Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeVERUS-LM: a Versatile Framework for Combining LLMs with Symbolic Reasoning
A recent approach to neurosymbolic reasoning is to explicitly combine the strengths of large language models (LLMs) and symbolic solvers to tackle complex reasoning tasks. However, current approaches face significant limitations, including poor generalizability due to task-specific prompts, inefficiencies caused by the lack of separation between knowledge and queries, and restricted inferential capabilities. These shortcomings hinder their scalability and applicability across diverse domains. In this paper, we introduce VERUS-LM, a novel framework designed to address these challenges. VERUS-LM employs a generic prompting mechanism, clearly separates domain knowledge from queries, and supports a wide range of different logical reasoning tasks. This framework enhances adaptability, reduces computational cost, and allows for richer forms of reasoning, such as optimization and constraint satisfaction. We show that our approach succeeds in diverse reasoning on a novel dataset, markedly outperforming LLMs. Additionally, our system achieves competitive results on common reasoning benchmarks when compared to other state-of-the-art approaches, and significantly surpasses them on the difficult AR-LSAT dataset. By pushing the boundaries of hybrid reasoning, VERUS-LM represents a significant step towards more versatile neurosymbolic AI systems
CoRT: Code-integrated Reasoning within Thinking
Large Reasoning Models (LRMs) like o1 and DeepSeek-R1 have shown remarkable progress in natural language reasoning with long chain-of-thought (CoT), yet they remain inefficient or inaccurate when handling complex mathematical operations. Addressing these limitations through computational tools (e.g., computation libraries and symbolic solvers) is promising, but it introduces a technical challenge: Code Interpreter (CI) brings external knowledge beyond the model's internal text representations, thus the direct combination is not efficient. This paper introduces CoRT, a post-training framework for teaching LRMs to leverage CI effectively and efficiently. As a first step, we address the data scarcity issue by synthesizing code-integrated reasoning data through Hint-Engineering, which strategically inserts different hints at appropriate positions to optimize LRM-CI interaction. We manually create 30 high-quality samples, upon which we post-train models ranging from 1.5B to 32B parameters, with supervised fine-tuning, rejection fine-tuning and reinforcement learning. Our experimental results demonstrate that Hint-Engineering models achieve 4\% and 8\% absolute improvements on DeepSeek-R1-Distill-Qwen-32B and DeepSeek-R1-Distill-Qwen-1.5B respectively, across five challenging mathematical reasoning datasets. Furthermore, Hint-Engineering models use about 30\% fewer tokens for the 32B model and 50\% fewer tokens for the 1.5B model compared with the natural language models. The models and code are available at https://github.com/ChengpengLi1003/CoRT.
Bridging Formal Language with Chain-of-Thought Reasoning to Geometry Problem Solving
Large vision language models exhibit notable limitations on Geometry Problem Solving (GPS) because of their unreliable diagram interpretation and pure natural-language reasoning. A recent line of work mitigates this by using symbolic solvers: the model directly generates a formal program that a geometry solver can execute. However, this direct program generation lacks intermediate reasoning, making the decision process opaque and prone to errors. In this work, we explore a new approach that integrates Chain-of-Thought (CoT) with formal language. The model interleaves natural language reasoning with incremental emission of solver-executable code, producing a hybrid reasoning trace in which critical derivations are expressed in formal language. To teach this behavior at scale, we combine (1) supervised fine-tuning on an 11K newly developed synthetic dataset with interleaved natural language reasoning and automatic formalization, and (2) solver-in-the-loop reinforcement learning that jointly optimizes both the CoT narrative and the resulting program through outcome-based rewards. Built on Qwen2.5-VL-7B, our new model, named GF-Reasoner, achieves up to 15% accuracy improvements on standard GPS benchmarks, surpassing both 7B-scale peers and the much larger model Qwen2.5-VL-72B. By exploiting high-order geometric knowledge and offloading symbolic computation to the solver, the generated reasoning traces are noticeably shorter and cleaner. Furthermore, we present a comprehensive analysis of method design choices (e.g., reasoning paradigms, data synthesis, training epochs, etc.), providing actionable insights for future research.
Structured Event Reasoning with Large Language Models
Reasoning about real-life events is a unifying challenge in AI and NLP that has profound utility in a variety of domains, while fallacy in high-stake applications could be catastrophic. Able to work with diverse text in these domains, large language models (LLMs) have proven capable of answering questions and solving problems. However, I show that end-to-end LLMs still systematically fail to reason about complex events, and they lack interpretability due to their black-box nature. To address these issues, I propose three general approaches to use LLMs in conjunction with a structured representation of events. The first is a language-based representation involving relations of sub-events that can be learned by LLMs via fine-tuning. The second is a semi-symbolic representation involving states of entities that can be predicted and leveraged by LLMs via few-shot prompting. The third is a fully symbolic representation that can be predicted by LLMs trained with structured data and be executed by symbolic solvers. On a suite of event reasoning tasks spanning common-sense inference and planning, I show that each approach greatly outperforms end-to-end LLMs with more interpretability. These results suggest manners of synergy between LLMs and structured representations for event reasoning and beyond.
Guess & Sketch: Language Model Guided Transpilation
Maintaining legacy software requires many software and systems engineering hours. Assembly code programs, which demand low-level control over the computer machine state and have no variable names, are particularly difficult for humans to analyze. Existing conventional program translators guarantee correctness, but are hand-engineered for the source and target programming languages in question. Learned transpilation, i.e. automatic translation of code, offers an alternative to manual re-writing and engineering efforts. Automated symbolic program translation approaches guarantee correctness but struggle to scale to longer programs due to the exponentially large search space. Their rigid rule-based systems also limit their expressivity, so they can only reason about a reduced space of programs. Probabilistic neural language models (LMs) produce plausible outputs for every input, but do so at the cost of guaranteed correctness. In this work, we leverage the strengths of LMs and symbolic solvers in a neurosymbolic approach to learned transpilation for assembly code. Assembly code is an appropriate setting for a neurosymbolic approach, since assembly code can be divided into shorter non-branching basic blocks amenable to the use of symbolic methods. Guess & Sketch extracts alignment and confidence information from features of the LM then passes it to a symbolic solver to resolve semantic equivalence of the transpilation input and output. We test Guess & Sketch on three different test sets of assembly transpilation tasks, varying in difficulty, and show that it successfully transpiles 57.6% more examples than GPT-4 and 39.6% more examples than an engineered transpiler. We also share a training and evaluation dataset for this task.
FLARE: Faithful Logic-Aided Reasoning and Exploration
Modern Question Answering (QA) and Reasoning approaches based on Large Language Models (LLMs) commonly use prompting techniques, such as Chain-of-Thought (CoT), assuming the resulting generation will have a more granular exploration and reasoning over the question space and scope. However, such methods struggle with generating outputs that are faithful to the intermediate chain of reasoning produced by the model. On the other end of the spectrum, neuro-symbolic methods such as Faithful CoT (F-CoT) propose to combine LLMs with external symbolic solvers. While such approaches boast a high degree of faithfulness, they usually require a model trained for code generation and struggle with tasks that are ambiguous or hard to formalise strictly. We introduce Faithful Logic-Aided Reasoning and Exploration (\ours), a novel interpretable approach for traversing the problem space using task decompositions. We use the LLM to plan a solution, soft-formalise the query into facts and predicates using a logic programming code and simulate that code execution using an exhaustive multi-hop search over the defined space. Our method allows us to compute the faithfulness of the reasoning process w.r.t. the generated code and analyse the steps of the multi-hop search without relying on external solvers. Our methods achieve SOTA results on 7 out of 9 diverse reasoning benchmarks. We also show that model faithfulness positively correlates with overall performance and further demonstrate that {\ours} allows pinpointing the decisive factors sufficient for and leading to the correct answer with optimal reasoning during the multi-hop search.
ToRA: A Tool-Integrated Reasoning Agent for Mathematical Problem Solving
Large language models have made significant progress in various language tasks, yet they still struggle with complex mathematics. In this paper, we propose ToRA a series of Tool-integrated Reasoning Agents designed to solve challenging mathematical problems by seamlessly integrating natural language reasoning with the utilization of external tools (e.g., computation libraries and symbolic solvers), thereby amalgamating the analytical prowess of language and the computational efficiency of tools. To train ToRA, we curate interactive tool-use trajectories on mathematical datasets, apply imitation learning on the annotations, and propose output space shaping to further refine models' reasoning behavior. As a result, ToRA models significantly outperform open-source models on 10 mathematical reasoning datasets across all scales with 13%-19% absolute improvements on average. Notably, ToRA-7B reaches 44.6% on the competition-level dataset MATH, surpassing the best open-source model WizardMath-70B by 22% absolute. ToRA-34B is also the first open-source model that achieves an accuracy exceeding 50% on MATH, which significantly outperforms GPT-4's CoT result, and is competitive with GPT-4 solving problems with programs. Additionally, we conduct a comprehensive analysis of the benefits and remaining challenges of tool interaction for mathematical reasoning, providing valuable insights for future research.
Discovering symbolic expressions with parallelized tree search
Symbolic regression plays a crucial role in modern scientific research thanks to its capability of discovering concise and interpretable mathematical expressions from data. A grand challenge lies in the arduous search for parsimonious and generalizable mathematical formulas, in an infinite search space, while intending to fit the training data. Existing algorithms have faced a critical bottleneck of accuracy and efficiency over a decade when handling problems of complexity, which essentially hinders the pace of applying symbolic regression for scientific exploration across interdisciplinary domains. To this end, we introduce a parallelized tree search (PTS) model to efficiently distill generic mathematical expressions from limited data. Through a series of extensive experiments, we demonstrate the superior accuracy and efficiency of PTS for equation discovery, which greatly outperforms the state-of-the-art baseline models on over 80 synthetic and experimental datasets (e.g., lifting its performance by up to 99% accuracy improvement and one-order of magnitude speed up). PTS represents a key advance in accurate and efficient data-driven discovery of symbolic, interpretable models (e.g., underlying physical laws) and marks a pivotal transition towards scalable symbolic learning.
RSRM: Reinforcement Symbolic Regression Machine
In nature, the behaviors of many complex systems can be described by parsimonious math equations. Automatically distilling these equations from limited data is cast as a symbolic regression process which hitherto remains a grand challenge. Keen efforts in recent years have been placed on tackling this issue and demonstrated success in symbolic regression. However, there still exist bottlenecks that current methods struggle to break when the discrete search space tends toward infinity and especially when the underlying math formula is intricate. To this end, we propose a novel Reinforcement Symbolic Regression Machine (RSRM) that masters the capability of uncovering complex math equations from only scarce data. The RSRM model is composed of three key modules: (1) a Monte Carlo tree search (MCTS) agent that explores optimal math expression trees consisting of pre-defined math operators and variables, (2) a Double Q-learning block that helps reduce the feasible search space of MCTS via properly understanding the distribution of reward, and (3) a modulated sub-tree discovery block that heuristically learns and defines new math operators to improve representation ability of math expression trees. Biding of these modules yields the state-of-the-art performance of RSRM in symbolic regression as demonstrated by multiple sets of benchmark examples. The RSRM model shows clear superiority over several representative baseline models.
Neural Symbolic Regression that Scales
Symbolic equations are at the core of scientific discovery. The task of discovering the underlying equation from a set of input-output pairs is called symbolic regression. Traditionally, symbolic regression methods use hand-designed strategies that do not improve with experience. In this paper, we introduce the first symbolic regression method that leverages large scale pre-training. We procedurally generate an unbounded set of equations, and simultaneously pre-train a Transformer to predict the symbolic equation from a corresponding set of input-output-pairs. At test time, we query the model on a new set of points and use its output to guide the search for the equation. We show empirically that this approach can re-discover a set of well-known physical equations, and that it improves over time with more data and compute.
