new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 26

Sequential Causal Normal Form Games: Theory, Computation, and Strategic Signaling

Can classical game-theoretic frameworks be extended to capture the bounded rationality and causal reasoning of AI agents? We investigate this question by extending Causal Normal Form Games (CNFGs) to sequential settings, introducing Sequential Causal Multi-Agent Systems (S-CMAS) that incorporate Pearl's Causal Hierarchy across leader-follower interactions. While theoretically elegant -- we prove PSPACE-completeness, develop equilibrium refinements, and establish connections to signaling theory -- our comprehensive empirical investigation reveals a critical limitation: S-CNE provides zero welfare improvement over classical Stackelberg equilibrium across all tested scenarios. Through 50+ Monte Carlo simulations and hand-crafted synthetic examples, we demonstrate that backward induction with rational best-response eliminates any strategic advantage from causal layer distinctions. We construct a theoretical example illustrating conditions where benefits could emerge (ε-rational satisficing followers), though implementation confirms that even relaxed rationality assumptions prove insufficient when good instincts align with optimal play. This negative result provides valuable insight: classical game-theoretic extensions grounded in rational choice are fundamentally incompatible with causal reasoning advantages, motivating new theoretical frameworks beyond standard Nash equilibrium for agentic AI.

  • 1 authors
·
Nov 10

Early warning signals: The charted and uncharted territories

The realization that complex systems such as ecological communities can collapse or shift regimes suddenly and without rapid external forcing poses a serious challenge to our understanding and management of the natural world. The potential to identify early warning signals that would allow researchers and managers to predict such events before they happen has therefore been an invaluable discovery that offers a way forward in spite of such seemingly unpredictable behavior. Research into early warning signals has demonstrated that it is possible to define and detect such early warning signals in advance of a transition in certain contexts. Here we describe the pattern emerging as research continues to explore just how far we can generalize these results. A core of examples emerges that shares three properties: the phenomenon of rapid regime shifts, a pattern of 'critical slowing down' that can be used to detect the approaching shift, and a mechanism of bifurcation driving the sudden change. As research has expanded beyond these core examples, it is becoming clear that not all systems that show regime shifts exhibit critical slowing down, or vice versa. Even when systems exhibit critical slowing down, statistical detection is a challenge. We review the literature that explores these edge cases and highlight the need for (a) new early warning behaviors that can be used in cases where rapid shifts do not exhibit critical slowing down, (b) the development of methods to identify which behavior might be an appropriate signal when encountering a novel system; bearing in mind that a positive indication for some systems is a negative indication in others, and (c) statistical methods that can distinguish between signatures of early warning behaviors and noise.

  • 3 authors
·
May 29, 2013

Parabolic-elliptic and indirect-direct simplifications in chemotaxis systems driven by indirect signalling

Singular limits for the following indirect signalling chemotaxis system align* \left\{ array{lllllll} \partial_t n = \Delta n - \nabla \cdot (n \nabla c ) & in \Omega\times(0,\infty) , \varepsilon \partial_t c = \Delta c - c + w & in \Omega\times(0,\infty), \varepsilon \partial_t w = \tau \Delta w - w + n & in \Omega\times (0,\infty), \partial_\nu n = \partial_\nu c = \partial_\nu w = 0, &on \partial\Omega\times (0,\infty) %(n,c,w)_{t=0} = (n_0,c_0,w_0) & on \Omega, array \right. align* are investigated. More precisely, we study parabolic-elliptic simplification, or PES, varepsilonto 0^+ with fixed tau>0 up to the critical dimension N=4, and indirect-direct simplification, or IDS, (varepsilon,tau)to (0^+,0^+) up to the critical dimension N=2. These are relevant in biological situations where the signalling process is on a much faster time scale compared to the species diffusion and all interactions. Showing singular limits in critical dimensions is challenging. To deal with the PES, we carefully combine the entropy function, an Adam-type inequality, the regularisation of slow evolution, and an energy equation method to obtain strong convergence in representative spaces. For the IDS, a bootstrap argument concerning the L^p-energy function is devised, which allows us to obtain suitable uniform bounds for the singular limits. Moreover, in both scenarios, we also present the convergence rates, where the effect of the initial layer and the convergence to the critical manifold are also revealed.

