Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeImproving Semantic Understanding in Speech Language Models via Brain-tuning
Speech language models align with human brain responses to natural language to an impressive degree. However, current models rely heavily on low-level speech features, indicating they lack brain-relevant semantics which limits their utility as model organisms of semantic processing in the brain. In this work, we address this limitation by inducing brain-relevant bias directly into the models via fine-tuning with fMRI recordings of people listening to natural stories, a process we name brain-tuning. After testing it on 3 different pretrained model families, we show that brain-tuning not only improves overall alignment with new brain recordings in semantic language regions, but also reduces the reliance on low-level speech features for this alignment. Excitingly, we further show that brain-tuning leads to 1) consistent improvements in performance on a range of downstream tasks and 2) a representational space with increased semantic preference. Our results provide converging evidence, for the first time, that incorporating brain signals into the training of language models improves the models' semantic understanding.
Autonomous Improvement of Instruction Following Skills via Foundation Models
Intelligent instruction-following robots capable of improving from autonomously collected experience have the potential to transform robot learning: instead of collecting costly teleoperated demonstration data, large-scale deployment of fleets of robots can quickly collect larger quantities of autonomous data that can collectively improve their performance. However, autonomous improvement requires solving two key problems: (i) fully automating a scalable data collection procedure that can collect diverse and semantically meaningful robot data and (ii) learning from non-optimal, autonomous data with no human annotations. To this end, we propose a novel approach that addresses these challenges, allowing instruction-following policies to improve from autonomously collected data without human supervision. Our framework leverages vision-language models to collect and evaluate semantically meaningful experiences in new environments, and then utilizes a decomposition of instruction following tasks into (semantic) language-conditioned image generation and (non-semantic) goal reaching, which makes it significantly more practical to improve from this autonomously collected data without any human annotations. We carry out extensive experiments in the real world to demonstrate the effectiveness of our approach, and find that in a suite of unseen environments, the robot policy can be improved significantly with autonomously collected data. We open-source the code for our semantic autonomous improvement pipeline, as well as our autonomous dataset of 30.5K trajectories collected across five tabletop environments.
FireRedTTS-1S: An Upgraded Streamable Foundation Text-to-Speech System
In this work, we propose a high-quality streaming foundation text-to-speech system, FireRedTTS-1S, upgraded from the streamable version of FireRedTTS. FireRedTTS-1S achieves streaming generation via two steps: text-to-semantic decoding and semantic-to-acoustic decoding. In text-to-semantic decoding, a semantic-aware speech tokenizer converts the speech signal into semantic tokens, which can be synthesized from the text via a semantic language model in an auto-regressive manner. Meanwhile, the semantic-to-acoustic decoding module simultaneously translates generated semantic tokens into the speech signal in a streaming way via a super-resolution causal audio codec and a multi-stream acoustic language model. This design enables us to produce high-quality speech audio in zero-shot settings while presenting a real-time generation process with low latency under 150ms. In experiments on zero-shot voice cloning, the objective results validate FireRedTTS-1S as a high-quality foundation model with comparable intelligibility and speaker similarity over industrial baseline systems. Furthermore, the subjective score of FireRedTTS-1S highlights its impressive synthesis performance, achieving comparable quality to the ground-truth recordings. These results validate FireRedTTS-1S as a high-quality streaming foundation TTS system.
Unifying Structure and Language Semantic for Efficient Contrastive Knowledge Graph Completion with Structured Entity Anchors
The goal of knowledge graph completion (KGC) is to predict missing links in a KG using trained facts that are already known. In recent, pre-trained language model (PLM) based methods that utilize both textual and structural information are emerging, but their performances lag behind state-of-the-art (SOTA) structure-based methods or some methods lose their inductive inference capabilities in the process of fusing structure embedding to text encoder. In this paper, we propose a novel method to effectively unify structure information and language semantics without losing the power of inductive reasoning. We adopt entity anchors and these anchors and textual description of KG elements are fed together into the PLM-based encoder to learn unified representations. In addition, the proposed method utilizes additional random negative samples which can be reused in the each mini-batch during contrastive learning to learn a generalized entity representations. We verify the effectiveness of the our proposed method through various experiments and analysis. The experimental results on standard benchmark widely used in link prediction task show that the proposed model outperforms existing the SOTA KGC models. Especially, our method show the largest performance improvement on FB15K-237, which is competitive to the SOTA of structure-based KGC methods.
Unifying Segment Anything in Microscopy with Multimodal Large Language Model
Accurate segmentation of regions of interest in biomedical images holds substantial value in image analysis. Although several foundation models for biomedical segmentation have currently achieved excellent performance on certain datasets, they typically demonstrate sub-optimal performance on unseen domain data. We owe the deficiency to lack of vision-language knowledge before segmentation. Multimodal Large Language Models (MLLMs) bring outstanding understanding and reasoning capabilities to multimodal tasks, which inspires us to leverage MLLMs to inject Vision-Language Knowledge (VLK), thereby enabling vision models to demonstrate superior generalization capabilities on cross-domain datasets. In this paper, we propose using MLLMs to guide SAM in learning microscopy crose-domain data, unifying Segment Anything in Microscopy, named uLLSAM. Specifically, we propose the Vision-Language Semantic Alignment (VLSA) module, which injects VLK into Segment Anything Model (SAM). We find that after SAM receives global VLK prompts, its performance improves significantly, but there are deficiencies in boundary contour perception. Therefore, we further propose Semantic Boundary Regularization (SBR) to prompt SAM. Our method achieves performance improvements of 7.71% in Dice and 12.10% in SA across 9 in-domain microscopy datasets, achieving state-of-the-art performance. Our method also demonstrates improvements of 6.79% in Dice and 10.08% in SA across 10 out-ofdomain datasets, exhibiting strong generalization capabilities. Code is available at https://github.com/ieellee/uLLSAM.
The Semantic Hub Hypothesis: Language Models Share Semantic Representations Across Languages and Modalities
Modern language models can process inputs across diverse languages and modalities. We hypothesize that models acquire this capability through learning a shared representation space across heterogeneous data types (e.g., different languages and modalities), which places semantically similar inputs near one another, even if they are from different modalities/languages. We term this the semantic hub hypothesis, following the hub-and-spoke model from neuroscience (Patterson et al., 2007) which posits that semantic knowledge in the human brain is organized through a transmodal semantic "hub" which integrates information from various modality-specific "spokes" regions. We first show that model representations for semantically equivalent inputs in different languages are similar in the intermediate layers, and that this space can be interpreted using the model's dominant pretraining language via the logit lens. This tendency extends to other data types, including arithmetic expressions, code, and visual/audio inputs. Interventions in the shared representation space in one data type also predictably affect model outputs in other data types, suggesting that this shared representations space is not simply a vestigial byproduct of large-scale training on broad data, but something that is actively utilized by the model during input processing.
Analyzing Semantic Faithfulness of Language Models via Input Intervention on Conversational Question Answering
Transformer-based language models have been shown to be highly effective for several NLP tasks. In this paper, we consider three transformer models, BERT, RoBERTa, and XLNet, in both small and large version, and investigate how faithful their representations are with respect to the semantic content of texts. We formalize a notion of semantic faithfulness, in which the semantic content of a text should causally figure in a model's inferences in question answering. We then test this notion by observing a model's behavior on answering questions about a story after performing two novel semantic interventions -- deletion intervention and negation intervention. While transformer models achieve high performance on standard question answering tasks, we show that they fail to be semantically faithful once we perform these interventions for a significant number of cases (~50% for deletion intervention, and ~20% drop in accuracy for negation intervention). We then propose an intervention-based training regime that can mitigate the undesirable effects for deletion intervention by a significant margin (from ~50% to ~6%). We analyze the inner-workings of the models to better understand the effectiveness of intervention-based training for deletion intervention. But we show that this training does not attenuate other aspects of semantic unfaithfulness such as the models' inability to deal with negation intervention or to capture the predicate-argument structure of texts. We also test InstructGPT, via prompting, for its ability to handle the two interventions and to capture predicate-argument structure. While InstructGPT models do achieve very high performance on predicate-argument structure task, they fail to respond adequately to our deletion and negation interventions.
MINERS: Multilingual Language Models as Semantic Retrievers
Words have been represented in a high-dimensional vector space that encodes their semantic similarities, enabling downstream applications such as retrieving synonyms, antonyms, and relevant contexts. However, despite recent advances in multilingual language models (LMs), the effectiveness of these models' representations in semantic retrieval contexts has not been comprehensively explored. To fill this gap, this paper introduces the MINERS, a benchmark designed to evaluate the ability of multilingual LMs in semantic retrieval tasks, including bitext mining and classification via retrieval-augmented contexts. We create a comprehensive framework to assess the robustness of LMs in retrieving samples across over 200 diverse languages, including extremely low-resource languages in challenging cross-lingual and code-switching settings. Our results demonstrate that by solely retrieving semantically similar embeddings yields performance competitive with state-of-the-art approaches, without requiring any fine-tuning.
Navigation with Large Language Models: Semantic Guesswork as a Heuristic for Planning
Navigation in unfamiliar environments presents a major challenge for robots: while mapping and planning techniques can be used to build up a representation of the world, quickly discovering a path to a desired goal in unfamiliar settings with such methods often requires lengthy mapping and exploration. Humans can rapidly navigate new environments, particularly indoor environments that are laid out logically, by leveraging semantics -- e.g., a kitchen often adjoins a living room, an exit sign indicates the way out, and so forth. Language models can provide robots with such knowledge, but directly using language models to instruct a robot how to reach some destination can also be impractical: while language models might produce a narrative about how to reach some goal, because they are not grounded in real-world observations, this narrative might be arbitrarily wrong. Therefore, in this paper we study how the ``semantic guesswork'' produced by language models can be utilized as a guiding heuristic for planning algorithms. Our method, Language Frontier Guide (LFG), uses the language model to bias exploration of novel real-world environments by incorporating the semantic knowledge stored in language models as a search heuristic for planning with either topological or metric maps. We evaluate LFG in challenging real-world environments and simulated benchmarks, outperforming uninformed exploration and other ways of using language models.
Remote Sensing Large Vision-Language Model: Semantic-augmented Multi-level Alignment and Semantic-aware Expert Modeling
Large Vision and Language Models (LVLMs) have shown strong performance across various vision-language tasks in natural image domains. However, their application to remote sensing (RS) remains underexplored due to significant domain differences in visual appearances, object scales, and semantics. These discrepancies hider the effective understanding of RS scenes, which contain rich, multi-level semantic information spanning from coarse-to-fine levels. Hence, it limits the direct adaptation of existing LVLMs to RS imagery. To address this gap, we propose a novel LVLM framework tailored for RS understanding, incorporating two core components: Semantic-augmented Multi-level Alignment and Semantic-aware Expert Modeling. First, to align multi-level visual features, we introduce the retrieval-based Semantic Augmentation Module which enriches the visual features with relevant semantics across fine-to-coarse levels (e.g., object- and scene-level information). It is designed to retrieve relevant semantic cues from a RS semantic knowledge database, followed by aggregation of semantic cues with user query and multi-level visual features, resulting in semantically enriched representation across multiple levels. Second, for Semantic-aware Expert Modeling, we design semantic experts, where each expert is responsible for processing semantic representation at different levels separately. This enables hierarchical semantic understanding from coarse to fine levels. Evaluations across multiple RS tasks-including scene classification and VQA, etc.-demonstrate that the proposed framework achieves consistent improvements across multiple semantic levels. This highlights its capability and effectiveness in bridging the gap between general LVLMs and unique demands of RS-specific vision-language understanding.
Neuron Patching: Semantic-based Neuron-level Language Model Repair for Code Generation
Language Models (LMs) have become widely used in software engineering, especially for tasks such as code generation, where they are referred to as code LMs. These models have proven effective in generating code, making it easier for developers to automate coding activities. However, research has highlighted a significant limitation: despite their effectiveness, LMs often produce code that is incorrect, buggy, or not fully functional. Updating these models with limited data can be prohibitively challenging, yet it is essential to maximize their utility. This may require hot-fix techniques (updating models with limited data) to resolve. In this paper, we propose Model Improvement via Neuron Targeting (MINT), a novel approach for repairing code LMs. MINT leverages the semantic property of language models to perform neuron-level repairs in a novel way. Further, by analyzing the relationships between the model's latent representations, the incorrect outputs, and the desired outputs, MINT determines which neurons are worth updating. This approach ensures that only the neurons crucial to the model's failure are targeted, avoiding unnecessary changes and allowing for a more efficient and precise repair process. MINT is effective, efficient, and reliable, capable of correcting a neural model by patching a minimum number of neurons (usually one or two neurons). Our approach is evaluated on three coding tasks: line-level code generation, shellcode generation, and intent-to-bash translation. The experimental results demonstrate that the proposed approach significantly outperforms the state-of-the-art in both effectiveness and efficiency measures. In addition, we analyze and discuss the side effects of model repair techniques, including the balance between generalization and specificity, and the performance after multiple repairs in succession.