Controllable Neural Symbolic Regression
In symbolic regression, the goal is to find an analytical expression that accurately fits experimental data with the minimal use of mathematical symbols such as operators, variables, and constants. However, the combinatorial space of possible expressions can make it challenging for traditional evolutionary algorithms to find the correct expression in a reasonable amount of time. To address this issue, Neural Symbolic Regression (NSR) algorithms have been developed that can quickly identify patterns in the data and generate analytical expressions. However, these methods, in their current form, lack the capability to incorporate user-defined prior knowledge, which is often required in natural sciences and engineering fields. To overcome this limitation, we propose a novel neural symbolic regression method, named Neural Symbolic Regression with Hypothesis (NSRwH) that enables the explicit incorporation of assumptions about the expected structure of the ground-truth expression into the prediction process. Our experiments demonstrate that the proposed conditioned deep learning model outperforms its unconditioned counterparts in terms of accuracy while also providing control over the predicted expression structure.
High-performance symbolic-numerics via multiple dispatch
As mathematical computing becomes more democratized in high-level languages, high-performance symbolic-numeric systems are necessary for domain scientists and engineers to get the best performance out of their machine without deep knowledge of code optimization. Naturally, users need different term types either to have different algebraic properties for them, or to use efficient data structures. To this end, we developed Symbolics.jl, an extendable symbolic system which uses dynamic multiple dispatch to change behavior depending on the domain needs. In this work we detail an underlying abstract term interface which allows for speed without sacrificing generality. We show that by formalizing a generic API on actions independent of implementation, we can retroactively add optimized data structures to our system without changing the pre-existing term rewriters. We showcase how this can be used to optimize term construction and give a 113x acceleration on general symbolic transformations. Further, we show that such a generic API allows for complementary term-rewriting implementations. We demonstrate the ability to swap between classical term-rewriting simplifiers and e-graph-based term-rewriting simplifiers. We showcase an e-graph ruleset which minimizes the number of CPU cycles during expression evaluation, and demonstrate how it simplifies a real-world reaction-network simulation to halve the runtime. Additionally, we show a reaction-diffusion partial differential equation solver which is able to be automatically converted into symbolic expressions via multiple dispatch tracing, which is subsequently accelerated and parallelized to give a 157x simulation speedup. Together, this presents Symbolics.jl as a next-generation symbolic-numeric computing environment geared towards modeling and simulation.
Transformer-based Planning for Symbolic Regression
Symbolic regression (SR) is a challenging task in machine learning that involves finding a mathematical expression for a function based on its values. Recent advancements in SR have demonstrated the effectiveness of pretrained transformer-based models in generating equations as sequences, leveraging large-scale pretraining on synthetic datasets and offering notable advantages in terms of inference time over GP-based methods. However, these models primarily rely on supervised pretraining goals borrowed from text generation and overlook equation-specific objectives like accuracy and complexity. To address this, we propose TPSR, a Transformer-based Planning strategy for Symbolic Regression that incorporates Monte Carlo Tree Search into the transformer decoding process. Unlike conventional decoding strategies, TPSR enables the integration of non-differentiable feedback, such as fitting accuracy and complexity, as external sources of knowledge into the transformer-based equation generation process. Extensive experiments on various datasets show that our approach outperforms state-of-the-art methods, enhancing the model's fitting-complexity trade-off, extrapolation abilities, and robustness to noise
Sparse Interpretable Deep Learning with LIES Networks for Symbolic Regression
Symbolic regression (SR) aims to discover closed-form mathematical expressions that accurately describe data, offering interpretability and analytical insight beyond standard black-box models. Existing SR methods often rely on population-based search or autoregressive modeling, which struggle with scalability and symbolic consistency. We introduce LIES (Logarithm, Identity, Exponential, Sine), a fixed neural network architecture with interpretable primitive activations that are optimized to model symbolic expressions. We develop a framework to extract compact formulae from LIES networks by training with an appropriate oversampling strategy and a tailored loss function to promote sparsity and to prevent gradient instability. After training, it applies additional pruning strategies to further simplify the learned expressions into compact formulae. Our experiments on SR benchmarks show that the LIES framework consistently produces sparse and accurate symbolic formulae outperforming all baselines. We also demonstrate the importance of each design component through ablation studies.
Bridging Logic and Learning: A Neural-Symbolic Approach for Enhanced Reasoning in Neural Models (ASPER)
Neural-symbolic learning, an intersection of neural networks and symbolic reasoning, aims to blend neural networks' learning capabilities with symbolic AI's interpretability and reasoning. This paper introduces an approach designed to improve the performance of neural models in learning reasoning tasks. It achieves this by integrating Answer Set Programming (ASP) solvers and domain-specific expertise, which is an approach that diverges from traditional complex neural-symbolic models. In this paper, a shallow artificial neural network (ANN) is specifically trained to solve Sudoku puzzles with minimal training data. The model has a unique loss function that integrates losses calculated using the ASP solver outputs, effectively enhancing its training efficiency. Most notably, the model shows a significant improvement in solving Sudoku puzzles using only 12 puzzles for training and testing without hyperparameter tuning. This advancement indicates that the model's enhanced reasoning capabilities have practical applications, extending well beyond Sudoku puzzles to potentially include a variety of other domains. The code can be found on GitHub: https://github.com/Fadi2200/ASPEN.
A Neural-Guided Dynamic Symbolic Network for Exploring Mathematical Expressions from Data
Symbolic regression (SR) is a powerful technique for discovering the underlying mathematical expressions from observed data. Inspired by the success of deep learning, recent efforts have focused on two categories for SR methods. One is using a neural network or genetic programming to search the expression tree directly. Although this has shown promising results, the large search space poses difficulties in learning constant factors and processing high-dimensional problems. Another approach is leveraging a transformer-based model training on synthetic data and offers advantages in inference speed. However, this method is limited to fixed small numbers of dimensions and may encounter inference problems when given data is out-of-distribution compared to the synthetic data. In this work, we propose DySymNet, a novel neural-guided Dynamic Symbolic Network for SR. Instead of searching for expressions within a large search space, we explore DySymNet with various structures and optimize them to identify expressions that better-fitting the data. With a topology structure like neural networks, DySymNet not only tackles the challenge of high-dimensional problems but also proves effective in optimizing constants. Based on extensive numerical experiments using low-dimensional public standard benchmarks and the well-known SRBench with more variables, our method achieves state-of-the-art performance in terms of fitting accuracy and robustness to noise.
Symbol: Generating Flexible Black-Box Optimizers through Symbolic Equation Learning
Recent Meta-learning for Black-Box Optimization (MetaBBO) methods harness neural networks to meta-learn configurations of traditional black-box optimizers. Despite their success, they are inevitably restricted by the limitations of predefined hand-crafted optimizers. In this paper, we present Symbol, a novel framework that promotes the automated discovery of black-box optimizers through symbolic equation learning. Specifically, we propose a Symbolic Equation Generator (SEG) that allows closed-form optimization rules to be dynamically generated for specific tasks and optimization steps. Within Symbol, we then develop three distinct strategies based on reinforcement learning, so as to meta-learn the SEG efficiently. Extensive experiments reveal that the optimizers generated by Symbol not only surpass the state-of-the-art BBO and MetaBBO baselines, but also exhibit exceptional zero-shot generalization abilities across entirely unseen tasks with different problem dimensions, population sizes, and optimization horizons. Furthermore, we conduct in-depth analyses of our Symbol framework and the optimization rules that it generates, underscoring its desirable flexibility and interpretability.
ReasonAgain: Using Extractable Symbolic Programs to Evaluate Mathematical Reasoning
Existing math datasets evaluate the reasoning abilities of large language models (LLMs) by either using the final answer or the intermediate reasoning steps derived from static examples. However, the former approach fails to surface model's uses of shortcuts and wrong reasoning while the later poses challenges in accommodating alternative solutions. In this work, we seek to use symbolic programs as a means for automated evaluation if a model can consistently produce correct final answers across various inputs to the program. We begin by extracting programs for popular math datasets (GSM8K and MATH) using GPT4-o. For those executable programs verified using the original input-output pairs, they are found to encapsulate the proper reasoning required to solve the original text questions. We then prompt GPT4-o to generate new questions using alternative input-output pairs based the extracted program. We apply the resulting datasets to evaluate a collection of LLMs. In our experiments, we observe significant accuracy drops using our proposed evaluation compared with original static examples, suggesting the fragility of math reasoning in state-of-the-art LLMs.
SymbolicAI: A framework for logic-based approaches combining generative models and solvers
We introduce SymbolicAI, a versatile and modular framework employing a logic-based approach to concept learning and flow management in generative processes. SymbolicAI enables the seamless integration of generative models with a diverse range of solvers by treating large language models (LLMs) as semantic parsers that execute tasks based on both natural and formal language instructions, thus bridging the gap between symbolic reasoning and generative AI. We leverage probabilistic programming principles to tackle complex tasks, and utilize differentiable and classical programming paradigms with their respective strengths. The framework introduces a set of polymorphic, compositional, and self-referential operations for data stream manipulation, aligning LLM outputs with user objectives. As a result, we can transition between the capabilities of various foundation models endowed with zero- and few-shot learning capabilities and specialized, fine-tuned models or solvers proficient in addressing specific problems. In turn, the framework facilitates the creation and evaluation of explainable computational graphs. We conclude by introducing a quality measure and its empirical score for evaluating these computational graphs, and propose a benchmark that compares various state-of-the-art LLMs across a set of complex workflows. We refer to the empirical score as the "Vector Embedding for Relational Trajectory Evaluation through Cross-similarity", or VERTEX score for short. The framework codebase and benchmark are linked below.
SymbolicGPT: A Generative Transformer Model for Symbolic Regression
Symbolic regression is the task of identifying a mathematical expression that best fits a provided dataset of input and output values. Due to the richness of the space of mathematical expressions, symbolic regression is generally a challenging problem. While conventional approaches based on genetic evolution algorithms have been used for decades, deep learning-based methods are relatively new and an active research area. In this work, we present SymbolicGPT, a novel transformer-based language model for symbolic regression. This model exploits the advantages of probabilistic language models like GPT, including strength in performance and flexibility. Through comprehensive experiments, we show that our model performs strongly compared to competing models with respect to the accuracy, running time, and data efficiency.
AutoStub: Genetic Programming-Based Stub Creation for Symbolic Execution
Symbolic execution is a powerful technique for software testing, but suffers from limitations when encountering external functions, such as native methods or third-party libraries. Existing solutions often require additional context, expensive SMT solvers, or manual intervention to approximate these functions through symbolic stubs. In this work, we propose a novel approach to automatically generate symbolic stubs for external functions during symbolic execution that leverages Genetic Programming. When the symbolic executor encounters an external function, AutoStub generates training data by executing the function on randomly generated inputs and collecting the outputs. Genetic Programming then derives expressions that approximate the behavior of the function, serving as symbolic stubs. These automatically generated stubs allow the symbolic executor to continue the analysis without manual intervention, enabling the exploration of program paths that were previously intractable. We demonstrate that AutoStub can automatically approximate external functions with over 90% accuracy for 55% of the functions evaluated, and can infer language-specific behaviors that reveal edge cases crucial for software testing.
