methods.
Texture Learning Domain Randomization for Domain Generalized Segmentation
Deep Neural Networks (DNNs)-based semantic segmentation models trained on a source domain often struggle to generalize to unseen target domains, i.e., a domain gap problem. Texture often contributes to the domain gap, making DNNs vulnerable to domain shift because they are prone to be texture-biased. Existing Domain Generalized Semantic Segmentation (DGSS) methods have alleviated the domain gap problem by guiding models to prioritize shape over texture. On the other hand, shape and texture are two prominent and complementary cues in semantic segmentation. This paper argues that leveraging texture is crucial for improving performance in DGSS. Specifically, we propose a novel framework, coined Texture Learning Domain Randomization (TLDR). TLDR includes two novel losses to effectively enhance texture learning in DGSS: (1) a texture regularization loss to prevent overfitting to source domain textures by using texture features from an ImageNet pre-trained model and (2) a texture generalization loss that utilizes random style images to learn diverse texture representations in a self-supervised manner. Extensive experimental results demonstrate the superiority of the proposed TLDR; e.g., TLDR achieves 46.5 mIoU on GTA-to-Cityscapes using ResNet-50, which improves the prior state-of-the-art method by 1.9 mIoU. The source code is available at https://github.com/ssssshwan/TLDR.
Scene Graph to Image Generation with Contextualized Object Layout Refinement
Generating images from scene graphs is a challenging task that attracted substantial interest recently. Prior works have approached this task by generating an intermediate layout description of the target image. However, the representation of each object in the layout was generated independently, which resulted in high overlap, low coverage, and an overall blurry layout. We propose a novel method that alleviates these issues by generating the entire layout description gradually to improve inter-object dependency. We empirically show on the COCO-STUFF dataset that our approach improves the quality of both the intermediate layout and the final image. Our approach improves the layout coverage by almost 20 points and drops object overlap to negligible amounts.
MD-ProjTex: Texturing 3D Shapes with Multi-Diffusion Projection
We introduce MD-ProjTex, a method for fast and consistent text-guided texture generation for 3D shapes using pretrained text-to-image diffusion models. At the core of our approach is a multi-view consistency mechanism in UV space, which ensures coherent textures across different viewpoints. Specifically, MD-ProjTex fuses noise predictions from multiple views at each diffusion step and jointly updates the per-view denoising directions to maintain 3D consistency. In contrast to existing state-of-the-art methods that rely on optimization or sequential view synthesis, MD-ProjTex is computationally more efficient and achieves better quantitative and qualitative results.
MVPaint: Synchronized Multi-View Diffusion for Painting Anything 3D
Texturing is a crucial step in the 3D asset production workflow, which enhances the visual appeal and diversity of 3D assets. Despite recent advancements in Text-to-Texture (T2T) generation, existing methods often yield subpar results, primarily due to local discontinuities, inconsistencies across multiple views, and their heavy dependence on UV unwrapping outcomes. To tackle these challenges, we propose a novel generation-refinement 3D texturing framework called MVPaint, which can generate high-resolution, seamless textures while emphasizing multi-view consistency. MVPaint mainly consists of three key modules. 1) Synchronized Multi-view Generation (SMG). Given a 3D mesh model, MVPaint first simultaneously generates multi-view images by employing an SMG model, which leads to coarse texturing results with unpainted parts due to missing observations. 2) Spatial-aware 3D Inpainting (S3I). To ensure complete 3D texturing, we introduce the S3I method, specifically designed to effectively texture previously unobserved areas. 3) UV Refinement (UVR). Furthermore, MVPaint employs a UVR module to improve the texture quality in the UV space, which first performs a UV-space Super-Resolution, followed by a Spatial-aware Seam-Smoothing algorithm for revising spatial texturing discontinuities caused by UV unwrapping. Moreover, we establish two T2T evaluation benchmarks: the Objaverse T2T benchmark and the GSO T2T benchmark, based on selected high-quality 3D meshes from the Objaverse dataset and the entire GSO dataset, respectively. Extensive experimental results demonstrate that MVPaint surpasses existing state-of-the-art methods. Notably, MVPaint could generate high-fidelity textures with minimal Janus issues and highly enhanced cross-view consistency.
TexFusion: Synthesizing 3D Textures with Text-Guided Image Diffusion Models
We present TexFusion (Texture Diffusion), a new method to synthesize textures for given 3D geometries, using large-scale text-guided image diffusion models. In contrast to recent works that leverage 2D text-to-image diffusion models to distill 3D objects using a slow and fragile optimization process, TexFusion introduces a new 3D-consistent generation technique specifically designed for texture synthesis that employs regular diffusion model sampling on different 2D rendered views. Specifically, we leverage latent diffusion models, apply the diffusion model's denoiser on a set of 2D renders of the 3D object, and aggregate the different denoising predictions on a shared latent texture map. Final output RGB textures are produced by optimizing an intermediate neural color field on the decodings of 2D renders of the latent texture. We thoroughly validate TexFusion and show that we can efficiently generate diverse, high quality and globally coherent textures. We achieve state-of-the-art text-guided texture synthesis performance using only image diffusion models, while avoiding the pitfalls of previous distillation-based methods. The text-conditioning offers detailed control and we also do not rely on any ground truth 3D textures for training. This makes our method versatile and applicable to a broad range of geometry and texture types. We hope that TexFusion will advance AI-based texturing of 3D assets for applications in virtual reality, game design, simulation, and more.
FlexPainter: Flexible and Multi-View Consistent Texture Generation
Texture map production is an important part of 3D modeling and determines the rendering quality. Recently, diffusion-based methods have opened a new way for texture generation. However, restricted control flexibility and limited prompt modalities may prevent creators from producing desired results. Furthermore, inconsistencies between generated multi-view images often lead to poor texture generation quality. To address these issues, we introduce FlexPainter, a novel texture generation pipeline that enables flexible multi-modal conditional guidance and achieves highly consistent texture generation. A shared conditional embedding space is constructed to perform flexible aggregation between different input modalities. Utilizing such embedding space, we present an image-based CFG method to decompose structural and style information, achieving reference image-based stylization. Leveraging the 3D knowledge within the image diffusion prior, we first generate multi-view images simultaneously using a grid representation to enhance global understanding. Meanwhile, we propose a view synchronization and adaptive weighting module during diffusion sampling to further ensure local consistency. Finally, a 3D-aware texture completion model combined with a texture enhancement model is used to generate seamless, high-resolution texture maps. Comprehensive experiments demonstrate that our framework significantly outperforms state-of-the-art methods in both flexibility and generation quality.