Does Liking Yellow Imply Driving a School Bus? Semantic Leakage in Language Models
Despite their wide adoption, the biases and unintended behaviors of language models remain poorly understood. In this paper, we identify and characterize a phenomenon never discussed before, which we call semantic leakage, where models leak irrelevant information from the prompt into the generation in unexpected ways. We propose an evaluation setting to detect semantic leakage both by humans and automatically, curate a diverse test suite for diagnosing this behavior, and measure significant semantic leakage in 13 flagship models. We also show that models exhibit semantic leakage in languages besides English and across different settings and generation scenarios. This discovery highlights yet another type of bias in language models that affects their generation patterns and behavior.
MedVista3D: Vision-Language Modeling for Reducing Diagnostic Errors in 3D CT Disease Detection, Understanding and Reporting
Radiologic diagnostic errors-under-reading errors, inattentional blindness, and communication failures-remain prevalent in clinical practice. These issues often stem from missed localized abnormalities, limited global context, and variability in report language. These challenges are amplified in 3D imaging, where clinicians must examine hundreds of slices per scan. Addressing them requires systems with precise localized detection, global volume-level reasoning, and semantically consistent natural language reporting. However, existing 3D vision-language models are unable to meet all three needs jointly, lacking local-global understanding for spatial reasoning and struggling with the variability and noise of uncurated radiology reports. We present MedVista3D, a multi-scale semantic-enriched vision-language pretraining framework for 3D CT analysis. To enable joint disease detection and holistic interpretation, MedVista3D performs local and global image-text alignment for fine-grained representation learning within full-volume context. To address report variability, we apply language model rewrites and introduce a Radiology Semantic Matching Bank for semantics-aware alignment. MedVista3D achieves state-of-the-art performance on zero-shot disease classification, report retrieval, and medical visual question answering, while transferring well to organ segmentation and prognosis prediction. Code and datasets will be released.
Quality-Driven Curation of Remote Sensing Vision-Language Data via Learned Scoring Models
Vision-Language Models (VLMs) have demonstrated great potential in interpreting remote sensing (RS) images through language-guided semantic understanding. However, the effectiveness of these VLMs critically depends on high-quality image-text training data that captures rich semantic relationships between visual content and language descriptions. Unlike natural images, RS lacks large-scale interleaved image-text pairs from web data, making data collection challenging. While current approaches rely primarily on rule-based methods or flagship VLMs for data synthesis, a systematic framework for automated quality assessment of such synthetically generated RS visionlanguage data is notably absent. To fill this gap, we propose a novel score model trained on large-scale RS visionlanguage preference data for automated quality assessment. Our empirical results demonstrate that fine-tuning CLIP or advanced VLMs (e.g., Qwen2-VL) with the top 30% of data ranked by our score model achieves superior interpretation accuracy compared to both full-data fine-tuning and CLIP-score-based ranking approaches. Furthermore, we demonstrate applications of our scoring model for reinforcement learning (RL) training and best-of-N (BoN) testtime scaling, enabling significant improvements in VLM performance for RS tasks.
MTA-CLIP: Language-Guided Semantic Segmentation with Mask-Text Alignment
Recent approaches have shown that large-scale vision-language models such as CLIP can improve semantic segmentation performance. These methods typically aim for pixel-level vision-language alignment, but often rely on low resolution image features from CLIP, resulting in class ambiguities along boundaries. Moreover, the global scene representations in CLIP text embeddings do not directly correlate with the local and detailed pixel-level features, making meaningful alignment more difficult. To address these limitations, we introduce MTA-CLIP, a novel framework employing mask-level vision-language alignment. Specifically, we first propose Mask-Text Decoder that enhances the mask representations using rich textual data with the CLIP language model. Subsequently, it aligns mask representations with text embeddings using Mask-to-Text Contrastive Learning. Furthermore, we introduce MaskText Prompt Learning, utilizing multiple context-specific prompts for text embeddings to capture diverse class representations across masks. Overall, MTA-CLIP achieves state-of-the-art, surpassing prior works by an average of 2.8% and 1.3% on on standard benchmark datasets, ADE20k and Cityscapes, respectively.
Learning Yourself: Class-Incremental Semantic Segmentation with Language-Inspired Bootstrapped Disentanglement
Class-Incremental Semantic Segmentation (CISS) requires continuous learning of newly introduced classes while retaining knowledge of past classes. By abstracting mainstream methods into two stages (visual feature extraction and prototype-feature matching), we identify a more fundamental challenge termed catastrophic semantic entanglement. This phenomenon involves Prototype-Feature Entanglement caused by semantic misalignment during the incremental process, and Background-Increment Entanglement due to dynamic data evolution. Existing techniques, which rely on visual feature learning without sufficient cues to distinguish targets, introduce significant noise and errors. To address these issues, we introduce a Language-inspired Bootstrapped Disentanglement framework (LBD). We leverage the prior class semantics of pre-trained visual-language models (e.g., CLIP) to guide the model in autonomously disentangling features through Language-guided Prototypical Disentanglement and Manifold Mutual Background Disentanglement. The former guides the disentangling of new prototypes by treating hand-crafted text features as topological templates, while the latter employs multiple learnable prototypes and mask-pooling-based supervision for background-incremental class disentanglement. By incorporating soft prompt tuning and encoder adaptation modifications, we further bridge the capability gap of CLIP between dense and sparse tasks, achieving state-of-the-art performance on both Pascal VOC and ADE20k, particularly in multi-step scenarios.
DefSent+: Improving sentence embeddings of language models by projecting definition sentences into a quasi-isotropic or isotropic vector space of unlimited dictionary entries
This paper presents a significant improvement on the previous conference paper known as DefSent. The prior study seeks to improve sentence embeddings of language models by projecting definition sentences into the vector space of dictionary entries. We discover that this approach is not fully explored due to the methodological limitation of using word embeddings of language models to represent dictionary entries. This leads to two hindrances. First, dictionary entries are constrained by the single-word vocabulary, and thus cannot be fully exploited. Second, semantic representations of language models are known to be anisotropic, but pre-processing word embeddings for DefSent is not allowed because its weight is frozen during training and tied to the prediction layer. In this paper, we propose a novel method to progressively build entry embeddings not subject to the limitations. As a result, definition sentences can be projected into a quasi-isotropic or isotropic vector space of unlimited dictionary entries, so that sentence embeddings of noticeably better quality are attainable. We abbreviate our approach as DefSent+ (a plus version of DefSent), involving the following strengths: 1) the task performance on measuring sentence similarities is significantly improved compared to DefSent; 2) when DefSent+ is used to further train data-augmented models like SIMCSE, SNCSE, and SynCSE, state-of-the-art performance on measuring sentence similarities can be achieved among the approaches without using manually labeled datasets; 3) DefSent+ is also competitive in feature-based transfer for NLP downstream tasks.
On the Relationship between Sentence Analogy Identification and Sentence Structure Encoding in Large Language Models
The ability of Large Language Models (LLMs) to encode syntactic and semantic structures of language is well examined in NLP. Additionally, analogy identification, in the form of word analogies are extensively studied in the last decade of language modeling literature. In this work we specifically look at how LLMs' abilities to capture sentence analogies (sentences that convey analogous meaning to each other) vary with LLMs' abilities to encode syntactic and semantic structures of sentences. Through our analysis, we find that LLMs' ability to identify sentence analogies is positively correlated with their ability to encode syntactic and semantic structures of sentences. Specifically, we find that the LLMs which capture syntactic structures better, also have higher abilities in identifying sentence analogies.
PyTorrent: A Python Library Corpus for Large-scale Language Models
A large scale collection of both semantic and natural language resources is essential to leverage active Software Engineering research areas such as code reuse and code comprehensibility. Existing machine learning models ingest data from Open Source repositories (like GitHub projects) and forum discussions (like Stackoverflow.com), whereas, in this showcase, we took a step backward to orchestrate a corpus titled PyTorrent that contains 218,814 Python package libraries from PyPI and Anaconda environment. This is because earlier studies have shown that much of the code is redundant and Python packages from these environments are better in quality and are well-documented. PyTorrent enables users (such as data scientists, students, etc.) to build off the shelf machine learning models directly without spending months of effort on large infrastructure. The dataset, schema and a pretrained language model is available at: https://github.com/fla-sil/PyTorrent
Considering Likelihood in NLP Classification Explanations with Occlusion and Language Modeling
Recently, state-of-the-art NLP models gained an increasing syntactic and semantic understanding of language, and explanation methods are crucial to understand their decisions. Occlusion is a well established method that provides explanations on discrete language data, e.g. by removing a language unit from an input and measuring the impact on a model's decision. We argue that current occlusion-based methods often produce invalid or syntactically incorrect language data, neglecting the improved abilities of recent NLP models. Furthermore, gradient-based explanation methods disregard the discrete distribution of data in NLP. Thus, we propose OLM: a novel explanation method that combines occlusion and language models to sample valid and syntactically correct replacements with high likelihood, given the context of the original input. We lay out a theoretical foundation that alleviates these weaknesses of other explanation methods in NLP and provide results that underline the importance of considering data likelihood in occlusion-based explanation.
mPLUG-Owl3: Towards Long Image-Sequence Understanding in Multi-Modal Large Language Models
Multi-modal Large Language Models (MLLMs) have demonstrated remarkable capabilities in executing instructions for a variety of single-image tasks. Despite this progress, significant challenges remain in modeling long image sequences. In this work, we introduce the versatile multi-modal large language model, mPLUG-Owl3, which enhances the capability for long image-sequence understanding in scenarios that incorporate retrieved image-text knowledge, interleaved image-text, and lengthy videos. Specifically, we propose novel hyper attention blocks to efficiently integrate vision and language into a common language-guided semantic space, thereby facilitating the processing of extended multi-image scenarios. Extensive experimental results suggest that mPLUG-Owl3 achieves state-of-the-art performance among models with a similar size on single-image, multi-image, and video benchmarks. Moreover, we propose a challenging long visual sequence evaluation named Distractor Resistance to assess the ability of models to maintain focus amidst distractions. Finally, with the proposed architecture, mPLUG-Owl3 demonstrates outstanding performance on ultra-long visual sequence inputs. We hope that mPLUG-Owl3 can contribute to the development of more efficient and powerful multimodal large language models.
SenSE: Semantic-Aware High-Fidelity Universal Speech Enhancement
Generative universal speech enhancement (USE) methods aim to leverage generative models to improve speech quality under various types of distortions. Diffusion- or flow-based generative models are capable of producing enhanced speech with high quality and fidelity. However, they typically achieve speech enhancement by learning an acoustic feature mapping from degraded speech to clean speech, while lacking awareness of high-level semantic information. This deficiency tends to cause semantic ambiguity and acoustic discontinuities in the enhanced speech. In contrast, humans can often comprehend heavily corrupted speech by relying on semantic priors, suggesting that semantics play a crucial role in speech enhancement. Therefore, in this paper, we propose SenSE, which leverages a language model to capture the semantic information of distorted speech and effectively integrates it into a flow-matching-based speech enhancement framework. Specifically, we introduce a semantic-aware speech language model to capture the semantics of degraded speech and generate semantic tokens. We then design a semantic guidance mechanism that incorporates semantic information into the flow-matching-based speech enhancement process, effectively mitigating semantic ambiguity. In addition, we propose a prompt guidance mechanism, which leverages a short reference utterance to alleviate the loss of speaker similarity under severe distortion conditions. The results of several benchmark data sets demonstrate that SenSE not only ensures high perceptual quality but also substantially improves speech fidelity while maintaining strong robustness under severe distortions. Codes and demos are available.
Parameter-Efficient Conversational Recommender System as a Language Processing Task
Conversational recommender systems (CRS) aim to recommend relevant items to users by eliciting user preference through natural language conversation. Prior work often utilizes external knowledge graphs for items' semantic information, a language model for dialogue generation, and a recommendation module for ranking relevant items. This combination of multiple components suffers from a cumbersome training process, and leads to semantic misalignment issues between dialogue generation and item recommendation. In this paper, we represent items in natural language and formulate CRS as a natural language processing task. Accordingly, we leverage the power of pre-trained language models to encode items, understand user intent via conversation, perform item recommendation through semantic matching, and generate dialogues. As a unified model, our PECRS (Parameter-Efficient CRS), can be optimized in a single stage, without relying on non-textual metadata such as a knowledge graph. Experiments on two benchmark CRS datasets, ReDial and INSPIRED, demonstrate the effectiveness of PECRS on recommendation and conversation. Our code is available at: https://github.com/Ravoxsg/efficient_unified_crs.