In-Context Symbolic Regression: Leveraging Large Language Models for Function Discovery
State of the art Symbolic Regression (SR) methods currently build specialized models, while the application of Large Language Models (LLMs) remains largely unexplored. In this work, we introduce the first comprehensive framework that utilizes LLMs for the task of SR. We propose In-Context Symbolic Regression (ICSR), an SR method which iteratively refines a functional form with an LLM and determines its coefficients with an external optimizer. ICSR leverages LLMs' strong mathematical prior both to propose an initial set of possible functions given the observations and to refine them based on their errors. Our findings reveal that LLMs are able to successfully find symbolic equations that fit the given data, matching or outperforming the overall performance of the best SR baselines on four popular benchmarks, while yielding simpler equations with better out of distribution generalization.
A PINN Approach to Symbolic Differential Operator Discovery with Sparse Data
Given ample experimental data from a system governed by differential equations, it is possible to use deep learning techniques to construct the underlying differential operators. In this work we perform symbolic discovery of differential operators in a situation where there is sparse experimental data. This small data regime in machine learning can be made tractable by providing our algorithms with prior information about the underlying dynamics. Physics Informed Neural Networks (PINNs) have been very successful in this regime (reconstructing entire ODE solutions using only a single point or entire PDE solutions with very few measurements of the initial condition). We modify the PINN approach by adding a neural network that learns a representation of unknown hidden terms in the differential equation. The algorithm yields both a surrogate solution to the differential equation and a black-box representation of the hidden terms. These hidden term neural networks can then be converted into symbolic equations using symbolic regression techniques like AI Feynman. In order to achieve convergence of these neural networks, we provide our algorithms with (noisy) measurements of both the initial condition as well as (synthetic) experimental data obtained at later times. We demonstrate strong performance of this approach even when provided with very few measurements of noisy data in both the ODE and PDE regime.
CoEvo: Continual Evolution of Symbolic Solutions Using Large Language Models
Large Language Models (LLMs) have emerged as transformative tools in artificial intelligence, capable of processing and understanding extensive human knowledge to enhance problem-solving across various domains. This paper explores the potential of LLMs to drive the discovery of symbolic solutions within scientific and engineering disciplines, where such solutions are crucial for advancing theoretical and practical applications. We propose a novel framework that utilizes LLMs in an evolutionary search methodology, augmented by a dynamic knowledge library that integrates and refines insights in an open-ended manner. This approach aims to tackle the dual challenges of efficiently navigating complex symbolic representation spaces and leveraging both existing and newly generated knowledge to foster open-ended innovation. By enabling LLMs to interact with and expand upon a knowledge library, we facilitate the continuous generation of novel solutions in diverse forms such as language, code, and mathematical expressions. Our experimental results demonstrate that this method not only enhances the efficiency of searching for symbolic solutions but also supports the ongoing discovery process, akin to human scientific endeavors. This study represents a first effort in conceptualizing the search for symbolic solutions as a lifelong, iterative process, marking a significant step towards harnessing AI in the perpetual pursuit of scientific and engineering breakthroughs. We have open-sourced our code and data, please visit https://github.com/pgg3/CoEvo for more information.
SNIP: Bridging Mathematical Symbolic and Numeric Realms with Unified Pre-training
In an era where symbolic mathematical equations are indispensable for modeling complex natural phenomena, scientific inquiry often involves collecting observations and translating them into mathematical expressions. Recently, deep learning has emerged as a powerful tool for extracting insights from data. However, existing models typically specialize in either numeric or symbolic domains, and are usually trained in a supervised manner tailored to specific tasks. This approach neglects the substantial benefits that could arise from a task-agnostic unified understanding between symbolic equations and their numeric counterparts. To bridge the gap, we introduce SNIP, a Symbolic-Numeric Integrated Pre-training, which employs joint contrastive learning between symbolic and numeric domains, enhancing their mutual similarities in the pre-trained embeddings. By performing latent space analysis, we observe that SNIP provides cross-domain insights into the representations, revealing that symbolic supervision enhances the embeddings of numeric data and vice versa. We evaluate SNIP across diverse tasks, including symbolic-to-numeric mathematical property prediction and numeric-to-symbolic equation discovery, commonly known as symbolic regression. Results show that SNIP effectively transfers to various tasks, consistently outperforming fully supervised baselines and competing strongly with established task-specific methods, especially in few-shot learning scenarios where available data is limited.
Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning
Geometry problem solving has attracted much attention in the NLP community recently. The task is challenging as it requires abstract problem understanding and symbolic reasoning with axiomatic knowledge. However, current datasets are either small in scale or not publicly available. Thus, we construct a new large-scale benchmark, Geometry3K, consisting of 3,002 geometry problems with dense annotation in formal language. We further propose a novel geometry solving approach with formal language and symbolic reasoning, called Interpretable Geometry Problem Solver (Inter-GPS). Inter-GPS first parses the problem text and diagram into formal language automatically via rule-based text parsing and neural object detecting, respectively. Unlike implicit learning in existing methods, Inter-GPS incorporates theorem knowledge as conditional rules and performs symbolic reasoning step by step. Also, a theorem predictor is designed to infer the theorem application sequence fed to the symbolic solver for the more efficient and reasonable searching path. Extensive experiments on the Geometry3K and GEOS datasets demonstrate that Inter-GPS achieves significant improvements over existing methods. The project with code and data is available at https://lupantech.github.io/inter-gps.
Global Lyapunov functions: a long-standing open problem in mathematics, with symbolic transformers
Despite their spectacular progress, language models still struggle on complex reasoning tasks, such as advanced mathematics. We consider a long-standing open problem in mathematics: discovering a Lyapunov function that ensures the global stability of a dynamical system. This problem has no known general solution, and algorithmic solvers only exist for some small polynomial systems. We propose a new method for generating synthetic training samples from random solutions, and show that sequence-to-sequence transformers trained on such datasets perform better than algorithmic solvers and humans on polynomial systems, and can discover new Lyapunov functions for non-polynomial systems.
Language Models can be Logical Solvers
Logical reasoning is a fundamental aspect of human intelligence and a key component of tasks like problem-solving and decision-making. Recent advancements have enabled Large Language Models (LLMs) to potentially exhibit reasoning capabilities, but complex logical reasoning remains a challenge. The state-of-the-art, solver-augmented language models, use LLMs to parse natural language logical questions into symbolic representations first and then adopt external logical solvers to take in the symbolic representations and output the answers. Despite their impressive performance, any parsing errors will inevitably result in the failure of the execution of the external logical solver and no answer to the logical questions. In this paper, we introduce LoGiPT, a novel language model that directly emulates the reasoning processes of logical solvers and bypasses the parsing errors by learning to strict adherence to solver syntax and grammar. LoGiPT is fine-tuned on a newly constructed instruction-tuning dataset derived from revealing and refining the invisible reasoning process of deductive solvers. Experimental results on two public deductive reasoning datasets demonstrate that LoGiPT outperforms state-of-the-art solver-augmented LMs and few-shot prompting methods on competitive LLMs like ChatGPT or GPT-4.
Dspy-based Neural-Symbolic Pipeline to Enhance Spatial Reasoning in LLMs
Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks, yet they often struggle with spatial reasoning. This paper presents a novel neural-symbolic framework that enhances LLMs' spatial reasoning abilities through iterative feedback between LLMs and Answer Set Programming (ASP). We evaluate our approach on two benchmark datasets: StepGame and SparQA, implementing three distinct strategies: (1) direct prompting baseline, (2) Facts+Rules prompting, and (3) DSPy-based LLM+ASP pipeline with iterative refinement. Our experimental results demonstrate that the LLM+ASP pipeline significantly outperforms baseline methods, achieving an average 82% accuracy on StepGame and 69% on SparQA, marking improvements of 40-50% and 8-15% respectively over direct prompting. The success stems from three key innovations: (1) effective separation of semantic parsing and logical reasoning through a modular pipeline, (2) iterative feedback mechanism between LLMs and ASP solvers that improves program rate, and (3) robust error handling that addresses parsing, grounding, and solving failures. Additionally, we propose Facts+Rules as a lightweight alternative that achieves comparable performance on complex SparQA dataset, while reducing computational overhead.Our analysis across different LLM architectures (Deepseek, Llama3-70B, GPT-4.0 mini) demonstrates the framework's generalizability and provides insights into the trade-offs between implementation complexity and reasoning capability, contributing to the development of more interpretable and reliable AI systems.
Ineq-Comp: Benchmarking Human-Intuitive Compositional Reasoning in Automated Theorem Proving on Inequalities
LLM-based formal proof assistants (e.g., in Lean) hold great promise for automating mathematical discovery. But beyond syntactic correctness, do these systems truly understand mathematical structure as humans do? We investigate this question through the lens of mathematical inequalities -- a fundamental tool across many domains. While modern provers can solve basic inequalities, we probe their ability to handle human-intuitive compositionality. We introduce Ineq-Comp, a benchmark built from elementary inequalities through systematic transformations, including variable duplication, algebraic rewriting, and multi-step composition. Although these problems remain easy for humans, we find that most provers -- including Goedel, STP, and Kimina-7B -- struggle significantly. DeepSeek-Prover-V2-7B shows relative robustness -- possibly because it is trained to decompose the problems into sub-problems -- but still suffers a 20\% performance drop (pass@32). Strikingly, performance remains poor for all models even when formal proofs of the constituent parts are provided in context, revealing that the source of weakness is indeed in compositional reasoning. Our results expose a persisting gap between the generalization behavior of current AI provers and human mathematical intuition.
Deep Generative Symbolic Regression with Monte-Carlo-Tree-Search
Symbolic regression (SR) is the problem of learning a symbolic expression from numerical data. Recently, deep neural models trained on procedurally-generated synthetic datasets showed competitive performance compared to more classical Genetic Programming (GP) algorithms. Unlike their GP counterparts, these neural approaches are trained to generate expressions from datasets given as context. This allows them to produce accurate expressions in a single forward pass at test time. However, they usually do not benefit from search abilities, which result in low performance compared to GP on out-of-distribution datasets. In this paper, we propose a novel method which provides the best of both worlds, based on a Monte-Carlo Tree Search procedure using a context-aware neural mutation model, which is initially pre-trained to learn promising mutations, and further refined from successful experiences in an online fashion. The approach demonstrates state-of-the-art performance on the well-known SRBench benchmark.
Explaining Math Word Problem Solvers
Automated math word problem solvers based on neural networks have successfully managed to obtain 70-80\% accuracy in solving arithmetic word problems. However, it has been shown that these solvers may rely on superficial patterns to obtain their equations. In order to determine what information math word problem solvers use to generate solutions, we remove parts of the input and measure the model's performance on the perturbed dataset. Our results show that the model is not sensitive to the removal of many words from the input and can still manage to find a correct answer when given a nonsense question. This indicates that automatic solvers do not follow the semantic logic of math word problems, and may be overfitting to the presence of specific words.