ICE-G: Image Conditional Editing of 3D Gaussian Splats
Recently many techniques have emerged to create high quality 3D assets and scenes. When it comes to editing of these objects, however, existing approaches are either slow, compromise on quality, or do not provide enough customization. We introduce a novel approach to quickly edit a 3D model from a single reference view. Our technique first segments the edit image, and then matches semantically corresponding regions across chosen segmented dataset views using DINO features. A color or texture change from a particular region of the edit image can then be applied to other views automatically in a semantically sensible manner. These edited views act as an updated dataset to further train and re-style the 3D scene. The end-result is therefore an edited 3D model. Our framework enables a wide variety of editing tasks such as manual local edits, correspondence based style transfer from any example image, and a combination of different styles from multiple example images. We use Gaussian Splats as our primary 3D representation due to their speed and ease of local editing, but our technique works for other methods such as NeRFs as well. We show through multiple examples that our method produces higher quality results while offering fine-grained control of editing. Project page: ice-gaussian.github.io
Window detection in aerial texture images of the Berlin 3D CityGML Model
This article explores the usage of the state-of-art neural network Mask R-CNN to be used for window detection of texture files from the CityGML model of Berlin. As texture files are very irregular in terms of size, exposure settings and orientation, we use several parameter optimisation methods to improve the precision. Those textures are cropped from aerial photos, which implies that the angle of the facade, the exposure as well as contrast are calibrated towards the mean and not towards the single facade. The analysis of a single texture image with the human eye itself is challenging: A combination of window and facade estimation and perspective analysis is necessary in order to determine the facades and windows. We train and detect bounding boxes and masks from two data sets with image size 128 and 256. We explore various configuration optimisation methods and the relation of the Region Proposal Network, detected ROIs and the mask output. Our final results shows that the we can improve the average precision scores for both data set sizes, yet the initial AP score varies and leads to different resulting scores.
TextMesh: Generation of Realistic 3D Meshes From Text Prompts
The ability to generate highly realistic 2D images from mere text prompts has recently made huge progress in terms of speed and quality, thanks to the advent of image diffusion models. Naturally, the question arises if this can be also achieved in the generation of 3D content from such text prompts. To this end, a new line of methods recently emerged trying to harness diffusion models, trained on 2D images, for supervision of 3D model generation using view dependent prompts. While achieving impressive results, these methods, however, have two major drawbacks. First, rather than commonly used 3D meshes, they instead generate neural radiance fields (NeRFs), making them impractical for most real applications. Second, these approaches tend to produce over-saturated models, giving the output a cartoonish looking effect. Therefore, in this work we propose a novel method for generation of highly realistic-looking 3D meshes. To this end, we extend NeRF to employ an SDF backbone, leading to improved 3D mesh extraction. In addition, we propose a novel way to finetune the mesh texture, removing the effect of high saturation and improving the details of the output 3D mesh.
TextCtrl: Diffusion-based Scene Text Editing with Prior Guidance Control
Centred on content modification and style preservation, Scene Text Editing (STE) remains a challenging task despite considerable progress in text-to-image synthesis and text-driven image manipulation recently. GAN-based STE methods generally encounter a common issue of model generalization, while Diffusion-based STE methods suffer from undesired style deviations. To address these problems, we propose TextCtrl, a diffusion-based method that edits text with prior guidance control. Our method consists of two key components: (i) By constructing fine-grained text style disentanglement and robust text glyph structure representation, TextCtrl explicitly incorporates Style-Structure guidance into model design and network training, significantly improving text style consistency and rendering accuracy. (ii) To further leverage the style prior, a Glyph-adaptive Mutual Self-attention mechanism is proposed which deconstructs the implicit fine-grained features of the source image to enhance style consistency and vision quality during inference. Furthermore, to fill the vacancy of the real-world STE evaluation benchmark, we create the first real-world image-pair dataset termed ScenePair for fair comparisons. Experiments demonstrate the effectiveness of TextCtrl compared with previous methods concerning both style fidelity and text accuracy.
GeoSynth: Contextually-Aware High-Resolution Satellite Image Synthesis
We present GeoSynth, a model for synthesizing satellite images with global style and image-driven layout control. The global style control is via textual prompts or geographic location. These enable the specification of scene semantics or regional appearance respectively, and can be used together. We train our model on a large dataset of paired satellite imagery, with automatically generated captions, and OpenStreetMap data. We evaluate various combinations of control inputs, including different types of layout controls. Results demonstrate that our model can generate diverse, high-quality images and exhibits excellent zero-shot generalization. The code and model checkpoints are available at https://github.com/mvrl/GeoSynth.
CONFORM: Contrast is All You Need For High-Fidelity Text-to-Image Diffusion Models
Images produced by text-to-image diffusion models might not always faithfully represent the semantic intent of the provided text prompt, where the model might overlook or entirely fail to produce certain objects. Existing solutions often require customly tailored functions for each of these problems, leading to sub-optimal results, especially for complex prompts. Our work introduces a novel perspective by tackling this challenge in a contrastive context. Our approach intuitively promotes the segregation of objects in attention maps while also maintaining that pairs of related attributes are kept close to each other. We conduct extensive experiments across a wide variety of scenarios, each involving unique combinations of objects, attributes, and scenes. These experiments effectively showcase the versatility, efficiency, and flexibility of our method in working with both latent and pixel-based diffusion models, including Stable Diffusion and Imagen. Moreover, we publicly share our source code to facilitate further research.
Compositional Scene Representation Learning via Reconstruction: A Survey
Visual scenes are composed of visual concepts and have the property of combinatorial explosion. An important reason for humans to efficiently learn from diverse visual scenes is the ability of compositional perception, and it is desirable for artificial intelligence to have similar abilities. Compositional scene representation learning is a task that enables such abilities. In recent years, various methods have been proposed to apply deep neural networks, which have been proven to be advantageous in representation learning, to learn compositional scene representations via reconstruction, advancing this research direction into the deep learning era. Learning via reconstruction is advantageous because it may utilize massive unlabeled data and avoid costly and laborious data annotation. In this survey, we first outline the current progress on reconstruction-based compositional scene representation learning with deep neural networks, including development history and categorizations of existing methods from the perspectives of the modeling of visual scenes and the inference of scene representations; then provide benchmarks, including an open source toolbox to reproduce the benchmark experiments, of representative methods that consider the most extensively studied problem setting and form the foundation for other methods; and finally discuss the limitations of existing methods and future directions of this research topic.
