Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMusicSwarm: Biologically Inspired Intelligence for Music Composition
We show that coherent, long-form musical composition can emerge from a decentralized swarm of identical, frozen foundation models that coordinate via stigmergic, peer-to-peer signals, without any weight updates. We compare a centralized multi-agent system with a global critic to a fully decentralized swarm in which bar-wise agents sense and deposit harmonic, rhythmic, and structural cues, adapt short-term memory, and reach consensus. Across symbolic, audio, and graph-theoretic analyses, the swarm yields superior quality while delivering greater diversity and structural variety and leads across creativity metrics. The dynamics contract toward a stable configuration of complementary roles, and self-similarity networks reveal a small-world architecture with efficient long-range connectivity and specialized bridging motifs, clarifying how local novelties consolidate into global musical form. By shifting specialization from parameter updates to interaction rules, shared memory, and dynamic consensus, MusicSwarm provides a compute- and data-efficient route to long-horizon creative structure that is immediately transferable beyond music to collaborative writing, design, and scientific discovery.
idMotif: An Interactive Motif Identification in Protein Sequences
This article introduces idMotif, a visual analytics framework designed to aid domain experts in the identification of motifs within protein sequences. Motifs, short sequences of amino acids, are critical for understanding the distinct functions of proteins. Identifying these motifs is pivotal for predicting diseases or infections. idMotif employs a deep learning-based method for the categorization of protein sequences, enabling the discovery of potential motif candidates within protein groups through local explanations of deep learning model decisions. It offers multiple interactive views for the analysis of protein clusters or groups and their sequences. A case study, complemented by expert feedback, illustrates idMotif's utility in facilitating the analysis and identification of protein sequences and motifs.
MotifBench: A standardized protein design benchmark for motif-scaffolding problems
The motif-scaffolding problem is a central task in computational protein design: Given the coordinates of atoms in a geometry chosen to confer a desired biochemical function (a motif), the task is to identify diverse protein structures (scaffolds) that include the motif and maintain its geometry. Significant recent progress on motif-scaffolding has been made due to computational evaluation with reliable protein structure prediction and fixed-backbone sequence design methods. However, significant variability in evaluation strategies across publications has hindered comparability of results, challenged reproducibility, and impeded robust progress. In response we introduce MotifBench, comprising (1) a precisely specified pipeline and evaluation metrics, (2) a collection of 30 benchmark problems, and (3) an implementation of this benchmark and leaderboard at github.com/blt2114/MotifBench. The MotifBench test cases are more difficult compared to earlier benchmarks, and include protein design problems for which solutions are known but on which, to the best of our knowledge, state-of-the-art methods fail to identify any solution.
Neural Motifs: Scene Graph Parsing with Global Context
We investigate the problem of producing structured graph representations of visual scenes. Our work analyzes the role of motifs: regularly appearing substructures in scene graphs. We present new quantitative insights on such repeated structures in the Visual Genome dataset. Our analysis shows that object labels are highly predictive of relation labels but not vice-versa. We also find that there are recurring patterns even in larger subgraphs: more than 50% of graphs contain motifs involving at least two relations. Our analysis motivates a new baseline: given object detections, predict the most frequent relation between object pairs with the given labels, as seen in the training set. This baseline improves on the previous state-of-the-art by an average of 3.6% relative improvement across evaluation settings. We then introduce Stacked Motif Networks, a new architecture designed to capture higher order motifs in scene graphs that further improves over our strong baseline by an average 7.1% relative gain. Our code is available at github.com/rowanz/neural-motifs.
Specialization maps for Scholze's category of diamonds
We introduce the specialization map in Scholzes theory of diamonds. We consider v-sheaves that behave like formal schemes and call them kimberlites. We attach to them: a reduced special fiber, an analytic locus, a specialization map, a Zariski site, and an etale site. When the kimberlite comes from a formal scheme, our sites recover the classical ones. We prove that unramified p-adic Beilinson--Drinfeld Grassmannians are kimberlites with finiteness and normality properties.
Table Foundation Models: on knowledge pre-training for tabular learning
Table foundation models bring high hopes to data science: pre-trained on tabular data to embark knowledge or priors, they should facilitate downstream tasks on tables. One specific challenge is that of data semantics: numerical entries take their meaning from context, e.g., column name. Pre-trained neural networks that jointly model column names and table entries have recently boosted prediction accuracy. While these models outline the promises of world knowledge to interpret table values, they lack the convenience of popular foundation models in text or vision. Indeed, they must be fine-tuned to bring benefits, come with sizeable computation costs, and cannot easily be reused or combined with other architectures. Here we introduce TARTE, a foundation model that transforms tables to knowledge-enhanced vector representations using the string to capture semantics. Pre-trained on large relational data, TARTE yields representations that facilitate subsequent learning with little additional cost. These representations can be fine-tuned or combined with other learners, giving models that push the state-of-the-art prediction performance and improve the prediction/computation performance trade-off. Specialized to a task or a domain, TARTE gives domain-specific representations that facilitate further learning. Our study demonstrates an effective approach to knowledge pre-training for tabular learning.