Un-Attributability: Computing Novelty From Retrieval & Semantic Similarity
Understanding how language-model outputs relate to the pretraining corpus is central to studying model behavior. Most training data attribution (TDA) methods ask which training examples causally influence a given output, often using leave-one-out tests. We invert the question: which outputs cannot be attributed to any pretraining example? We introduce un-attributability as an operational measure of semantic novelty: an output is novel if the pretraining corpus contains no semantically similar context. We approximate this with a simple two-stage retrieval pipeline: index the corpus with lightweight GIST embeddings, retrieve the top-n candidates, then rerank with ColBERTv2. If the nearest corpus item is less attributable than a human-generated text reference, we consider the output of the model as novel. We evaluate on SmolLM and SmolLM2 and report three findings: (1) models draw on pretraining data across much longer spans than previously reported; (2) some domains systematically promote or suppress novelty; and (3) instruction tuning not only alters style but also increases novelty. Reframing novelty assessment around un-attributability enables efficient analysis at pretraining scale. We release ~20 TB of corpus chunks and index artifacts to support replication and large-scale extension of our analysis at https://huggingface.co/datasets/stai-tuebingen/faiss-smollm
LM-SPT: LM-Aligned Semantic Distillation for Speech Tokenization
With the rapid progress of speech language models (SLMs), discrete speech tokens have emerged as a core interface between speech and text, enabling unified modeling across modalities. Recent speech tokenization approaches aim to isolate semantic information from low-level acoustics to better align with language models. In particular, previous methods use SSL teachers such as HuBERT to extract semantic representations, which are then distilled into a semantic quantizer to suppress acoustic redundancy as well as capture content-related latent structures. However, they still produce speech token sequences significantly longer than their textual counterparts, creating challenges for efficient speech-language modeling. Reducing the frame rate is a natural solution, but standard techniques, such as rigid average pooling across frames, can distort or dilute the semantic structure required for effective LM alignment. To address this, we propose LM-SPT, a speech tokenization method that introduces a novel semantic distillation. Instead of directly matching teacher and student features via pooling, we reconstruct speech solely from semantic tokens and minimize the discrepancy between the encoded representations of the original and reconstructed waveforms, obtained from a frozen automatic speech recognition (ASR) encoder. This indirect yet data-driven supervision enables the tokenizer to learn discrete units that are more semantically aligned with language models. LM-SPT further incorporates architectural improvements to the encoder and decoder for speech tokenization, and supports multiple frame rates, including 25Hz, 12.5Hz, and 6.25Hz. Experimental results show that LM-SPT achieves superior reconstruction fidelity compared to baselines, and that SLMs trained with LM-SPT tokens achieve competitive performances on speech-to-text and consistently outperform baselines on text-to-speech tasks.
KARL: Knowledge-Aware Retrieval and Representations aid Retention and Learning in Students
Flashcard schedulers are tools that rely on 1) student models to predict the flashcards a student knows; and 2) teaching policies to schedule cards based on these predictions. Existing student models, however, only use flashcard-level features, like the student's past responses, ignoring the semantic ties of flashcards. Deep Knowledge Tracing (DKT) models can capture semantic relations with language models, but are inefficient, lack content-rich datasets for evaluation, and require robust teaching policies. To address these issues, we design KARL, a DKT-inspired student model that uses retrieval and BERT embeddings for efficient and accurate student recall predictions. To test KARL, we collect a new dataset of diverse study history on trivia questions. KARL bests existing student models in AUC and calibration error. Finally, we propose a novel teaching policy that exploits the predictive power of DKT models to deploy KARL online. Based on 27 learners and 32 6-day study trajectories, KARL shows the ability to enhance medium-term educational learning, proving its efficacy for scheduling.
LiteCUA: Computer as MCP Server for Computer-Use Agent on AIOS
We present AIOS 1.0, a novel platform designed to advance computer-use agent (CUA) capabilities through environmental contextualization. While existing approaches primarily focus on building more powerful agent frameworks or enhancing agent models, we identify a fundamental limitation: the semantic disconnect between how language models understand the world and how computer interfaces are structured. AIOS 1.0 addresses this challenge by transforming computers into contextual environments that language models can natively comprehend, implementing a Model Context Protocol (MCP) server architecture to abstract computer states and actions. This approach effectively decouples interface complexity from decision complexity, enabling agents to reason more effectively about computing environments. To demonstrate our platform's effectiveness, we introduce LiteCUA, a lightweight computer-use agent built on AIOS 1.0 that achieves a 14.66% success rate on the OSWorld benchmark, outperforming several specialized agent frameworks despite its simple architecture. Our results suggest that contextualizing computer environments for language models represents a promising direction for developing more capable computer-use agents and advancing toward AI that can interact with digital systems. The source code of LiteCUA is available at https://github.com/agiresearch/LiteCUA, and it is also integrated into the AIOS main branch as part of AIOS at https://github.com/agiresearch/AIOS.
VN-MTEB: Vietnamese Massive Text Embedding Benchmark
Vietnam ranks among the top countries in terms of both internet traffic and online toxicity. As a result, implementing embedding models for recommendation and content control duties in applications is crucial. However, a lack of large-scale test datasets, both in volume and task diversity, makes it tricky for scientists to effectively evaluate AI models before deploying them in real-world, large-scale projects. To solve this important problem, we introduce a Vietnamese benchmark, VN-MTEB for embedding models, which we created by translating a large number of English samples from the Massive Text Embedding Benchmark using our new automated framework. We leverage the strengths of large language models (LLMs) and cutting-edge embedding models to conduct translation and filtering processes to retain high-quality samples, guaranteeing a natural flow of language and semantic fidelity while preserving named entity recognition (NER) and code snippets. Our comprehensive benchmark consists of 41 datasets from six tasks specifically designed for Vietnamese text embeddings. In our analysis, we find that bigger and more complex models using Rotary Positional Embedding outperform those using Absolute Positional Embedding in embedding tasks. Datasets are available at HuggingFace: https://huggingface.co/collections/GreenNode/vn-mteb-68871433f0f7573b8e1a6686
Charting a Decade of Computational Linguistics in Italy: The CLiC-it Corpus
Over the past decade, Computational Linguistics (CL) and Natural Language Processing (NLP) have evolved rapidly, especially with the advent of Transformer-based Large Language Models (LLMs). This shift has transformed research goals and priorities, from Lexical and Semantic Resources to Language Modelling and Multimodality. In this study, we track the research trends of the Italian CL and NLP community through an analysis of the contributions to CLiC-it, arguably the leading Italian conference in the field. We compile the proceedings from the first 10 editions of the CLiC-it conference (from 2014 to 2024) into the CLiC-it Corpus, providing a comprehensive analysis of both its metadata, including author provenance, gender, affiliations, and more, as well as the content of the papers themselves, which address various topics. Our goal is to provide the Italian and international research communities with valuable insights into emerging trends and key developments over time, supporting informed decisions and future directions in the field.
Semantic-Clipping: Efficient Vision-Language Modeling with Semantic-Guidedd Visual Selection
Vision-Language Models (VLMs) leverage aligned visual encoders to transform images into visual tokens, allowing them to be processed similarly to text by the backbone large language model (LLM). This unified input paradigm enables VLMs to excel in vision-language tasks such as visual question answering (VQA). To improve fine-grained visual reasoning, recent advancements in vision-language modeling introduce image cropping techniques that feed all encoded sub-images into the model. However, this approach significantly increases the number of visual tokens, leading to inefficiency and potential distractions for the LLM. To address the generalization challenges of image representation in VLMs, we propose a lightweight, universal framework that seamlessly integrates with existing VLMs to enhance their ability to process finegrained details. Our method leverages textual semantics to identify key visual areas, improving VQA performance without requiring any retraining of the VLM. Additionally, it incorporates textual signals into the visual encoding process, enhancing both efficiency and effectiveness. The proposed method, SEMCLIP, strengthens the visual understanding of a 7B VLM, LLaVA-1.5 by 3.3% on average across 7 benchmarks, and particularly by 5.3% on the challenging detailed understanding benchmark V*.
Semantic Consistency for Assuring Reliability of Large Language Models
Large Language Models (LLMs) exhibit remarkable fluency and competence across various natural language tasks. However, recent research has highlighted their sensitivity to variations in input prompts. To deploy LLMs in a safe and reliable manner, it is crucial for their outputs to be consistent when prompted with expressions that carry the same meaning or intent. While some existing work has explored how state-of-the-art LLMs address this issue, their evaluations have been confined to assessing lexical equality of single- or multi-word answers, overlooking the consistency of generative text sequences. For a more comprehensive understanding of the consistency of LLMs in open-ended text generation scenarios, we introduce a general measure of semantic consistency, and formulate multiple versions of this metric to evaluate the performance of various LLMs. Our proposal demonstrates significantly higher consistency and stronger correlation with human evaluations of output consistency than traditional metrics based on lexical consistency. Finally, we propose a novel prompting strategy, called Ask-to-Choose (A2C), to enhance semantic consistency. When evaluated for closed-book question answering based on answer variations from the TruthfulQA benchmark, A2C increases accuracy metrics for pretrained and finetuned LLMs by up to 47%, and semantic consistency metrics for instruction-tuned models by up to 7-fold.
Semantic Aware Linear Transfer by Recycling Pre-trained Language Models for Cross-lingual Transfer
Large Language Models (LLMs) increasingly incorporate multilingual capabilities, fueling the demand to transfer them into target language-specific models. However, most approaches, which blend the source model's embedding by replacing the source vocabulary with the target language-specific vocabulary, may constrain expressive capacity in the target language since the source model is predominantly trained on English data. In this paper, we propose Semantic Aware Linear Transfer (SALT), a novel cross-lingual transfer technique that recycles embeddings from target language Pre-trained Language Models (PLMs) to transmit the deep representational strengths of PLM-derived embedding to LLMs. SALT derives unique regression lines based on the similarity in the overlap of the source and target vocabularies, to handle each non-overlapping token's embedding space. Our extensive experiments show that SALT significantly outperforms other transfer methods and achieves lower loss with accelerating faster convergence during language adaptation. Notably, SALT obtains remarkable performance in cross-lingual understanding setups compared to other methods. Furthermore, we highlight the scalable use of PLMs to enhance the functionality of contemporary LLMs by conducting experiments with varying architectures.
Semantic Pivots Enable Cross-Lingual Transfer in Large Language Models
Large language models (LLMs) demonstrate remarkable ability in cross-lingual tasks. Understanding how LLMs acquire this ability is crucial for their interpretability. To quantify the cross-lingual ability of LLMs accurately, we propose a Word-Level Cross-Lingual Translation Task. To find how LLMs learn cross-lingual ability, we trace the outputs of LLMs' intermediate layers in the word translation task. We identify and distinguish two distinct behaviors in the forward pass of LLMs: co-occurrence behavior and semantic pivot behavior. We attribute LLMs' two distinct behaviors to the co-occurrence frequency of words and find the semantic pivot from the pre-training dataset. Finally, to apply our findings to improve the cross-lingual ability of LLMs, we reconstruct a semantic pivot-aware pre-training dataset using documents with a high proportion of semantic pivots. Our experiments validate the effectiveness of our approach in enhancing cross-lingual ability. Our research contributes insights into the interpretability of LLMs and offers a method for improving LLMs' cross-lingual ability.
3DGraphLLM: Combining Semantic Graphs and Large Language Models for 3D Scene Understanding
A 3D scene graph represents a compact scene model, storing information about the objects and the semantic relationships between them, making its use promising for robotic tasks. When interacting with a user, an embodied intelligent agent should be capable of responding to various queries about the scene formulated in natural language. Large Language Models (LLMs) are beneficial solutions for user-robot interaction due to their natural language understanding and reasoning abilities. Recent methods for creating learnable representations of 3D scenes have demonstrated the potential to improve the quality of LLMs responses by adapting to the 3D world. However, the existing methods do not explicitly utilize information about the semantic relationships between objects, limiting themselves to information about their coordinates. In this work, we propose a method 3DGraphLLM for constructing a learnable representation of a 3D scene graph. The learnable representation is used as input for LLMs to perform 3D vision-language tasks. In our experiments on popular ScanRefer, RIORefer, Multi3DRefer, ScanQA, Sqa3D, and Scan2cap datasets, we demonstrate the advantage of this approach over baseline methods that do not use information about the semantic relationships between objects. The code is publicly available at https://github.com/CognitiveAISystems/3DGraphLLM.