Generative Modelling of BRDF Textures from Flash Images
We learn a latent space for easy capture, consistent interpolation, and efficient reproduction of visual material appearance. When users provide a photo of a stationary natural material captured under flashlight illumination, first it is converted into a latent material code. Then, in the second step, conditioned on the material code, our method produces an infinite and diverse spatial field of BRDF model parameters (diffuse albedo, normals, roughness, specular albedo) that subsequently allows rendering in complex scenes and illuminations, matching the appearance of the input photograph. Technically, we jointly embed all flash images into a latent space using a convolutional encoder, and -- conditioned on these latent codes -- convert random spatial fields into fields of BRDF parameters using a convolutional neural network (CNN). We condition these BRDF parameters to match the visual characteristics (statistics and spectra of visual features) of the input under matching light. A user study compares our approach favorably to previous work, even those with access to BRDF supervision.
MatSwap: Light-aware material transfers in images
We present MatSwap, a method to transfer materials to designated surfaces in an image photorealistically. Such a task is non-trivial due to the large entanglement of material appearance, geometry, and lighting in a photograph. In the literature, material editing methods typically rely on either cumbersome text engineering or extensive manual annotations requiring artist knowledge and 3D scene properties that are impractical to obtain. In contrast, we propose to directly learn the relationship between the input material -- as observed on a flat surface -- and its appearance within the scene, without the need for explicit UV mapping. To achieve this, we rely on a custom light- and geometry-aware diffusion model. We fine-tune a large-scale pre-trained text-to-image model for material transfer using our synthetic dataset, preserving its strong priors to ensure effective generalization to real images. As a result, our method seamlessly integrates a desired material into the target location in the photograph while retaining the identity of the scene. We evaluate our method on synthetic and real images and show that it compares favorably to recent work both qualitatively and quantitatively. We will release our code and data upon publication.
Lexicon3D: Probing Visual Foundation Models for Complex 3D Scene Understanding
Complex 3D scene understanding has gained increasing attention, with scene encoding strategies playing a crucial role in this success. However, the optimal scene encoding strategies for various scenarios remain unclear, particularly compared to their image-based counterparts. To address this issue, we present a comprehensive study that probes various visual encoding models for 3D scene understanding, identifying the strengths and limitations of each model across different scenarios. Our evaluation spans seven vision foundation encoders, including image-based, video-based, and 3D foundation models. We evaluate these models in four tasks: Vision-Language Scene Reasoning, Visual Grounding, Segmentation, and Registration, each focusing on different aspects of scene understanding. Our evaluations yield key findings: DINOv2 demonstrates superior performance, video models excel in object-level tasks, diffusion models benefit geometric tasks, and language-pretrained models show unexpected limitations in language-related tasks. These insights challenge some conventional understandings, provide novel perspectives on leveraging visual foundation models, and highlight the need for more flexible encoder selection in future vision-language and scene-understanding tasks.
Patch-based 3D Natural Scene Generation from a Single Example
We target a 3D generative model for general natural scenes that are typically unique and intricate. Lacking the necessary volumes of training data, along with the difficulties of having ad hoc designs in presence of varying scene characteristics, renders existing setups intractable. Inspired by classical patch-based image models, we advocate for synthesizing 3D scenes at the patch level, given a single example. At the core of this work lies important algorithmic designs w.r.t the scene representation and generative patch nearest-neighbor module, that address unique challenges arising from lifting classical 2D patch-based framework to 3D generation. These design choices, on a collective level, contribute to a robust, effective, and efficient model that can generate high-quality general natural scenes with both realistic geometric structure and visual appearance, in large quantities and varieties, as demonstrated upon a variety of exemplar scenes.
One-shot recognition of any material anywhere using contrastive learning with physics-based rendering
Visual recognition of materials and their states is essential for understanding most aspects of the world, from determining whether food is cooked, metal is rusted, or a chemical reaction has occurred. However, current image recognition methods are limited to specific classes and properties and can't handle the vast number of material states in the world. To address this, we present MatSim: the first dataset and benchmark for computer vision-based recognition of similarities and transitions between materials and textures, focusing on identifying any material under any conditions using one or a few examples. The dataset contains synthetic and natural images. The synthetic images were rendered using giant collections of textures, objects, and environments generated by computer graphics artists. We use mixtures and gradual transitions between materials to allow the system to learn cases with smooth transitions between states (like gradually cooked food). We also render images with materials inside transparent containers to support beverage and chemistry lab use cases. We use this dataset to train a siamese net that identifies the same material in different objects, mixtures, and environments. The descriptor generated by this net can be used to identify the states of materials and their subclasses using a single image. We also present the first few-shot material recognition benchmark with images from a wide range of fields, including the state of foods and drinks, types of grounds, and many other use cases. We show that a net trained on the MatSim synthetic dataset outperforms state-of-the-art models like Clip on the benchmark and also achieves good results on other unsupervised material classification tasks.
Fast Sprite Decomposition from Animated Graphics
This paper presents an approach to decomposing animated graphics into sprites, a set of basic elements or layers. Our approach builds on the optimization of sprite parameters to fit the raster video. For efficiency, we assume static textures for sprites to reduce the search space while preventing artifacts using a texture prior model. To further speed up the optimization, we introduce the initialization of the sprite parameters utilizing a pre-trained video object segmentation model and user input of single frame annotations. For our study, we construct the Crello Animation dataset from an online design service and define quantitative metrics to measure the quality of the extracted sprites. Experiments show that our method significantly outperforms baselines for similar decomposition tasks in terms of the quality/efficiency tradeoff.
