new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 14

Training-free Composite Scene Generation for Layout-to-Image Synthesis

Recent breakthroughs in text-to-image diffusion models have significantly advanced the generation of high-fidelity, photo-realistic images from textual descriptions. Yet, these models often struggle with interpreting spatial arrangements from text, hindering their ability to produce images with precise spatial configurations. To bridge this gap, layout-to-image generation has emerged as a promising direction. However, training-based approaches are limited by the need for extensively annotated datasets, leading to high data acquisition costs and a constrained conceptual scope. Conversely, training-free methods face challenges in accurately locating and generating semantically similar objects within complex compositions. This paper introduces a novel training-free approach designed to overcome adversarial semantic intersections during the diffusion conditioning phase. By refining intra-token loss with selective sampling and enhancing the diffusion process with attention redistribution, we propose two innovative constraints: 1) an inter-token constraint that resolves token conflicts to ensure accurate concept synthesis; and 2) a self-attention constraint that improves pixel-to-pixel relationships. Our evaluations confirm the effectiveness of leveraging layout information for guiding the diffusion process, generating content-rich images with enhanced fidelity and complexity. Code is available at https://github.com/Papple-F/csg.git.

  • 3 authors
·
Jul 18, 2024

Tuning-Free Image Editing with Fidelity and Editability via Unified Latent Diffusion Model

Balancing fidelity and editability is essential in text-based image editing (TIE), where failures commonly lead to over- or under-editing issues. Existing methods typically rely on attention injections for structure preservation and leverage the inherent text alignment capabilities of pre-trained text-to-image (T2I) models for editability, but they lack explicit and unified mechanisms to properly balance these two objectives. In this work, we introduce UnifyEdit, a tuning-free method that performs diffusion latent optimization to enable a balanced integration of fidelity and editability within a unified framework. Unlike direct attention injections, we develop two attention-based constraints: a self-attention (SA) preservation constraint for structural fidelity, and a cross-attention (CA) alignment constraint to enhance text alignment for improved editability. However, simultaneously applying both constraints can lead to gradient conflicts, where the dominance of one constraint results in over- or under-editing. To address this challenge, we introduce an adaptive time-step scheduler that dynamically adjusts the influence of these constraints, guiding the diffusion latent toward an optimal balance. Extensive quantitative and qualitative experiments validate the effectiveness of our approach, demonstrating its superiority in achieving a robust balance between structure preservation and text alignment across various editing tasks, outperforming other state-of-the-art methods. The source code will be available at https://github.com/CUC-MIPG/UnifyEdit.

MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers

Pre-trained language models (e.g., BERT (Devlin et al., 2018) and its variants) have achieved remarkable success in varieties of NLP tasks. However, these models usually consist of hundreds of millions of parameters which brings challenges for fine-tuning and online serving in real-life applications due to latency and capacity constraints. In this work, we present a simple and effective approach to compress large Transformer (Vaswani et al., 2017) based pre-trained models, termed as deep self-attention distillation. The small model (student) is trained by deeply mimicking the self-attention module, which plays a vital role in Transformer networks, of the large model (teacher). Specifically, we propose distilling the self-attention module of the last Transformer layer of the teacher, which is effective and flexible for the student. Furthermore, we introduce the scaled dot-product between values in the self-attention module as the new deep self-attention knowledge, in addition to the attention distributions (i.e., the scaled dot-product of queries and keys) that have been used in existing works. Moreover, we show that introducing a teacher assistant (Mirzadeh et al., 2019) also helps the distillation of large pre-trained Transformer models. Experimental results demonstrate that our monolingual model outperforms state-of-the-art baselines in different parameter size of student models. In particular, it retains more than 99% accuracy on SQuAD 2.0 and several GLUE benchmark tasks using 50% of the Transformer parameters and computations of the teacher model. We also obtain competitive results in applying deep self-attention distillation to multilingual pre-trained models.

  • 6 authors
·
Feb 25, 2020

LoRA-Composer: Leveraging Low-Rank Adaptation for Multi-Concept Customization in Training-Free Diffusion Models

Customization generation techniques have significantly advanced the synthesis of specific concepts across varied contexts. Multi-concept customization emerges as the challenging task within this domain. Existing approaches often rely on training a fusion matrix of multiple Low-Rank Adaptations (LoRAs) to merge various concepts into a single image. However, we identify this straightforward method faces two major challenges: 1) concept confusion, where the model struggles to preserve distinct individual characteristics, and 2) concept vanishing, where the model fails to generate the intended subjects. To address these issues, we introduce LoRA-Composer, a training-free framework designed for seamlessly integrating multiple LoRAs, thereby enhancing the harmony among different concepts within generated images. LoRA-Composer addresses concept vanishing through concept injection constraints, enhancing concept visibility via an expanded cross-attention mechanism. To combat concept confusion, concept isolation constraints are introduced, refining the self-attention computation. Furthermore, latent re-initialization is proposed to effectively stimulate concept-specific latent within designated regions. Our extensive testing showcases a notable enhancement in LoRA-Composer's performance compared to standard baselines, especially when eliminating the image-based conditions like canny edge or pose estimations. Code is released at https://github.com/Young98CN/LoRA_Composer

  • 11 authors
·
Mar 18, 2024

Transformers as Support Vector Machines

Since its inception in "Attention Is All You Need", transformer architecture has led to revolutionary advancements in NLP. The attention layer within the transformer admits a sequence of input tokens X and makes them interact through pairwise similarities computed as softmax(XQK^top X^top), where (K,Q) are the trainable key-query parameters. In this work, we establish a formal equivalence between the optimization geometry of self-attention and a hard-margin SVM problem that separates optimal input tokens from non-optimal tokens using linear constraints on the outer-products of token pairs. This formalism allows us to characterize the implicit bias of 1-layer transformers optimized with gradient descent: (1) Optimizing the attention layer with vanishing regularization, parameterized by (K,Q), converges in direction to an SVM solution minimizing the nuclear norm of the combined parameter W=KQ^top. Instead, directly parameterizing by W minimizes a Frobenius norm objective. We characterize this convergence, highlighting that it can occur toward locally-optimal directions rather than global ones. (2) Complementing this, we prove the local/global directional convergence of gradient descent under suitable geometric conditions. Importantly, we show that over-parameterization catalyzes global convergence by ensuring the feasibility of the SVM problem and by guaranteeing a benign optimization landscape devoid of stationary points. (3) While our theory applies primarily to linear prediction heads, we propose a more general SVM equivalence that predicts the implicit bias with nonlinear heads. Our findings are applicable to arbitrary datasets and their validity is verified via experiments. We also introduce several open problems and research directions. We believe these findings inspire the interpretation of transformers as a hierarchy of SVMs that separates and selects optimal tokens.

  • 4 authors
·
Aug 31, 2023

Boundary Attention Constrained Zero-Shot Layout-To-Image Generation

Recent text-to-image diffusion models excel at generating high-resolution images from text but struggle with precise control over spatial composition and object counting. To address these challenges, several studies developed layout-to-image (L2I) approaches that incorporate layout instructions into text-to-image models. However, existing L2I methods typically require either fine-tuning pretrained parameters or training additional control modules for the diffusion models. In this work, we propose a novel zero-shot L2I approach, BACON (Boundary Attention Constrained generation), which eliminates the need for additional modules or fine-tuning. Specifically, we use text-visual cross-attention feature maps to quantify inconsistencies between the layout of the generated images and the provided instructions, and then compute loss functions to optimize latent features during the diffusion reverse process. To enhance spatial controllability and mitigate semantic failures in complex layout instructions, we leverage pixel-to-pixel correlations in the self-attention feature maps to align cross-attention maps and combine three loss functions constrained by boundary attention to update latent features. Comprehensive experimental results on both L2I and non-L2I pretrained diffusion models demonstrate that our method outperforms existing zero-shot L2I techniuqes both quantitatively and qualitatively in terms of image composition on the DrawBench and HRS benchmarks.

  • 5 authors
·
Nov 15, 2024

KOALA: Self-Attention Matters in Knowledge Distillation of Latent Diffusion Models for Memory-Efficient and Fast Image Synthesis

Stable diffusion is the mainstay of the text-to-image (T2I) synthesis in the community due to its generation performance and open-source nature. Recently, Stable Diffusion XL (SDXL), the successor of stable diffusion, has received a lot of attention due to its significant performance improvements with a higher resolution of 1024x1024 and a larger model. However, its increased computation cost and model size require higher-end hardware(e.g., bigger VRAM GPU) for end-users, incurring higher costs of operation. To address this problem, in this work, we propose an efficient latent diffusion model for text-to-image synthesis obtained by distilling the knowledge of SDXL. To this end, we first perform an in-depth analysis of the denoising U-Net in SDXL, which is the main bottleneck of the model, and then design a more efficient U-Net based on the analysis. Secondly, we explore how to effectively distill the generation capability of SDXL into an efficient U-Net and eventually identify four essential factors, the core of which is that self-attention is the most important part. With our efficient U-Net and self-attention-based knowledge distillation strategy, we build our efficient T2I models, called KOALA-1B & -700M, while reducing the model size up to 54% and 69% of the original SDXL model. In particular, the KOALA-700M is more than twice as fast as SDXL while still retaining a decent generation quality. We hope that due to its balanced speed-performance tradeoff, our KOALA models can serve as a cost-effective alternative to SDXL in resource-constrained environments.

  • 5 authors
·
Dec 6, 2023

CAS-ViT: Convolutional Additive Self-attention Vision Transformers for Efficient Mobile Applications

Vision Transformers (ViTs) mark a revolutionary advance in neural networks with their token mixer's powerful global context capability. However, the pairwise token affinity and complex matrix operations limit its deployment on resource-constrained scenarios and real-time applications, such as mobile devices, although considerable efforts have been made in previous works. In this paper, we introduce CAS-ViT: Convolutional Additive Self-attention Vision Transformers, to achieve a balance between efficiency and performance in mobile applications. Firstly, we argue that the capability of token mixers to obtain global contextual information hinges on multiple information interactions, such as spatial and channel domains. Subsequently, we construct a novel additive similarity function following this paradigm and present an efficient implementation named Convolutional Additive Token Mixer (CATM). This simplification leads to a significant reduction in computational overhead. We evaluate CAS-ViT across a variety of vision tasks, including image classification, object detection, instance segmentation, and semantic segmentation. Our experiments, conducted on GPUs, ONNX, and iPhones, demonstrate that CAS-ViT achieves a competitive performance when compared to other state-of-the-art backbones, establishing it as a viable option for efficient mobile vision applications. Our code and model are available at: https://github.com/Tianfang-Zhang/CAS-ViT

  • 6 authors
·
Aug 7, 2024

Tuning-Free Visual Customization via View Iterative Self-Attention Control

Fine-Tuning Diffusion Models enable a wide range of personalized generation and editing applications on diverse visual modalities. While Low-Rank Adaptation (LoRA) accelerates the fine-tuning process, it still requires multiple reference images and time-consuming training, which constrains its scalability for large-scale and real-time applications. In this paper, we propose View Iterative Self-Attention Control (VisCtrl) to tackle this challenge. Specifically, VisCtrl is a training-free method that injects the appearance and structure of a user-specified subject into another subject in the target image, unlike previous approaches that require fine-tuning the model. Initially, we obtain the initial noise for both the reference and target images through DDIM inversion. Then, during the denoising phase, features from the reference image are injected into the target image via the self-attention mechanism. Notably, by iteratively performing this feature injection process, we ensure that the reference image features are gradually integrated into the target image. This approach results in consistent and harmonious editing with only one reference image in a few denoising steps. Moreover, benefiting from our plug-and-play architecture design and the proposed Feature Gradual Sampling strategy for multi-view editing, our method can be easily extended to edit in complex visual domains. Extensive experiments show the efficacy of VisCtrl across a spectrum of tasks, including personalized editing of images, videos, and 3D scenes.