Constrained Language Models Yield Few-Shot Semantic Parsers
We explore the use of large pretrained language models as few-shot semantic parsers. The goal in semantic parsing is to generate a structured meaning representation given a natural language input. However, language models are trained to generate natural language. To bridge the gap, we use language models to paraphrase inputs into a controlled sublanguage resembling English that can be automatically mapped to a target meaning representation. Our results demonstrate that with only a small amount of data and very little code to convert into English-like representations, our blueprint for rapidly bootstrapping semantic parsers leads to surprisingly effective performance on multiple community tasks, greatly exceeding baseline methods also trained on the same limited data.
Vision-Language Models as Differentiable Semantic and Spatial Rewards for Text-to-3D Generation
Score Distillation Sampling (SDS) enables high-quality text-to-3D generation by supervising 3D models through the denoising of multi-view 2D renderings, using a pretrained text-to-image diffusion model to align with the input prompt and ensure 3D consistency. However, existing SDS-based methods face two fundamental limitations: (1) their reliance on CLIP-style text encoders leads to coarse semantic alignment and struggles with fine-grained prompts; and (2) 2D diffusion priors lack explicit 3D spatial constraints, resulting in geometric inconsistencies and inaccurate object relationships in multi-object scenes. To address these challenges, we propose VLM3D, a novel text-to-3D generation framework that integrates large vision-language models (VLMs) into the SDS pipeline as differentiable semantic and spatial priors. Unlike standard text-to-image diffusion priors, VLMs leverage rich language-grounded supervision that enables fine-grained prompt alignment. Moreover, their inherent vision language modeling provides strong spatial understanding, which significantly enhances 3D consistency for single-object generation and improves relational reasoning in multi-object scenes. We instantiate VLM3D based on the open-source Qwen2.5-VL model and evaluate it on the GPTeval3D benchmark. Experiments across diverse objects and complex scenes show that VLM3D significantly outperforms prior SDS-based methods in semantic fidelity, geometric coherence, and spatial correctness.
The Geometry of Truth: Layer-wise Semantic Dynamics for Hallucination Detection in Large Language Models
Large Language Models (LLMs) often produce fluent yet factually incorrect statements-a phenomenon known as hallucination-posing serious risks in high-stakes domains. We present Layer-wise Semantic Dynamics (LSD), a geometric framework for hallucination detection that analyzes the evolution of hidden-state semantics across transformer layers. Unlike prior methods that rely on multiple sampling passes or external verification sources, LSD operates intrinsically within the model's representational space. Using margin-based contrastive learning, LSD aligns hidden activations with ground-truth embeddings derived from a factual encoder, revealing a distinct separation in semantic trajectories: factual responses preserve stable alignment, while hallucinations exhibit pronounced semantic drift across depth. Evaluated on the TruthfulQA and synthetic factual-hallucination datasets, LSD achieves an F1-score of 0.92, AUROC of 0.96, and clustering accuracy of 0.89, outperforming SelfCheckGPT and Semantic Entropy baselines while requiring only a single forward pass. This efficiency yields a 5-20x speedup over sampling-based methods without sacrificing precision or interpretability. LSD offers a scalable, model-agnostic mechanism for real-time hallucination monitoring and provides new insights into the geometry of factual consistency within large language models.
Large Language Models are In-Context Semantic Reasoners rather than Symbolic Reasoners
The emergent few-shot reasoning capabilities of Large Language Models (LLMs) have excited the natural language and machine learning community over recent years. Despite of numerous successful applications, the underlying mechanism of such in-context capabilities still remains unclear. In this work, we hypothesize that the learned semantics of language tokens do the most heavy lifting during the reasoning process. Different from human's symbolic reasoning process, the semantic representations of LLMs could create strong connections among tokens, thus composing a superficial logical chain. To test our hypothesis, we decouple semantics from the language reasoning process and evaluate three kinds of reasoning abilities, i.e., deduction, induction and abduction. Our findings reveal that semantics play a vital role in LLMs' in-context reasoning -- LLMs perform significantly better when semantics are consistent with commonsense but struggle to solve symbolic or counter-commonsense reasoning tasks by leveraging in-context new knowledge. The surprising observations question whether modern LLMs have mastered the inductive, deductive and abductive reasoning abilities as in human intelligence, and motivate research on unveiling the magic existing within the black-box LLMs. On the whole, our analysis provides a novel perspective on the role of semantics in developing and evaluating language models' reasoning abilities. Code is available at {https://github.com/XiaojuanTang/ICSR}.
S$^4$C: Speculative Sampling with Syntactic and Semantic Coherence for Efficient Inference of Large Language Models
Large language models (LLMs) exhibit remarkable reasoning capabilities across diverse downstream tasks. However, their autoregressive nature leads to substantial inference latency, posing challenges for real-time applications. Speculative sampling mitigates this issue by introducing a drafting phase followed by a parallel validation phase, enabling faster token generation and verification. Existing approaches, however, overlook the inherent coherence in text generation, limiting their efficiency. To address this gap, we propose a Speculative Sampling with Syntactic and Semantic Coherence (S^4C) framework, which extends speculative sampling by leveraging multi-head drafting for rapid token generation and a continuous verification tree for efficient candidate validation and feature reuse. Experimental results demonstrate that S^4C surpasses baseline methods across mainstream tasks, offering enhanced efficiency, parallelism, and the ability to generate more valid tokens with fewer computational resources. On Spec-bench benchmarks, S^4C achieves an acceleration ratio of 2.26x-2.60x, outperforming state-of-the-art methods.
Evaluating Large Language Models in Semantic Parsing for Conversational Question Answering over Knowledge Graphs
Conversational question answering systems often rely on semantic parsing to enable interactive information retrieval, which involves the generation of structured database queries from a natural language input. For information-seeking conversations about facts stored within a knowledge graph, dialogue utterances are transformed into graph queries in a process that is called knowledge-based conversational question answering. This paper evaluates the performance of large language models that have not been explicitly pre-trained on this task. Through a series of experiments on an extensive benchmark dataset, we compare models of varying sizes with different prompting techniques and identify common issue types in the generated output. Our results demonstrate that large language models are capable of generating graph queries from dialogues, with significant improvements achievable through few-shot prompting and fine-tuning techniques, especially for smaller models that exhibit lower zero-shot performance.
Semantic Structure in Large Language Model Embeddings
Psychological research consistently finds that human ratings of words across diverse semantic scales can be reduced to a low-dimensional form with relatively little information loss. We find that the semantic associations encoded in the embedding matrices of large language models (LLMs) exhibit a similar structure. We show that the projections of words on semantic directions defined by antonym pairs (e.g. kind - cruel) correlate highly with human ratings, and further find that these projections effectively reduce to a 3-dimensional subspace within LLM embeddings, closely resembling the patterns derived from human survey responses. Moreover, we find that shifting tokens along one semantic direction causes off-target effects on geometrically aligned features proportional to their cosine similarity. These findings suggest that semantic features are entangled within LLMs similarly to how they are interconnected in human language, and a great deal of semantic information, despite its apparent complexity, is surprisingly low-dimensional. Furthermore, accounting for this semantic structure may prove essential for avoiding unintended consequences when steering features.
Mitigating Reversal Curse in Large Language Models via Semantic-aware Permutation Training
While large language models (LLMs) have achieved impressive performance across diverse tasks, recent studies showcase that causal LLMs suffer from the "reversal curse". It is a typical example that the model knows "A's father is B", but is unable to reason "B's child is A". This limitation poses a challenge to the advancement of artificial general intelligence (AGI), as it suggests a gap in the models' ability to comprehend and apply bidirectional reasoning. In this paper, we first conduct substantial evaluation and identify that the root cause of the reversal curse lies in the different word order between the training and inference stage, namely, the poor ability of causal language models to predict antecedent words within the training data. Accordingly, permutation on the training data is considered as a potential solution, since this can make the model predict antecedent words or tokens. However, previous permutation methods may disrupt complete phrases or entities, thereby posing challenges for the model to comprehend and learn from training data. To address this issue, we propose Semantic-aware Permutation Training (SPT), which addresses this issue by segmenting the training sentences into semantic units (i.e., entities or phrases) with an assistant language model and permuting these units before feeding into the model. Extensive experiments demonstrate that SPT effectively mitigates the reversal curse since the performance on reversed questions approximates that on the forward ones, and significantly advances the performance of existing works.
Scaling Up Efficient Small Language Models Serving and Deployment for Semantic Job Search
Large Language Models (LLMs) have demonstrated impressive quality when applied to predictive tasks such as relevance ranking and semantic search. However, deployment of such LLMs remains prohibitively expensive for industry applications with strict latency and throughput requirements. In this work, we present lessons and efficiency insights from developing a purely text-based decoder-only Small Language Model (SLM) for a semantic search application at LinkedIn. Particularly, we discuss model compression techniques such as pruning that allow us to reduce the model size by up to 40% while maintaining the accuracy. Additionally, we present context compression techniques that allow us to reduce the input context length by up to 10x with minimal loss of accuracy. Finally, we present practical lessons from optimizing the serving infrastructure for deploying such a system on GPUs at scale, serving millions of requests per second. Taken together, this allows us to increase our system's throughput by 10x in a real-world deployment, while meeting our quality bar.
Fine-Tuning Large Language Models to Appropriately Abstain with Semantic Entropy
Large Language Models (LLMs) are known to hallucinate, whereby they generate plausible but inaccurate text. This phenomenon poses significant risks in critical applications, such as medicine or law, necessitating robust hallucination mitigation strategies. While recent works have proposed fine-tuning methods to teach LLMs to abstain from answering questions beyond their knowledge or capabilities, these methods rely on the existence of ground-truth labels or are limited to short-form responses. To address these limitations, we propose fine-tuning using semantic entropy, an uncertainty measure derived from introspection into the model which does not require external labels. We demonstrate that our approach matches or outperforms models fine-tuned using prior work and achieves strong performance for both short and long-form generations on a range of datasets.
Semantic Probabilistic Control of Language Models
Semantic control entails steering LM generations towards satisfying subtle non-lexical constraints, e.g., toxicity, sentiment, or politeness, attributes that can be captured by a sequence-level verifier. It can thus be viewed as sampling from the LM distribution conditioned on the target attribute, a computationally intractable problem due to the non-decomposable nature of the verifier. Existing approaches to LM control either only deal with syntactic constraints which cannot capture the aforementioned attributes, or rely on sampling to explore the conditional LM distribution, an ineffective estimator for low-probability events. In this work, we leverage a verifier's gradient information to efficiently reason over all generations that satisfy the target attribute, enabling precise steering of LM generations by reweighing the next-token distribution. Starting from an initial sample, we create a local LM distribution favoring semantically similar sentences. This approximation enables the tractable computation of an expected sentence embedding. We use this expected embedding, informed by the verifier's evaluation at the initial sample, to estimate the probability of satisfying the constraint, which directly informs the update to the next-token distribution. We evaluated the effectiveness of our approach in controlling the toxicity, sentiment, and topic-adherence of LMs yielding generations satisfying the constraint with high probability (>95%) without degrading their quality.
LF-Steering: Latent Feature Activation Steering for Enhancing Semantic Consistency in Large Language Models
Large Language Models (LLMs) often generate inconsistent responses when prompted with semantically equivalent paraphrased inputs. Recently, activation steering, a technique that modulates LLMs' behaviours by adjusting their latent representations during inference time, has been explored to improve the semantic consistency of LLMs. However, these methods typically operate at the model component level, such as layer hidden states or attention head outputs. They face a challenge due to the ``polysemanticity issue'', where the model components of LLMs typically encode multiple entangled features, making precise steering difficult. To address this challenge, we drill down to feature-level representations and propose LF-Steering, a novel activation steering approach to precisely identify latent feature representations responsible for semantic inconsistency. More specifically, our method maps the hidden states of the relevant transformer layer into a sparsely activated, high-dimensional feature space based on a sparse autoencoder (SAE), ensuring model steering based on decoupled feature representations with minimal interference. Comprehensive experiments on NLU and NLG datasets demonstrate the effectiveness of our method in enhancing semantic consistency, resulting in significant performance gains for various NLU and NLG tasks.