FlexiTex: Enhancing Texture Generation with Visual Guidance
Recent texture generation methods achieve impressive results due to the powerful generative prior they leverage from large-scale text-to-image diffusion models. However, abstract textual prompts are limited in providing global textural or shape information, which results in the texture generation methods producing blurry or inconsistent patterns. To tackle this, we present FlexiTex, embedding rich information via visual guidance to generate a high-quality texture. The core of FlexiTex is the Visual Guidance Enhancement module, which incorporates more specific information from visual guidance to reduce ambiguity in the text prompt and preserve high-frequency details. To further enhance the visual guidance, we introduce a Direction-Aware Adaptation module that automatically designs direction prompts based on different camera poses, avoiding the Janus problem and maintaining semantically global consistency. Benefiting from the visual guidance, FlexiTex produces quantitatively and qualitatively sound results, demonstrating its potential to advance texture generation for real-world applications.
SceneWiz3D: Towards Text-guided 3D Scene Composition
We are witnessing significant breakthroughs in the technology for generating 3D objects from text. Existing approaches either leverage large text-to-image models to optimize a 3D representation or train 3D generators on object-centric datasets. Generating entire scenes, however, remains very challenging as a scene contains multiple 3D objects, diverse and scattered. In this work, we introduce SceneWiz3D, a novel approach to synthesize high-fidelity 3D scenes from text. We marry the locality of objects with globality of scenes by introducing a hybrid 3D representation: explicit for objects and implicit for scenes. Remarkably, an object, being represented explicitly, can be either generated from text using conventional text-to-3D approaches, or provided by users. To configure the layout of the scene and automatically place objects, we apply the Particle Swarm Optimization technique during the optimization process. Furthermore, it is difficult for certain parts of the scene (e.g., corners, occlusion) to receive multi-view supervision, leading to inferior geometry. We incorporate an RGBD panorama diffusion model to mitigate it, resulting in high-quality geometry. Extensive evaluation supports that our approach achieves superior quality over previous approaches, enabling the generation of detailed and view-consistent 3D scenes.
Im2SurfTex: Surface Texture Generation via Neural Backprojection of Multi-View Images
We present Im2SurfTex, a method that generates textures for input 3D shapes by learning to aggregate multi-view image outputs produced by 2D image diffusion models onto the shapes' texture space. Unlike existing texture generation techniques that use ad hoc backprojection and averaging schemes to blend multiview images into textures, often resulting in texture seams and artifacts, our approach employs a trained neural module to boost texture coherency. The key ingredient of our module is to leverage neural attention and appropriate positional encodings of image pixels based on their corresponding 3D point positions, normals, and surface-aware coordinates as encoded in geodesic distances within surface patches. These encodings capture texture correlations between neighboring surface points, ensuring better texture continuity. Experimental results show that our module improves texture quality, achieving superior performance in high-resolution texture generation.
Text2Human: Text-Driven Controllable Human Image Generation
Generating high-quality and diverse human images is an important yet challenging task in vision and graphics. However, existing generative models often fall short under the high diversity of clothing shapes and textures. Furthermore, the generation process is even desired to be intuitively controllable for layman users. In this work, we present a text-driven controllable framework, Text2Human, for a high-quality and diverse human generation. We synthesize full-body human images starting from a given human pose with two dedicated steps. 1) With some texts describing the shapes of clothes, the given human pose is first translated to a human parsing map. 2) The final human image is then generated by providing the system with more attributes about the textures of clothes. Specifically, to model the diversity of clothing textures, we build a hierarchical texture-aware codebook that stores multi-scale neural representations for each type of texture. The codebook at the coarse level includes the structural representations of textures, while the codebook at the fine level focuses on the details of textures. To make use of the learned hierarchical codebook to synthesize desired images, a diffusion-based transformer sampler with mixture of experts is firstly employed to sample indices from the coarsest level of the codebook, which then is used to predict the indices of the codebook at finer levels. The predicted indices at different levels are translated to human images by the decoder learned accompanied with hierarchical codebooks. The use of mixture-of-experts allows for the generated image conditioned on the fine-grained text input. The prediction for finer level indices refines the quality of clothing textures. Extensive quantitative and qualitative evaluations demonstrate that our proposed framework can generate more diverse and realistic human images compared to state-of-the-art methods.
RA-Touch: Retrieval-Augmented Touch Understanding with Enriched Visual Data
Visuo-tactile perception aims to understand an object's tactile properties, such as texture, softness, and rigidity. However, the field remains underexplored because collecting tactile data is costly and labor-intensive. We observe that visually distinct objects can exhibit similar surface textures or material properties. For example, a leather sofa and a leather jacket have different appearances but share similar tactile properties. This implies that tactile understanding can be guided by material cues in visual data, even without direct tactile supervision. In this paper, we introduce RA-Touch, a retrieval-augmented framework that improves visuo-tactile perception by leveraging visual data enriched with tactile semantics. We carefully recaption a large-scale visual dataset with tactile-focused descriptions, enabling the model to access tactile semantics typically absent from conventional visual datasets. A key challenge remains in effectively utilizing these tactile-aware external descriptions. RA-Touch addresses this by retrieving visual-textual representations aligned with tactile inputs and integrating them to focus on relevant textural and material properties. By outperforming prior methods on the TVL benchmark, our method demonstrates the potential of retrieval-based visual reuse for tactile understanding. Code is available at https://aim-skku.github.io/RA-Touch
Conditional 360-degree Image Synthesis for Immersive Indoor Scene Decoration
In this paper, we address the problem of conditional scene decoration for 360-degree images. Our method takes a 360-degree background photograph of an indoor scene and generates decorated images of the same scene in the panorama view. To do this, we develop a 360-aware object layout generator that learns latent object vectors in the 360-degree view to enable a variety of furniture arrangements for an input 360-degree background image. We use this object layout to condition a generative adversarial network to synthesize images of an input scene. To further reinforce the generation capability of our model, we develop a simple yet effective scene emptier that removes the generated furniture and produces an emptied scene for our model to learn a cyclic constraint. We train the model on the Structure3D dataset and show that our model can generate diverse decorations with controllable object layout. Our method achieves state-of-the-art performance on the Structure3D dataset and generalizes well to the Zillow indoor scene dataset. Our user study confirms the immersive experiences provided by the realistic image quality and furniture layout in our generation results. Our implementation will be made available.
Text Detection and Recognition in the Wild: A Review
Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.