ASyMOB: Algebraic Symbolic Mathematical Operations Benchmark
Large language models (LLMs) are rapidly approaching the level of proficiency in university-level symbolic mathematics required for applications in advanced science and technology. However, existing benchmarks fall short in assessing the core skills of LLMs in symbolic mathematics-such as integration, differential equations, and algebraic simplification. To address this gap, we introduce ASyMOB, a novel assessment framework focused exclusively on symbolic manipulation, featuring 17,092 unique math challenges, organized by similarity and complexity. ASyMOB enables analysis of LLM generalization capabilities by comparing performance in problems that differ by simple numerical or symbolic `perturbations'. Evaluated LLMs exhibit substantial degradation in performance for all perturbation types (up to -70.3%), suggesting reliance on memorized patterns rather than deeper understanding of symbolic math, even among models achieving high baseline accuracy. Comparing LLM performance to computer algebra systems, we identify examples where they fail while LLMs succeed, as well as problems solved only by combining both approaches. Models capable of integrated code execution yielded higher accuracy compared to their performance without code, particularly stabilizing weaker models (up to +33.1% for certain perturbation types). Notably, the most advanced models (o4-mini, Gemini 2.5 Flash) demonstrate not only high symbolic math proficiency (scoring 96.8% and 97.6% on the unperturbed set), but also remarkable robustness against perturbations, (-21.7% and -21.2% vs. average -50.4% for the other models). This may indicate a recent "phase transition" in the generalization capabilities of frontier LLMs. It remains to be seen whether the path forward lies in deeper integration with sophisticated external tools, or in developing models so capable that symbolic math systems like CAS become unnecessary.
Enumerate-Conjecture-Prove: Formally Solving Answer-Construction Problems in Math Competitions
Mathematical reasoning lies at the heart of artificial intelligence, underpinning applications in education, program verification, and research-level mathematical discovery. Mathematical competitions, in particular, present two challenging problem types: theorem proving, which requires rigorous proofs of stated conclusions, and answer construction, which involves hypothesizing and formally verifying mathematical objects. Large Language Models (LLMs) effectively generate creative candidate answers but struggle with formal verification, while symbolic provers ensure rigor but cannot efficiently handle creative conjecture generation. We introduce the Enumerate-Conjecture-Prove (ECP) framework, a modular neuro-symbolic method integrating LLM-based enumeration and pattern-driven conjecturing with formal theorem proving. We present ConstructiveBench, a dataset of 3,431 answer-construction problems in various math competitions with verified Lean formalizations. On the ConstructiveBench dataset, ECP improves the accuracy of answer construction from a Chain-of-Thought (CoT) baseline of 14.54% to 45.06% with the gpt-4.1-mini model. Moreover, combined with ECP's constructed answers, the state-of-the-art DeepSeek-Prover-V2-7B model generates correct proofs for 858 of the 3,431 constructive problems in Lean, achieving 25.01% accuracy compared to 9.86% for symbolic-only baselines. Our code and dataset are publicly available at https://github.com/JackSun200312/ECP.
GenesisGeo: Technical Report
We present GenesisGeo, an automated theorem prover in Euclidean geometry. We have open-sourced a large-scale geometry dataset of 21.8 million geometric problems, over 3 million of which contain auxiliary constructions. Specially, we significantly accelerate the symbolic deduction engine DDARN by 120x through theorem matching, combined with a C++ implementation of its core components. Furthermore, we build our neuro-symbolic prover, GenesisGeo, upon Qwen3-0.6B-Base, which solves 24 of 30 problems (IMO silver medal level) in the IMO-AG-30 benchmark using a single model, and achieves 26 problems (IMO gold medal level) with a dual-model ensemble.
Reviving DSP for Advanced Theorem Proving in the Era of Reasoning Models
Recent advancements, such as DeepSeek-Prover-V2-671B and Kimina-Prover-Preview-72B, demonstrate a prevailing trend in leveraging reinforcement learning (RL)-based large-scale training for automated theorem proving. Surprisingly, we discover that even without any training, careful neuro-symbolic coordination of existing off-the-shelf reasoning models and tactic step provers can achieve comparable performance. This paper introduces DSP+, an improved version of the Draft, Sketch, and Prove framework, featuring a fine-grained and integrated neuro-symbolic enhancement for each phase: (1) In the draft phase, we prompt reasoning models to generate concise natural-language subgoals to benefit the sketch phase, removing thinking tokens and references to human-written proofs; (2) In the sketch phase, subgoals are autoformalized with hypotheses to benefit the proving phase, and sketch lines containing syntactic errors are masked according to predefined rules; (3) In the proving phase, we tightly integrate symbolic search methods like Aesop with step provers to establish proofs for the sketch subgoals. Experimental results show that, without any additional model training or fine-tuning, DSP+ solves 80.7\%, 32.8\%, and 24 out of 644 problems from miniF2F, ProofNet, and PutnamBench, respectively, while requiring fewer budgets compared to state-of-the-arts. DSP+ proves imo\_2019\_p1, an IMO problem in miniF2F that is not solved by any prior work. Additionally, DSP+ generates proof patterns comprehensible by human experts, facilitating the identification of formalization errors; For example, eight wrongly formalized statements in miniF2F are discovered. Our results highlight the potential of classical reasoning patterns besides the RL-based training. All components will be open-sourced.
MathGenie: Generating Synthetic Data with Question Back-translation for Enhancing Mathematical Reasoning of LLMs
Large language models (LLMs) have exhibited great potential in mathematical reasoning. However, there remains a performance gap in this area between existing open-source models and closed-source models such as GPT-4. In this paper, we introduce MathGenie, a novel method for generating diverse and reliable math problems from a small-scale problem-solution dataset (denoted as seed data). We augment the ground-truth solutions of our seed data and train a back-translation model to translate the augmented solutions back into new questions. Subsequently, we generate code-integrated solutions for the new questions. To ensure the correctness of the code-integrated solutions, we employ rationale-based strategy for solution verification. Various pretrained models, ranging from 7B to 70B, are trained on the newly curated data to test the effectiveness of the proposed augmentation technique, resulting in a family of models known as MathGenieLM. These models consistently outperform previous open-source models across five representative mathematical reasoning datasets, achieving state-of-the-art performance. In particular, MathGenieLM-InternLM2 achieves an accuracy of 87.7% on GSM8K and 55.7% on MATH, securing the best overall score among open-source language models.
Are NLP Models really able to Solve Simple Math Word Problems?
The problem of designing NLP solvers for math word problems (MWP) has seen sustained research activity and steady gains in the test accuracy. Since existing solvers achieve high performance on the benchmark datasets for elementary level MWPs containing one-unknown arithmetic word problems, such problems are often considered "solved" with the bulk of research attention moving to more complex MWPs. In this paper, we restrict our attention to English MWPs taught in grades four and lower. We provide strong evidence that the existing MWP solvers rely on shallow heuristics to achieve high performance on the benchmark datasets. To this end, we show that MWP solvers that do not have access to the question asked in the MWP can still solve a large fraction of MWPs. Similarly, models that treat MWPs as bag-of-words can also achieve surprisingly high accuracy. Further, we introduce a challenge dataset, SVAMP, created by applying carefully chosen variations over examples sampled from existing datasets. The best accuracy achieved by state-of-the-art models is substantially lower on SVAMP, thus showing that much remains to be done even for the simplest of the MWPs.
Generating Mathematical Derivations with Large Language Models
The derivation of mathematical results in specialised fields using Large Language Models (LLMs) is an emerging research direction that can help identify models' limitations, and potentially support mathematical discovery. In this paper, we leverage a symbolic engine to generate derivations of equations at scale, and investigate the capabilities of LLMs when deriving goal equations from premises. Specifically, we employ in-context learning for GPT and fine-tune a range of T5 models to compare the robustness and generalisation of pre-training strategies to specialised models. Empirical results show that fine-tuned FLAN-T5-large (MathT5) outperforms GPT models on all static and out-of-distribution test sets in terms of absolute performance. However, an in-depth analysis reveals that the fine-tuned models are more sensitive to perturbations involving unseen symbols and (to a lesser extent) changes to equation structure. In addition, we analyse 1.7K equations and over 200 derivations to highlight common reasoning errors such as the inclusion of incorrect, irrelevant, and redundant equations, along with the tendency to skip derivation steps. Finally, we explore the suitability of existing metrics for evaluating mathematical derivations finding evidence that, while they capture general properties such as sensitivity to perturbations, they fail to highlight fine-grained reasoning errors and essential differences between models. Overall, this work demonstrates that training models on synthetic data can improve their mathematical capabilities beyond larger architectures.
Beyond Theorem Proving: Formulation, Framework and Benchmark for Formal Problem-Solving
As a seemingly self-explanatory task, problem-solving has been a significant component of science and engineering. However, a general yet concrete formulation of problem-solving itself is missing. With the recent development of AI-based problem-solving agents, the demand for process-level verifiability is rapidly increasing yet underexplored. To fill these gaps, we present a principled formulation of problem-solving as a deterministic Markov decision process; a novel framework, FPS (Formal Problem-Solving), which utilizes existing FTP (formal theorem proving) environments to perform process-verified problem-solving; and D-FPS (Deductive FPS), decoupling solving and answer verification for better human-alignment. The expressiveness, soundness and completeness of the frameworks are proven. We construct three benchmarks on problem-solving: FormalMath500, a formalization of a subset of the MATH500 benchmark; MiniF2F-Solving and PutnamBench-Solving, adaptations of FTP benchmarks MiniF2F and PutnamBench. For faithful, interpretable, and human-aligned evaluation, we propose RPE (Restricted Propositional Equivalence), a symbolic approach to determine the correctness of answers by formal verification. We evaluate four prevalent FTP models and two prompting methods as baselines, solving at most 23.77% of FormalMath500, 27.47% of MiniF2F-Solving, and 0.31% of PutnamBench-Solving.
Natural Language Embedded Programs for Hybrid Language Symbolic Reasoning
How can we perform computations over natural language representations to solve tasks that require symbolic and numeric reasoning? We propose natural language embedded programs (NLEP) as a unifying framework for addressing math/symbolic reasoning, natural language understanding, and instruction following tasks. Our approach prompts a language model to generate full Python programs that define functions over data structures which contain natural language representations of structured knowledge. A Python interpreter then executes the generated code and prints the output. Despite using a task-general prompt, we find that this approach can improve upon strong baselines across a range of different tasks including math and symbolic reasoning, text classification, question answering, and instruction following. We further find the generated programs are often interpretable and enable post-hoc verification of the intermediate reasoning steps.
Arithmetic Reasoning with LLM: Prolog Generation & Permutation
Instructing large language models (LLMs) to solve elementary school math problems has shown great success using Chain of Thought (CoT). However, the CoT approach relies on an LLM to generate a sequence of arithmetic calculations which can be prone to cascaded calculation errors. We hypothesize that an LLM should focus on extracting predicates and generating symbolic formulas from the math problem description so that the underlying calculation can be done via an external code interpreter. We investigate using LLM to generate Prolog programs to solve mathematical questions. Experimental results show that our Prolog-based arithmetic problem-solving outperforms CoT generation in the GSM8K benchmark across three distinct LLMs. In addition, given the insensitive ordering of predicates and symbolic formulas in Prolog, we propose to permute the ground truth predicates for more robust LLM training via data augmentation.
GFN-SR: Symbolic Regression with Generative Flow Networks
Symbolic regression (SR) is an area of interpretable machine learning that aims to identify mathematical expressions, often composed of simple functions, that best fit in a given set of covariates X and response y. In recent years, deep symbolic regression (DSR) has emerged as a popular method in the field by leveraging deep reinforcement learning to solve the complicated combinatorial search problem. In this work, we propose an alternative framework (GFN-SR) to approach SR with deep learning. We model the construction of an expression tree as traversing through a directed acyclic graph (DAG) so that GFlowNet can learn a stochastic policy to generate such trees sequentially. Enhanced with an adaptive reward baseline, our method is capable of generating a diverse set of best-fitting expressions. Notably, we observe that GFN-SR outperforms other SR algorithms in noisy data regimes, owing to its ability to learn a distribution of rewards over a space of candidate solutions.