  • 6 authors
·
Jun 10, 2024

VanillaNet: the Power of Minimalism in Deep Learning

At the heart of foundation models is the philosophy of "more is different", exemplified by the astonishing success in computer vision and natural language processing. However, the challenges of optimization and inherent complexity of transformer models call for a paradigm shift towards simplicity. In this study, we introduce VanillaNet, a neural network architecture that embraces elegance in design. By avoiding high depth, shortcuts, and intricate operations like self-attention, VanillaNet is refreshingly concise yet remarkably powerful. Each layer is carefully crafted to be compact and straightforward, with nonlinear activation functions pruned after training to restore the original architecture. VanillaNet overcomes the challenges of inherent complexity, making it ideal for resource-constrained environments. Its easy-to-understand and highly simplified architecture opens new possibilities for efficient deployment. Extensive experimentation demonstrates that VanillaNet delivers performance on par with renowned deep neural networks and vision transformers, showcasing the power of minimalism in deep learning. This visionary journey of VanillaNet has significant potential to redefine the landscape and challenge the status quo of foundation model, setting a new path for elegant and effective model design. Pre-trained models and codes are available at https://github.com/huawei-noah/VanillaNet and https://gitee.com/mindspore/models/tree/master/research/cv/vanillanet.

  • 4 authors
·
May 22, 2023 1

Seg2Any: Open-set Segmentation-Mask-to-Image Generation with Precise Shape and Semantic Control

Despite recent advances in diffusion models, top-tier text-to-image (T2I) models still struggle to achieve precise spatial layout control, i.e. accurately generating entities with specified attributes and locations. Segmentation-mask-to-image (S2I) generation has emerged as a promising solution by incorporating pixel-level spatial guidance and regional text prompts. However, existing S2I methods fail to simultaneously ensure semantic consistency and shape consistency. To address these challenges, we propose Seg2Any, a novel S2I framework built upon advanced multimodal diffusion transformers (e.g. FLUX). First, to achieve both semantic and shape consistency, we decouple segmentation mask conditions into regional semantic and high-frequency shape components. The regional semantic condition is introduced by a Semantic Alignment Attention Mask, ensuring that generated entities adhere to their assigned text prompts. The high-frequency shape condition, representing entity boundaries, is encoded as an Entity Contour Map and then introduced as an additional modality via multi-modal attention to guide image spatial structure. Second, to prevent attribute leakage across entities in multi-entity scenarios, we introduce an Attribute Isolation Attention Mask mechanism, which constrains each entity's image tokens to attend exclusively to themselves during image self-attention. To support open-set S2I generation, we construct SACap-1M, a large-scale dataset containing 1 million images with 5.9 million segmented entities and detailed regional captions, along with a SACap-Eval benchmark for comprehensive S2I evaluation. Extensive experiments demonstrate that Seg2Any achieves state-of-the-art performance on both open-set and closed-set S2I benchmarks, particularly in fine-grained spatial and attribute control of entities.

  • 5 authors
·
May 31

Efficient Content-Based Sparse Attention with Routing Transformers

Self-attention has recently been adopted for a wide range of sequence modeling problems. Despite its effectiveness, self-attention suffers from quadratic compute and memory requirements with respect to sequence length. Successful approaches to reduce this complexity focused on attending to local sliding windows or a small set of locations independent of content. Our work proposes to learn dynamic sparse attention patterns that avoid allocating computation and memory to attend to content unrelated to the query of interest. This work builds upon two lines of research: it combines the modeling flexibility of prior work on content-based sparse attention with the efficiency gains from approaches based on local, temporal sparse attention. Our model, the Routing Transformer, endows self-attention with a sparse routing module based on online k-means while reducing the overall complexity of attention to Oleft(n^{1.5}dright) from Oleft(n^2dright) for sequence length n and hidden dimension d. We show that our model outperforms comparable sparse attention models on language modeling on Wikitext-103 (15.8 vs 18.3 perplexity) as well as on image generation on ImageNet-64 (3.43 vs 3.44 bits/dim) while using fewer self-attention layers. Additionally, we set a new state-of-the-art on the newly released PG-19 data-set, obtaining a test perplexity of 33.2 with a 22 layer Routing Transformer model trained on sequences of length 8192.

  • 4 authors
·
Mar 12, 2020 1

Faster Neighborhood Attention: Reducing the O(n^2) Cost of Self Attention at the Threadblock Level

Neighborhood attention reduces the cost of self attention by restricting each token's attention span to its nearest neighbors. This restriction, parameterized by a window size and dilation factor, draws a spectrum of possible attention patterns between linear projection and self attention. Neighborhood attention, and more generally sliding window attention patterns, have long been bounded by infrastructure, particularly in higher-rank spaces (2-D and 3-D), calling for the development of custom kernels, which have been limited in either functionality, or performance, if not both. In this work, we first show that neighborhood attention can be represented as a batched GEMM problem, similar to standard attention, and implement it for 1-D and 2-D neighborhood attention. These kernels on average provide 895% and 272% improvement in full precision latency compared to existing naive kernels for 1-D and 2-D neighborhood attention respectively. We find certain inherent inefficiencies in all unfused neighborhood attention kernels that bound their performance and lower-precision scalability. We also developed fused neighborhood attention; an adaptation of fused dot-product attention kernels that allow fine-grained control over attention across different spatial axes. Known for reducing the quadratic time complexity of self attention to a linear complexity, neighborhood attention can now enjoy a reduced and constant memory footprint, and record-breaking half precision latency. We observe that our fused kernels successfully circumvent some of the unavoidable inefficiencies in unfused implementations. While our unfused GEMM-based kernels only improve half precision performance compared to naive kernels by an average of 496% and 113% in 1-D and 2-D problems respectively, our fused kernels improve naive kernels by an average of 1607% and 581% in 1-D and 2-D problems respectively.

  • 3 authors
·
Mar 7, 2024

Scaling Local Self-Attention for Parameter Efficient Visual Backbones

Self-attention has the promise of improving computer vision systems due to parameter-independent scaling of receptive fields and content-dependent interactions, in contrast to parameter-dependent scaling and content-independent interactions of convolutions. Self-attention models have recently been shown to have encouraging improvements on accuracy-parameter trade-offs compared to baseline convolutional models such as ResNet-50. In this work, we aim to develop self-attention models that can outperform not just the canonical baseline models, but even the high-performing convolutional models. We propose two extensions to self-attention that, in conjunction with a more efficient implementation of self-attention, improve the speed, memory usage, and accuracy of these models. We leverage these improvements to develop a new self-attention model family, HaloNets, which reach state-of-the-art accuracies on the parameter-limited setting of the ImageNet classification benchmark. In preliminary transfer learning experiments, we find that HaloNet models outperform much larger models and have better inference performance. On harder tasks such as object detection and instance segmentation, our simple local self-attention and convolutional hybrids show improvements over very strong baselines. These results mark another step in demonstrating the efficacy of self-attention models on settings traditionally dominated by convolutional models.

  • 6 authors
·
Mar 23, 2021 1

The Consciousness Prior

A new prior is proposed for learning representations of high-level concepts of the kind we manipulate with language. This prior can be combined with other priors in order to help disentangling abstract factors from each other. It is inspired by cognitive neuroscience theories of consciousness, seen as a bottleneck through which just a few elements, after having been selected by attention from a broader pool, are then broadcast and condition further processing, both in perception and decision-making. The set of recently selected elements one becomes aware of is seen as forming a low-dimensional conscious state. This conscious state is combining the few concepts constituting a conscious thought, i.e., what one is immediately conscious of at a particular moment. We claim that this architectural and information-processing constraint corresponds to assumptions about the joint distribution between high-level concepts. To the extent that these assumptions are generally true (and the form of natural language seems consistent with them), they can form a useful prior for representation learning. A low-dimensional thought or conscious state is analogous to a sentence: it involves only a few variables and yet can make a statement with very high probability of being true. This is consistent with a joint distribution (over high-level concepts) which has the form of a sparse factor graph, i.e., where the dependencies captured by each factor of the factor graph involve only very few variables while creating a strong dip in the overall energy function. The consciousness prior also makes it natural to map conscious states to natural language utterances or to express classical AI knowledge in a form similar to facts and rules, albeit capturing uncertainty as well as efficient search mechanisms implemented by attention mechanisms.

  • 1 authors
·
Sep 25, 2017

ConvShareViT: Enhancing Vision Transformers with Convolutional Attention Mechanisms for Free-Space Optical Accelerators

This paper introduces ConvShareViT, a novel deep learning architecture that adapts Vision Transformers (ViTs) to the 4f free-space optical system. ConvShareViT replaces linear layers in multi-head self-attention (MHSA) and Multilayer Perceptrons (MLPs) with a depthwise convolutional layer with shared weights across input channels. Through the development of ConvShareViT, the behaviour of convolutions within MHSA and their effectiveness in learning the attention mechanism were analysed systematically. Experimental results demonstrate that certain configurations, particularly those using valid-padded shared convolutions, can successfully learn attention, achieving comparable attention scores to those obtained with standard ViTs. However, other configurations, such as those using same-padded convolutions, show limitations in attention learning and operate like regular CNNs rather than transformer models. ConvShareViT architectures are specifically optimised for the 4f optical system, which takes advantage of the parallelism and high-resolution capabilities of optical systems. Results demonstrate that ConvShareViT can theoretically achieve up to 3.04 times faster inference than GPU-based systems. This potential acceleration makes ConvShareViT an attractive candidate for future optical deep learning applications and proves that our ViT (ConvShareViT) can be employed using only the convolution operation, via the necessary optimisation of the ViT to balance performance and complexity.

  • 3 authors
·
Apr 15

Trainable Dynamic Mask Sparse Attention

In large language models, the demand for modeling long contexts is constantly increasing, but the quadratic complexity of the standard self-attention mechanism often becomes a bottleneck. Although existing sparse attention mechanisms have improved efficiency, they may still encounter issues such as static patterns or information loss. We introduce a trainable dynamic mask sparse attention mechanism, Dynamic Mask Attention, which effectively utilizes content-aware and position-aware sparsity. DMA achieves this through two key innovations: First, it dynamically generates content-aware sparse masks from value representations, enabling the model to identify and focus on critical information adaptively. Second, it implements position-aware sparse attention computation that effectively skips unnecessary calculation regions. This dual-sparsity design allows the model to significantly reduce the computational complexity of important information while retaining complete information, achieving an excellent balance between information fidelity and computational efficiency. We have verified the performance of DMA through comprehensive experiments. Comparative studies show that DMA outperforms multi-head attention, sliding window attention, multi-head latent attention, and native sparse attention in terms of perplexity under Chinchilla Scaling Law settings. Moreover, in challenging multi-query associative recall tasks, DMA also demonstrates superior performance and efficiency compared to these methods. Crucially, in the evaluation of a 1.7B parameter model, DMA significantly outperforms multi-head attention in both standard benchmark performance and the challenging needle-in-a-haystack task. These experimental results highlight its capability to balance model efficiency and long-context modeling ability effectively.