Semantic Exploration with Adaptive Gating for Efficient Problem Solving with Language Models
Recent advancements in large language models (LLMs) have shown remarkable potential in various complex tasks requiring multi-step reasoning methods like tree search to explore diverse reasoning paths. However, existing methods often suffer from computational inefficiency and redundancy. First, they overlook the diversity of task difficulties, leading to unnecessarily extensive searches even for easy tasks. Second, they neglect the semantics of reasoning paths, resulting in redundant exploration of semantically identical paths. To address these limitations, we propose Semantic Exploration with Adaptive Gating (SEAG), a computationally efficient method. SEAG employs an adaptive gating mechanism that dynamically decides whether to conduct a tree search, based on the confidence level of answers from a preceding simple reasoning method. Furthermore, its tree-based exploration consolidates semantically identical reasoning steps, reducing redundant explorations while maintaining or even improving accuracy. Our extensive experiments demonstrate that SEAG significantly improves accuracy by 4.3% on average while requiring only 31% of computational costs compared to existing tree search-based methods on complex reasoning benchmarks including GSM8K and ARC with diverse language models such as Llama2, Llama3, and Mistral.
Leveraging Large Language Models for Semantic Query Processing in a Scholarly Knowledge Graph
The proposed research aims to develop an innovative semantic query processing system that enables users to obtain comprehensive information about research works produced by Computer Science (CS) researchers at the Australian National University (ANU). The system integrates Large Language Models (LLMs) with the ANU Scholarly Knowledge Graph (ASKG), a structured repository of all research-related artifacts produced at ANU in the CS field. Each artifact and its parts are represented as textual nodes stored in a Knowledge Graph (KG). To address the limitations of traditional scholarly KG construction and utilization methods, which often fail to capture fine-grained details, we propose a novel framework that integrates the Deep Document Model (DDM) for comprehensive document representation and the KG-enhanced Query Processing (KGQP) for optimized complex query handling. DDM enables a fine-grained representation of the hierarchical structure and semantic relationships within academic papers, while KGQP leverages the KG structure to improve query accuracy and efficiency with LLMs. By combining the ASKG with LLMs, our approach enhances knowledge utilization and natural language understanding capabilities. The proposed system employs an automatic LLM-SPARQL fusion to retrieve relevant facts and textual nodes from the ASKG. Initial experiments demonstrate that our framework is superior to baseline methods in terms of accuracy retrieval and query efficiency. We showcase the practical application of our framework in academic research scenarios, highlighting its potential to revolutionize scholarly knowledge management and discovery. This work empowers researchers to acquire and utilize knowledge from documents more effectively and provides a foundation for developing precise and reliable interactions with LLMs.
Open-vocabulary Semantic Segmentation with Frozen Vision-Language Models
When trained at a sufficient scale, self-supervised learning has exhibited a notable ability to solve a wide range of visual or language understanding tasks. In this paper, we investigate simple, yet effective approaches for adapting the pre-trained foundation models to the downstream task of interest, namely, open-vocabulary semantic segmentation. To this end, we make the following contributions: (i) we introduce Fusioner, with a lightweight, transformer-based fusion module, that pairs the frozen visual representation with language concept through a handful of image segmentation data. As a consequence, the model gains the capability of zero-shot transfer to segment novel categories; (ii) without loss of generality, we experiment on a broad range of self-supervised models that have been pre-trained with different schemes, e.g. visual-only models (MoCo v3, DINO), language-only models (BERT), visual-language model (CLIP), and show that, the proposed fusion approach is effective to any pair of visual and language models, even those pre-trained on a corpus of uni-modal data; (iii) we conduct thorough ablation studies to analyze the critical components in our proposed Fusioner, while evaluating on standard benchmarks, e.g. PASCAL-5i and COCO-20i , it surpasses existing state-of-the-art models by a large margin, despite only being trained on frozen visual and language features; (iv) to measure the model's robustness on learning visual-language correspondence, we further evaluate on synthetic dataset, named Mosaic-4, where images are constructed by mosaicking the samples from FSS-1000. Fusioner demonstrates superior performance over previous models.
Extending Context Window of Large Language Models via Semantic Compression
Transformer-based Large Language Models (LLMs) often impose limitations on the length of the text input to ensure the generation of fluent and relevant responses. This constraint restricts their applicability in scenarios involving long texts. We propose a novel semantic compression method that enables generalization to texts that are 6-8 times longer, without incurring significant computational costs or requiring fine-tuning. Our proposed framework draws inspiration from source coding in information theory and employs a pre-trained model to reduce the semantic redundancy of long inputs before passing them to the LLMs for downstream tasks. Experimental results demonstrate that our method effectively extends the context window of LLMs across a range of tasks including question answering, summarization, few-shot learning, and information retrieval. Furthermore, the proposed semantic compression method exhibits consistent fluency in text generation while reducing the associated computational overhead.
From Occlusion to Insight: Object Search in Semantic Shelves using Large Language Models
How can a robot efficiently extract a desired object from a shelf when it is fully occluded by other objects? Prior works propose geometric approaches for this problem but do not consider object semantics. Shelves in pharmacies, restaurant kitchens, and grocery stores are often organized such that semantically similar objects are placed close to one another. Can large language models (LLMs) serve as semantic knowledge sources to accelerate robotic mechanical search in semantically arranged environments? With Semantic Spatial Search on Shelves (S^4), we use LLMs to generate affinity matrices, where entries correspond to semantic likelihood of physical proximity between objects. We derive semantic spatial distributions by synthesizing semantics with learned geometric constraints. S^4 incorporates Optical Character Recognition (OCR) and semantic refinement with predictions from ViLD, an open-vocabulary object detection model. Simulation experiments suggest that semantic spatial search reduces the search time relative to pure spatial search by an average of 24% across three domains: pharmacy, kitchen, and office shelves. A manually collected dataset of 100 semantic scenes suggests that OCR and semantic refinement improve object detection accuracy by 35%. Lastly, physical experiments in a pharmacy shelf suggest 47.1% improvement over pure spatial search. Supplementary material can be found at https://sites.google.com/view/s4-rss/home.
Compositional Semantic Parsing with Large Language Models
Humans can reason compositionally when presented with new tasks. Previous research shows that appropriate prompting techniques enable large language models (LLMs) to solve artificial compositional generalization tasks such as SCAN. In this work, we identify additional challenges in more realistic semantic parsing tasks with larger vocabulary and refine these prompting techniques to address them. Our best method is based on least-to-most prompting: it decomposes the problem using prompting-based syntactic parsing, then uses this decomposition to select appropriate exemplars and to sequentially generate the semantic parse. This method allows us to set a new state of the art for CFQ while requiring only 1% of the training data used by traditional approaches. Due to the general nature of our approach, we expect similar efforts will lead to new results in other tasks and domains, especially for knowledge-intensive applications.
SemToken: Semantic-Aware Tokenization for Efficient Long-Context Language Modeling
Tokenization plays a critical role in language modeling, yet existing approaches such as Byte-Pair Encoding (BPE) or WordPiece operate purely on frequency statistics, ignoring the underlying semantic structure of text. This leads to over-tokenization of semantically redundant spans and underutilization of contextual coherence, particularly in long-context scenarios. In this work, we propose SemToken, a semantic-aware tokenization framework that jointly reduces token redundancy and improves computation efficiency. SemToken first extracts contextual semantic embeddings via lightweight encoders and performs local semantic clustering to merge semantically equivalent tokens. Then, it allocates heterogeneous token granularity based on semantic density, allowing finer-grained tokenization in content-rich regions and coarser compression in repetitive or low-entropy spans. SemToken can be seamlessly integrated with modern language models and attention acceleration methods. Experiments on long-context language modeling benchmarks such as WikiText-103 and LongBench show that SemToken achieves up to 2.4times reduction in token count and 1.9times speedup, with negligible or no degradation in perplexity and downstream accuracy. Our findings suggest that semantic structure offers a promising new axis for optimizing tokenization and computation in large language models.
A Semantic Invariant Robust Watermark for Large Language Models
Watermark algorithms for large language models (LLMs) have achieved extremely high accuracy in detecting text generated by LLMs. Such algorithms typically involve adding extra watermark logits to the LLM's logits at each generation step. However, prior algorithms face a trade-off between attack robustness and security robustness. This is because the watermark logits for a token are determined by a certain number of preceding tokens; a small number leads to low security robustness, while a large number results in insufficient attack robustness. In this work, we propose a semantic invariant watermarking method for LLMs that provides both attack robustness and security robustness. The watermark logits in our work are determined by the semantics of all preceding tokens. Specifically, we utilize another embedding LLM to generate semantic embeddings for all preceding tokens, and then these semantic embeddings are transformed into the watermark logits through our trained watermark model. Subsequent analyses and experiments demonstrated the attack robustness of our method in semantically invariant settings: synonym substitution and text paraphrasing settings. Finally, we also show that our watermark possesses adequate security robustness. Our code and data are available at https://github.com/THU-BPM/Robust_Watermark.
SeMe: Training-Free Language Model Merging via Semantic Alignment
Despite the remarkable capabilities of Language Models (LMs) across diverse tasks, no single model consistently outperforms others, necessitating efficient methods to combine their strengths without expensive retraining. Existing model merging techniques, such as parameter averaging and task-guided fusion, often rely on data-dependent computations or fail to preserve internal knowledge, limiting their robustness and scalability. We introduce SeMe (Semantic-based Merging), a novel, data-free, and training-free approach that leverages latent semantic alignment to merge LMs at a fine-grained, layer-wise level. Unlike prior work, SeMe not only preserves model behaviors but also explicitly stabilizes internal knowledge, addressing a critical gap in LM fusion. Through extensive experiments across diverse architectures and tasks, we demonstrate that SeMe outperforms existing methods in both performance and efficiency while eliminating reliance on external data. Our work establishes a new paradigm for knowledge-aware model merging and provides insights into the semantic structure of LMs, paving the way for more scalable and interpretable model composition.
Towards Semantic Versioning of Open Pre-trained Language Model Releases on Hugging Face
The proliferation of open Pre-trained Language Models (PTLMs) on model registry platforms like Hugging Face (HF) presents both opportunities and challenges for companies building products around them. Similar to traditional software dependencies, PTLMs continue to evolve after a release. However, the current state of release practices of PTLMs on model registry platforms are plagued by a variety of inconsistencies, such as ambiguous naming conventions and inaccessible model training documentation. Given the knowledge gap on current PTLM release practices, our empirical study uses a mixed-methods approach to analyze the releases of 52,227 PTLMs on the most well-known model registry, HF. Our results reveal 148 different naming practices for PTLM releases, with 40.87% of changes to model weight files not represented in the adopted name-based versioning practice or their documentation. In addition, we identified that the 52,227 PTLMs are derived from only 299 different base models (the modified original models used to create 52,227 PTLMs), with Fine-tuning and Quantization being the most prevalent modification methods applied to these base models. Significant gaps in release transparency, in terms of training dataset specifications and model card availability, still exist, highlighting the need for standardized documentation. While we identified a model naming practice explicitly differentiating between major and minor PTLM releases, we did not find any significant difference in the types of changes that went into either type of releases, suggesting that major/minor version numbers for PTLMs often are chosen arbitrarily. Our findings provide valuable insights to improve PTLM release practices, nudging the field towards more formal semantic versioning practices.
Improving the Capabilities of Large Language Model Based Marketing Analytics Copilots With Semantic Search And Fine-Tuning
Artificial intelligence (AI) is widely deployed to solve problems related to marketing attribution and budget optimization. However, AI models can be quite complex, and it can be difficult to understand model workings and insights without extensive implementation teams. In principle, recently developed large language models (LLMs), like GPT-4, can be deployed to provide marketing insights, reducing the time and effort required to make critical decisions. In practice, there are substantial challenges that need to be overcome to reliably use such models. We focus on domain-specific question-answering, SQL generation needed for data retrieval, and tabular analysis and show how a combination of semantic search, prompt engineering, and fine-tuning can be applied to dramatically improve the ability of LLMs to execute these tasks accurately. We compare both proprietary models, like GPT-4, and open-source models, like Llama-2-70b, as well as various embedding methods. These models are tested on sample use cases specific to marketing mix modeling and attribution.
GraspGPT: Leveraging Semantic Knowledge from a Large Language Model for Task-Oriented Grasping
Task-oriented grasping (TOG) refers to the problem of predicting grasps on an object that enable subsequent manipulation tasks. To model the complex relationships between objects, tasks, and grasps, existing methods incorporate semantic knowledge as priors into TOG pipelines. However, the existing semantic knowledge is typically constructed based on closed-world concept sets, restraining the generalization to novel concepts out of the pre-defined sets. To address this issue, we propose GraspGPT, a large language model (LLM) based TOG framework that leverages the open-end semantic knowledge from an LLM to achieve zero-shot generalization to novel concepts. We conduct experiments on Language Augmented TaskGrasp (LA-TaskGrasp) dataset and demonstrate that GraspGPT outperforms existing TOG methods on different held-out settings when generalizing to novel concepts out of the training set. The effectiveness of GraspGPT is further validated in real-robot experiments. Our code, data, appendix, and video are publicly available at https://sites.google.com/view/graspgpt/.