Motif 2.6B Technical Report
Recent advancements in Large Language Models (LLMs) have revolutionized artificial intelligence, yet developing an effective foundational LLM that balances high performance with computational efficiency remains challenging, especially for emerging research groups. To address this gap, we introduce Motif-2.6B, a 2.6-billion-parameter foundation model designed to democratize advanced LLM capabilities. Motif-2.6B incorporates several innovative architectural enhancements, including Differential Attention and PolyNorm activation functions, which improve long-context comprehension, reduce hallucination, and enhance in-context learning capabilities. We rigorously tested multiple novel architectural components through extensive experimentation to determine the optimal architecture for Motif-2.6B. Comprehensive evaluations demonstrate that Motif-2.6B consistently meets or exceeds the performance of similarly sized state-of-the-art models across diverse benchmarks, showcasing its effectiveness, scalability, and real-world applicability. Through detailed experiments and tailored techniques, Motif-2.6B significantly advances the landscape of efficient, scalable, and powerful foundational LLMs, offering valuable insights and a robust foundation for future research and deployment.
How Expressive are Knowledge Graph Foundation Models?
Knowledge Graph Foundation Models (KGFMs) are at the frontier for deep learning on knowledge graphs (KGs), as they can generalize to completely novel knowledge graphs with different relational vocabularies. Despite their empirical success, our theoretical understanding of KGFMs remains very limited. In this paper, we conduct a rigorous study of the expressive power of KGFMs. Specifically, we show that the expressive power of KGFMs directly depends on the motifs that are used to learn the relation representations. We then observe that the most typical motifs used in the existing literature are binary, as the representations are learned based on how pairs of relations interact, which limits the model's expressiveness. As part of our study, we design more expressive KGFMs using richer motifs, which necessitate learning relation representations based on, e.g., how triples of relations interact with each other. Finally, we empirically validate our theoretical findings, showing that the use of richer motifs results in better performance on a wide range of datasets drawn from different domains.
Motif 2 12.7B technical report
We introduce Motif-2-12.7B, a new open-weight foundation model that pushes the efficiency frontier of large language models by combining architectural innovation with system-level optimization. Designed for scalable language understanding and robust instruction generalization under constrained compute budgets, Motif-2-12.7B builds upon Motif-2.6B with the integration of Grouped Differential Attention (GDA), which improves representational efficiency by disentangling signal and noise-control attention pathways. The model is pre-trained on 5.5 trillion tokens spanning diverse linguistic, mathematical, scientific, and programming domains using a curriculum-driven data scheduler that gradually changes the data composition ratio. The training system leverages the MuonClip optimizer alongside custom high-performance kernels, including fused PolyNorm activations and the Parallel Muon algorithm, yielding significant throughput and memory efficiency gains in large-scale distributed environments. Post-training employs a three-stage supervised fine-tuning pipeline that successively enhances general instruction adherence, compositional understanding, and linguistic precision. Motif-2-12.7B demonstrates competitive performance across diverse benchmarks, showing that thoughtful architectural scaling and optimized training design can rival the capabilities of much larger models.
Scalable and Interpretable Identification of Minimal Undesignable RNA Structure Motifs with Rotational Invariance
RNA design aims to find a sequence that folds with highest probability into a designated target structure. However, certain structures are undesignable, meaning no sequence can fold into the target structure under the default (Turner) RNA folding model. Understanding the specific local structures (i.e., "motifs") that contribute to undesignability is crucial for refining RNA folding models and determining the limits of RNA designability. Despite its importance, this problem has received very little attention, and previous efforts are neither scalable nor interpretable. We develop a new theoretical framework for motif (un-)designability, and design scalable and interpretable algorithms to identify minimal undesignable motifs within a given RNA secondary structure. Our approach establishes motif undesignability by searching for rival motifs, rather than exhaustively enumerating all (partial) sequences that could potentially fold into the motif. Furthermore, we exploit rotational invariance in RNA structures to detect, group, and reuse equivalent motifs and to construct a database of unique minimal undesignable motifs. To achieve that, we propose a loop-pair graph representation for motifs and a recursive graph isomorphism algorithm for motif equivalence. Our algorithms successfully identify 24 unique minimal undesignable motifs among 18 undesignable puzzles from the Eterna100 benchmark. Surprisingly, we also find over 350 unique minimal undesignable motifs and 663 undesignable native structures in the ArchiveII dataset, drawn from a diverse set of RNA families. Our source code is available at https://github.com/shanry/RNA-Undesign and our web server is available at http://linearfold.org/motifs.
Linguistic and Structural Basis of Engineering Design Knowledge
Artefact descriptions are the primary carriers of engineering design knowledge that is both an outcome and a driver of the design process. While an artefact could be described in different connotations, the design process requires a description to embody engineering design knowledge, which is expressed in the text through intricate placement of entities and relationships. As large-language models learn from all kinds of text merely as a sequence of characters/tokens, these are yet to generate text that embodies explicit engineering design facts. Existing ontological design theories are less likely to guide the large-language models whose applications are currently limited to ideation and learning purposes. In this article, we explicate engineering design knowledge as knowledge graphs from a large sample of 33,881 patent documents. We examine the constituents of these knowledge graphs to understand the linguistic and structural basis of engineering design knowledge. In terms of linguistic basis, we observe that entities and relationships could be generalised to 64 and 24 linguistic syntaxes. While relationships mainly capture attributes ('of'), structure ('in', 'with'), purpose ('to', 'for'), hierarchy ('include'), exemplification ('such as'), and behaviour ('to', 'from'), the hierarchical relationships could specifically be identified using 75 unique syntaxes. To understand the structural basis, we draw inspiration from various studies on biological/ecological networks and discover motifs from patent knowledge graphs. We identify four 3-node and four 4-node patterns that could further be converged and simplified into sequence [->...->], aggregation [->...<-], and hierarchy [<-...->]. Expected to guide large-language model based design tools, we propose few regulatory precepts for concretising abstract entities and relationships within subgraphs, while explicating hierarchical structures.