  • 7 authors
·
Aug 4 2

Edge-MoE: Memory-Efficient Multi-Task Vision Transformer Architecture with Task-level Sparsity via Mixture-of-Experts

Computer vision researchers are embracing two promising paradigms: Vision Transformers (ViTs) and Multi-task Learning (MTL), which both show great performance but are computation-intensive, given the quadratic complexity of self-attention in ViT and the need to activate an entire large MTL model for one task. M^3ViT is the latest multi-task ViT model that introduces mixture-of-experts (MoE), where only a small portion of subnetworks ("experts") are sparsely and dynamically activated based on the current task. M^3ViT achieves better accuracy and over 80% computation reduction but leaves challenges for efficient deployment on FPGA. Our work, dubbed Edge-MoE, solves the challenges to introduce the first end-to-end FPGA accelerator for multi-task ViT with a collection of architectural innovations, including (1) a novel reordering mechanism for self-attention, which requires only constant bandwidth regardless of the target parallelism; (2) a fast single-pass softmax approximation; (3) an accurate and low-cost GELU approximation; (4) a unified and flexible computing unit that is shared by almost all computational layers to maximally reduce resource usage; and (5) uniquely for M^3ViT, a novel patch reordering method to eliminate memory access overhead. Edge-MoE achieves 2.24x and 4.90x better energy efficiency comparing with GPU and CPU, respectively. A real-time video demonstration is available online, along with our open-source code written using High-Level Synthesis.

  • 5 authors
·
May 29, 2023

SinkLoRA: Enhanced Efficiency and Chat Capabilities for Long-Context Large Language Models

Extending the functionality of the Transformer model to accommodate longer sequence lengths has become a critical challenge. This extension is crucial not only for improving tasks such as language translation and long-context processing but also for enabling novel applications like chatbots, code generation, and multimedia content creation. The primary obstacle is the self-attention mechanism, which scales quadratically with sequence length in terms of computation time and memory requirements. LongLoRA proposed shifted sparse attention (S\(^2\)-Attn), effectively enabling context extension and leading to non-trivial computation savings with similar performance to fine-tuning with vanilla attention. However, LongLoRA is still not as efficient as vanilla attention, reaching only 39\% of the perplexity improvement compared to full attention. This inefficiency is due to the cyclic shift applied within different attention head patterns, causing either chaos in the attention head structure or unnecessary information exchange between token groups. To address these issues, We propose SinkLoRA, which features better work partitioning. Specifically, (1) we developed SF-Attn with a segmentation and reassembly algorithm to proportionally return cyclically shifted groups of attention heads to their un-shifted state together with global attention of "sink attention tokens", achieving 92\% of the perplexity improvement compared to full attention after fine tuning, and (2) applied a SOTA KV cache compression algorithm H_2O to accelerate inference. Furthermore, We conducted supervised fine-tuning with SinkLoRA using a self collected LongAlpaca-plus dataset. All our code, models, datasets, and demos are available at https://github.com/Dexter-GT-86/SinkLoRA.

  • 1 authors
·
Jun 9, 2024 2

ULSAM: Ultra-Lightweight Subspace Attention Module for Compact Convolutional Neural Networks

The capability of the self-attention mechanism to model the long-range dependencies has catapulted its deployment in vision models. Unlike convolution operators, self-attention offers infinite receptive field and enables compute-efficient modeling of global dependencies. However, the existing state-of-the-art attention mechanisms incur high compute and/or parameter overheads, and hence unfit for compact convolutional neural networks (CNNs). In this work, we propose a simple yet effective "Ultra-Lightweight Subspace Attention Mechanism" (ULSAM), which infers different attention maps for each feature map subspace. We argue that leaning separate attention maps for each feature subspace enables multi-scale and multi-frequency feature representation, which is more desirable for fine-grained image classification. Our method of subspace attention is orthogonal and complementary to the existing state-of-the-arts attention mechanisms used in vision models. ULSAM is end-to-end trainable and can be deployed as a plug-and-play module in the pre-existing compact CNNs. Notably, our work is the first attempt that uses a subspace attention mechanism to increase the efficiency of compact CNNs. To show the efficacy of ULSAM, we perform experiments with MobileNet-V1 and MobileNet-V2 as backbone architectures on ImageNet-1K and three fine-grained image classification datasets. We achieve approx13% and approx25% reduction in both the FLOPs and parameter counts of MobileNet-V2 with a 0.27% and more than 1% improvement in top-1 accuracy on the ImageNet-1K and fine-grained image classification datasets (respectively). Code and trained models are available at https://github.com/Nandan91/ULSAM.

  • 5 authors
·
Jun 26, 2020

Visual Search Asymmetry: Deep Nets and Humans Share Similar Inherent Biases

Visual search is a ubiquitous and often challenging daily task, exemplified by looking for the car keys at home or a friend in a crowd. An intriguing property of some classical search tasks is an asymmetry such that finding a target A among distractors B can be easier than finding B among A. To elucidate the mechanisms responsible for asymmetry in visual search, we propose a computational model that takes a target and a search image as inputs and produces a sequence of eye movements until the target is found. The model integrates eccentricity-dependent visual recognition with target-dependent top-down cues. We compared the model against human behavior in six paradigmatic search tasks that show asymmetry in humans. Without prior exposure to the stimuli or task-specific training, the model provides a plausible mechanism for search asymmetry. We hypothesized that the polarity of search asymmetry arises from experience with the natural environment. We tested this hypothesis by training the model on augmented versions of ImageNet where the biases of natural images were either removed or reversed. The polarity of search asymmetry disappeared or was altered depending on the training protocol. This study highlights how classical perceptual properties can emerge in neural network models, without the need for task-specific training, but rather as a consequence of the statistical properties of the developmental diet fed to the model. All source code and data are publicly available at https://github.com/kreimanlab/VisualSearchAsymmetry.

  • 5 authors
·
Jun 5, 2021

Visual Attention Network

While originally designed for natural language processing tasks, the self-attention mechanism has recently taken various computer vision areas by storm. However, the 2D nature of images brings three challenges for applying self-attention in computer vision. (1) Treating images as 1D sequences neglects their 2D structures. (2) The quadratic complexity is too expensive for high-resolution images. (3) It only captures spatial adaptability but ignores channel adaptability. In this paper, we propose a novel linear attention named large kernel attention (LKA) to enable self-adaptive and long-range correlations in self-attention while avoiding its shortcomings. Furthermore, we present a neural network based on LKA, namely Visual Attention Network (VAN). While extremely simple, VAN surpasses similar size vision transformers(ViTs) and convolutional neural networks(CNNs) in various tasks, including image classification, object detection, semantic segmentation, panoptic segmentation, pose estimation, etc. For example, VAN-B6 achieves 87.8% accuracy on ImageNet benchmark and set new state-of-the-art performance (58.2 PQ) for panoptic segmentation. Besides, VAN-B2 surpasses Swin-T 4% mIoU (50.1 vs. 46.1) for semantic segmentation on ADE20K benchmark, 2.6% AP (48.8 vs. 46.2) for object detection on COCO dataset. It provides a novel method and a simple yet strong baseline for the community. Code is available at https://github.com/Visual-Attention-Network.

  • 5 authors
·
Feb 20, 2022

Music Transformer

Music relies heavily on repetition to build structure and meaning. Self-reference occurs on multiple timescales, from motifs to phrases to reusing of entire sections of music, such as in pieces with ABA structure. The Transformer (Vaswani et al., 2017), a sequence model based on self-attention, has achieved compelling results in many generation tasks that require maintaining long-range coherence. This suggests that self-attention might also be well-suited to modeling music. In musical composition and performance, however, relative timing is critically important. Existing approaches for representing relative positional information in the Transformer modulate attention based on pairwise distance (Shaw et al., 2018). This is impractical for long sequences such as musical compositions since their memory complexity for intermediate relative information is quadratic in the sequence length. We propose an algorithm that reduces their intermediate memory requirement to linear in the sequence length. This enables us to demonstrate that a Transformer with our modified relative attention mechanism can generate minute-long compositions (thousands of steps, four times the length modeled in Oore et al., 2018) with compelling structure, generate continuations that coherently elaborate on a given motif, and in a seq2seq setup generate accompaniments conditioned on melodies. We evaluate the Transformer with our relative attention mechanism on two datasets, JSB Chorales and Piano-e-Competition, and obtain state-of-the-art results on the latter.

  • 10 authors
·
Sep 12, 2018

Language Models Are Capable of Metacognitive Monitoring and Control of Their Internal Activations

Large language models (LLMs) can sometimes report the strategies they actually use to solve tasks, but they can also fail to do so. This suggests some degree of metacognition -- the capacity to monitor one's own cognitive processes for subsequent reporting and self-control. Metacognitive abilities enhance AI capabilities but raise safety concerns, as models might obscure their internal processes to evade neural-activation-based oversight mechanisms designed to detect harmful behaviors. Given society's increased reliance on these models, it is critical that we understand the limits of their metacognitive abilities, particularly their ability to monitor their internal activations. To address this, we introduce a neuroscience-inspired neurofeedback paradigm designed to quantify the ability of LLMs to explicitly report and control their activation patterns. By presenting models with sentence-label pairs where labels correspond to sentence-elicited internal activations along specific directions in the neural representation space, we demonstrate that LLMs can learn to report and control these activations. The performance varies with several factors: the number of example pairs provided, the semantic interpretability of the target neural direction, and the variance explained by that direction. These results reveal a "metacognitive space" with dimensionality much lower than the model's neural space, suggesting LLMs can monitor only a subset of their neural mechanisms. Our findings provide empirical evidence quantifying metacognitive capabilities in LLMs, with significant implications for AI safety.

  • 5 authors
·
May 19

Understanding Transformers through the Lens of Pavlovian Conditioning

Transformer architectures have revolutionized artificial intelligence (AI) through their attention mechanisms, yet the computational principles underlying their success remain opaque. We present a novel theoretical framework that reinterprets the core computation of attention as Pavlovian conditioning. Our model finds a direct mathematical analogue in linear attention, which simplifies the analysis of the underlying associative process. We demonstrate that attention's queries, keys, and values can be mapped to the three elements of classical conditioning: test stimuli that probe associations, conditional stimuli (CS) that serve as retrieval cues, and unconditional stimuli (US) that contain response information. Through this lens, we suggest that each attention operation constructs a transient associative memory via a Hebbian rule, where CS-US pairs form dynamic associations that test stimuli can later retrieve. Our framework yields several theoretical insights grounded in this linearized model: (1) a capacity theorem showing that attention heads can store O(d_k) associations before interference degrades retrieval; (2) an error propagation analysis revealing fundamental architectural trade-offs of balancing model depth, width, and head redundancy to maintain reliability; and (3) an understanding of how biologically plausible learning rules could enhance transformer architectures. By establishing this deep connection, we suggest that the success of modern AI may stem not from architectural novelty alone, but from implementing computational principles that biology optimized over millions of years of evolution.