Visual Attribute Transfer through Deep Image Analogy
We propose a new technique for visual attribute transfer across images that may have very different appearance but have perceptually similar semantic structure. By visual attribute transfer, we mean transfer of visual information (such as color, tone, texture, and style) from one image to another. For example, one image could be that of a painting or a sketch while the other is a photo of a real scene, and both depict the same type of scene. Our technique finds semantically-meaningful dense correspondences between two input images. To accomplish this, it adapts the notion of "image analogy" with features extracted from a Deep Convolutional Neutral Network for matching; we call our technique Deep Image Analogy. A coarse-to-fine strategy is used to compute the nearest-neighbor field for generating the results. We validate the effectiveness of our proposed method in a variety of cases, including style/texture transfer, color/style swap, sketch/painting to photo, and time lapse.
ObjectMate: A Recurrence Prior for Object Insertion and Subject-Driven Generation
This paper introduces a tuning-free method for both object insertion and subject-driven generation. The task involves composing an object, given multiple views, into a scene specified by either an image or text. Existing methods struggle to fully meet the task's challenging objectives: (i) seamlessly composing the object into the scene with photorealistic pose and lighting, and (ii) preserving the object's identity. We hypothesize that achieving these goals requires large scale supervision, but manually collecting sufficient data is simply too expensive. The key observation in this paper is that many mass-produced objects recur across multiple images of large unlabeled datasets, in different scenes, poses, and lighting conditions. We use this observation to create massive supervision by retrieving sets of diverse views of the same object. This powerful paired dataset enables us to train a straightforward text-to-image diffusion architecture to map the object and scene descriptions to the composited image. We compare our method, ObjectMate, with state-of-the-art methods for object insertion and subject-driven generation, using a single or multiple references. Empirically, ObjectMate achieves superior identity preservation and more photorealistic composition. Differently from many other multi-reference methods, ObjectMate does not require slow test-time tuning.
Layout Aware Inpainting for Automated Furniture Removal in Indoor Scenes
We address the problem of detecting and erasing furniture from a wide angle photograph of a room. Inpainting large regions of an indoor scene often results in geometric inconsistencies of background elements within the inpaint mask. To address this problem, we utilize perceptual information (e.g. instance segmentation, and room layout) to produce a geometrically consistent empty version of a room. We share important details to make this system viable, such as per-plane inpainting, automatic rectification, and texture refinement. We provide detailed ablation along with qualitative examples, justifying our design choices. We show an application of our system by removing real furniture from a room and redecorating it with virtual furniture.
MaterialMVP: Illumination-Invariant Material Generation via Multi-view PBR Diffusion
Physically-based rendering (PBR) has become a cornerstone in modern computer graphics, enabling realistic material representation and lighting interactions in 3D scenes. In this paper, we present MaterialMVP, a novel end-to-end model for generating PBR textures from 3D meshes and image prompts, addressing key challenges in multi-view material synthesis. Our approach leverages Reference Attention to extract and encode informative latent from the input reference images, enabling intuitive and controllable texture generation. We also introduce a Consistency-Regularized Training strategy to enforce stability across varying viewpoints and illumination conditions, ensuring illumination-invariant and geometrically consistent results. Additionally, we propose Dual-Channel Material Generation, which separately optimizes albedo and metallic-roughness (MR) textures while maintaining precise spatial alignment with the input images through Multi-Channel Aligned Attention. Learnable material embeddings are further integrated to capture the distinct properties of albedo and MR. Experimental results demonstrate that our model generates PBR textures with realistic behavior across diverse lighting scenarios, outperforming existing methods in both consistency and quality for scalable 3D asset creation.
Seeing the World in a Bag of Chips
We address the dual problems of novel view synthesis and environment reconstruction from hand-held RGBD sensors. Our contributions include 1) modeling highly specular objects, 2) modeling inter-reflections and Fresnel effects, and 3) enabling surface light field reconstruction with the same input needed to reconstruct shape alone. In cases where scene surface has a strong mirror-like material component, we generate highly detailed environment images, revealing room composition, objects, people, buildings, and trees visible through windows. Our approach yields state of the art view synthesis techniques, operates on low dynamic range imagery, and is robust to geometric and calibration errors.
MaPa: Text-driven Photorealistic Material Painting for 3D Shapes
This paper aims to generate materials for 3D meshes from text descriptions. Unlike existing methods that synthesize texture maps, we propose to generate segment-wise procedural material graphs as the appearance representation, which supports high-quality rendering and provides substantial flexibility in editing. Instead of relying on extensive paired data, i.e., 3D meshes with material graphs and corresponding text descriptions, to train a material graph generative model, we propose to leverage the pre-trained 2D diffusion model as a bridge to connect the text and material graphs. Specifically, our approach decomposes a shape into a set of segments and designs a segment-controlled diffusion model to synthesize 2D images that are aligned with mesh parts. Based on generated images, we initialize parameters of material graphs and fine-tune them through the differentiable rendering module to produce materials in accordance with the textual description. Extensive experiments demonstrate the superior performance of our framework in photorealism, resolution, and editability over existing methods. Project page: https://zhanghe3z.github.io/MaPa/
Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform
Despite that convolutional neural networks (CNN) have recently demonstrated high-quality reconstruction for single-image super-resolution (SR), recovering natural and realistic texture remains a challenging problem. In this paper, we show that it is possible to recover textures faithful to semantic classes. In particular, we only need to modulate features of a few intermediate layers in a single network conditioned on semantic segmentation probability maps. This is made possible through a novel Spatial Feature Transform (SFT) layer that generates affine transformation parameters for spatial-wise feature modulation. SFT layers can be trained end-to-end together with the SR network using the same loss function. During testing, it accepts an input image of arbitrary size and generates a high-resolution image with just a single forward pass conditioned on the categorical priors. Our final results show that an SR network equipped with SFT can generate more realistic and visually pleasing textures in comparison to state-of-the-art SRGAN and EnhanceNet.
MULAN: A Multi Layer Annotated Dataset for Controllable Text-to-Image Generation
Text-to-image generation has achieved astonishing results, yet precise spatial controllability and prompt fidelity remain highly challenging. This limitation is typically addressed through cumbersome prompt engineering, scene layout conditioning, or image editing techniques which often require hand drawn masks. Nonetheless, pre-existing works struggle to take advantage of the natural instance-level compositionality of scenes due to the typically flat nature of rasterized RGB output images. Towards adressing this challenge, we introduce MuLAn: a novel dataset comprising over 44K MUlti-Layer ANnotations of RGB images as multilayer, instance-wise RGBA decompositions, and over 100K instance images. To build MuLAn, we developed a training free pipeline which decomposes a monocular RGB image into a stack of RGBA layers comprising of background and isolated instances. We achieve this through the use of pretrained general-purpose models, and by developing three modules: image decomposition for instance discovery and extraction, instance completion to reconstruct occluded areas, and image re-assembly. We use our pipeline to create MuLAn-COCO and MuLAn-LAION datasets, which contain a variety of image decompositions in terms of style, composition and complexity. With MuLAn, we provide the first photorealistic resource providing instance decomposition and occlusion information for high quality images, opening up new avenues for text-to-image generative AI research. With this, we aim to encourage the development of novel generation and editing technology, in particular layer-wise solutions. MuLAn data resources are available at https://MuLAn-dataset.github.io/.