D2LLM: Decomposed and Distilled Large Language Models for Semantic Search
The key challenge in semantic search is to create models that are both accurate and efficient in pinpointing relevant sentences for queries. While BERT-style bi-encoders excel in efficiency with pre-computed embeddings, they often miss subtle nuances in search tasks. Conversely, GPT-style LLMs with cross-encoder designs capture these nuances but are computationally intensive, hindering real-time applications. In this paper, we present D2LLMs-Decomposed and Distilled LLMs for semantic search-that combines the best of both worlds. We decompose a cross-encoder into an efficient bi-encoder integrated with Pooling by Multihead Attention and an Interaction Emulation Module, achieving nuanced understanding and pre-computability. Knowledge from the LLM is distilled into this model using contrastive, rank, and feature imitation techniques. Our experiments show that D2LLM surpasses five leading baselines in terms of all metrics across three tasks, particularly improving NLI task performance by at least 6.45%. The source code is available at https://github.com/codefuse-ai/D2LLM.
Llama-Mimi: Speech Language Models with Interleaved Semantic and Acoustic Tokens
We propose Llama-Mimi, a speech language model that uses a unified tokenizer and a single Transformer decoder to jointly model sequences of interleaved semantic and acoustic tokens. Comprehensive evaluation shows that Llama-Mimi achieves state-of-the-art performance in acoustic consistency and possesses the ability to preserve speaker identity. Our analysis further demonstrates that increasing the number of quantizers improves acoustic fidelity but degrades linguistic performance, highlighting the inherent challenge of maintaining long-term coherence. We additionally introduce an LLM-as-a-Judge-based evaluation to assess the spoken content quality of generated outputs. Our models, code, and speech samples are publicly available.
ESREAL: Exploiting Semantic Reconstruction to Mitigate Hallucinations in Vision-Language Models
Hallucinations in vision-language models pose a significant challenge to their reliability, particularly in the generation of long captions. Current methods fall short of accurately identifying and mitigating these hallucinations. To address this issue, we introduce ESREAL, a novel unsupervised learning framework designed to suppress the generation of hallucinations through accurate localization and penalization of hallucinated tokens. Initially, ESREAL creates a reconstructed image based on the generated caption and aligns its corresponding regions with those of the original image. This semantic reconstruction aids in identifying both the presence and type of token-level hallucinations within the generated caption. Subsequently, ESREAL computes token-level hallucination scores by assessing the semantic similarity of aligned regions based on the type of hallucination. Finally, ESREAL employs a proximal policy optimization algorithm, where it selectively penalizes hallucinated tokens according to their token-level hallucination scores. Our framework notably reduces hallucinations in LLaVA, InstructBLIP, and mPLUG-Owl2 by 32.81%, 27.08%, and 7.46% on the CHAIR metric. This improvement is achieved solely through signals derived from the image itself, without the need for any image-text pairs.
Semantic Density: Uncertainty Quantification for Large Language Models through Confidence Measurement in Semantic Space
With the widespread application of Large Language Models (LLMs) to various domains, concerns regarding the trustworthiness of LLMs in safety-critical scenarios have been raised, due to their unpredictable tendency to hallucinate and generate misinformation. Existing LLMs do not have an inherent functionality to provide the users with an uncertainty/confidence metric for each response it generates, making it difficult to evaluate trustworthiness. Although several studies aim to develop uncertainty quantification methods for LLMs, they have fundamental limitations, such as being restricted to classification tasks, requiring additional training and data, considering only lexical instead of semantic information, and being prompt-wise but not response-wise. A new framework is proposed in this paper to address these issues. Semantic density extracts uncertainty/confidence information for each response from a probability distribution perspective in semantic space. It has no restriction on task types and is "off-the-shelf" for new models and tasks. Experiments on seven state-of-the-art LLMs, including the latest Llama 3 and Mixtral-8x22B models, on four free-form question-answering benchmarks demonstrate the superior performance and robustness of semantic density compared to prior approaches.
Multi-Lingual Malaysian Embedding: Leveraging Large Language Models for Semantic Representations
In this work, we present a comprehensive exploration of finetuning Malaysian language models, specifically Llama2 and Mistral, on embedding tasks involving negative and positive pairs. We release two distinct models tailored for Semantic Similarity and Retrieval-Augmented Generation (RAG). For Semantic Similarity, our 600 million parameter Llama2 model outperforms OpenAI text-embedding-ada-002 across all recall@k metrics for b.cari.com.my, c.cari.com.my, Malay news, and Malaysian Twitter test sets. In the realm of RAG models, our approach proves competitive with OpenAI text-embedding-ada-002 in the Malaysian context. Notably, our 2 billion parameter Llama2 model achieves superior Recall@5, Recall@10 for the "Melayu" keyword research papers dataset and excels in Recall@3, Recall@5, and Recall@10 for the lom.agc.gov.my dataset. These findings underscore the effectiveness of our finetuning strategy and highlight the performance gains in both Semantic Similarity and RAG tasks. All models released at https://huggingface.co/collections/mesolitica/malaysian-embedding-6523612bfe5881ad35f81b99
Revisiting a Pain in the Neck: Semantic Phrase Processing Benchmark for Language Models
We introduce LexBench, a comprehensive evaluation suite enabled to test language models (LMs) on ten semantic phrase processing tasks. Unlike prior studies, it is the first work to propose a framework from the comparative perspective to model the general semantic phrase (i.e., lexical collocation) and three fine-grained semantic phrases, including idiomatic expression, noun compound, and verbal construction. Thanks to \ourbenchmark, we assess the performance of 15 LMs across model architectures and parameter scales in classification, extraction, and interpretation tasks. Through the experiments, we first validate the scaling law and find that, as expected, large models excel better than the smaller ones in most tasks. Second, we investigate further through the scaling semantic relation categorization and find that few-shot LMs still lag behind vanilla fine-tuned models in the task. Third, through human evaluation, we find that the performance of strong models is comparable to the human level regarding semantic phrase processing. Our benchmarking findings can serve future research aiming to improve the generic capability of LMs on semantic phrase comprehension. Our source code and data are available at https://github.com/jacklanda/LexBench
E-ViLM: Efficient Video-Language Model via Masked Video Modeling with Semantic Vector-Quantized Tokenizer
To build scalable models for challenging real-world tasks, it is important to learn from diverse, multi-modal data in various forms (e.g., videos, text, and images). Among the existing works, a plethora of them have focused on leveraging large but cumbersome cross-modal architectures. Regardless of their effectiveness, larger architectures unavoidably prevent the models from being extended to real-world applications, so building a lightweight VL architecture and an efficient learning schema is of great practical value. In this paper, we propose an Efficient Video-Language Model (dubbed as E-ViLM) and a masked video modeling (MVM) schema, assisted with a semantic vector-quantized tokenizer. In particular, our E-ViLM learns to reconstruct the semantic labels of masked video regions, produced by the pre-trained vector-quantized tokenizer, which discretizes the continuous visual signals into labels. We show that with our simple MVM task and regular VL pre-training modelings, our E-ViLM, despite its compactness, is able to learn expressive representations from Video-Language corpus and generalize well to extensive Video-Language tasks including video question answering, text-to-video retrieval, etc. In particular, our E-ViLM obtains obvious efficiency improvements by reaching competing performances with faster inference speed, i.e., our model reaches 39.3% Top-1 accuracy on the MSRVTT benchmark, retaining 91.4% of the accuracy of state-of-the-art larger VL architecture with only 15% parameters and 94.8% fewer GFLOPs. We also provide extensive ablative studies that validate the effectiveness of our proposed learning schema for E-ViLM.
SEAL: SEmantic-Augmented Imitation Learning via Language Model
Hierarchical Imitation Learning (HIL) is a promising approach for tackling long-horizon decision-making tasks. While it is a challenging task due to the lack of detailed supervisory labels for sub-goal learning, and reliance on hundreds to thousands of expert demonstrations. In this work, we introduce SEAL, a novel framework that leverages Large Language Models (LLMs)'s powerful semantic and world knowledge for both specifying sub-goal space and pre-labeling states to semantically meaningful sub-goal representations without prior knowledge of task hierarchies. SEAL employs a dual-encoder structure, combining supervised LLM-guided sub-goal learning with unsupervised Vector Quantization (VQ) for more robust sub-goal representations. Additionally, SEAL incorporates a transition-augmented low-level planner for improved adaptation to sub-goal transitions. Our experiments demonstrate that SEAL outperforms state-of-the-art HIL methods and LLM-based planning approaches, particularly in settings with small expert datasets and complex long-horizon tasks.
Multi-Granularity Semantic Revision for Large Language Model Distillation
Knowledge distillation plays a key role in compressing the Large Language Models (LLMs), which boosts a small-size student model under large teacher models' guidance. However, existing LLM distillation methods overly rely on student-generated outputs, which may introduce generation errors and misguide the distillation process. Moreover, the distillation loss functions introduced in previous art struggle to align the most informative part due to the complex distribution of LLMs' outputs. To address these problems, we propose a multi-granularity semantic revision method for LLM distillation. At the sequence level, we propose a sequence correction and re-generation (SCRG) strategy. SCRG first calculates the semantic cognitive difference between the teacher and student to detect the error token, then corrects it with the teacher-generated one, and re-generates the sequence to reduce generation errors and enhance generation diversity. At the token level, we design a distribution adaptive clipping Kullback-Leibler (DAC-KL) loss as the distillation objective function. DAC-KL loss exploits a learnable sub-network to adaptively extract semantically dense areas from the teacher's output, avoiding the interference of redundant information in the distillation process. Finally, at the span level, we leverage the span priors of a sequence to compute the probability correlations within spans, and constrain the teacher and student's probability correlations to be consistent, further enhancing the transfer of semantic information. Extensive experiments across different model families with parameters ranging from 0.1B to 13B demonstrate the superiority of our method compared to existing methods.
SUGARCREPE++ Dataset: Vision-Language Model Sensitivity to Semantic and Lexical Alterations
Despite their remarkable successes, state-of-the-art large language models (LLMs), including vision-and-language models (VLMs) and unimodal language models (ULMs), fail to understand precise semantics. For example, semantically equivalent sentences expressed using different lexical compositions elicit diverging representations. The degree of this divergence and its impact on encoded semantics is not very well understood. In this paper, we introduce the SUGARCREPE++ dataset to analyze the sensitivity of VLMs and ULMs to lexical and semantic alterations. Each sample in SUGARCREPE++ dataset consists of an image and a corresponding triplet of captions: a pair of semantically equivalent but lexically different positive captions and one hard negative caption. This poses a 3-way semantic (in)equivalence problem to the language models. We comprehensively evaluate VLMs and ULMs that differ in architecture, pre-training objectives and datasets to benchmark the performance of SUGARCREPE++ dataset. Experimental results highlight the difficulties of VLMs in distinguishing between lexical and semantic variations, particularly in object attributes and spatial relations. Although VLMs with larger pre-training datasets, model sizes, and multiple pre-training objectives achieve better performance on SUGARCREPE++, there is a significant opportunity for improvement. We show that all the models which achieve better performance on compositionality datasets need not perform equally well on SUGARCREPE++, signifying that compositionality alone may not be sufficient for understanding semantic and lexical alterations. Given the importance of the property that the SUGARCREPE++ dataset targets, it serves as a new challenge to the vision-and-language community.
Rethinking Generative Large Language Model Evaluation for Semantic Comprehension
Despite their sophisticated capabilities, large language models (LLMs) encounter a major hurdle in effective assessment. This paper first revisits the prevalent evaluation method-multiple choice question answering (MCQA), which allows for straightforward accuracy measurement. Through a comprehensive evaluation of 24 models across 11 benchmarks, we highlight several potential drawbacks of MCQA, for instance, the inconsistency between the MCQA evaluation and the generation of open-ended responses in practical scenarios. In response, we introduce an RWQ-Elo rating system, engaging 24 LLMs such as GPT-4, GPT-3.5, Google-Gemini-Pro and LLaMA-1/-2, in a two-player competitive format, with GPT-4 serving as the judge. Each LLM receives an Elo rating thereafter. This system is designed to mirror real-world usage, and for this purpose, we have compiled a new benchmark called ``Real-world questions'' (RWQ), comprising 20,772 authentic user inquiries. Additionally, we thoroughly analyze the characteristics of our system and compare it with prior leaderboards like AlpacaEval and MT-Bench. Our analysis reveals the stability of our RWQ-Elo system, the feasibility of registering new models, and its potential to reshape LLM leaderboards.