  • 1 authors
·
Aug 5

Attention, Please! Revisiting Attentive Probing for Masked Image Modeling

As fine-tuning (FT) becomes increasingly impractical at scale, probing is emerging as the preferred evaluation protocol for self-supervised learning (SSL). Yet, the standard linear probing (LP) fails to adequately reflect the potential of models trained with Masked Image Modeling (MIM), due to the distributed nature of patch tokens. This motivates the need for attentive probing, an alternative that uses attention to selectively aggregate patch-level features. Despite its growing adoption, attentive probing remains under-explored, with existing methods suffering from excessive parameterization and poor computational efficiency. In this work, we revisit attentive probing through the lens of the accuracy-efficiency trade-off. We conduct a systematic study of existing methods, analyzing their mechanisms and benchmarking their performance. We introduce efficient probing (EP), a multi-query cross-attention mechanism that eliminates redundant projections, reduces the number of trainable parameters, and achieves up to a 10times speed-up over conventional multi-head attention. Despite its simplicity, EP outperforms LP and prior attentive probing approaches across seven benchmarks, generalizes well beyond MIM to diverse pre-training paradigms, produces interpretable attention maps, and achieves strong gains in low-shot and layer-wise settings. Code available at https://github.com/billpsomas/efficient-probing.

  • 9 authors
·
Jun 11 2

OAT: Object-Level Attention Transformer for Gaze Scanpath Prediction

Visual search is important in our daily life. The efficient allocation of visual attention is critical to effectively complete visual search tasks. Prior research has predominantly modelled the spatial allocation of visual attention in images at the pixel level, e.g. using a saliency map. However, emerging evidence shows that visual attention is guided by objects rather than pixel intensities. This paper introduces the Object-level Attention Transformer (OAT), which predicts human scanpaths as they search for a target object within a cluttered scene of distractors. OAT uses an encoder-decoder architecture. The encoder captures information about the position and appearance of the objects within an image and about the target. The decoder predicts the gaze scanpath as a sequence of object fixations, by integrating output features from both the encoder and decoder. We also propose a new positional encoding that better reflects spatial relationships between objects. We evaluated OAT on the Amazon book cover dataset and a new dataset for visual search that we collected. OAT's predicted gaze scanpaths align more closely with human gaze patterns, compared to predictions by algorithms based on spatial attention on both established metrics and a novel behavioural-based metric. Our results demonstrate the generalization ability of OAT, as it accurately predicts human scanpaths for unseen layouts and target objects.

  • 5 authors
·
Jul 18, 2024

Generalized Neighborhood Attention: Multi-dimensional Sparse Attention at the Speed of Light

Many sparse attention mechanisms such as Neighborhood Attention have typically failed to consistently deliver speedup over the self attention baseline. This is largely due to the level of complexity in attention infrastructure, and the rapid evolution of AI hardware architecture. At the same time, many state-of-the-art foundational models, particularly in computer vision, are heavily bound by attention, and need reliable sparsity to escape the O(n^2) complexity. In this paper, we study a class of promising sparse attention mechanisms that focus on locality, and aim to develop a better analytical model of their performance improvements. We first introduce Generalized Neighborhood Attention (GNA), which can describe sliding window, strided sliding window, and blocked attention. We then consider possible design choices in implementing these approaches, and create a simulator that can provide much more realistic speedup upper bounds for any given setting. Finally, we implement GNA on top of a state-of-the-art fused multi-headed attention (FMHA) kernel designed for the NVIDIA Blackwell architecture in CUTLASS. Our implementation can fully realize the maximum speedup theoretically possible in many perfectly block-sparse cases, and achieves an effective utilization of 1.3 petaFLOPs/second in FP16. In addition, we plug various GNA configurations into off-the-shelf generative models, such as Cosmos-7B, HunyuanVideo, and FLUX, and show that it can deliver 28% to 46% end-to-end speedup on B200 without any fine-tuning. We will open source our simulator and Blackwell kernels directly through the NATTEN project.

  • 16 authors
·
Apr 23

PrimeComposer: Faster Progressively Combined Diffusion for Image Composition with Attention Steering

Image composition involves seamlessly integrating given objects into a specific visual context. Current training-free methods rely on composing attention weights from several samplers to guide the generator. However, since these weights are derived from disparate contexts, their combination leads to coherence confusion and loss of appearance information. These issues worsen with their excessive focus on background generation, even when unnecessary in this task. This not only impedes their swift implementation but also compromises foreground generation quality. Moreover, these methods introduce unwanted artifacts in the transition area. In this paper, we formulate image composition as a subject-based local editing task, solely focusing on foreground generation. At each step, the edited foreground is combined with the noisy background to maintain scene consistency. To address the remaining issues, we propose PrimeComposer, a faster training-free diffuser that composites the images by well-designed attention steering across different noise levels. This steering is predominantly achieved by our Correlation Diffuser, utilizing its self-attention layers at each step. Within these layers, the synthesized subject interacts with both the referenced object and background, capturing intricate details and coherent relationships. This prior information is encoded into the attention weights, which are then integrated into the self-attention layers of the generator to guide the synthesis process. Besides, we introduce a Region-constrained Cross-Attention to confine the impact of specific subject-related tokens to desired regions, addressing the unwanted artifacts shown in the prior method thereby further improving the coherence in the transition area. Our method exhibits the fastest inference efficiency and extensive experiments demonstrate our superiority both qualitatively and quantitatively.

  • 4 authors
·
Mar 7, 2024

How Does Attention Work in Vision Transformers? A Visual Analytics Attempt

Vision transformer (ViT) expands the success of transformer models from sequential data to images. The model decomposes an image into many smaller patches and arranges them into a sequence. Multi-head self-attentions are then applied to the sequence to learn the attention between patches. Despite many successful interpretations of transformers on sequential data, little effort has been devoted to the interpretation of ViTs, and many questions remain unanswered. For example, among the numerous attention heads, which one is more important? How strong are individual patches attending to their spatial neighbors in different heads? What attention patterns have individual heads learned? In this work, we answer these questions through a visual analytics approach. Specifically, we first identify what heads are more important in ViTs by introducing multiple pruning-based metrics. Then, we profile the spatial distribution of attention strengths between patches inside individual heads, as well as the trend of attention strengths across attention layers. Third, using an autoencoder-based learning solution, we summarize all possible attention patterns that individual heads could learn. Examining the attention strengths and patterns of the important heads, we answer why they are important. Through concrete case studies with experienced deep learning experts on multiple ViTs, we validate the effectiveness of our solution that deepens the understanding of ViTs from head importance, head attention strength, and head attention pattern.

  • 8 authors
·
Mar 23, 2023

See What You Are Told: Visual Attention Sink in Large Multimodal Models

Large multimodal models (LMMs) "see" images by leveraging the attention mechanism between text and visual tokens in the transformer decoder. Ideally, these models should focus on key visual information relevant to the text token. However, recent findings indicate that LMMs have an extraordinary tendency to consistently allocate high attention weights to specific visual tokens, even when these tokens are irrelevant to the corresponding text. In this study, we investigate the property behind the appearance of these irrelevant visual tokens and examine their characteristics. Our findings show that this behavior arises due to the massive activation of certain hidden state dimensions, which resembles the attention sink found in language models. Hence, we refer to this phenomenon as the visual attention sink. In particular, our analysis reveals that removing the irrelevant visual sink tokens does not impact model performance, despite receiving high attention weights. Consequently, we recycle the attention to these tokens as surplus resources, redistributing the attention budget to enhance focus on the image. To achieve this, we introduce Visual Attention Redistribution (VAR), a method that redistributes attention in image-centric heads, which we identify as innately focusing on visual information. VAR can be seamlessly applied across different LMMs to improve performance on a wide range of tasks, including general vision-language tasks, visual hallucination tasks, and vision-centric tasks, all without the need for additional training, models, or inference steps. Experimental results demonstrate that VAR enables LMMs to process visual information more effectively by adjusting their internal attention mechanisms, offering a new direction to enhancing the multimodal capabilities of LMMs.

  • 4 authors
·
Mar 5

Fixing Imbalanced Attention to Mitigate In-Context Hallucination of Large Vision-Language Model

Large Vision Language Models (LVLMs) have demonstrated remarkable capabilities in understanding and describing visual content, achieving state-of-the-art performance across various vision-language tasks. However, these models frequently exhibit hallucination behavior, where they generate descriptions containing objects or details absent in the input image. Our work investigates this phenomenon by analyzing attention patterns across transformer layers and heads, revealing that hallucinations often stem from progressive degradation of visual grounding in deeper layers. We propose a novel attention modification approach that combines selective token emphasis and head-specific modulation to maintain visual grounding throughout the generation process. Our method introduces two key components: (1) a dual-stream token selection mechanism that identifies and prioritizes both locally informative and spatially significant visual tokens, and (2) an attention head-specific modulation strategy that differentially amplifies visual information processing based on measured visual sensitivity of individual attention heads. Through extensive experimentation on the MSCOCO dataset, we demonstrate that our approach reduces hallucination rates by up to 62.3\% compared to baseline models while maintaining comparable task performance. Our analysis reveals that selectively modulating tokens across attention heads with varying levels of visual sensitivity can significantly improve visual grounding without requiring model retraining.

  • 5 authors
·
Jan 21 2

Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer

Transformer architecture has shown impressive performance in multiple research domains and has become the backbone of many neural network models. However, there is limited understanding on how it works. In particular, with a simple predictive loss, how the representation emerges from the gradient training dynamics remains a mystery. In this paper, for 1-layer transformer with one self-attention layer plus one decoder layer, we analyze its SGD training dynamics for the task of next token prediction in a mathematically rigorous manner. We open the black box of the dynamic process of how the self-attention layer combines input tokens, and reveal the nature of underlying inductive bias. More specifically, with the assumption (a) no positional encoding, (b) long input sequence, and (c) the decoder layer learns faster than the self-attention layer, we prove that self-attention acts as a discriminative scanning algorithm: starting from uniform attention, it gradually attends more to distinct key tokens for a specific next token to be predicted, and pays less attention to common key tokens that occur across different next tokens. Among distinct tokens, it progressively drops attention weights, following the order of low to high co-occurrence between the key and the query token in the training set. Interestingly, this procedure does not lead to winner-takes-all, but decelerates due to a phase transition that is controllable by the learning rates of the two layers, leaving (almost) fixed token combination. We verify this \emph{scan and snap} dynamics on synthetic and real-world data (WikiText).

  • 4 authors
·
May 25, 2023

MEDUSA: Multi-scale Encoder-Decoder Self-Attention Deep Neural Network Architecture for Medical Image Analysis

Medical image analysis continues to hold interesting challenges given the subtle characteristics of certain diseases and the significant overlap in appearance between diseases. In this work, we explore the concept of self-attention for tackling such subtleties in and between diseases. To this end, we introduce MEDUSA, a multi-scale encoder-decoder self-attention mechanism tailored for medical image analysis. While self-attention deep convolutional neural network architectures in existing literature center around the notion of multiple isolated lightweight attention mechanisms with limited individual capacities being incorporated at different points in the network architecture, MEDUSA takes a significant departure from this notion by possessing a single, unified self-attention mechanism with significantly higher capacity with multiple attention heads feeding into different scales in the network architecture. To the best of the authors' knowledge, this is the first "single body, multi-scale heads" realization of self-attention and enables explicit global context amongst selective attention at different levels of representational abstractions while still enabling differing local attention context at individual levels of abstractions. With MEDUSA, we obtain state-of-the-art performance on multiple challenging medical image analysis benchmarks including COVIDx, RSNA RICORD, and RSNA Pneumonia Challenge when compared to previous work. Our MEDUSA model is publicly available.