Divide and Translate: Compositional First-Order Logic Translation and Verification for Complex Logical Reasoning
Complex logical reasoning tasks require a long sequence of reasoning, which a large language model (LLM) with chain-of-thought prompting still falls short. To alleviate this issue, neurosymbolic approaches incorporate a symbolic solver. Specifically, an LLM only translates a natural language problem into a satisfiability (SAT) problem that consists of first-order logic formulas, and a sound symbolic solver returns a mathematically correct solution. However, we discover that LLMs have difficulties to capture complex logical semantics hidden in the natural language during translation. To resolve this limitation, we propose a Compositional First-Order Logic Translation. An LLM first parses a natural language sentence into newly defined logical dependency structures that consist of an atomic subsentence and its dependents, then sequentially translate the parsed subsentences. Since multiple logical dependency structures and sequential translations are possible for a single sentence, we also introduce two Verification algorithms to ensure more reliable results. We utilize an SAT solver to rigorously compare semantics of generated first-order logic formulas and select the most probable one. We evaluate the proposed method, dubbed CLOVER, on seven logical reasoning benchmarks and show that it outperforms the previous neurosymbolic approaches and achieves new state-of-the-art results.
Heimdall: test-time scaling on the generative verification
An AI system can create and maintain knowledge only to the extent that it can verify that knowledge itself. Recent work on long Chain-of-Thought reasoning has demonstrated great potential of LLMs on solving competitive problems, but their verification ability remains to be weak and not sufficiently investigated. In this paper, we propose Heimdall, the long CoT verification LLM that can accurately judge the correctness of solutions. With pure reinforcement learning, we boost the verification accuracy from 62.5% to 94.5% on competitive math problems. By scaling with repeated sampling, the accuracy further increases to 97.5%. Through human evaluation, Heimdall demonstrates impressive generalization capabilities, successfully detecting most issues in challenging math proofs, the type of which is not included during training. Furthermore, we propose Pessimistic Verification to extend the functionality of Heimdall to scaling up the problem solving. It calls Heimdall to judge the solutions from a solver model and based on the pessimistic principle, selects the most likely correct solution with the least uncertainty. Taking DeepSeek-R1-Distill-Qwen-32B as the solver model, Pessimistic Verification improves the solution accuracy on AIME2025 from 54.2% to 70.0% with 16x compute budget and to 83.3% with more compute budget. With the stronger solver Gemini 2.5 Pro, the score reaches 93.0%. Finally, we prototype an automatic knowledge discovery system, a ternary system where one poses questions, another provides solutions, and the third verifies the solutions. Using the data synthesis work NuminaMath for the first two components, Heimdall effectively identifies problematic records within the dataset and reveals that nearly half of the data is flawed, which interestingly aligns with the recent ablation studies from NuminaMath.
Interpretable Machine Learning for Science with PySR and SymbolicRegression.jl
PySR is an open-source library for practical symbolic regression, a type of machine learning which aims to discover human-interpretable symbolic models. PySR was developed to democratize and popularize symbolic regression for the sciences, and is built on a high-performance distributed back-end, a flexible search algorithm, and interfaces with several deep learning packages. PySR's internal search algorithm is a multi-population evolutionary algorithm, which consists of a unique evolve-simplify-optimize loop, designed for optimization of unknown scalar constants in newly-discovered empirical expressions. PySR's backend is the extremely optimized Julia library SymbolicRegression.jl, which can be used directly from Julia. It is capable of fusing user-defined operators into SIMD kernels at runtime, performing automatic differentiation, and distributing populations of expressions to thousands of cores across a cluster. In describing this software, we also introduce a new benchmark, "EmpiricalBench," to quantify the applicability of symbolic regression algorithms in science. This benchmark measures recovery of historical empirical equations from original and synthetic datasets.
Deep Learning for Symbolic Mathematics
Neural networks have a reputation for being better at solving statistical or approximate problems than at performing calculations or working with symbolic data. In this paper, we show that they can be surprisingly good at more elaborated tasks in mathematics, such as symbolic integration and solving differential equations. We propose a syntax for representing mathematical problems, and methods for generating large datasets that can be used to train sequence-to-sequence models. We achieve results that outperform commercial Computer Algebra Systems such as Matlab or Mathematica.
LogicSolver: Towards Interpretable Math Word Problem Solving with Logical Prompt-enhanced Learning
Recently, deep learning models have made great progress in MWP solving on answer accuracy. However, they are uninterpretable since they mainly rely on shallow heuristics to achieve high performance without understanding and reasoning the grounded math logic. To address this issue and make a step towards interpretable MWP solving, we first construct a high-quality MWP dataset named InterMWP which consists of 11,495 MWPs and annotates interpretable logical formulas based on algebraic knowledge as the grounded linguistic logic of each solution equation. Different from existing MWP datasets, our InterMWP benchmark asks for a solver to not only output the solution expressions but also predict the corresponding logical formulas. We further propose a novel approach with logical prompt and interpretation generation, called LogicSolver. For each MWP, our LogicSolver first retrieves some highly-correlated algebraic knowledge and then passes them to the backbone model as prompts to improve the semantic representations of MWPs. With these improved semantic representations, our LogicSolver generates corresponding solution expressions and interpretable knowledge formulas in accord with the generated solution expressions, simultaneously. Experimental results show that our LogicSolver has stronger logical formula-based interpretability than baselines while achieving higher answer accuracy with the help of logical prompts, simultaneously. The source code and dataset is available at https://github.com/yangzhch6/InterMWP.
CoMAT: Chain of Mathematically Annotated Thought Improves Mathematical Reasoning
Mathematical reasoning remains a significant challenge for large language models (LLMs), despite progress in prompting techniques such as Chain-of-Thought (CoT). We present Chain of Mathematically Annotated Thought (CoMAT), which enhances reasoning through two stages: Symbolic Conversion (converting natural language queries into symbolic form) and Reasoning Execution (deriving answers from symbolic representations). CoMAT operates entirely with a single LLM and without external solvers. Across four LLMs, CoMAT outperforms traditional CoT on six out of seven benchmarks, achieving gains of 4.48% on MMLU-Redux (MATH) and 4.58% on GaoKao MCQ. In addition to improved performance, CoMAT ensures faithfulness and verifiability, offering a transparent reasoning process for complex mathematical tasks
Not All Votes Count! Programs as Verifiers Improve Self-Consistency of Language Models for Math Reasoning
Large language models (LLMs) have shown increasing competence in solving mathematical reasoning problems. However, many open-source LLMs still struggle with errors in calculation and semantic understanding during intermediate reasoning steps. In this work, we introduce Prove, a simple yet effective framework that leverages translated programs derived from natural language solutions as a verification mechanism to filter out potentially incorrect reasoning paths before aggregating final answers. Unlike vanilla majority voting, our approach filters out solutions whose corresponding program output is inconsistent with the generated solution, aggregating only those that pass verification. We conducted extensive experiments using 13 open-source LLMs from various model families and sizes, ranging from 0.5B to 13B parameters, across eight mathematical benchmarks. Our results show that Prove consistently outperforms vanilla majority voting as a heuristic for solving mathematical reasoning tasks across all model sizes and datasets, achieving improvements of up to 18% on GSM8K and 8% on MATH-500. Our codes are available at https://github.com/declare-lab/prove.
Goedel-Prover: A Frontier Model for Open-Source Automated Theorem Proving
We introduce Goedel-Prover, an open-source large language model (LLM) that achieves the state-of-the-art (SOTA) performance in automated formal proof generation for mathematical problems. The key challenge in this field is the scarcity of formalized math statements and proofs, which we tackle in the following ways. We train statement formalizers to translate the natural language math problems from Numina into formal language (Lean 4), creating a dataset of 1.64 million formal statements. LLMs are used to check that the formal statements accurately preserve the content of the original natural language problems. We then iteratively build a large dataset of formal proofs by training a series of provers. Each prover succeeds in proving many statements that the previous ones could not, and these new proofs are added to the training set for the next prover. The final prover outperforms all existing open-source models in whole-proof generation. On the miniF2F benchmark, it achieves a 57.6% success rate (Pass@32), exceeding the previous best open-source model by 7.6%. On PutnamBench, Goedel-Prover successfully solves 7 problems (Pass@512), ranking first on the leaderboard. Furthermore, it generates 29.7K formal proofs for Lean Workbook problems, nearly doubling the 15.7K produced by earlier works.
Solving for X and Beyond: Can Large Language Models Solve Complex Math Problems with More-Than-Two Unknowns?
Large Language Models (LLMs) have demonstrated remarkable performance in solving math problems, a hallmark of human intelligence. Despite high success rates on current benchmarks; however, these often feature simple problems with only one or two unknowns, which do not sufficiently challenge their reasoning capacities. This paper introduces a novel benchmark, BeyondX, designed to address these limitations by incorporating problems with multiple unknowns. Recognizing the challenges in proposing multi-unknown problems from scratch, we developed BeyondX using an innovative automated pipeline that progressively increases complexity by expanding the number of unknowns in simpler problems. Empirical study on BeyondX reveals that the performance of existing LLMs, even those fine-tuned specifically on math tasks, significantly decreases as the number of unknowns increases - with a performance drop of up to 70\% observed in GPT-4. To tackle these challenges, we propose the Formulate-and-Solve strategy, a generalized prompting approach that effectively handles problems with an arbitrary number of unknowns. Our findings reveal that this strategy not only enhances LLM performance on the BeyondX benchmark but also provides deeper insights into the computational limits of LLMs when faced with more complex mathematical challenges.
Program Induction by Rationale Generation : Learning to Solve and Explain Algebraic Word Problems
Solving algebraic word problems requires executing a series of arithmetic operations---a program---to obtain a final answer. However, since programs can be arbitrarily complicated, inducing them directly from question-answer pairs is a formidable challenge. To make this task more feasible, we solve these problems by generating answer rationales, sequences of natural language and human-readable mathematical expressions that derive the final answer through a series of small steps. Although rationales do not explicitly specify programs, they provide a scaffolding for their structure via intermediate milestones. To evaluate our approach, we have created a new 100,000-sample dataset of questions, answers and rationales. Experimental results show that indirect supervision of program learning via answer rationales is a promising strategy for inducing arithmetic programs.
REAL-Prover: Retrieval Augmented Lean Prover for Mathematical Reasoning
Nowadays, formal theorem provers have made monumental progress on high-school and competition-level mathematics, but few of them generalize to more advanced mathematics. In this paper, we present REAL-Prover, a new open-source stepwise theorem prover for Lean 4 to push this boundary. This prover, based on our fine-tuned large language model (REAL-Prover-v1) and integrated with a retrieval system (Leansearch-PS), notably boosts performance on solving college-level mathematics problems. To train REAL-Prover-v1, we developed HERALD-AF, a data extraction pipeline that converts natural language math problems into formal statements, and a new open-source Lean 4 interactive environment (Jixia-interactive) to facilitate synthesis data collection. In our experiments, our prover using only supervised fine-tune achieves competitive results with a 23.7% success rate (Pass@64) on the ProofNet dataset-comparable to state-of-the-art (SOTA) models. To further evaluate our approach, we introduce FATE-M, a new benchmark focused on algebraic problems, where our prover achieves a SOTA success rate of 56.7% (Pass@64).