PRISM: Patient Records Interpretation for Semantic Clinical Trial Matching using Large Language Models
Clinical trial matching is the task of identifying trials for which patients may be potentially eligible. Typically, this task is labor-intensive and requires detailed verification of patient electronic health records (EHRs) against the stringent inclusion and exclusion criteria of clinical trials. This process is manual, time-intensive, and challenging to scale up, resulting in many patients missing out on potential therapeutic options. Recent advancements in Large Language Models (LLMs) have made automating patient-trial matching possible, as shown in multiple concurrent research studies. However, the current approaches are confined to constrained, often synthetic datasets that do not adequately mirror the complexities encountered in real-world medical data. In this study, we present the first, end-to-end large-scale empirical evaluation of clinical trial matching using real-world EHRs. Our study showcases the capability of LLMs to accurately match patients with appropriate clinical trials. We perform experiments with proprietary LLMs, including GPT-4 and GPT-3.5, as well as our custom fine-tuned model called OncoLLM and show that OncoLLM, despite its significantly smaller size, not only outperforms GPT-3.5 but also matches the performance of qualified medical doctors. All experiments were carried out on real-world EHRs that include clinical notes and available clinical trials from a single cancer center in the United States.
SgVA-CLIP: Semantic-guided Visual Adapting of Vision-Language Models for Few-shot Image Classification
Although significant progress has been made in few-shot learning, most of existing few-shot image classification methods require supervised pre-training on a large amount of samples of base classes, which limits their generalization ability in real world application. Recently, large-scale Vision-Language Pre-trained models (VLPs) have been gaining increasing attention in few-shot learning because they can provide a new paradigm for transferable visual representation learning with easily available text on the Web. However, the VLPs may neglect detailed visual information that is difficult to describe by language sentences, but important for learning an effective classifier to distinguish different images. To address the above problem, we propose a new framework, named Semantic-guided Visual Adapting (SgVA), which can effectively extend vision-language pre-trained models to produce discriminative adapted visual features by comprehensively using an implicit knowledge distillation, a vision-specific contrastive loss, and a cross-modal contrastive loss. The implicit knowledge distillation is designed to transfer the fine-grained cross-modal knowledge to guide the updating of the vision adapter. State-of-the-art results on 13 datasets demonstrate that the adapted visual features can well complement the cross-modal features to improve few-shot image classification.
Cache-to-Cache: Direct Semantic Communication Between Large Language Models
Multi-LLM systems harness the complementary strengths of diverse Large Language Models, achieving performance and efficiency gains unattainable by a single model. In existing designs, LLMs communicate through text, forcing internal representations to be transformed into output token sequences. This process both loses rich semantic information and incurs token-by-token generation latency. Motivated by these limitations, we ask: Can LLMs communicate beyond text? Oracle experiments show that enriching the KV-Cache semantics can improve response quality without increasing cache size, supporting KV-Cache as an effective medium for inter-model communication. Thus, we propose Cache-to-Cache (C2C), a new paradigm for direct semantic communication between LLMs. C2C uses a neural network to project and fuse the source model's KV-cache with that of the target model to enable direct semantic transfer. A learnable gating mechanism selects the target layers that benefit from cache communication. Compared with text communication, C2C utilizes the deep, specialized semantics from both models, while avoiding explicit intermediate text generation. Experiments show that C2C achieves 8.5-10.5% higher average accuracy than individual models. It further outperforms the text communication paradigm by approximately 3.0-5.0%, while delivering an average 2.0x speedup in latency. Our code is available at https://github.com/thu-nics/C2C.
Remote Sensing Semantic Segmentation Quality Assessment based on Vision Language Model
The complexity of scenes and variations in image quality result in significant variability in the performance of semantic segmentation methods of remote sensing imagery (RSI) in supervised real-world scenarios. This makes the evaluation of semantic segmentation quality in such scenarios an issue to be resolved. However, most of the existing evaluation metrics are developed based on expert-labeled object-level annotations, which are not applicable in such scenarios. To address this issue, we propose RS-SQA, an unsupervised quality assessment model for RSI semantic segmentation based on vision language model (VLM). This framework leverages a pre-trained RS VLM for semantic understanding and utilizes intermediate features from segmentation methods to extract implicit information about segmentation quality. Specifically, we introduce CLIP-RS, a large-scale pre-trained VLM trained with purified text to reduce textual noise and capture robust semantic information in the RS domain. Feature visualizations confirm that CLIP-RS can effectively differentiate between various levels of segmentation quality. Semantic features and low-level segmentation features are effectively integrated through a semantic-guided approach to enhance evaluation accuracy. To further support the development of RS semantic segmentation quality assessment, we present RS-SQED, a dedicated dataset sampled from four major RS semantic segmentation datasets and annotated with segmentation accuracy derived from the inference results of 8 representative segmentation methods. Experimental results on the established dataset demonstrate that RS-SQA significantly outperforms state-of-the-art quality assessment models. This provides essential support for predicting segmentation accuracy and high-quality semantic segmentation interpretation, offering substantial practical value.
Mamba as a Bridge: Where Vision Foundation Models Meet Vision Language Models for Domain-Generalized Semantic Segmentation
Vision Foundation Models (VFMs) and Vision-Language Models (VLMs) have gained traction in Domain Generalized Semantic Segmentation (DGSS) due to their strong generalization capabilities. However, existing DGSS methods often rely exclusively on either VFMs or VLMs, overlooking their complementary strengths. VFMs (e.g., DINOv2) excel at capturing fine-grained features, while VLMs (e.g., CLIP) provide robust text alignment but struggle with coarse granularity. Despite their complementary strengths, effectively integrating VFMs and VLMs with attention mechanisms is challenging, as the increased patch tokens complicate long-sequence modeling. To address this, we propose MFuser, a novel Mamba-based fusion framework that efficiently combines the strengths of VFMs and VLMs while maintaining linear scalability in sequence length. MFuser consists of two key components: MVFuser, which acts as a co-adapter to jointly fine-tune the two models by capturing both sequential and spatial dynamics; and MTEnhancer, a hybrid attention-Mamba module that refines text embeddings by incorporating image priors. Our approach achieves precise feature locality and strong text alignment without incurring significant computational overhead. Extensive experiments demonstrate that MFuser significantly outperforms state-of-the-art DGSS methods, achieving 68.20 mIoU on synthetic-to-real and 71.87 mIoU on real-to-real benchmarks. The code is available at https://github.com/devinxzhang/MFuser.
Retrieval-Augmented Semantic Parsing: Using Large Language Models to Improve Generalization
Open-domain semantic parsing remains a challenging task, as models often rely on heuristics and struggle to handle unseen concepts. In this paper, we investigate the potential of large language models (LLMs) for this task and introduce Retrieval-Augmented Semantic Parsing (RASP), a simple yet effective approach that integrates external lexical knowledge into the parsing process. Our experiments not only show that LLMs outperform previous encoder-decoder baselines for semantic parsing, but that RASP further enhances their ability to predict unseen concepts, nearly doubling the performance of previous models on out-of-distribution concepts. These findings highlight the promise of leveraging large language models and retrieval mechanisms for robust and open-domain semantic parsing.
Improving Temporal Generalization of Pre-trained Language Models with Lexical Semantic Change
Recent research has revealed that neural language models at scale suffer from poor temporal generalization capability, i.e., the language model pre-trained on static data from past years performs worse over time on emerging data. Existing methods mainly perform continual training to mitigate such a misalignment. While effective to some extent but is far from being addressed on both the language modeling and downstream tasks. In this paper, we empirically observe that temporal generalization is closely affiliated with lexical semantic change, which is one of the essential phenomena of natural languages. Based on this observation, we propose a simple yet effective lexical-level masking strategy to post-train a converged language model. Experiments on two pre-trained language models, two different classification tasks, and four benchmark datasets demonstrate the effectiveness of our proposed method over existing temporal adaptation methods, i.e., continual training with new data. Our code is available at https://github.com/zhaochen0110/LMLM.
V-SEAM: Visual Semantic Editing and Attention Modulating for Causal Interpretability of Vision-Language Models
Recent advances in causal interpretability have extended from language models to vision-language models (VLMs), seeking to reveal their internal mechanisms through input interventions. While textual interventions often target semantics, visual interventions typically rely on coarse pixel-level perturbations, limiting semantic insights on multimodal integration. In this study, we introduce V-SEAM, a novel framework that combines Visual Semantic Editing and Attention Modulating for causal interpretation of VLMs. V-SEAM enables concept-level visual manipulations and identifies attention heads with positive or negative contributions to predictions across three semantic levels: objects, attributes, and relationships. We observe that positive heads are often shared within the same semantic level but vary across levels, while negative heads tend to generalize broadly. Finally, we introduce an automatic method to modulate key head embeddings, demonstrating enhanced performance for both LLaVA and InstructBLIP across three diverse VQA benchmarks. Our data and code are released at: https://github.com/petergit1/V-SEAM.
Annotating Training Data for Conditional Semantic Textual Similarity Measurement using Large Language Models
Semantic similarity between two sentences depends on the aspects considered between those sentences. To study this phenomenon, Deshpande et al. (2023) proposed the Conditional Semantic Textual Similarity (C-STS) task and annotated a human-rated similarity dataset containing pairs of sentences compared under two different conditions. However, Tu et al. (2024) found various annotation issues in this dataset and showed that manually re-annotating a small portion of it leads to more accurate C-STS models. Despite these pioneering efforts, the lack of large and accurately annotated C-STS datasets remains a blocker for making progress on this task as evidenced by the subpar performance of the C-STS models. To address this training data need, we resort to Large Language Models (LLMs) to correct the condition statements and similarity ratings in the original dataset proposed by Deshpande et al. (2023). Our proposed method is able to re-annotate a large training dataset for the C-STS task with minimal manual effort. Importantly, by training a supervised C-STS model on our cleaned and re-annotated dataset, we achieve a 5.4% statistically significant improvement in Spearman correlation. The re-annotated dataset is available at https://LivNLP.github.io/CSTS-reannotation.
Future Token Prediction -- Causal Language Modelling with Per-Token Semantic State Vector for Multi-Token Prediction
Causal decoder-only transformer models used for generative language modelling, such as Generative Pre-trained Transformers (GPT), are trained to predict the next token in a sequence based only on its previous tokens. Despite this simple training objective, they have proved to be powerful AI tools. However, only predicting the next token results in top layer embedding vectors that are highly token-focused. There may be benefits in generating embedding vectors at each token position that better capture the overall meaning of longer sequences of future text. Recent studies matching brain scans with deep language models suggest that humans also predict upcoming words when listening or reading but consider multiple future tokens rather than just one. This research investigates a new pretraining method called Future Token Prediction (FTP). In FTP, a large transformer encoder generates top layer embedding vectors for each token position, which, instead of being passed to a language head, are linearly and expansively projected to a pseudo-sequence, which is cross attended to by a small transformer decoder to predict the next N tokens forward from that position in the sequence. The top layer embedding vectors from FTP models exhibit distinct properties compared to those from standard GPT models, varying smoothly along a text sequence as measured by cosine similarity between adjacent tokens. Text generated by FTP models show improved topic coherence compared to standard GPT-like models trained with the same prediction perplexity for the next single token. The vectors are shown to better represent the topic of text based on the results of text classification examples. On a toy, but complex, coding problem, FTP networks produce significantly better results than GPT networks.
CVE-driven Attack Technique Prediction with Semantic Information Extraction and a Domain-specific Language Model
This paper addresses a critical challenge in cybersecurity: the gap between vulnerability information represented by Common Vulnerabilities and Exposures (CVEs) and the resulting cyberattack actions. CVEs provide insights into vulnerabilities, but often lack details on potential threat actions (tactics, techniques, and procedures, or TTPs) within the ATT&CK framework. This gap hinders accurate CVE categorization and proactive countermeasure initiation. The paper introduces the TTPpredictor tool, which uses innovative techniques to analyze CVE descriptions and infer plausible TTP attacks resulting from CVE exploitation. TTPpredictor overcomes challenges posed by limited labeled data and semantic disparities between CVE and TTP descriptions. It initially extracts threat actions from unstructured cyber threat reports using Semantic Role Labeling (SRL) techniques. These actions, along with their contextual attributes, are correlated with MITRE's attack functionality classes. This automated correlation facilitates the creation of labeled data, essential for categorizing novel threat actions into threat functionality classes and TTPs. The paper presents an empirical assessment, demonstrating TTPpredictor's effectiveness with accuracy rates of approximately 98% and F1-scores ranging from 95% to 98% in precise CVE classification to ATT&CK techniques. TTPpredictor outperforms state-of-the-art language model tools like ChatGPT. Overall, this paper offers a robust solution for linking CVEs to potential attack techniques, enhancing cybersecurity practitioners' ability to proactively identify and mitigate threats.