  • 7 authors
·
Oct 12, 2021

End-to-End Visual Autonomous Parking via Control-Aided Attention

Precise parking requires an end-to-end system where perception adaptively provides policy-relevant details-especially in critical areas where fine control decisions are essential. End-to-end learning offers a unified framework by directly mapping sensor inputs to control actions, but existing approaches lack effective synergy between perception and control. We find that transformer-based self-attention, when used alone, tends to produce unstable and temporally inconsistent spatial attention, which undermines the reliability of downstream policy decisions over time. Instead, we propose CAA-Policy, an end-to-end imitation learning system that allows control signal to guide the learning of visual attention via a novel Control-Aided Attention (CAA) mechanism. For the first time, we train such an attention module in a self-supervised manner, using backpropagated gradients from the control outputs instead of from the training loss. This strategy encourages the attention to focus on visual features that induce high variance in action outputs, rather than merely minimizing the training loss-a shift we demonstrate leads to a more robust and generalizable policy. To further enhance stability, CAA-Policy integrates short-horizon waypoint prediction as an auxiliary task, and introduces a separately trained motion prediction module to robustly track the target spot over time. Extensive experiments in the CARLA simulator show that \titlevariable~consistently surpasses both the end-to-end learning baseline and the modular BEV segmentation + hybrid A* pipeline, achieving superior accuracy, robustness, and interpretability. Code is released at https://github.com/Joechencc/CAAPolicy.

  • 10 authors
·
Sep 14

PowerAttention: Exponentially Scaling of Receptive Fields for Effective Sparse Attention

Large Language Models (LLMs) face efficiency bottlenecks due to the quadratic complexity of the attention mechanism when processing long contexts. Sparse attention methods offer a promising solution, but existing approaches often suffer from incomplete effective context and/or require complex implementation of pipeline. We present a comprehensive analysis of sparse attention for autoregressive LLMs from the respective of receptive field, recognize the suboptimal nature of existing methods for expanding the receptive field, and introduce PowerAttention, a novel sparse attention design that facilitates effective and complete context extension through the theoretical analysis. PowerAttention achieves exponential receptive field growth in d-layer LLMs, allowing each output token to attend to 2^d tokens, ensuring completeness and continuity of the receptive field. Experiments demonstrate that PowerAttention outperforms existing static sparse attention methods by 5sim 40%, especially on tasks demanding long-range dependencies like Passkey Retrieval and RULER, while maintaining a comparable time complexity to sliding window attention. Efficiency evaluations further highlight PowerAttention's superior speedup in both prefilling and decoding phases compared with dynamic sparse attentions and full attention (3.0times faster on 128K context), making it a highly effective and user-friendly solution for processing long sequences in LLMs.

  • 11 authors
·
Mar 5

Cracking the Code of Hallucination in LVLMs with Vision-aware Head Divergence

Large vision-language models (LVLMs) have made substantial progress in integrating large language models (LLMs) with visual inputs, enabling advanced multimodal reasoning. Despite their success, a persistent challenge is hallucination-where generated text fails to accurately reflect visual content-undermining both accuracy and reliability. Existing methods focus on alignment training or decoding refinements but primarily address symptoms at the generation stage without probing the underlying causes. In this work, we investigate the internal mechanisms driving hallucination in LVLMs, with an emphasis on the multi-head attention module. Specifically, we introduce Vision-aware Head Divergence (VHD), a metric that quantifies the sensitivity of attention head outputs to visual context. Based on this, our findings reveal the presence of vision-aware attention heads that are more attuned to visual information; however, the model's overreliance on its prior language patterns is closely related to hallucinations. Building on these insights, we propose Vision-aware Head Reinforcement (VHR), a training-free approach to mitigate hallucination by enhancing the role of vision-aware attention heads. Extensive experiments demonstrate that our method achieves superior performance compared to state-of-the-art approaches in mitigating hallucinations, while maintaining high efficiency with negligible additional time overhead.

  • 9 authors
·
Dec 18, 2024

Dual Cross-Attention Learning for Fine-Grained Visual Categorization and Object Re-Identification

Recently, self-attention mechanisms have shown impressive performance in various NLP and CV tasks, which can help capture sequential characteristics and derive global information. In this work, we explore how to extend self-attention modules to better learn subtle feature embeddings for recognizing fine-grained objects, e.g., different bird species or person identities. To this end, we propose a dual cross-attention learning (DCAL) algorithm to coordinate with self-attention learning. First, we propose global-local cross-attention (GLCA) to enhance the interactions between global images and local high-response regions, which can help reinforce the spatial-wise discriminative clues for recognition. Second, we propose pair-wise cross-attention (PWCA) to establish the interactions between image pairs. PWCA can regularize the attention learning of an image by treating another image as distractor and will be removed during inference. We observe that DCAL can reduce misleading attentions and diffuse the attention response to discover more complementary parts for recognition. We conduct extensive evaluations on fine-grained visual categorization and object re-identification. Experiments demonstrate that DCAL performs on par with state-of-the-art methods and consistently improves multiple self-attention baselines, e.g., surpassing DeiT-Tiny and ViT-Base by 2.8% and 2.4% mAP on MSMT17, respectively.

  • 6 authors
·
May 4, 2022

Sequence Parallelism: Long Sequence Training from System Perspective

Transformer achieves promising results on various tasks. However, self-attention suffers from quadratic memory requirements with respect to the sequence length. Existing work focuses on reducing time and space complexity from an algorithm perspective. In this work, we propose sequence parallelism, a memory-efficient parallelism method to help us break input sequence length limitation and train with longer sequences on GPUs efficiently. Our approach is compatible with most existing parallelisms (e.g. data parallelism, pipeline parallelism and tensor parallelism), which means our sequence parallelism makes 4D parallelism possible. More importantly, we no longer require a single device to hold the whole sequence. That is, with sparse attention, our sequence parallelism enables us to train transformer with infinite long sequence. Specifically, we split the input sequence into multiple chunks and feed each chunk into its corresponding device (i.e. GPU). To compute the attention output, we integrated ring-style communication with self-attention calculation and proposed Ring Self-Attention (RSA). Experiments show that sequence parallelism performs well when scaling with batch size and sequence length. Compared with tensor parallelism, our approach achieved 13.7times and 3.0times maximum batch size and sequence length respectively when scaling up to 64 NVIDIA P100 GPUs. With sparse attention, sequence can handle sequence with over 114K tokens, which is over 27times longer than existing sparse attention works holding the whole sequence on a single device.

  • 5 authors
·
May 26, 2021

Multi-dimensional Visual Prompt Enhanced Image Restoration via Mamba-Transformer Aggregation

Recent efforts on image restoration have focused on developing "all-in-one" models that can handle different degradation types and levels within single model. However, most of mainstream Transformer-based ones confronted with dilemma between model capabilities and computation burdens, since self-attention mechanism quadratically increase in computational complexity with respect to image size, and has inadequacies in capturing long-range dependencies. Most of Mamba-related ones solely scanned feature map in spatial dimension for global modeling, failing to fully utilize information in channel dimension. To address aforementioned problems, this paper has proposed to fully utilize complementary advantages from Mamba and Transformer without sacrificing computation efficiency. Specifically, the selective scanning mechanism of Mamba is employed to focus on spatial modeling, enabling capture long-range spatial dependencies under linear complexity. The self-attention mechanism of Transformer is applied to focus on channel modeling, avoiding high computation burdens that are in quadratic growth with image's spatial dimensions. Moreover, to enrich informative prompts for effective image restoration, multi-dimensional prompt learning modules are proposed to learn prompt-flows from multi-scale encoder/decoder layers, benefiting for revealing underlying characteristic of various degradations from both spatial and channel perspectives, therefore, enhancing the capabilities of "all-in-one" model to solve various restoration tasks. Extensive experiment results on several image restoration benchmark tasks such as image denoising, dehazing, and deraining, have demonstrated that the proposed method can achieve new state-of-the-art performance, compared with many popular mainstream methods. Related source codes and pre-trained parameters will be public on github https://github.com/12138-chr/MTAIR.

  • 5 authors
·
Dec 20, 2024

Focus the Discrepancy: Intra- and Inter-Correlation Learning for Image Anomaly Detection

Humans recognize anomalies through two aspects: larger patch-wise representation discrepancies and weaker patch-to-normal-patch correlations. However, the previous AD methods didn't sufficiently combine the two complementary aspects to design AD models. To this end, we find that Transformer can ideally satisfy the two aspects as its great power in the unified modeling of patch-wise representations and patch-to-patch correlations. In this paper, we propose a novel AD framework: FOcus-the-Discrepancy (FOD), which can simultaneously spot the patch-wise, intra- and inter-discrepancies of anomalies. The major characteristic of our method is that we renovate the self-attention maps in transformers to Intra-Inter-Correlation (I2Correlation). The I2Correlation contains a two-branch structure to first explicitly establish intra- and inter-image correlations, and then fuses the features of two-branch to spotlight the abnormal patterns. To learn the intra- and inter-correlations adaptively, we propose the RBF-kernel-based target-correlations as learning targets for self-supervised learning. Besides, we introduce an entropy constraint strategy to solve the mode collapse issue in optimization and further amplify the normal-abnormal distinguishability. Extensive experiments on three unsupervised real-world AD benchmarks show the superior performance of our approach. Code will be available at https://github.com/xcyao00/FOD.

  • 5 authors
·
Aug 5, 2023

MindBridge: A Cross-Subject Brain Decoding Framework

Brain decoding, a pivotal field in neuroscience, aims to reconstruct stimuli from acquired brain signals, primarily utilizing functional magnetic resonance imaging (fMRI). Currently, brain decoding is confined to a per-subject-per-model paradigm, limiting its applicability to the same individual for whom the decoding model is trained. This constraint stems from three key challenges: 1) the inherent variability in input dimensions across subjects due to differences in brain size; 2) the unique intrinsic neural patterns, influencing how different individuals perceive and process sensory information; 3) limited data availability for new subjects in real-world scenarios hampers the performance of decoding models. In this paper, we present a novel approach, MindBridge, that achieves cross-subject brain decoding by employing only one model. Our proposed framework establishes a generic paradigm capable of addressing these challenges by introducing biological-inspired aggregation function and novel cyclic fMRI reconstruction mechanism for subject-invariant representation learning. Notably, by cycle reconstruction of fMRI, MindBridge can enable novel fMRI synthesis, which also can serve as pseudo data augmentation. Within the framework, we also devise a novel reset-tuning method for adapting a pretrained model to a new subject. Experimental results demonstrate MindBridge's ability to reconstruct images for multiple subjects, which is competitive with dedicated subject-specific models. Furthermore, with limited data for a new subject, we achieve a high level of decoding accuracy, surpassing that of subject-specific models. This advancement in cross-subject brain decoding suggests promising directions for wider applications in neuroscience and indicates potential for more efficient utilization of limited fMRI data in real-world scenarios. Project page: https://littlepure2333.github.io/MindBridge

  • 4 authors
·
Apr 11, 2024

TiC: Exploring Vision Transformer in Convolution

While models derived from Vision Transformers (ViTs) have been phonemically surging, pre-trained models cannot seamlessly adapt to arbitrary resolution images without altering the architecture and configuration, such as sampling the positional encoding, limiting their flexibility for various vision tasks. For instance, the Segment Anything Model (SAM) based on ViT-Huge requires all input images to be resized to 1024times1024. To overcome this limitation, we propose the Multi-Head Self-Attention Convolution (MSA-Conv) that incorporates Self-Attention within generalized convolutions, including standard, dilated, and depthwise ones. Enabling transformers to handle images of varying sizes without retraining or rescaling, the use of MSA-Conv further reduces computational costs compared to global attention in ViT, which grows costly as image size increases. Later, we present the Vision Transformer in Convolution (TiC) as a proof of concept for image classification with MSA-Conv, where two capacity enhancing strategies, namely Multi-Directional Cyclic Shifted Mechanism and Inter-Pooling Mechanism, have been proposed, through establishing long-distance connections between tokens and enlarging the effective receptive field. Extensive experiments have been carried out to validate the overall effectiveness of TiC. Additionally, ablation studies confirm the performance improvement made by MSA-Conv and the two capacity enhancing strategies separately. Note that our proposal aims at studying an alternative to the global attention used in ViT, while MSA-Conv meets our goal by making TiC comparable to state-of-the-art on ImageNet-1K. Code will be released at https://github.com/zs670980918/MSA-Conv.

