1 Video Background Music Generation with Controllable Music Transformer In this work, we address the task of video background music generation. Some previous works achieve effective music generation but are unable to generate melodious music tailored to a particular video, and none of them considers the video-music rhythmic consistency. To generate the background music that matches the given video, we first establish the rhythmic relations between video and background music. In particular, we connect timing, motion speed, and motion saliency from video with beat, simu-note density, and simu-note strength from music, respectively. We then propose CMT, a Controllable Music Transformer that enables local control of the aforementioned rhythmic features and global control of the music genre and instruments. Objective and subjective evaluations show that the generated background music has achieved satisfactory compatibility with the input videos, and at the same time, impressive music quality. Code and models are available at https://github.com/wzk1015/video-bgm-generation. 8 authors · Nov 16, 2021
- The SIML method without microstructure noise The SIML (abbreviation of Separating Information Maximal Likelihood) method, has been introduced by N. Kunitomo and S. Sato and their collaborators to estimate the integrated volatility of high-frequency data that is assumed to be an It\^o process but with so-called microstructure noise. The SIML estimator turned out to share many properties with the estimator introduced by P. Malliavin and M.E. Mancino. The present paper establishes the consistency and the asymptotic normality under a general sampling scheme but without microstructure noise. Specifically, a fast convergence shown for Malliavin--Mancino estimator by E. Clement and A. Gloter is also established for the SIML estimator. 3 authors · Oct 3, 2023
- WALLABY Pilot Survey & ASymba: Comparing HI Detection Asymmetries to the SIMBA Simulation An avenue for understanding cosmological galaxy formation is to compare morphometric parameters in observations and simulations of galaxy assembly. In this second paper of the ASymba: Asymmetries of HI in SIMBA Galaxies series, we measure atomic gas HI asymmetries in spatially-resolved detections from the untargetted WALLABY survey, and compare them to realizations of WALLABY-like mock samples from the SIMBA cosmological simulations. We develop a Scanline Tracing method to create mock galaxy HI datacubes which minimizes shot noise along the spectral dimension compared to particle-based methods, and therefore spurious asymmetry contributions. We compute 1D and 3D asymmetries for spatially-resolved WALLABY Pilot Survey detections, and find that the highest 3D asymmetries A3D>0.5 stem from interacting systems or detections with strong bridges or tails. We then construct a series of WALLABY-like mock realizations drawn from the SIMBA 50 Mpc simulation volume, and compare their asymmetry distributions. We find that the incidence of high A3D detections is higher in WALLABY than in the SIMBA mocks, but that difference is not statistically significant (p-value = 0.05). The statistical power of quantitative comparisons of asymmetries such as the one presented here will improve as the WALLABY survey progresses, and as simulation volumes and resolutions increase. 18 authors · Jan 16
- AutoKnots: Adaptive Knot Allocation for Spline Interpolation In astrophysical and cosmological analyses, the increasing quality and volume of astronomical data demand efficient and precise computational tools. This work introduces a novel adaptive algorithm for automatic knots (AutoKnots) allocation in spline interpolation, designed to meet user-defined precision requirements. Unlike traditional methods that rely on manually configured knot distributions with numerous parameters, the proposed technique automatically determines the optimal number and placement of knots based on interpolation error criteria. This simplifies configuration, often requiring only a single parameter. The algorithm progressively improves the interpolation by adaptively sampling the function-to-be-approximated, f(x), in regions where the interpolation error exceeds the desired threshold. All function evaluations contribute directly to the final approximation, ensuring efficiency. While each resampling step involves recomputing the interpolation table, this process is highly optimized and usually computationally negligible compared to the cost of evaluating f(x). We show the algorithm's efficacy through a series of precision tests on different functions. However, the study underscores the necessity for caution when dealing with certain function types, notably those featuring plateaus. To address this challenge, a heuristic enhancement is incorporated, improving accuracy in flat regions. This algorithm has been extensively used and tested over the years. NumCosmo includes a comprehensive set of unit tests that rigorously evaluate the algorithm both directly and indirectly, underscoring its robustness and reliability. As a practical application, we compute the surface mass density Sigma(R) and the average surface mass density Sigma(<R) for Navarro-Frenk-White and Hernquist halo density profiles, which provide analytical benchmarks. (abridged) 4 authors · Dec 17, 2024