Exploring Anisotropy and Outliers in Multilingual Language Models for Cross-Lingual Semantic Sentence Similarity
Previous work has shown that the representations output by contextual language models are more anisotropic than static type embeddings, and typically display outlier dimensions. This seems to be true for both monolingual and multilingual models, although much less work has been done on the multilingual context. Why these outliers occur and how they affect the representations is still an active area of research. We investigate outlier dimensions and their relationship to anisotropy in multiple pre-trained multilingual language models. We focus on cross-lingual semantic similarity tasks, as these are natural tasks for evaluating multilingual representations. Specifically, we examine sentence representations. Sentence transformers which are fine-tuned on parallel resources (that are not always available) perform better on this task, and we show that their representations are more isotropic. However, we aim to improve multilingual representations in general. We investigate how much of the performance difference can be made up by only transforming the embedding space without fine-tuning, and visualise the resulting spaces. We test different operations: Removing individual outlier dimensions, cluster-based isotropy enhancement, and ZCA whitening. We publish our code for reproducibility.
Codec Does Matter: Exploring the Semantic Shortcoming of Codec for Audio Language Model
Recent advancements in audio generation have been significantly propelled by the capabilities of Large Language Models (LLMs). The existing research on audio LLM has primarily focused on enhancing the architecture and scale of audio language models, as well as leveraging larger datasets, and generally, acoustic codecs, such as EnCodec, are used for audio tokenization. However, these codecs were originally designed for audio compression, which may lead to suboptimal performance in the context of audio LLM. Our research aims to address the shortcomings of current audio LLM codecs, particularly their challenges in maintaining semantic integrity in generated audio. For instance, existing methods like VALL-E, which condition acoustic token generation on text transcriptions, often suffer from content inaccuracies and elevated word error rates (WER) due to semantic misinterpretations of acoustic tokens, resulting in word skipping and errors. To overcome these issues, we propose a straightforward yet effective approach called X-Codec. X-Codec incorporates semantic features from a pre-trained semantic encoder before the Residual Vector Quantization (RVQ) stage and introduces a semantic reconstruction loss after RVQ. By enhancing the semantic ability of the codec, X-Codec significantly reduces WER in speech synthesis tasks and extends these benefits to non-speech applications, including music and sound generation. Our experiments in text-to-speech, music continuation, and text-to-sound tasks demonstrate that integrating semantic information substantially improves the overall performance of language models in audio generation. Our code and demo are available (Demo: https://x-codec-audio.github.io Code: https://github.com/zhenye234/xcodec)
SAC3: Reliable Hallucination Detection in Black-Box Language Models via Semantic-aware Cross-check Consistency
Hallucination detection is a critical step toward understanding the trustworthiness of modern language models (LMs). To achieve this goal, we re-examine existing detection approaches based on the self-consistency of LMs and uncover two types of hallucinations resulting from 1) question-level and 2) model-level, which cannot be effectively identified through self-consistency check alone. Building upon this discovery, we propose a novel sampling-based method, i.e., semantic-aware cross-check consistency (SAC3) that expands on the principle of self-consistency checking. Our SAC3 approach incorporates additional mechanisms to detect both question-level and model-level hallucinations by leveraging advances including semantically equivalent question perturbation and cross-model response consistency checking. Through extensive and systematic empirical analysis, we demonstrate that SAC3 outperforms the state of the art in detecting both non-factual and factual statements across multiple question-answering and open-domain generation benchmarks.
OV-NeRF: Open-vocabulary Neural Radiance Fields with Vision and Language Foundation Models for 3D Semantic Understanding
The development of Neural Radiance Fields (NeRFs) has provided a potent representation for encapsulating the geometric and appearance characteristics of 3D scenes. Enhancing the capabilities of NeRFs in open-vocabulary 3D semantic perception tasks has been a recent focus. However, current methods that extract semantics directly from Contrastive Language-Image Pretraining (CLIP) for semantic field learning encounter difficulties due to noisy and view-inconsistent semantics provided by CLIP. To tackle these limitations, we propose OV-NeRF, which exploits the potential of pre-trained vision and language foundation models to enhance semantic field learning through proposed single-view and cross-view strategies. First, from the single-view perspective, we introduce Region Semantic Ranking (RSR) regularization by leveraging 2D mask proposals derived from SAM to rectify the noisy semantics of each training view, facilitating accurate semantic field learning. Second, from the cross-view perspective, we propose a Cross-view Self-enhancement (CSE) strategy to address the challenge raised by view-inconsistent semantics. Rather than invariably utilizing the 2D inconsistent semantics from CLIP, CSE leverages the 3D consistent semantics generated from the well-trained semantic field itself for semantic field training, aiming to reduce ambiguity and enhance overall semantic consistency across different views. Extensive experiments validate our OV-NeRF outperforms current state-of-the-art methods, achieving a significant improvement of 20.31% and 18.42% in mIoU metric on Replica and Scannet, respectively. Furthermore, our approach exhibits consistent superior results across various CLIP configurations, further verifying its robustness.
Open-ended VQA benchmarking of Vision-Language models by exploiting Classification datasets and their semantic hierarchy
The evaluation of text-generative vision-language models is a challenging yet crucial endeavor. By addressing the limitations of existing Visual Question Answering (VQA) benchmarks and proposing innovative evaluation methodologies, our research seeks to advance our understanding of these models' capabilities. We propose a novel VQA benchmark based on well-known visual classification datasets which allows a granular evaluation of text-generative vision-language models and their comparison with discriminative vision-language models. To improve the assessment of coarse answers on fine-grained classification tasks, we suggest using the semantic hierarchy of the label space to ask automatically generated follow-up questions about the ground-truth category. Finally, we compare traditional NLP and LLM-based metrics for the problem of evaluating model predictions given ground-truth answers. We perform a human evaluation study upon which we base our decision on the final metric. We apply our benchmark to a suite of vision-language models and show a detailed comparison of their abilities on object, action, and attribute classification. Our contributions aim to lay the foundation for more precise and meaningful assessments, facilitating targeted progress in the exciting field of vision-language modeling.
Semantic World Models
Planning with world models offers a powerful paradigm for robotic control. Conventional approaches train a model to predict future frames conditioned on current frames and actions, which can then be used for planning. However, the objective of predicting future pixels is often at odds with the actual planning objective; strong pixel reconstruction does not always correlate with good planning decisions. This paper posits that instead of reconstructing future frames as pixels, world models only need to predict task-relevant semantic information about the future. For such prediction the paper poses world modeling as a visual question answering problem about semantic information in future frames. This perspective allows world modeling to be approached with the same tools underlying vision language models. Thus vision language models can be trained as "semantic" world models through a supervised finetuning process on image-action-text data, enabling planning for decision-making while inheriting many of the generalization and robustness properties from the pretrained vision-language models. The paper demonstrates how such a semantic world model can be used for policy improvement on open-ended robotics tasks, leading to significant generalization improvements over typical paradigms of reconstruction-based action-conditional world modeling. Website available at https://weirdlabuw.github.io/swm.
Large Language Models for Oral History Understanding with Text Classification and Sentiment Analysis
Oral histories are vital records of lived experience, particularly within communities affected by systemic injustice and historical erasure. Effective and efficient analysis of their oral history archives can promote access and understanding of the oral histories. However, Large-scale analysis of these archives remains limited due to their unstructured format, emotional complexity, and high annotation costs. This paper presents a scalable framework to automate semantic and sentiment annotation for Japanese American Incarceration Oral History. Using LLMs, we construct a high-quality dataset, evaluate multiple models, and test prompt engineering strategies in historically sensitive contexts. Our multiphase approach combines expert annotation, prompt design, and LLM evaluation with ChatGPT, Llama, and Qwen. We labeled 558 sentences from 15 narrators for sentiment and semantic classification, then evaluated zero-shot, few-shot, and RAG strategies. For semantic classification, ChatGPT achieved the highest F1 score (88.71%), followed by Llama (84.99%) and Qwen (83.72%). For sentiment analysis, Llama slightly outperformed Qwen (82.66%) and ChatGPT (82.29%), with all models showing comparable results. The best prompt configurations were used to annotate 92,191 sentences from 1,002 interviews in the JAIOH collection. Our findings show that LLMs can effectively perform semantic and sentiment annotation across large oral history collections when guided by well-designed prompts. This study provides a reusable annotation pipeline and practical guidance for applying LLMs in culturally sensitive archival analysis. By bridging archival ethics with scalable NLP techniques, this work lays the groundwork for responsible use of artificial intelligence in digital humanities and preservation of collective memory. GitHub: https://github.com/kc6699c/LLM4OralHistoryAnalysis.
Large Language Models as Annotators: Enhancing Generalization of NLP Models at Minimal Cost
State-of-the-art supervised NLP models achieve high accuracy but are also susceptible to failures on inputs from low-data regimes, such as domains that are not represented in training data. As an approximation to collecting ground-truth labels for the specific domain, we study the use of large language models (LLMs) for annotating inputs and improving the generalization of NLP models. Specifically, given a budget for LLM annotations, we present an algorithm for sampling the most informative inputs to annotate and retrain the NLP model. We find that popular active learning strategies such as uncertainty-based sampling do not work well. Instead, we propose a sampling strategy based on the difference in prediction scores between the base model and the finetuned NLP model, utilizing the fact that most NLP models are finetuned from a base model. Experiments with classification (semantic similarity) and ranking (semantic search) tasks show that our sampling strategy leads to significant gains in accuracy for both the training and target domains.
Optimizing Speech Language Models for Acoustic Consistency
We study speech language models that incorporate semantic initialization and planning losses to achieve robust and consistent generation. Our approach initializes speech tokens with self-supervised features, applies a light alignment loss, and trains with thinning and auxiliary objectives that target robustness and content planning. We train three models: a 0.7B speech-only model, a 1.0B speech-only model, and a 1.0B interleaved model with both text and speech. Acoustic studies show that the speech-only models achieve the highest consistency across speaker, gender, sentiment, room, and background factors, surpassing larger systems. Interleaving improves lexical and syntactic probes and semantic--acoustic alignment but reduces consistency. Linear probes show that our initialization biases the model toward content structure while trading off prosody detail. These results show that LM-side design and training mix control the balance between acoustic stability and semantic grounding without changes to the tokenizer or runtime architecture. A demo and model weights are available for exploration.
Discrete Diffusion Language Model for Long Text Summarization
While diffusion models excel at conditional generating high-quality images, prior works in discrete diffusion models were not evaluated on conditional long-text generation. In this work, we address the limitations of prior discrete diffusion models for conditional long-text generation, particularly in long sequence-to-sequence tasks such as abstractive summarization. Despite fast decoding speeds compared to autoregressive methods, previous diffusion models failed on the abstractive summarization task due to the incompatibility between the backbone architectures and the random noising process. To overcome these challenges, we introduce a novel semantic-aware noising process that enables Transformer backbones to handle long sequences effectively. Additionally, we propose CrossMamba, an adaptation of the Mamba model to the encoder-decoder paradigm, which integrates seamlessly with the random absorbing noising process. Our approaches achieve state-of-the-art performance on three benchmark summarization datasets: Gigaword, CNN/DailyMail, and Arxiv, outperforming existing discrete diffusion models on ROUGE metrics as well as possessing much faster speed in inference compared to autoregressive models.
Grounding Language Model with Chunking-Free In-Context Retrieval
This paper presents a novel Chunking-Free In-Context (CFIC) retrieval approach, specifically tailored for Retrieval-Augmented Generation (RAG) systems. Traditional RAG systems often struggle with grounding responses using precise evidence text due to the challenges of processing lengthy documents and filtering out irrelevant content. Commonly employed solutions, such as document chunking and adapting language models to handle longer contexts, have their limitations. These methods either disrupt the semantic coherence of the text or fail to effectively address the issues of noise and inaccuracy in evidence retrieval. CFIC addresses these challenges by circumventing the conventional chunking process. It utilizes the encoded hidden states of documents for in-context retrieval, employing auto-aggressive decoding to accurately identify the specific evidence text required for user queries, eliminating the need for chunking. CFIC is further enhanced by incorporating two decoding strategies, namely Constrained Sentence Prefix Decoding and Skip Decoding. These strategies not only improve the efficiency of the retrieval process but also ensure that the fidelity of the generated grounding text evidence is maintained. Our evaluations of CFIC on a range of open QA datasets demonstrate its superiority in retrieving relevant and accurate evidence, offering a significant improvement over traditional methods. By doing away with the need for document chunking, CFIC presents a more streamlined, effective, and efficient retrieval solution, making it a valuable advancement in the field of RAG systems.