  • 4 authors
·
Oct 6, 2023

Improving Multi-Subject Consistency in Open-Domain Image Generation with Isolation and Reposition Attention

Training-free diffusion models have achieved remarkable progress in generating multi-subject consistent images within open-domain scenarios. The key idea of these methods is to incorporate reference subject information within the attention layer. However, existing methods still obtain suboptimal performance when handling numerous subjects. This paper reveals the two primary issues contributing to this deficiency. Firstly, there is undesired interference among different subjects within the target image. Secondly, tokens tend to reference nearby tokens, which reduces the effectiveness of the attention mechanism when there is a significant positional difference between subjects in reference and target images. To address these challenges, we propose a training-free diffusion model with Isolation and Reposition Attention, named IR-Diffusion. Specifically, Isolation Attention ensures that multiple subjects in the target image do not reference each other, effectively eliminating the subject fusion. On the other hand, Reposition Attention involves scaling and repositioning subjects in both reference and target images to the same position within the images. This ensures that subjects in the target image can better reference those in the reference image, thereby maintaining better consistency. Extensive experiments demonstrate that the proposed methods significantly enhance multi-subject consistency, outperforming all existing methods in open-domain scenarios.

  • 7 authors
·
Nov 28, 2024

Beyond the Surface: Measuring Self-Preference in LLM Judgments

Recent studies show that large language models (LLMs) exhibit self-preference bias when serving as judges, meaning they tend to favor their own responses over those generated by other models. Existing methods typically measure this bias by calculating the difference between the scores a judge model assigns to its own responses and those it assigns to responses from other models. However, this approach conflates self-preference bias with response quality, as higher-quality responses from the judge model may also lead to positive score differences, even in the absence of bias. To address this issue, we introduce gold judgments as proxies for the actual quality of responses and propose the DBG score, which measures self-preference bias as the difference between the scores assigned by the judge model to its own responses and the corresponding gold judgments. Since gold judgments reflect true response quality, the DBG score mitigates the confounding effect of response quality on bias measurement. Using the DBG score, we conduct comprehensive experiments to assess self-preference bias across LLMs of varying versions, sizes, and reasoning abilities. Additionally, we investigate two factors that influence and help alleviate self-preference bias: response text style and the post-training data of judge models. Finally, we explore potential underlying mechanisms of self-preference bias from an attention-based perspective. Our code and data are available at https://github.com/zhiyuanc2001/self-preference.

  • 5 authors
·
Jun 3 2

Region Attention Transformer for Medical Image Restoration

Transformer-based methods have demonstrated impressive results in medical image restoration, attributed to the multi-head self-attention (MSA) mechanism in the spatial dimension. However, the majority of existing Transformers conduct attention within fixed and coarsely partitioned regions (e.g. the entire image or fixed patches), resulting in interference from irrelevant regions and fragmentation of continuous image content. To overcome these challenges, we introduce a novel Region Attention Transformer (RAT) that utilizes a region-based multi-head self-attention mechanism (R-MSA). The R-MSA dynamically partitions the input image into non-overlapping semantic regions using the robust Segment Anything Model (SAM) and then performs self-attention within these regions. This region partitioning is more flexible and interpretable, ensuring that only pixels from similar semantic regions complement each other, thereby eliminating interference from irrelevant regions. Moreover, we introduce a focal region loss to guide our model to adaptively focus on recovering high-difficulty regions. Extensive experiments demonstrate the effectiveness of RAT in various medical image restoration tasks, including PET image synthesis, CT image denoising, and pathological image super-resolution. Code is available at https://github.com/Yaziwel/Region-Attention-Transformer-for-Medical-Image-Restoration.git{https://github.com/RAT}.

  • 8 authors
·
Jul 12, 2024

Bridging the Divide: Reconsidering Softmax and Linear Attention

Widely adopted in modern Vision Transformer designs, Softmax attention can effectively capture long-range visual information; however, it incurs excessive computational cost when dealing with high-resolution inputs. In contrast, linear attention naturally enjoys linear complexity and has great potential to scale up to higher-resolution images. Nonetheless, the unsatisfactory performance of linear attention greatly limits its practical application in various scenarios. In this paper, we take a step forward to close the gap between the linear and Softmax attention with novel theoretical analyses, which demystify the core factors behind the performance deviations. Specifically, we present two key perspectives to understand and alleviate the limitations of linear attention: the injective property and the local modeling ability. Firstly, we prove that linear attention is not injective, which is prone to assign identical attention weights to different query vectors, thus adding to severe semantic confusion since different queries correspond to the same outputs. Secondly, we confirm that effective local modeling is essential for the success of Softmax attention, in which linear attention falls short. The aforementioned two fundamental differences significantly contribute to the disparities between these two attention paradigms, which is demonstrated by our substantial empirical validation in the paper. In addition, more experiment results indicate that linear attention, as long as endowed with these two properties, can outperform Softmax attention across various tasks while maintaining lower computation complexity. Code is available at https://github.com/LeapLabTHU/InLine.

  • 9 authors
·
Dec 9, 2024

Internal Consistency and Self-Feedback in Large Language Models: A Survey

Large language models (LLMs) are expected to respond accurately but often exhibit deficient reasoning or generate hallucinatory content. To address these, studies prefixed with ``Self-'' such as Self-Consistency, Self-Improve, and Self-Refine have been initiated. They share a commonality: involving LLMs evaluating and updating itself to mitigate the issues. Nonetheless, these efforts lack a unified perspective on summarization, as existing surveys predominantly focus on categorization without examining the motivations behind these works. In this paper, we summarize a theoretical framework, termed Internal Consistency, which offers unified explanations for phenomena such as the lack of reasoning and the presence of hallucinations. Internal Consistency assesses the coherence among LLMs' latent layer, decoding layer, and response layer based on sampling methodologies. Expanding upon the Internal Consistency framework, we introduce a streamlined yet effective theoretical framework capable of mining Internal Consistency, named Self-Feedback. The Self-Feedback framework consists of two modules: Self-Evaluation and Self-Update. This framework has been employed in numerous studies. We systematically classify these studies by tasks and lines of work; summarize relevant evaluation methods and benchmarks; and delve into the concern, ``Does Self-Feedback Really Work?'' We propose several critical viewpoints, including the ``Hourglass Evolution of Internal Consistency'', ``Consistency Is (Almost) Correctness'' hypothesis, and ``The Paradox of Latent and Explicit Reasoning''. Furthermore, we outline promising directions for future research. We have open-sourced the experimental code, reference list, and statistical data, available at https://github.com/IAAR-Shanghai/ICSFSurvey.

  • 9 authors
·
Jul 19, 2024 9

RE-Searcher: Robust Agentic Search with Goal-oriented Planning and Self-reflection

Large language models (LLMs) excel at knowledge-intensive question answering and reasoning, yet their real-world deployment remains constrained by knowledge cutoff, hallucination, and limited interaction modalities. Augmenting LLMs with external search tools helps alleviate these issues, but it also exposes agents to a complex search environment in which small, plausible variations in query formulation can steer reasoning into unproductive trajectories and amplify errors. We present a systematic analysis that quantifies how environmental complexity induces fragile search behaviors and, in turn, degrades overall performance. To address this challenge, we propose a simple yet effective approach to instantiate a search agent, RE-Searcher. During search, RE-Searcher explicitly articulates a concrete search goal and subsequently reflects on whether the retrieved evidence satisfies that goal. This combination of goal-oriented planning and self-reflection enables RE-Searcher to resist spurious cues in complex search environments and perform robust search. Extensive experiments show that our method improves search accuracy and achieves state-of-the-art results. Perturbation studies further demonstrate substantial resilience to noisy or misleading external signals, mitigating the fragility of the search process. We believe these findings offer practical guidance for integrating LLM-powered agents into more complex interactive environments and enabling more autonomous decision-making.

  • 14 authors
·
Sep 30

Class Semantics-based Attention for Action Detection

Action localization networks are often structured as a feature encoder sub-network and a localization sub-network, where the feature encoder learns to transform an input video to features that are useful for the localization sub-network to generate reliable action proposals. While some of the encoded features may be more useful for generating action proposals, prior action localization approaches do not include any attention mechanism that enables the localization sub-network to attend more to the more important features. In this paper, we propose a novel attention mechanism, the Class Semantics-based Attention (CSA), that learns from the temporal distribution of semantics of action classes present in an input video to find the importance scores of the encoded features, which are used to provide attention to the more useful encoded features. We demonstrate on two popular action detection datasets that incorporating our novel attention mechanism provides considerable performance gains on competitive action detection models (e.g., around 6.2% improvement over BMN action detection baseline to obtain 47.5% mAP on the THUMOS-14 dataset), and a new state-of-the-art of 36.25% mAP on the ActivityNet v1.3 dataset. Further, the CSA localization model family which includes BMN-CSA, was part of the second-placed submission at the 2021 ActivityNet action localization challenge. Our attention mechanism outperforms prior self-attention modules such as the squeeze-and-excitation in action detection task. We also observe that our attention mechanism is complementary to such self-attention modules in that performance improvements are seen when both are used together.

  • 6 authors
·
Sep 6, 2021

Comprehension Without Competence: Architectural Limits of LLMs in Symbolic Computation and Reasoning

Large Language Models (LLMs) display striking surface fluency yet systematically fail at tasks requiring symbolic reasoning, arithmetic accuracy, and logical consistency. This paper offers a structural diagnosis of such failures, revealing a persistent gap between comprehension and competence. Through controlled experiments and architectural analysis, we demonstrate that LLMs often articulate correct principles without reliably applying them--a failure rooted not in knowledge access, but in computational execution. We term this phenomenon the computational split-brain syndrome, where instruction and action pathways are geometrically and functionally dissociated. This core limitation recurs across domains, from mathematical operations to relational inferences, and explains why model behavior remains brittle even under idealized prompting. We argue that LLMs function as powerful pattern completion engines, but lack the architectural scaffolding for principled, compositional reasoning. Our findings delineate the boundary of current LLM capabilities and motivate future models with metacognitive control, principle lifting, and structurally grounded execution. This diagnosis also clarifies why mechanistic interpretability findings may reflect training-specific pattern coordination rather than universal computational principles, and why the geometric separation between instruction and execution pathways suggests limitations in neural introspection and mechanistic analysis.