HyperDreamer: Hyper-Realistic 3D Content Generation and Editing from a Single Image
3D content creation from a single image is a long-standing yet highly desirable task. Recent advances introduce 2D diffusion priors, yielding reasonable results. However, existing methods are not hyper-realistic enough for post-generation usage, as users cannot view, render and edit the resulting 3D content from a full range. To address these challenges, we introduce HyperDreamer with several key designs and appealing properties: 1) Viewable: 360 degree mesh modeling with high-resolution textures enables the creation of visually compelling 3D models from a full range of observation points. 2) Renderable: Fine-grained semantic segmentation and data-driven priors are incorporated as guidance to learn reasonable albedo, roughness, and specular properties of the materials, enabling semantic-aware arbitrary material estimation. 3) Editable: For a generated model or their own data, users can interactively select any region via a few clicks and efficiently edit the texture with text-based guidance. Extensive experiments demonstrate the effectiveness of HyperDreamer in modeling region-aware materials with high-resolution textures and enabling user-friendly editing. We believe that HyperDreamer holds promise for advancing 3D content creation and finding applications in various domains.
SceneTeller: Language-to-3D Scene Generation
Designing high-quality indoor 3D scenes is important in many practical applications, such as room planning or game development. Conventionally, this has been a time-consuming process which requires both artistic skill and familiarity with professional software, making it hardly accessible for layman users. However, recent advances in generative AI have established solid foundation for democratizing 3D design. In this paper, we propose a pioneering approach for text-based 3D room design. Given a prompt in natural language describing the object placement in the room, our method produces a high-quality 3D scene corresponding to it. With an additional text prompt the users can change the appearance of the entire scene or of individual objects in it. Built using in-context learning, CAD model retrieval and 3D-Gaussian-Splatting-based stylization, our turnkey pipeline produces state-of-the-art 3D scenes, while being easy to use even for novices. Our project page is available at https://sceneteller.github.io/.
VLMaterial: Procedural Material Generation with Large Vision-Language Models
Procedural materials, represented as functional node graphs, are ubiquitous in computer graphics for photorealistic material appearance design. They allow users to perform intuitive and precise editing to achieve desired visual appearances. However, creating a procedural material given an input image requires professional knowledge and significant effort. In this work, we leverage the ability to convert procedural materials into standard Python programs and fine-tune a large pre-trained vision-language model (VLM) to generate such programs from input images. To enable effective fine-tuning, we also contribute an open-source procedural material dataset and propose to perform program-level augmentation by prompting another pre-trained large language model (LLM). Through extensive evaluation, we show that our method outperforms previous methods on both synthetic and real-world examples.
MaGRITTe: Manipulative and Generative 3D Realization from Image, Topview and Text
The generation of 3D scenes from user-specified conditions offers a promising avenue for alleviating the production burden in 3D applications. Previous studies required significant effort to realize the desired scene, owing to limited control conditions. We propose a method for controlling and generating 3D scenes under multimodal conditions using partial images, layout information represented in the top view, and text prompts. Combining these conditions to generate a 3D scene involves the following significant difficulties: (1) the creation of large datasets, (2) reflection on the interaction of multimodal conditions, and (3) domain dependence of the layout conditions. We decompose the process of 3D scene generation into 2D image generation from the given conditions and 3D scene generation from 2D images. 2D image generation is achieved by fine-tuning a pretrained text-to-image model with a small artificial dataset of partial images and layouts, and 3D scene generation is achieved by layout-conditioned depth estimation and neural radiance fields (NeRF), thereby avoiding the creation of large datasets. The use of a common representation of spatial information using 360-degree images allows for the consideration of multimodal condition interactions and reduces the domain dependence of the layout control. The experimental results qualitatively and quantitatively demonstrated that the proposed method can generate 3D scenes in diverse domains, from indoor to outdoor, according to multimodal conditions.
EvaSurf: Efficient View-Aware Implicit Textured Surface Reconstruction on Mobile Devices
Reconstructing real-world 3D objects has numerous applications in computer vision, such as virtual reality, video games, and animations. Ideally, 3D reconstruction methods should generate high-fidelity results with 3D consistency in real-time. Traditional methods match pixels between images using photo-consistency constraints or learned features, while differentiable rendering methods like Neural Radiance Fields (NeRF) use differentiable volume rendering or surface-based representation to generate high-fidelity scenes. However, these methods require excessive runtime for rendering, making them impractical for daily applications. To address these challenges, we present EvaSurf, an Efficient View-Aware implicit textured Surface reconstruction method on mobile devices. In our method, we first employ an efficient surface-based model with a multi-view supervision module to ensure accurate mesh reconstruction. To enable high-fidelity rendering, we learn an implicit texture embedded with a set of Gaussian lobes to capture view-dependent information. Furthermore, with the explicit geometry and the implicit texture, we can employ a lightweight neural shader to reduce the expense of computation and further support real-time rendering on common mobile devices. Extensive experiments demonstrate that our method can reconstruct high-quality appearance and accurate mesh on both synthetic and real-world datasets. Moreover, our method can be trained in just 1-2 hours using a single GPU and run on mobile devices at over 40 FPS (Frames Per Second), with a final package required for rendering taking up only 40-50 MB.