  • 4 authors
·
Aug 2

A Semantic Generalization of Shannon's Information Theory and Applications

Does semantic communication require a semantic information theory parallel to Shannon's information theory, or can Shannon's work be generalized for semantic communication? This paper advocates for the latter and introduces a semantic generalization of Shannon's information theory (G theory for short). The core idea is to replace the distortion constraint with the semantic constraint, achieved by utilizing a set of truth functions as a semantic channel. These truth functions enable the expressions of semantic distortion, semantic information measures, and semantic information loss. Notably, the maximum semantic information criterion is equivalent to the maximum likelihood criterion and similar to the Regularized Least Squares criterion. This paper shows G theory's applications to daily and electronic semantic communication, machine learning, constraint control, Bayesian confirmation, portfolio theory, and information value. The improvements in machine learning methods involve multilabel learning and classification, maximum mutual information classification, mixture models, and solving latent variables. Furthermore, insights from statistical physics are discussed: Shannon information is similar to free energy; semantic information to free energy in local equilibrium systems; and information efficiency to the efficiency of free energy in performing work. The paper also proposes refining Friston's minimum free energy principle into the maximum information efficiency principle. Lastly, it compares G theory with other semantic information theories and discusses its limitation in representing the semantics of complex data.

  • 1 authors
·
May 6

Large Content And Behavior Models To Understand, Simulate, And Optimize Content And Behavior

Shannon, in his seminal paper introducing information theory, divided the communication into three levels: technical, semantic, and effectivenss. While the technical level is concerned with accurate reconstruction of transmitted symbols, the semantic and effectiveness levels deal with the inferred meaning and its effect on the receiver. Thanks to telecommunications, the first level problem has produced great advances like the internet. Large Language Models (LLMs) make some progress towards the second goal, but the third level still remains largely untouched. The third problem deals with predicting and optimizing communication for desired receiver behavior. LLMs, while showing wide generalization capabilities across a wide range of tasks, are unable to solve for this. One reason for the underperformance could be a lack of "behavior tokens" in LLMs' training corpora. Behavior tokens define receiver behavior over a communication, such as shares, likes, clicks, purchases, retweets, etc. While preprocessing data for LLM training, behavior tokens are often removed from the corpora as noise. Therefore, in this paper, we make some initial progress towards reintroducing behavior tokens in LLM training. The trained models, other than showing similar performance to LLMs on content understanding tasks, show generalization capabilities on behavior simulation, content simulation, behavior understanding, and behavior domain adaptation. Using a wide range of tasks on two corpora, we show results on all these capabilities. We call these models Large Content and Behavior Models (LCBMs). Further, to spur more research on LCBMs, we release our new Content Behavior Corpus (CBC), a repository containing communicator, message, and corresponding receiver behavior.

  • 11 authors
·
Sep 1, 2023

Training Language Models for Social Deduction with Multi-Agent Reinforcement Learning

Communicating in natural language is a powerful tool in multi-agent settings, as it enables independent agents to share information in partially observable settings and allows zero-shot coordination with humans. However, most prior works are limited as they either rely on training with large amounts of human demonstrations or lack the ability to generate natural and useful communication strategies. In this work, we train language models to have productive discussions about their environment in natural language without any human demonstrations. We decompose the communication problem into listening and speaking. Our key idea is to leverage the agent's goal to predict useful information about the world as a dense reward signal that guides communication. Specifically, we improve a model's listening skills by training them to predict information about the environment based on discussions, and we simultaneously improve a model's speaking skills with multi-agent reinforcement learning by rewarding messages based on their influence on other agents. To investigate the role and necessity of communication in complex social settings, we study an embodied social deduction game based on Among Us, where the key question to answer is the identity of an adversarial imposter. We analyze emergent behaviors due to our technique, such as accusing suspects and providing evidence, and find that it enables strong discussions, doubling the win rates compared to standard RL. We release our code and models at https://socialdeductionllm.github.io/

  • 4 authors
·
Feb 9 3

Causal de Finetti: On the Identification of Invariant Causal Structure in Exchangeable Data

Learning causal structure from observational data often assumes that we observe independent and identically distributed (i.\,i.\,d) data. The traditional approach aims to find a graphical representation that encodes the same set of conditional independence relationships as those present in the observed distribution. It is known that under i.\,i.\,d assumption, even with infinite data, there is a limit to how fine-grained a causal structure we can identify. To overcome this limitation, recent work has explored using data originating from different, related environments to learn richer causal structure. These approaches implicitly rely on the independent causal mechanisms (ICM) principle, which postulates that the mechanism giving rise to an effect given its causes and the mechanism which generates the causes do not inform or influence each other. Thus, components of the causal model can independently change from environment to environment. Despite its wide application in machine learning and causal inference, there is a lack of statistical formalization of the ICM principle and how it enables identification of richer causal structures from grouped data. Here we present new causal de Finetti theorems which offer a first statistical formalization of ICM principle and show how causal structure identification is possible from exchangeable data. Our work provides theoretical justification for a broad range of techniques leveraging multi-environment data to learn causal structure.