  • 1 authors
·
Jul 14 1

Collaboration and Transition: Distilling Item Transitions into Multi-Query Self-Attention for Sequential Recommendation

Modern recommender systems employ various sequential modules such as self-attention to learn dynamic user interests. However, these methods are less effective in capturing collaborative and transitional signals within user interaction sequences. First, the self-attention architecture uses the embedding of a single item as the attention query, making it challenging to capture collaborative signals. Second, these methods typically follow an auto-regressive framework, which is unable to learn global item transition patterns. To overcome these limitations, we propose a new method called Multi-Query Self-Attention with Transition-Aware Embedding Distillation (MQSA-TED). First, we propose an L-query self-attention module that employs flexible window sizes for attention queries to capture collaborative signals. In addition, we introduce a multi-query self-attention method that balances the bias-variance trade-off in modeling user preferences by combining long and short-query self-attentions. Second, we develop a transition-aware embedding distillation module that distills global item-to-item transition patterns into item embeddings, which enables the model to memorize and leverage transitional signals and serves as a calibrator for collaborative signals. Experimental results on four real-world datasets demonstrate the effectiveness of the proposed modules.

  • 6 authors
·
Nov 2, 2023

Mamba YOLO: SSMs-Based YOLO For Object Detection

Propelled by the rapid advancement of deep learning technologies, the YOLO series has set a new benchmark for real-time object detectors. Researchers have continuously explored innovative applications of reparameterization, efficient layer aggregation networks, and anchor-free techniques on the foundation of YOLO. To further enhance detection performance, Transformer-based structures have been introduced, significantly expanding the model's receptive field and achieving notable performance gains. However, such improvements come at a cost, as the quadratic complexity of the self-attention mechanism increases the computational burden of the model. Fortunately, the emergence of State Space Models (SSM) as an innovative technology has effectively mitigated the issues caused by quadratic complexity. In light of these advancements, we introduce Mamba-YOLO a novel object detection model based on SSM. Mamba-YOLO not only optimizes the SSM foundation but also adapts specifically for object detection tasks. Given the potential limitations of SSM in sequence modeling, such as insufficient receptive field and weak image locality, we have designed the LSBlock and RGBlock. These modules enable more precise capture of local image dependencies and significantly enhance the robustness of the model. Extensive experimental results on the publicly available benchmark datasets COCO and VOC demonstrate that Mamba-YOLO surpasses the existing YOLO series models in both performance and competitiveness, showcasing its substantial potential and competitive edge.The PyTorch code is available at:https://github.com/HZAI-ZJNU/Mamba-YOLO

  • 4 authors
·
Jun 9, 2024

Softmax-free Linear Transformers

Vision transformers (ViTs) have pushed the state-of-the-art for visual perception tasks. The self-attention mechanism underpinning the strength of ViTs has a quadratic complexity in both computation and memory usage. This motivates the development of approximating the self-attention at linear complexity. However, an in-depth analysis in this work reveals that existing methods are either theoretically flawed or empirically ineffective for visual recognition. We identify that their limitations are rooted in the inheritance of softmax-based self-attention during approximations, that is, normalizing the scaled dot-product between token feature vectors using the softmax function. As preserving the softmax operation challenges any subsequent linearization efforts. By this insight, a family of Softmax-Free Transformers (SOFT) are proposed. Specifically, a Gaussian kernel function is adopted to replace the dot-product similarity, enabling a full self-attention matrix to be approximated under low-rank matrix decomposition. For computational robustness, we estimate the Moore-Penrose inverse using an iterative Newton-Raphson method in the forward process only, while calculating its theoretical gradients only once in the backward process. To further expand applicability (e.g., dense prediction tasks), an efficient symmetric normalization technique is introduced. Extensive experiments on ImageNet, COCO, and ADE20K show that our SOFT significantly improves the computational efficiency of existing ViT variants. With linear complexity, much longer token sequences are permitted by SOFT, resulting in superior trade-off between accuracy and complexity. Code and models are available at https://github.com/fudan-zvg/SOFT.

  • 6 authors
·
Jul 4, 2022

The I/O Complexity of Attention, or How Optimal is Flash Attention?

Self-attention is at the heart of the popular Transformer architecture, yet suffers from quadratic time and memory complexity. The breakthrough FlashAttention algorithm revealed I/O complexity as the true bottleneck in scaling Transformers. Given two levels of memory hierarchy, a fast cache (e.g. GPU on-chip SRAM) and a slow memory (e.g. GPU high-bandwidth memory), the I/O complexity measures the number of accesses to memory. FlashAttention computes attention using N^2d^2{M} I/O operations where N is the dimension of the attention matrix, d the head-dimension and M the cache size. However, is this I/O complexity optimal? The known lower bound only rules out an I/O complexity of o(Nd) when M=Theta(Nd), since the output that needs to be written to slow memory is Omega(Nd). This leads to the main question of our work: Is FlashAttention I/O optimal for all values of M? We resolve the above question in its full generality by showing an I/O complexity lower bound that matches the upper bound provided by FlashAttention for any values of M geq d^2 within any constant factors. Further, we give a better algorithm with lower I/O complexity for M < d^2, and show that it is optimal as well. Moreover, our lower bounds do not rely on using combinatorial matrix multiplication for computing the attention matrix. We show even if one uses fast matrix multiplication, the above I/O complexity bounds cannot be improved. We do so by introducing a new communication complexity protocol for matrix compression, and connecting communication complexity to I/O complexity. To the best of our knowledge, this is the first work to establish a connection between communication complexity and I/O complexity, and we believe this connection could be of independent interest and will find many more applications in proving I/O complexity lower bounds in the future.

  • 2 authors
·
Feb 12, 2024

Sparsifiner: Learning Sparse Instance-Dependent Attention for Efficient Vision Transformers

Vision Transformers (ViT) have shown their competitive advantages performance-wise compared to convolutional neural networks (CNNs) though they often come with high computational costs. To this end, previous methods explore different attention patterns by limiting a fixed number of spatially nearby tokens to accelerate the ViT's multi-head self-attention (MHSA) operations. However, such structured attention patterns limit the token-to-token connections to their spatial relevance, which disregards learned semantic connections from a full attention mask. In this work, we propose a novel approach to learn instance-dependent attention patterns, by devising a lightweight connectivity predictor module to estimate the connectivity score of each pair of tokens. Intuitively, two tokens have high connectivity scores if the features are considered relevant either spatially or semantically. As each token only attends to a small number of other tokens, the binarized connectivity masks are often very sparse by nature and therefore provide the opportunity to accelerate the network via sparse computations. Equipped with the learned unstructured attention pattern, sparse attention ViT (Sparsifiner) produces a superior Pareto-optimal trade-off between FLOPs and top-1 accuracy on ImageNet compared to token sparsity. Our method reduces 48% to 69% FLOPs of MHSA while the accuracy drop is within 0.4%. We also show that combining attention and token sparsity reduces ViT FLOPs by over 60%.

  • 6 authors
·
Mar 23, 2023

Enhancing Semantic Segmentation with Continual Self-Supervised Pre-training

Self-supervised learning (SSL) has emerged as a central paradigm for training foundation models by leveraging large-scale unlabeled datasets, often producing representations with strong generalization capabilities. These models are typically pre-trained on general-purpose datasets such as ImageNet and subsequently adapted to various downstream tasks through finetuning. While recent advances have explored parameter-efficient strategies for adapting pre-trained models, extending SSL pre-training itself to new domains - particularly under limited data regimes and for dense prediction tasks - remains underexplored. In this work, we address the problem of adapting vision foundation models to new domains in an unsupervised and data-efficient manner, specifically targeting downstream semantic segmentation. We propose GLARE (Global Local and Regional Enforcement), a novel continual self-supervised pre-training task designed to enhance downstream segmentation performance. GLARE introduces patch-level augmentations to encourage local consistency and incorporates a regional consistency constraint that leverages spatial semantics in the data. For efficient continual pre-training, we initialize Vision Transformers (ViTs) with weights from existing SSL models and update only lightweight adapter modules - specifically UniAdapter - while keeping the rest of the backbone frozen. Experiments across multiple semantic segmentation benchmarks on different domains demonstrate that GLARE consistently improves downstream performance with minimal computational and parameter overhead.

  • 6 authors
·
Sep 22

Do You See Me : A Multidimensional Benchmark for Evaluating Visual Perception in Multimodal LLMs

Multimodal Large Language Models (MLLMs) show reasoning promise, yet their visual perception is a critical bottleneck. Strikingly, MLLMs can produce correct answers even while misinterpreting crucial visual elements, masking these underlying failures. Our preliminary study on a joint perception-reasoning dataset revealed that for one leading MLLM, 29% of its correct answers to reasoning questions still exhibited visual perception errors. To systematically address this, we introduce "Do You See Me", a scalable benchmark with 1,758 images and 2,612 questions. It spans seven human-psychology inspired subtasks in 2D and 3D, featuring controllable complexity to rigorously evaluate MLLM visual skills. Our findings on 3 leading closed-source and 5 major open-source models reveal a stark deficit: humans achieve 96.49% accuracy, while top MLLMs average below 50%. This performance gap widens rapidly with increased task complexity (e.g., from 12% to 45% in the visual form constancy subtask). Further analysis into the root causes suggests that failures stem from challenges like misallocated visual attention and the instability of internal representations for fine-grained details, especially at or below encoder patch resolution. This underscores an urgent need for MLLMs with truly robust visual perception. The benchmark dataset, source code and evaluation scripts are available at https://github.com/microsoft/Do-You-See-Me.

  • 2 authors
·
May 28

Dilated Neighborhood Attention Transformer

Transformers are quickly becoming one of the most heavily applied deep learning architectures across modalities, domains, and tasks. In vision, on top of ongoing efforts into plain transformers, hierarchical transformers have also gained significant attention, thanks to their performance and easy integration into existing frameworks. These models typically employ localized attention mechanisms, such as the sliding-window Neighborhood Attention (NA) or Swin Transformer's Shifted Window Self Attention. While effective at reducing self attention's quadratic complexity, local attention weakens two of the most desirable properties of self attention: long range inter-dependency modeling, and global receptive field. In this paper, we introduce Dilated Neighborhood Attention (DiNA), a natural, flexible and efficient extension to NA that can capture more global context and expand receptive fields exponentially at no additional cost. NA's local attention and DiNA's sparse global attention complement each other, and therefore we introduce Dilated Neighborhood Attention Transformer (DiNAT), a new hierarchical vision transformer built upon both. DiNAT variants enjoy significant improvements over strong baselines such as NAT, Swin, and ConvNeXt. Our large model is faster and ahead of its Swin counterpart by 1.6% box AP in COCO object detection, 1.4% mask AP in COCO instance segmentation, and 1.4% mIoU in ADE20K semantic segmentation. Paired with new frameworks, our large variant is the new state of the art panoptic segmentation model on COCO (58.5 PQ) and ADE20K (49.4 PQ), and instance segmentation model on Cityscapes (45.1 AP) and ADE20K (35.4 AP) (no extra data). It also matches the state of the art specialized semantic segmentation models on ADE20K (58.1 mIoU), and ranks second on Cityscapes (84.5 mIoU) (no extra data).

  • 2 authors
·
Sep 29, 2022

Focusing by Contrastive Attention: Enhancing VLMs' Visual Reasoning

Vision-Language Models (VLMs) have demonstrated remarkable success across diverse visual tasks, yet their performance degrades in complex visual environments. While existing enhancement approaches require additional training, rely on external segmentation tools, or operate at coarse-grained levels, they overlook the innate ability within VLMs. To bridge this gap, we investigate VLMs' attention patterns and discover that: (1) visual complexity strongly correlates with attention entropy, negatively impacting reasoning performance; (2) attention progressively refines from global scanning in shallow layers to focused convergence in deeper layers, with convergence degree determined by visual complexity. (3) Theoretically, we prove that the contrast of attention maps between general queries and task-specific queries enables the decomposition of visual signal into semantic signals and visual noise components. Building on these insights, we propose Contrastive Attention Refinement for Visual Enhancement (CARVE), a training-free method that extracts task-relevant visual signals through attention contrasting at the pixel level. Extensive experiments demonstrate that CARVE consistently enhances performance, achieving up to 75% improvement on open-source models. Our work provides critical insights into the interplay between visual complexity and attention mechanisms, offering an efficient pathway for improving visual reasoning with contrasting attention.