Magnushammer: A Transformer-based Approach to Premise Selection
Premise selection is a fundamental problem of automated theorem proving. Previous works often use intricate symbolic methods, rely on domain knowledge, and require significant engineering effort to solve this task. In this work, we show that Magnushammer, a neural transformer-based approach, can outperform traditional symbolic systems by a large margin. Tested on the PISA benchmark, Magnushammer achieves 59.5% proof rate compared to a 38.3% proof rate of Sledgehammer, the most mature and popular symbolic-based solver. Furthermore, by combining Magnushammer with a neural formal prover based on a language model, we significantly improve the previous state-of-the-art proof rate from 57.0% to 71.0%.
Learning Randomized Reductions and Program Properties
The correctness of computations remains a significant challenge in computer science, with traditional approaches relying on automated testing or formal verification. Self-testing/correcting programs introduce an alternative paradigm, allowing a program to verify and correct its own outputs via randomized reductions, a concept that previously required manual derivation. In this paper, we present Bitween, a method and tool for automated learning of randomized (self)-reductions and program properties in numerical programs. Bitween combines symbolic analysis and machine learning, with a surprising finding: polynomial-time linear regression, a basic optimization method, is not only sufficient but also highly effective for deriving complex randomized self-reductions and program invariants, often outperforming sophisticated mixed-integer linear programming solvers. We establish a theoretical framework for learning these reductions and introduce RSR-Bench, a benchmark suite for evaluating Bitween's capabilities on scientific and machine learning functions. Our empirical results show that Bitween surpasses state-of-the-art tools in scalability, stability, and sample efficiency when evaluated on nonlinear invariant benchmarks like NLA-DigBench. Bitween is open-source as a Python package and accessible via a web interface that supports C language programs.
MATHSENSEI: A Tool-Augmented Large Language Model for Mathematical Reasoning
Tool-augmented Large Language Models (TALM) are known to enhance the skillset of large language models (LLM), thereby, leading to their improved reasoning abilities across many tasks. While, TALMs have been successfully employed in different question-answering benchmarks, their efficacy on complex mathematical reasoning benchmarks, and the potential complimentary benefits offered by tools for knowledge retrieval and mathematical equation solving, are open research questions. In this work, we present MATHSENSEI, a tool-augmented large language model for mathematical reasoning. Augmented with tools for knowledge retrieval (Bing Web Search), program execution (Python), and symbolic equation solving (Wolfram-Alpha), we study the complimentary benefits of these tools through evaluations on mathematical reasoning datasets. We perform exhaustive ablations on MATH,a popular dataset for evaluating mathematical reasoning on diverse mathematical disciplines. We also conduct experiments involving well-known tool planners to study the impact of tool sequencing on the model performance. MATHSENSEI achieves 13.5% better accuracy over gpt-3.5-turbo with chain-of-thought on the MATH dataset. We further observe that TALMs are not as effective for simpler math word problems (in GSM-8k), and the benefit increases as the complexity and required knowledge increases (progressively over AQuA, MMLU-Math, and higher level complex questions in MATH). The code and data are available at https://github.com/Debrup-61/MathSensei.
FiniteFieldSolve: Exactly Solving Large Linear Systems in High-Energy Theory
Large linear systems play an important role in high-energy theory, appearing in amplitude bootstraps and during integral reduction. This paper introduces FiniteFieldSolve, a general-purpose toolkit for exactly solving large linear systems over the rationals. The solver interfaces directly with Mathematica, is straightforward to install, and seamlessly replaces Mathematica's native solvers. In testing, FiniteFieldSolve is approximately two orders of magnitude faster than Mathematica and uses an order of magnitude less memory. The package also compares favorably against other public solvers in FiniteFieldSolve's intended use cases. As the name of the package suggests, solutions are obtained via well-known finite field methods. These methods suffer from introducing an inordinate number of modulo (or integer division) operations with respect to different primes. By automatically recompiling itself for each prime, FiniteFieldSolve converts the division operations into much faster combinations of instructions, dramatically improving performance. The technique of compiling the prime can be applied to any finite field solver, where the time savings will be solver dependent. The operation of the package is illustrated through a detailed example of an amplitude bootstrap.
Jailbreaking Large Language Models with Symbolic Mathematics
Recent advancements in AI safety have led to increased efforts in training and red-teaming large language models (LLMs) to mitigate unsafe content generation. However, these safety mechanisms may not be comprehensive, leaving potential vulnerabilities unexplored. This paper introduces MathPrompt, a novel jailbreaking technique that exploits LLMs' advanced capabilities in symbolic mathematics to bypass their safety mechanisms. By encoding harmful natural language prompts into mathematical problems, we demonstrate a critical vulnerability in current AI safety measures. Our experiments across 13 state-of-the-art LLMs reveal an average attack success rate of 73.6\%, highlighting the inability of existing safety training mechanisms to generalize to mathematically encoded inputs. Analysis of embedding vectors shows a substantial semantic shift between original and encoded prompts, helping explain the attack's success. This work emphasizes the importance of a holistic approach to AI safety, calling for expanded red-teaming efforts to develop robust safeguards across all potential input types and their associated risks.
LINC: A Neurosymbolic Approach for Logical Reasoning by Combining Language Models with First-Order Logic Provers
Logical reasoning, i.e., deductively inferring the truth value of a conclusion from a set of premises, is an important task for artificial intelligence with wide potential impacts on science, mathematics, and society. While many prompting-based strategies have been proposed to enable Large Language Models (LLMs) to do such reasoning more effectively, they still appear unsatisfactory, often failing in subtle and unpredictable ways. In this work, we investigate the validity of instead reformulating such tasks as modular neurosymbolic programming, which we call LINC: Logical Inference via Neurosymbolic Computation. In LINC, the LLM acts as a semantic parser, translating premises and conclusions from natural language to expressions in first-order logic. These expressions are then offloaded to an external theorem prover, which symbolically performs deductive inference. Leveraging this approach, we observe significant performance gains on FOLIO and a balanced subset of ProofWriter for three different models in nearly all experimental conditions we evaluate. On ProofWriter, augmenting the comparatively small open-source StarCoder+ (15.5B parameters) with LINC even outperforms GPT-3.5 and GPT-4 with Chain-of-Thought (CoT) prompting by an absolute 38% and 10%, respectively. When used with GPT-4, LINC scores 26% higher than CoT on ProofWriter while performing comparatively on FOLIO. Further analysis reveals that although both methods on average succeed roughly equally often on this dataset, they exhibit distinct and complementary failure modes. We thus provide promising evidence for how logical reasoning over natural language can be tackled through jointly leveraging LLMs alongside symbolic provers. All corresponding code is publicly available at https://github.com/benlipkin/linc
PromptCoT: Synthesizing Olympiad-level Problems for Mathematical Reasoning in Large Language Models
The ability of large language models to solve complex mathematical problems has progressed significantly, particularly for tasks requiring advanced reasoning. However, the scarcity of sufficiently challenging problems, particularly at the Olympiad level, hinders further advancements. In this work, we introduce PromptCoT, a novel approach for automatically generating high-quality Olympiad-level math problems. The proposed method synthesizes complex problems based on mathematical concepts and the rationale behind problem construction, emulating the thought processes of experienced problem designers. We provide a theoretical analysis demonstrating that an optimal rationale should maximize both the likelihood of rationale generation given the associated concepts and the likelihood of problem generation conditioned on both the rationale and the concepts. Our method is evaluated on standard benchmarks including GSM8K, MATH-500, and AIME2024, where it consistently outperforms existing problem generation methods. Furthermore, we demonstrate that PromptCoT exhibits superior data scalability, consistently maintaining high performance as the dataset size increases, outperforming the baselines. The implementation is available at https://github.com/zhaoxlpku/PromptCoT.
Neural-Symbolic Message Passing with Dynamic Pruning
Complex Query Answering (CQA) over incomplete Knowledge Graphs (KGs) is a challenging task. Recently, a line of message-passing-based research has been proposed to solve CQA. However, they perform unsatisfactorily on negative queries and fail to address the noisy messages between variable nodes in the query graph. Moreover, they offer little interpretability and require complex query data and resource-intensive training. In this paper, we propose a Neural-Symbolic Message Passing (NSMP) framework based on pre-trained neural link predictors. By introducing symbolic reasoning and fuzzy logic, NSMP can generalize to arbitrary existential first order logic queries without requiring training while providing interpretable answers. Furthermore, we introduce a dynamic pruning strategy to filter out noisy messages between variable nodes. Experimental results show that NSMP achieves a strong performance. Additionally, through complexity analysis and empirical verification, we demonstrate the superiority of NSMP in inference time over the current state-of-the-art neural-symbolic method. Compared to this approach, NSMP demonstrates faster inference times across all query types on benchmark datasets, with speedup ranging from 2times to over 150times.
STP: Self-play LLM Theorem Provers with Iterative Conjecturing and Proving
A fundamental challenge in formal theorem proving by LLMs is the lack of high-quality training data. Although reinforcement learning or expert iteration partially mitigates this issue by alternating between LLM generating proofs and finetuning them on correctly generated ones, performance quickly plateaus due to the scarcity of correct proofs (sparse rewards). To keep improving the models with limited data, we draw inspiration from mathematicians, who continuously develop new results, partly by proposing novel conjectures or exercises (which are often variants of known results) and attempting to solve them. We design the Self-play Theorem Prover (STP) that simultaneously takes on two roles, conjecturer and prover, each providing training signals to the other. The conjecturer is trained iteratively on previously generated conjectures that are barely provable by the current prover, which incentivizes it to generate increasingly challenging conjectures over time. The prover attempts to prove the conjectures with standard expert iteration. We evaluate STP with both Lean and Isabelle formal versifiers. With 19.8 billion tokens generated during the training in Lean, STP proves 26.3% of the statements in the LeanWorkbook dataset, doubling the previous best result of 13.2% achieved through expert iteration. The final model achieves state-of-the-art performance among whole-proof generation methods on miniF2F-test (61.7%, pass@3200), Proofnet-test (23.1%, pass@3200) and PutnamBench (8/644, pass@3200).
Non-Iterative Symbolic-Aided Chain-of-Thought for Logical Reasoning
This work introduces Symbolic-Aided Chain-of-Thought (CoT), an improved approach to standard CoT, for logical reasoning in large language models (LLMs). The key idea is to integrate lightweight symbolic representations into few-shot prompts, structuring the inference steps with a consistent strategy to make reasoning patterns more explicit within a non-iterative reasoning process. By incorporating these symbolic structures, our method preserves the generalizability of standard prompting techniques while enhancing the transparency, interpretability, and analyzability of LLM logical reasoning. Extensive experiments on four well-known logical reasoning benchmarks -- ProofWriter, FOLIO, ProntoQA, and LogicalDeduction, which cover diverse reasoning scenarios -- demonstrate the effectiveness of the proposed approach, particularly in complex reasoning tasks that require navigating multiple constraints or rules. Notably, Symbolic-Aided CoT consistently improves LLMs' reasoning capabilities across various model sizes and significantly outperforms conventional CoT on three out of four datasets, ProofWriter, ProntoQA, and LogicalDeduction.
On Neural Differential Equations
The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.
GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models
Recent advancements in Large Language Models (LLMs) have sparked interest in their formal reasoning capabilities, particularly in mathematics. The GSM8K benchmark is widely used to assess the mathematical reasoning of models on grade-school-level questions. While the performance of LLMs on GSM8K has significantly improved in recent years, it remains unclear whether their mathematical reasoning capabilities have genuinely advanced, raising questions about the reliability of the reported metrics. To address these concerns, we conduct a large-scale study on several SOTA open and closed models. To overcome the limitations of existing evaluations, we introduce GSM-Symbolic, an improved benchmark created from symbolic templates that allow for the generation of a diverse set of questions. GSM-Symbolic enables more controllable evaluations, providing key insights and more reliable metrics for measuring the reasoning capabilities of models.Our findings reveal that LLMs exhibit noticeable variance when responding to different instantiations of the same question. Specifically, the performance of all models declines when only the numerical values in the question are altered in the GSM-Symbolic benchmark. Furthermore, we investigate the fragility of mathematical reasoning in these models and show that their performance significantly deteriorates as the number of clauses in a question increases. We hypothesize that this decline is because current LLMs cannot perform genuine logical reasoning; they replicate reasoning steps from their training data. Adding a single clause that seems relevant to the question causes significant performance drops (up to 65%) across all state-of-the-art models, even though the clause doesn't contribute to the reasoning chain needed for the final answer. Overall, our work offers a more nuanced understanding of LLMs' capabilities and limitations in mathematical reasoning.
Answer Set Networks: Casting Answer Set Programming into Deep Learning
Although Answer Set Programming (ASP) allows constraining neural-symbolic (NeSy) systems, its employment is hindered by the prohibitive costs of computing stable models and the CPU-bound nature of state-of-the-art solvers. To this end, we propose Answer Set Networks (ASN), a NeSy solver. Based on Graph Neural Networks (GNN), ASNs are a scalable approach to ASP-based Deep Probabilistic Logic Programming (DPPL). Specifically, we show how to translate ASPs into ASNs and demonstrate how ASNs can efficiently solve the encoded problem by leveraging GPU's batching and parallelization capabilities. Our experimental evaluations demonstrate that ASNs outperform state-of-the-art CPU-bound NeSy systems on multiple tasks. Simultaneously, we make the following two contributions based on the strengths of ASNs. Namely, we are the first to show the finetuning of Large Language Models (LLM) with DPPLs, employing ASNs to guide the training with logic. Further, we show the "constitutional navigation" of drones, i.e., encoding public aviation laws in an ASN for routing Unmanned Aerial Vehicles in uncertain environments.
Alchemy: Amplifying Theorem-Proving Capability through Symbolic Mutation
Formal proofs are challenging to write even for experienced experts. Recent progress in Neural Theorem Proving (NTP) shows promise in expediting this process. However, the formal corpora available on the Internet are limited compared to the general text, posing a significant data scarcity challenge for NTP. To address this issue, this work proposes Alchemy, a general framework for data synthesis that constructs formal theorems through symbolic mutation. Specifically, for each candidate theorem in Mathlib, we identify all invocable theorems that can be used to rewrite or apply to it. Subsequently, we mutate the candidate theorem by replacing the corresponding term in the statement with its equivalent form or antecedent. As a result, our method increases the number of theorems in Mathlib by an order of magnitude, from 110k to 6M. Furthermore, we perform continual pretraining and supervised finetuning on this augmented corpus for large language models. Experimental results demonstrate the effectiveness of our approach, achieving a 5% absolute performance improvement on Leandojo benchmark. Additionally, our synthetic data achieve a 2.5% absolute performance gain on the out-of-distribution miniF2F benchmark. To provide further insights, we conduct a comprehensive analysis of synthetic data composition and the training paradigm, offering valuable guidance for developing a strong theorem prover.
BEATS: Optimizing LLM Mathematical Capabilities with BackVerify and Adaptive Disambiguate based Efficient Tree Search
Large Language Models (LLMs) have exhibited exceptional performance across a broad range of tasks and domains. However, they still encounter difficulties in solving mathematical problems due to the rigorous and logical nature of mathematics. Previous studies have employed techniques such as supervised fine-tuning (SFT), prompt engineering, and search-based methods to improve the mathematical problem-solving abilities of LLMs. Despite these efforts, their performance remains suboptimal and demands substantial computational resources. To address this issue, we propose a novel approach, BEATS, to enhance mathematical problem-solving abilities. Our method leverages newly designed prompts that guide the model to iteratively rewrite, advance by one step, and generate answers based on previous steps. Additionally, we introduce a new back-verification technique that uses LLMs to validate the correctness of the generated answers. Furthermore, we employ a pruning tree search to optimize search time while achieving strong performance. Notably, our method improves Qwen2-7b-Instruct's score from 36.94 to 61.52, outperforming GPT4's 42.5 on the MATH benchmark.
ProofCompass: Enhancing Specialized Provers with LLM Guidance
Language models have become increasingly powerful tools for formal mathematical reasoning. However, most existing approaches rely exclusively on either large general-purpose models or smaller specialized models, each with distinct limitations, while training specialized large models still requires significant computational resources. This paper introduces ProofCompass, a novel hybrid methodology that achieves remarkable computational efficiency by strategically guiding existing specialized prover methods, such as DeepSeek-Prover-v1.5-RL (DSP-v1.5) with a Large Language Model (LLM) without requiring additional model training. The LLM provides natural language proof strategies and analyzes failed attempts to select intermediate lemmas, enabling effective problem decomposition. On the miniF2F benchmark, ProofCompass demonstrates substantial resource efficiency: it outperforms DSP-v1.5 (54.9% rightarrow 55.3%) while using 25x fewer attempts (3200 rightarrow 128). Our synergistic approach paves the way for simultaneously improving computational efficiency and accuracy in formal theorem proving.
Math Word Problem Solving by Generating Linguistic Variants of Problem Statements
The art of mathematical reasoning stands as a fundamental pillar of intellectual progress and is a central catalyst in cultivating human ingenuity. Researchers have recently published a plethora of works centered around the task of solving Math Word Problems (MWP) - a crucial stride towards general AI. These existing models are susceptible to dependency on shallow heuristics and spurious correlations to derive the solution expressions. In order to ameliorate this issue, in this paper, we propose a framework for MWP solvers based on the generation of linguistic variants of the problem text. The approach involves solving each of the variant problems and electing the predicted expression with the majority of the votes. We use DeBERTa (Decoding-enhanced BERT with disentangled attention) as the encoder to leverage its rich textual representations and enhanced mask decoder to construct the solution expressions. Furthermore, we introduce a challenging dataset, Psmall{ARAMAWPS}, consisting of paraphrased, adversarial, and inverse variants of selectively sampled MWPs from the benchmark Msmall{AWPS} dataset. We extensively experiment on this dataset along with other benchmark datasets using some baseline MWP solver models. We show that training on linguistic variants of problem statements and voting on candidate predictions improve the mathematical reasoning and robustness of the model. We make our code and data publicly available.
Symbolic Synthesis of Neural Networks
Neural networks adapt very well to distributed and continuous representations, but struggle to generalize from small amounts of data. Symbolic systems commonly achieve data efficient generalization by exploiting modularity to benefit from local and discrete features of a representation. These features allow symbolic programs to be improved one module at a time and to experience combinatorial growth in the values they can successfully process. However, it is difficult to design a component that can be used to form symbolic abstractions and which is adequately overparametrized to learn arbitrary high-dimensional transformations. I present Graph-based Symbolically Synthesized Neural Networks (G-SSNNs), a class of neural modules that operate on representations modified with synthesized symbolic programs to include a fixed set of local and discrete features. I demonstrate that the choice of injected features within a G-SSNN module modulates the data efficiency and generalization of baseline neural models, creating predictable patterns of both heightened and curtailed generalization. By training G-SSNNs, we also derive information about desirable semantics of symbolic programs without manual engineering. This information is compact and amenable to abstraction, but can also be flexibly recontextualized for other high-dimensional settings. In future work, I will investigate data efficient generalization and the transferability of learned symbolic representations in more complex G-SSNN designs based on more complex classes of symbolic programs. Experimental code and data are available at https://github.com/shlomenu/symbolically_synthesized_networks .
Unsupervised Discovery of Formulas for Mathematical Constants
Ongoing efforts that span over decades show a rise of AI methods for accelerating scientific discovery, yet accelerating discovery in mathematics remains a persistent challenge for AI. Specifically, AI methods were not effective in creation of formulas for mathematical constants because each such formula must be correct for infinite digits of precision, with "near-true" formulas providing no insight toward the correct ones. Consequently, formula discovery lacks a clear distance metric needed to guide automated discovery in this realm. In this work, we propose a systematic methodology for categorization, characterization, and pattern identification of such formulas. The key to our methodology is introducing metrics based on the convergence dynamics of the formulas, rather than on the numerical value of the formula. These metrics enable the first automated clustering of mathematical formulas. We demonstrate this methodology on Polynomial Continued Fraction formulas, which are ubiquitous in their intrinsic connections to mathematical constants, and generalize many mathematical functions and structures. We test our methodology on a set of 1,768,900 such formulas, identifying many known formulas for mathematical constants, and discover previously unknown formulas for pi, ln(2), Gauss', and Lemniscate's constants. The uncovered patterns enable a direct generalization of individual formulas to infinite families, unveiling rich mathematical structures. This success paves the way towards a generative model that creates formulas fulfilling specified mathematical properties, accelerating the rate of discovery of useful formulas.
Large Language Models for Mathematical Analysis
Mathematical problem-solving is a key field in artificial intelligence (AI) and a critical benchmark for evaluating the capabilities of large language models (LLMs). While extensive research has focused on mathematical problem-solving, most existing work and datasets concentrate on computational tasks, leaving gaps in areas like mathematical analysis, which demands rigorous proofs and formal reasoning. We developed the DEMI-MathAnalysis dataset, comprising proof-based problems from mathematical analysis topics such as Sequences and Limits, Infinite Series, and Convex Functions. We also designed a guiding framework to rigorously enhance LLMs' ability to solve these problems. Through fine-tuning LLMs on this dataset and employing our framework, we observed significant improvements in their capability to generate logical, complete, and elegant proofs. This work addresses critical gaps in mathematical reasoning and contributes to advancing trustworthy AI capable of handling formalized mathematical language. The code is publicly accessible at LLMs for Mathematical Analysis.
From Zero to Hero: Examining the Power of Symbolic Tasks in Instruction Tuning
Fine-tuning language models on tasks with instructions has demonstrated potential in facilitating zero-shot generalization to unseen tasks. In this paper, we introduce a straightforward yet effective method for enhancing instruction tuning by employing symbolic tasks. Compared to crowdsourced human tasks or model-generated tasks, symbolic tasks present a unique advantage as they can be easily generated in vast quantities, theoretically providing an infinite supply of high-quality training instances. To explore the potential of symbolic tasks, we carry out an extensive case study on the representative symbolic task of SQL execution. Empirical results on various benchmarks validate that the integration of SQL execution leads to significant improvements in zero-shot scenarios, particularly in table reasoning. Notably, our 3B model surpasses both the 175B GPT-3 and ChatGPT in zero-shot table reasoning across four benchmarks. Furthermore, experimental results on BBH (27 tasks) and MMLU (57 tasks) reveal that language models can be enhanced through symbolic tasks without compromising their generality. We hope that our paper serves as a catalyst, inspiring increased efforts to incorporate symbolic tasks in instruction tuning.
DreamCoder: Growing generalizable, interpretable knowledge with wake-sleep Bayesian program learning
Expert problem-solving is driven by powerful languages for thinking about problems and their solutions. Acquiring expertise means learning these languages -- systems of concepts, alongside the skills to use them. We present DreamCoder, a system that learns to solve problems by writing programs. It builds expertise by creating programming languages for expressing domain concepts, together with neural networks to guide the search for programs within these languages. A ``wake-sleep'' learning algorithm alternately extends the language with new symbolic abstractions and trains the neural network on imagined and replayed problems. DreamCoder solves both classic inductive programming tasks and creative tasks such as drawing pictures and building scenes. It rediscovers the basics of modern functional programming, vector algebra and classical physics, including Newton's and Coulomb's laws. Concepts are built compositionally from those learned earlier, yielding multi-layered symbolic representations that are interpretable and transferrable to new tasks, while still growing scalably and flexibly with experience.