  • 4 authors
·
Mar 29, 2022

pyhgf: A neural network library for predictive coding

Bayesian models of cognition have gained considerable traction in computational neuroscience and psychiatry. Their scopes are now expected to expand rapidly to artificial intelligence, providing general inference frameworks to support embodied, adaptable, and energy-efficient autonomous agents. A central theory in this domain is predictive coding, which posits that learning and behaviour are driven by hierarchical probabilistic inferences about the causes of sensory inputs. Biological realism constrains these networks to rely on simple local computations in the form of precision-weighted predictions and prediction errors. This can make this framework highly efficient, but its implementation comes with unique challenges on the software development side. Embedding such models in standard neural network libraries often becomes limiting, as these libraries' compilation and differentiation backends can force a conceptual separation between optimization algorithms and the systems being optimized. This critically departs from other biological principles such as self-monitoring, self-organisation, cellular growth and functional plasticity. In this paper, we introduce pyhgf: a Python package backed by JAX and Rust for creating, manipulating and sampling dynamic networks for predictive coding. We improve over other frameworks by enclosing the network components as transparent, modular and malleable variables in the message-passing steps. The resulting graphs can implement arbitrary computational complexities as beliefs propagation. But the transparency of core variables can also translate into inference processes that leverage self-organisation principles, and express structure learning, meta-learning or causal discovery as the consequence of network structural adaptation to surprising inputs. The code, tutorials and documentation are hosted at: https://github.com/ilabcode/pyhgf.

  • 7 authors
·
Oct 11, 2024

Steering the Herd: A Framework for LLM-based Control of Social Learning

Algorithms increasingly serve as information mediators--from social media feeds and targeted advertising to the increasing ubiquity of LLMs. This engenders a joint process where agents combine private, algorithmically-mediated signals with learning from peers to arrive at decisions. To study such settings, we introduce a model of controlled sequential social learning in which an information-mediating planner (e.g. an LLM) controls the information structure of agents while they also learn from the decisions of earlier agents. The planner may seek to improve social welfare (altruistic planner) or to induce a specific action the planner prefers (biased planner). Our framework presents a new optimization problem for social learning that combines dynamic programming with decentralized action choices and Bayesian belief updates. We prove the convexity of the value function and characterize the optimal policies of altruistic and biased planners, which attain desired tradeoffs between the costs they incur and the payoffs they earn from induced agent choices. Notably, in some regimes the biased planner intentionally obfuscates the agents' signals. Even under stringent transparency constraints--information parity with individuals, no lying or cherry-picking, and full observability--we show that information mediation can substantially shift social welfare in either direction. We complement our theory with simulations in which LLMs act as both planner and agents. Notably, the LLM planner in our simulations exhibits emergent strategic behavior in steering public opinion that broadly mirrors the trends predicted, though key deviations suggest the influence of non-Bayesian reasoning consistent with the cognitive patterns of both humans and LLMs trained on human-like data. Together, we establish our framework as a tractable basis for studying the impact and regulation of LLM information mediators.

  • 4 authors
·
Apr 3

OmniCellTOSG: The First Cell Text-Omic Signaling Graphs Dataset for Joint LLM and GNN Modeling

Complex cell signaling systems -- governed by varying protein abundances and interactions -- generate diverse cell types across organs. These systems evolve under influences such as age, sex, diet, environmental exposures, and diseases, making them challenging to decode given the involvement of tens of thousands of genes and proteins. Recently, hundreds of millions of single-cell omics data have provided a robust foundation for understanding these signaling networks within various cell subpopulations and conditions. Inspired by the success of large foundation models (for example, large language models and large vision models) pre-trained on massive datasets, we introduce OmniCellTOSG, the first dataset of cell text-omic signaling graphs (TOSGs). Each TOSG represents the signaling network of an individual or meta-cell and is labeled with information such as organ, disease, sex, age, and cell subtype. OmniCellTOSG offers two key contributions. First, it introduces a novel graph model that integrates human-readable annotations -- such as biological functions, cellular locations, signaling pathways, related diseases, and drugs -- with quantitative gene and protein abundance data, enabling graph reasoning to decode cell signaling. This approach calls for new joint models combining large language models and graph neural networks. Second, the dataset is built from single-cell RNA sequencing data of approximately 120 million cells from diverse tissues and conditions (healthy and diseased) and is fully compatible with PyTorch. This facilitates the development of innovative cell signaling models that could transform research in life sciences, healthcare, and precision medicine. The OmniCellTOSG dataset is continuously expanding and will be updated regularly. The dataset and code are available at https://github.com/FuhaiLiAiLab/OmniCellTOSG.

  • 13 authors
·
Apr 2