Composed Image Retrieval for Remote Sensing
This work introduces composed image retrieval to remote sensing. It allows to query a large image archive by image examples alternated by a textual description, enriching the descriptive power over unimodal queries, either visual or textual. Various attributes can be modified by the textual part, such as shape, color, or context. A novel method fusing image-to-image and text-to-image similarity is introduced. We demonstrate that a vision-language model possesses sufficient descriptive power and no further learning step or training data are necessary. We present a new evaluation benchmark focused on color, context, density, existence, quantity, and shape modifications. Our work not only sets the state-of-the-art for this task, but also serves as a foundational step in addressing a gap in the field of remote sensing image retrieval. Code at: https://github.com/billpsomas/rscir
HiScene: Creating Hierarchical 3D Scenes with Isometric View Generation
Scene-level 3D generation represents a critical frontier in multimedia and computer graphics, yet existing approaches either suffer from limited object categories or lack editing flexibility for interactive applications. In this paper, we present HiScene, a novel hierarchical framework that bridges the gap between 2D image generation and 3D object generation and delivers high-fidelity scenes with compositional identities and aesthetic scene content. Our key insight is treating scenes as hierarchical "objects" under isometric views, where a room functions as a complex object that can be further decomposed into manipulatable items. This hierarchical approach enables us to generate 3D content that aligns with 2D representations while maintaining compositional structure. To ensure completeness and spatial alignment of each decomposed instance, we develop a video-diffusion-based amodal completion technique that effectively handles occlusions and shadows between objects, and introduce shape prior injection to ensure spatial coherence within the scene. Experimental results demonstrate that our method produces more natural object arrangements and complete object instances suitable for interactive applications, while maintaining physical plausibility and alignment with user inputs.
SceneCraft: An LLM Agent for Synthesizing 3D Scene as Blender Code
This paper introduces SceneCraft, a Large Language Model (LLM) Agent converting text descriptions into Blender-executable Python scripts which render complex scenes with up to a hundred 3D assets. This process requires complex spatial planning and arrangement. We tackle these challenges through a combination of advanced abstraction, strategic planning, and library learning. SceneCraft first models a scene graph as a blueprint, detailing the spatial relationships among assets in the scene. SceneCraft then writes Python scripts based on this graph, translating relationships into numerical constraints for asset layout. Next, SceneCraft leverages the perceptual strengths of vision-language foundation models like GPT-V to analyze rendered images and iteratively refine the scene. On top of this process, SceneCraft features a library learning mechanism that compiles common script functions into a reusable library, facilitating continuous self-improvement without expensive LLM parameter tuning. Our evaluation demonstrates that SceneCraft surpasses existing LLM-based agents in rendering complex scenes, as shown by its adherence to constraints and favorable human assessments. We also showcase the broader application potential of SceneCraft by reconstructing detailed 3D scenes from the Sintel movie and guiding a video generative model with generated scenes as intermediary control signal.
Single Image BRDF Parameter Estimation with a Conditional Adversarial Network
Creating plausible surfaces is an essential component in achieving a high degree of realism in rendering. To relieve artists, who create these surfaces in a time-consuming, manual process, automated retrieval of the spatially-varying Bidirectional Reflectance Distribution Function (SVBRDF) from a single mobile phone image is desirable. By leveraging a deep neural network, this casual capturing method can be achieved. The trained network can estimate per pixel normal, base color, metallic and roughness parameters from the Disney BRDF. The input image is taken with a mobile phone lit by the camera flash. The network is trained to compensate for environment lighting and thus learned to reduce artifacts introduced by other light sources. These losses contain a multi-scale discriminator with an additional perceptual loss, a rendering loss using a differentiable renderer, and a parameter loss. Besides the local precision, this loss formulation generates material texture maps which are globally more consistent. The network is set up as a generator network trained in an adversarial fashion to ensure that only plausible maps are produced. The estimated parameters not only reproduce the material faithfully in rendering but capture the style of hand-authored materials due to the more global loss terms compared to previous works without requiring additional post-processing. Both the resolution and the quality is improved.
Structured 3D Latents for Scalable and Versatile 3D Generation
We introduce a novel 3D generation method for versatile and high-quality 3D asset creation. The cornerstone is a unified Structured LATent (SLAT) representation which allows decoding to different output formats, such as Radiance Fields, 3D Gaussians, and meshes. This is achieved by integrating a sparsely-populated 3D grid with dense multiview visual features extracted from a powerful vision foundation model, comprehensively capturing both structural (geometry) and textural (appearance) information while maintaining flexibility during decoding. We employ rectified flow transformers tailored for SLAT as our 3D generation models and train models with up to 2 billion parameters on a large 3D asset dataset of 500K diverse objects. Our model generates high-quality results with text or image conditions, significantly surpassing existing methods, including recent ones at similar scales. We showcase flexible output format selection and local 3D editing capabilities which were not offered by previous models. Code, model, and data will be released.
VCD-Texture: Variance Alignment based 3D-2D Co-Denoising for Text-Guided Texturing
Recent research on texture synthesis for 3D shapes benefits a lot from dramatically developed 2D text-to-image diffusion models, including inpainting-based and optimization-based approaches. However, these methods ignore the modal gap between the 2D diffusion model and 3D objects, which primarily render 3D objects into 2D images and texture each image separately. In this paper, we revisit the texture synthesis and propose a Variance alignment based 3D-2D Collaborative Denoising framework, dubbed VCD-Texture, to address these issues. Formally, we first unify both 2D and 3D latent feature learning in diffusion self-attention modules with re-projected 3D attention receptive fields. Subsequently, the denoised multi-view 2D latent features are aggregated into 3D space and then rasterized back to formulate more consistent 2D predictions. However, the rasterization process suffers from an intractable variance bias, which is theoretically addressed by the proposed variance alignment, achieving high-fidelity texture synthesis. Moreover, we present an inpainting refinement to further improve the details with conflicting regions. Notably, there is not a publicly available benchmark to evaluate texture synthesis, which hinders its development. Thus we construct a new evaluation set built upon three open-source 3D datasets and propose to use four metrics to thoroughly validate the texturing performance. Comprehensive experiments demonstrate that VCD-Texture achieves superior performance against other counterparts.
UniDream: Unifying Diffusion Priors for Relightable Text-to-3D Generation
Recent advancements in text-to-3D generation technology have significantly advanced the conversion of textual descriptions into imaginative well-geometrical and finely textured 3D objects. Despite these developments, a prevalent limitation arises from the use of RGB data in diffusion or reconstruction models, which often results in models with inherent lighting and shadows effects that detract from their realism, thereby limiting their usability in applications that demand accurate relighting capabilities. To bridge this gap, we present UniDream, a text-to-3D generation framework by incorporating unified diffusion priors. Our approach consists of three main components: (1) a dual-phase training process to get albedo-normal aligned multi-view diffusion and reconstruction models, (2) a progressive generation procedure for geometry and albedo-textures based on Score Distillation Sample (SDS) using the trained reconstruction and diffusion models, and (3) an innovative application of SDS for finalizing PBR generation while keeping a fixed albedo based on Stable Diffusion model. Extensive evaluations demonstrate that UniDream surpasses existing methods in generating 3D objects with clearer albedo textures, smoother surfaces, enhanced realism, and superior relighting capabilities.