  • 9 authors
·
Sep 8 2

ELA: Efficient Local Attention for Deep Convolutional Neural Networks

The attention mechanism has gained significant recognition in the field of computer vision due to its ability to effectively enhance the performance of deep neural networks. However, existing methods often struggle to effectively utilize spatial information or, if they do, they come at the cost of reducing channel dimensions or increasing the complexity of neural networks. In order to address these limitations, this paper introduces an Efficient Local Attention (ELA) method that achieves substantial performance improvements with a simple structure. By analyzing the limitations of the Coordinate Attention method, we identify the lack of generalization ability in Batch Normalization, the adverse effects of dimension reduction on channel attention, and the complexity of attention generation process. To overcome these challenges, we propose the incorporation of 1D convolution and Group Normalization feature enhancement techniques. This approach enables accurate localization of regions of interest by efficiently encoding two 1D positional feature maps without the need for dimension reduction, while allowing for a lightweight implementation. We carefully design three hyperparameters in ELA, resulting in four different versions: ELA-T, ELA-B, ELA-S, and ELA-L, to cater to the specific requirements of different visual tasks such as image classification, object detection and sementic segmentation. ELA can be seamlessly integrated into deep CNN networks such as ResNet, MobileNet, and DeepLab. Extensive evaluations on the ImageNet, MSCOCO, and Pascal VOC datasets demonstrate the superiority of the proposed ELA module over current state-of-the-art methods in all three aforementioned visual tasks.

  • 2 authors
·
Mar 2, 2024

HyperZcdotZcdotW Operator Connects Slow-Fast Networks for Full Context Interaction

The self-attention mechanism utilizes large implicit weight matrices, programmed through dot product-based activations with very few trainable parameters, to enable long sequence modeling. In this paper, we investigate the possibility of discarding residual learning by employing large implicit kernels to achieve full context interaction at each layer of the network. To accomplish it, we introduce coordinate-based implicit MLPs as a slow network to generate hyper-kernels for another fast convolutional network. To get context-varying weights for fast dynamic encoding, we propose a HyperZ{cdotZ{cdot}W} operator that connects hyper-kernels (W) and hidden activations (Z) through simple elementwise multiplication, followed by convolution of Z using the context-dependent W. Based on this design, we present a novel Terminator architecture that integrates hyper-kernels of different sizes to produce multi-branch hidden representations for enhancing the feature extraction capability of each layer. Additionally, a bottleneck layer is employed to compress the concatenated channels, allowing only valuable information to propagate to the subsequent layers. Notably, our model incorporates several innovative components and exhibits excellent properties, such as introducing local feedback error for updating the slow network, stable zero-mean features, faster training convergence, and fewer model parameters. Extensive experimental results on pixel-level 1D and 2D image classification benchmarks demonstrate the superior performance of our architecture.

  • 1 authors
·
Jan 31, 2024 1

The Tensor Brain: Semantic Decoding for Perception and Memory

We analyse perception and memory, using mathematical models for knowledge graphs and tensors, to gain insights into the corresponding functionalities of the human mind. Our discussion is based on the concept of propositional sentences consisting of subject-predicate-object (SPO) triples for expressing elementary facts. SPO sentences are the basis for most natural languages but might also be important for explicit perception and declarative memories, as well as intra-brain communication and the ability to argue and reason. A set of SPO sentences can be described as a knowledge graph, which can be transformed into an adjacency tensor. We introduce tensor models, where concepts have dual representations as indices and associated embeddings, two constructs we believe are essential for the understanding of implicit and explicit perception and memory in the brain. We argue that a biological realization of perception and memory imposes constraints on information processing. In particular, we propose that explicit perception and declarative memories require a semantic decoder, which, in a simple realization, is based on four layers: First, a sensory memory layer, as a buffer for sensory input, second, an index layer representing concepts, third, a memoryless representation layer for the broadcasting of information ---the "blackboard", or the "canvas" of the brain--- and fourth, a working memory layer as a processing center and data buffer. We discuss the operations of the four layers and relate them to the global workspace theory. In a Bayesian brain interpretation, semantic memory defines the prior for observable triple statements. We propose that ---in evolution and during development--- semantic memory, episodic memory, and natural language evolved as emergent properties in agents' process to gain a deeper understanding of sensory information.

  • 4 authors
·
Jan 29, 2020

Combiner: Full Attention Transformer with Sparse Computation Cost

Transformers provide a class of expressive architectures that are extremely effective for sequence modeling. However, the key limitation of transformers is their quadratic memory and time complexity O(L^2) with respect to the sequence length in attention layers, which restricts application in extremely long sequences. Most existing approaches leverage sparsity or low-rank assumptions in the attention matrix to reduce cost, but sacrifice expressiveness. Instead, we propose Combiner, which provides full attention capability in each attention head while maintaining low computation and memory complexity. The key idea is to treat the self-attention mechanism as a conditional expectation over embeddings at each location, and approximate the conditional distribution with a structured factorization. Each location can attend to all other locations, either via direct attention, or through indirect attention to abstractions, which are again conditional expectations of embeddings from corresponding local regions. We show that most sparse attention patterns used in existing sparse transformers are able to inspire the design of such factorization for full attention, resulting in the same sub-quadratic cost (O(Llog(L)) or O(LL)). Combiner is a drop-in replacement for attention layers in existing transformers and can be easily implemented in common frameworks. An experimental evaluation on both autoregressive and bidirectional sequence tasks demonstrates the effectiveness of this approach, yielding state-of-the-art results on several image and text modeling tasks.

  • 7 authors
·
Jul 12, 2021

Self-Specialization: Uncovering Latent Expertise within Large Language Models

Recent works have demonstrated the effectiveness of self-alignment in which a large language model is, by itself, aligned to follow general instructions through the automatic generation of instructional data using a handful of human-written seeds. Instead of general alignment, in this work, we focus on self-alignment for expert domain specialization (e.g., biomedicine), discovering it to be very effective for improving zero-shot and few-shot performance in target domains of interest. As a preliminary, we first present the benchmark results of existing aligned models within a specialized domain, which reveals the marginal effect that "generic" instruction-following training has on downstream expert domains' performance. To remedy this, we explore self-specialization that leverages domain-specific unlabelled data and a few labeled seeds for the self-alignment process. When augmented with retrieval to reduce hallucination and enhance concurrency of the alignment, self-specialization offers an effective (and efficient) way of "carving out" an expert model out of a "generalist", pre-trained LLM where different domains of expertise are originally combined in a form of "superposition". Our experimental results on a biomedical domain show that our self-specialized model (30B) outperforms its base model, MPT-30B by a large margin and even surpasses larger popular models based on LLaMA-65B, highlighting its potential and practicality for specialization, especially considering its efficiency in terms of data and parameters.

  • 8 authors
·
Sep 29, 2023

Seeing is Believing? Mitigating OCR Hallucinations in Multimodal Large Language Models

Recent advancements in multimodal large language models have enhanced document understanding by integrating textual and visual information. However, existing models exhibit incompleteness within their paradigm in real-world scenarios, particularly under visual degradation. In such conditions, the current response paradigm often fails to adequately perceive visual degradation and ambiguity, leading to overreliance on linguistic priors or misaligned visual-textual reasoning. This difficulty in recognizing uncertainty frequently results in the generation of hallucinatory content, especially when a precise answer is not feasible. To better demonstrate and analyze this phenomenon and problem, we propose KIE-HVQA, the first benchmark dedicated to evaluating OCR hallucination in degraded document understanding. This dataset includes test samples spanning identity cards and invoices, with simulated real-world degradations for OCR reliability. This setup allows for evaluating models' capacity, under degraded input, to distinguish reliable visual information and answer accordingly, thereby highlighting the challenge of avoiding hallucination on uncertain data. To achieve vision-faithful reasoning and thereby avoid the aforementioned issues, we further introduce a GRPO-based framework featuring a novel reward mechanism. By incorporating a self-awareness of visual uncertainty and an analysis method that initiates refusal to answer to increase task difficulty within our supervised fine-tuning and reinforcement learning framework, we successfully mitigated hallucinations in ambiguous regions. Experiments on Qwen2.5-VL demonstrate that our 7B-parameter model achieves a 22\% absolute improvement in hallucination-free accuracy over GPT-4o on KIE-HVQA and there is no significant performance drop in standard tasks, highlighting both effectiveness and robustness.

  • 9 authors
·
Jun 25

HiP Attention: Sparse Sub-Quadratic Attention with Hierarchical Attention Pruning

In modern large language models (LLMs), increasing sequence lengths is a crucial challenge for enhancing their comprehension and coherence in handling complex tasks such as multi-modal question answering. However, handling long context sequences with LLMs is prohibitively costly due to the conventional attention mechanism's quadratic time and space complexity, and the context window size is limited by the GPU memory. Although recent works have proposed linear and sparse attention mechanisms to address this issue, their real-world applicability is often limited by the need to re-train pre-trained models. In response, we propose a novel approach, Hierarchically Pruned Attention (HiP), which simultaneously reduces the training and inference time complexity from O(T^2) to O(T log T) and the space complexity from O(T^2) to O(T). To this end, we devise a dynamic sparse attention mechanism that generates an attention mask through a novel tree-search-like algorithm for a given query on the fly. HiP is training-free as it only utilizes the pre-trained attention scores to spot the positions of the top-k most significant elements for each query. Moreover, it ensures that no token is overlooked, unlike the sliding window-based sub-quadratic attention methods, such as StreamingLLM. Extensive experiments on diverse real-world benchmarks demonstrate that HiP significantly reduces prompt (i.e., prefill) and decoding latency and memory usage while maintaining high generation performance with little or no degradation. As HiP allows pretrained LLMs to scale to millions of tokens on commodity GPUs with no additional engineering due to its easy plug-and-play deployment, we believe that our work will have a large practical impact, opening up the possibility to many long-context LLM applications previously infeasible.

  • 7 authors
·
Jun 14, 2024

CATANet: Efficient Content-Aware Token Aggregation for Lightweight Image Super-Resolution

Transformer-based methods have demonstrated impressive performance in low-level visual tasks such as Image Super-Resolution (SR). However, its computational complexity grows quadratically with the spatial resolution. A series of works attempt to alleviate this problem by dividing Low-Resolution images into local windows, axial stripes, or dilated windows. SR typically leverages the redundancy of images for reconstruction, and this redundancy appears not only in local regions but also in long-range regions. However, these methods limit attention computation to content-agnostic local regions, limiting directly the ability of attention to capture long-range dependency. To address these issues, we propose a lightweight Content-Aware Token Aggregation Network (CATANet). Specifically, we propose an efficient Content-Aware Token Aggregation module for aggregating long-range content-similar tokens, which shares token centers across all image tokens and updates them only during the training phase. Then we utilize intra-group self-attention to enable long-range information interaction. Moreover, we design an inter-group cross-attention to further enhance global information interaction. The experimental results show that, compared with the state-of-the-art cluster-based method SPIN, our method achieves superior performance, with a maximum PSNR improvement of 0.33dB and nearly double the inference speed.

  • 4 authors
·
Mar 10 1