TexTile: A Differentiable Metric for Texture Tileability
We introduce TexTile, a novel differentiable metric to quantify the degree upon which a texture image can be concatenated with itself without introducing repeating artifacts (i.e., the tileability). Existing methods for tileable texture synthesis focus on general texture quality, but lack explicit analysis of the intrinsic repeatability properties of a texture. In contrast, our TexTile metric effectively evaluates the tileable properties of a texture, opening the door to more informed synthesis and analysis of tileable textures. Under the hood, TexTile is formulated as a binary classifier carefully built from a large dataset of textures of different styles, semantics, regularities, and human annotations.Key to our method is a set of architectural modifications to baseline pre-train image classifiers to overcome their shortcomings at measuring tileability, along with a custom data augmentation and training regime aimed at increasing robustness and accuracy. We demonstrate that TexTile can be plugged into different state-of-the-art texture synthesis methods, including diffusion-based strategies, and generate tileable textures while keeping or even improving the overall texture quality. Furthermore, we show that TexTile can objectively evaluate any tileable texture synthesis method, whereas the current mix of existing metrics produces uncorrelated scores which heavily hinders progress in the field.
Knowledge Guided Disambiguation for Large-Scale Scene Classification with Multi-Resolution CNNs
Convolutional Neural Networks (CNNs) have made remarkable progress on scene recognition, partially due to these recent large-scale scene datasets, such as the Places and Places2. Scene categories are often defined by multi-level information, including local objects, global layout, and background environment, thus leading to large intra-class variations. In addition, with the increasing number of scene categories, label ambiguity has become another crucial issue in large-scale classification. This paper focuses on large-scale scene recognition and makes two major contributions to tackle these issues. First, we propose a multi-resolution CNN architecture that captures visual content and structure at multiple levels. The multi-resolution CNNs are composed of coarse resolution CNNs and fine resolution CNNs, which are complementary to each other. Second, we design two knowledge guided disambiguation techniques to deal with the problem of label ambiguity. (i) We exploit the knowledge from the confusion matrix computed on validation data to merge ambiguous classes into a super category. (ii) We utilize the knowledge of extra networks to produce a soft label for each image. Then the super categories or soft labels are employed to guide CNN training on the Places2. We conduct extensive experiments on three large-scale image datasets (ImageNet, Places, and Places2), demonstrating the effectiveness of our approach. Furthermore, our method takes part in two major scene recognition challenges, and achieves the second place at the Places2 challenge in ILSVRC 2015, and the first place at the LSUN challenge in CVPR 2016. Finally, we directly test the learned representations on other scene benchmarks, and obtain the new state-of-the-art results on the MIT Indoor67 (86.7\%) and SUN397 (72.0\%). We release the code and models at~https://github.com/wanglimin/MRCNN-Scene-Recognition.
FLUX-Text: A Simple and Advanced Diffusion Transformer Baseline for Scene Text Editing
The task of scene text editing is to modify or add texts on images while maintaining the fidelity of newly generated text and visual coherence with the background. Recent works based on latent diffusion models (LDM) show improved text editing results, yet still face challenges and often generate inaccurate or unrecognizable characters, especially for non-Latin ones (\eg, Chinese), which have complex glyph structures. To address these issues, we present FLUX-Text, a simple and advanced multilingual scene text editing framework based on FLUX-Fill. Specifically, we carefully investigate glyph conditioning, considering both visual and textual modalities. To retain the original generative capabilities of FLUX-Fill while enhancing its understanding and generation of glyphs, we propose lightweight glyph and text embedding modules. Owning to the lightweight design, FLUX-Text is trained only with 100K training examples compared to current popular methods trained with 2.9M ones. With no bells and whistles, our method achieves state-of-the-art performance on text editing tasks. Qualitative and quantitative experiments on the public datasets demonstrate that our method surpasses previous works in text fidelity.
Recasting Regional Lighting for Shadow Removal
Removing shadows requires an understanding of both lighting conditions and object textures in a scene. Existing methods typically learn pixel-level color mappings between shadow and non-shadow images, in which the joint modeling of lighting and object textures is implicit and inadequate. We observe that in a shadow region, the degradation degree of object textures depends on the local illumination, while simply enhancing the local illumination cannot fully recover the attenuated textures. Based on this observation, we propose to condition the restoration of attenuated textures on the corrected local lighting in the shadow region. Specifically, We first design a shadow-aware decomposition network to estimate the illumination and reflectance layers of shadow regions explicitly. We then propose a novel bilateral correction network to recast the lighting of shadow regions in the illumination layer via a novel local lighting correction module, and to restore the textures conditioned on the corrected illumination layer via a novel illumination-guided texture restoration module. We further annotate pixel-wise shadow masks for the public SRD dataset, which originally contains only image pairs. Experiments on three benchmarks show that our method outperforms existing state-of-the-art shadow removal methods.
MIDI: Multi-Instance Diffusion for Single Image to 3D Scene Generation
This paper introduces MIDI, a novel paradigm for compositional 3D scene generation from a single image. Unlike existing methods that rely on reconstruction or retrieval techniques or recent approaches that employ multi-stage object-by-object generation, MIDI extends pre-trained image-to-3D object generation models to multi-instance diffusion models, enabling the simultaneous generation of multiple 3D instances with accurate spatial relationships and high generalizability. At its core, MIDI incorporates a novel multi-instance attention mechanism, that effectively captures inter-object interactions and spatial coherence directly within the generation process, without the need for complex multi-step processes. The method utilizes partial object images and global scene context as inputs, directly modeling object completion during 3D generation. During training, we effectively supervise the interactions between 3D instances using a limited amount of scene-level data, while incorporating single-object data for regularization, thereby maintaining the pre-trained generalization ability. MIDI demonstrates state-of-the-art performance in image-to-scene generation, validated through evaluations on synthetic data, real-world scene data, and stylized scene images generated by text-to-image diffusion models.