MathPrompter: Mathematical Reasoning using Large Language Models
Large Language Models (LLMs) have limited performance when solving arithmetic reasoning tasks and often provide incorrect answers. Unlike natural language understanding, math problems typically have a single correct answer, making the task of generating accurate solutions more challenging for LLMs. To the best of our knowledge, we are not aware of any LLMs that indicate their level of confidence in their responses which fuels a trust deficit in these models impeding their adoption. To address this deficiency, we propose `MathPrompter', a technique that improves performance of LLMs on arithmetic problems along with increased reliance in the predictions. MathPrompter uses the Zero-shot chain-of-thought prompting technique to generate multiple Algebraic expressions or Python functions to solve the same math problem in different ways and thereby raise the confidence level in the output results. This is in contrast to other prompt based CoT methods, where there is no check on the validity of the intermediate steps followed. Our technique improves over state-of-the-art on the MultiArith dataset (78.7%rightarrow92.5%) evaluated using 175B parameter GPT-based LLM.
Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery
This paper revisits datasets and evaluation criteria for Symbolic Regression, a task of expressing given data using mathematical equations, specifically focused on its potential for scientific discovery. Focused on a set of formulas used in the existing datasets based on Feynman Lectures on Physics, we recreate 120 datasets to discuss the performance of symbolic regression for scientific discovery (SRSD). For each of the 120 SRSD datasets, we carefully review the properties of the formula and its variables to design reasonably realistic sampling range of values so that our new SRSD datasets can be used for evaluating the potential of SRSD such as whether or not an SR method can (re)discover physical laws from such datasets. As an evaluation metric, we also propose to use normalized edit distances between a predicted equation and the ground-truth equation trees. While existing metrics are either binary or errors between the target values and an SR model's predicted values for a given input, normalized edit distances evaluate a sort of similarity between the ground-truth and predicted equation trees. We have conducted experiments on our new SRSD datasets using five state-of-the-art SR methods in SRBench and a simple baseline based on a recent Transformer architecture. The results show that we provide a more realistic performance evaluation and open up a new machine learning-based approach for scientific discovery. Our datasets and code repository are publicly available.
NaturalProofs: Mathematical Theorem Proving in Natural Language
Understanding and creating mathematics using natural mathematical language - the mixture of symbolic and natural language used by humans - is a challenging and important problem for driving progress in machine learning. As a step in this direction, we develop NaturalProofs, a multi-domain corpus of mathematical statements and their proofs, written in natural mathematical language. NaturalProofs unifies broad coverage, deep coverage, and low-resource mathematical sources, allowing for evaluating both in-distribution and zero-shot generalization. Using NaturalProofs, we benchmark strong neural methods on mathematical reference retrieval and generation tasks which test a system's ability to determine key results that appear in a proof. Large-scale sequence models show promise compared to classical information retrieval methods, yet their performance and out-of-domain generalization leave substantial room for improvement. NaturalProofs opens many avenues for research on challenging mathematical tasks.
Prover Agent: An Agent-Based Framework for Formal Mathematical Proofs
We present Prover Agent, a novel AI agent for automated theorem proving that integrates large language models (LLMs) with a formal proof assistant, Lean. Prover Agent coordinates an informal reasoning LLM, a formal prover model, and feedback from Lean while also generating auxiliary lemmas. These auxiliary lemmas are not limited to subgoals in the formal proof but can also include special cases or potentially useful facts derived from the assumptions, which help in discovering a viable proof strategy. It achieves an 88.1% success rate on the MiniF2F benchmark, establishing a new state-of-the-art among methods using small language models (SLMs) with a much lower sample budget than previous approaches. We also present theoretical analyses and case studies that illustrate how these generated lemmas contribute to solving challenging problems. Our code is publicly available at: https://github.com/kAIto47802/Prover-Agent.
Gradient-Based Program Repair: Fixing Bugs in Continuous Program Spaces
Automatic program repair seeks to generate correct code from buggy programs, with most approaches searching the correct program in a discrete, symbolic space of source code tokens. This symbolic search is fundamentally limited by its inability to directly reason about program behavior. We introduce Gradient-Based Program Repair (GBPR), a new paradigm that reframes program repair as continuous optimization in a differentiable numerical program space. Our core insight is to compile symbolic programs into differentiable numerical representations, enabling search in the numerical program space directly guided by program behavior. To evaluate GBPR, we present RaspBugs, a new benchmark of 1,466 buggy symbolic RASP programs and their respective numerical representations. Our experiments demonstrate that GBPR can effectively repair buggy symbolic programs by gradient-based optimization in the numerical program space, with convincing repair trajectories. To our knowledge, we are the first to state program repair as continuous optimization in a numerical program space. Our work establishes a new direction for program repair research, bridging two rich worlds: continuous optimization and program behavior.
Towards Solving More Challenging IMO Problems via Decoupled Reasoning and Proving
Automated Theorem Proving (ATP) in formal languages is a foundational challenge for AI. While Large Language Models (LLMs) have driven remarkable progress, a significant gap remains between their powerful informal reasoning capabilities and their weak formal proving performance. Recent studies show that the informal accuracy exceeds 80% while formal success remains below 8% on benchmarks like PutnamBench. We argue this gap persists because current state-of-the-art provers, by tightly coupling reasoning and proving, are trained with paradigms that inadvertently punish deep reasoning in favor of shallow, tactic-based strategies. To bridge this fundamental gap, we propose a novel framework that decouples high-level reasoning from low-level proof generation. Our approach utilizes two distinct, specialized models: a powerful, general-purpose Reasoner to generate diverse, strategic subgoal lemmas, and an efficient Prover to rigorously verify them. This modular design liberates the model's full reasoning potential and bypasses the pitfalls of end-to-end training. We evaluate our method on a challenging set of post-2000 IMO problems, a problem set on which no prior open-source prover has reported success. Our decoupled framework successfully solves 5 of these problems, demonstrating a significant step towards automated reasoning on exceptionally difficult mathematical challenges. To foster future research, we release our full dataset of generated and verified lemmas for a wide range of IMO problems, available at https://tencent-imo.github.io/ .
Formal Mathematics Statement Curriculum Learning
We explore the use of expert iteration in the context of language modeling applied to formal mathematics. We show that at same compute budget, expert iteration, by which we mean proof search interleaved with learning, dramatically outperforms proof search only. We also observe that when applied to a collection of formal statements of sufficiently varied difficulty, expert iteration is capable of finding and solving a curriculum of increasingly difficult problems, without the need for associated ground-truth proofs. Finally, by applying this expert iteration to a manually curated set of problem statements, we achieve state-of-the-art on the miniF2F benchmark, automatically solving multiple challenging problems drawn from high school olympiads.
Least-to-Most Prompting Enables Complex Reasoning in Large Language Models
Chain-of-thought prompting has demonstrated remarkable performance on various natural language reasoning tasks. However, it tends to perform poorly on tasks which requires solving problems harder than the exemplars shown in the prompts. To overcome this challenge of easy-to-hard generalization, we propose a novel prompting strategy, least-to-most prompting. The key idea in this strategy is to break down a complex problem into a series of simpler subproblems and then solve them in sequence. Solving each subproblem is facilitated by the answers to previously solved subproblems. Our experimental results on tasks related to symbolic manipulation, compositional generalization, and math reasoning reveal that least-to-most prompting is capable of generalizing to more difficult problems than those seen in the prompts. A notable finding is that when the GPT-3 code-davinci-002 model is used with least-to-most prompting, it can solve the compositional generalization benchmark SCAN in any split (including length split) with an accuracy of at least 99% using just 14 exemplars, compared to only 16% accuracy with chain-of-thought prompting. This is particularly noteworthy because neural-symbolic models in the literature that specialize in solving SCAN are trained on the entire training set containing over 15,000 examples. We have included prompts for all the tasks in the Appendix.
CRANE: Reasoning with constrained LLM generation
Code generation, symbolic math reasoning, and other tasks require LLMs to produce outputs that are both syntactically and semantically correct. Constrained LLM generation is a promising direction to enforce adherence to formal grammar, but prior works have empirically observed that strict enforcement of formal constraints often diminishes the reasoning capabilities of LLMs. In this work, we first provide a theoretical explanation for why constraining LLM outputs to very restrictive grammars that only allow syntactically valid final answers reduces the reasoning capabilities of the model. Second, we demonstrate that by augmenting the output grammar with carefully designed additional rules, it is always possible to preserve the reasoning capabilities of the LLM while ensuring syntactic and semantic correctness in its outputs. Building on these theoretical insights, we propose a reasoning-augmented constrained decoding algorithm, CRANE, which effectively balances the correctness of constrained generation with the flexibility of unconstrained generation. Experiments on multiple open-source LLMs and benchmarks show that CRANE significantly outperforms both state-of-the-art constrained decoding strategies and standard unconstrained decoding, showing up to 10% points accuracy improvement over baselines on challenging symbolic reasoning benchmarks GSM-symbolic and FOLIO.
SymPAC: Scalable Symbolic Music Generation With Prompts And Constraints
Progress in the task of symbolic music generation may be lagging behind other tasks like audio and text generation, in part because of the scarcity of symbolic training data. In this paper, we leverage the greater scale of audio music data by applying pre-trained MIR models (for transcription, beat tracking, structure analysis, etc.) to extract symbolic events and encode them into token sequences. To the best of our knowledge, this work is the first to demonstrate the feasibility of training symbolic generation models solely from auto-transcribed audio data. Furthermore, to enhance the controllability of the trained model, we introduce SymPAC (Symbolic Music Language Model with Prompting And Constrained Generation), which is distinguished by using (a) prompt bars in encoding and (b) a technique called Constrained Generation via Finite State Machines (FSMs) during inference time. We show the flexibility and controllability of this approach, which may be critical in making music AI useful to creators and users.
Code Prompting: a Neural Symbolic Method for Complex Reasoning in Large Language Models
Large language models (LLMs) have scaled up to unlock a wide range of complex reasoning tasks with the aid of various prompting methods. However, current prompting methods generate natural language intermediate steps to help reasoning, which can cause imperfect task reduction and confusion. To mitigate such limitations, we explore code prompting, a neural symbolic prompting method with both zero-shot and few-shot versions which triggers code as intermediate steps. We conduct experiments on 7 widely-used benchmarks involving symbolic reasoning and arithmetic reasoning. Code prompting generally outperforms chain-of-thought (CoT) prompting. To further understand the performance and limitations of code prompting, we perform extensive ablation studies and error analyses, and identify several exclusive advantages of using symbolic promptings compared to natural language. We also consider the ensemble of code prompting and CoT prompting to combine the strengths of both. Finally, we show through experiments how code annotations and their locations affect code prompting.
MathConstruct: Challenging LLM Reasoning with Constructive Proofs
While Large Language Models (LLMs) demonstrate impressive performance in mathematics, existing math benchmarks come with significant limitations. Many focus on problems with fixed ground-truth answers, and are often saturated due to problem simplicity or the viability of guessing or memorization. Crucially, they capture only a narrow subset of relevant math problems. To address this research gap, we introduce \mc, a new benchmark of 126 challenging problems sourced from various math competitions, which targets constructive proofs, a widely encountered problem type requiring the construction of mathematical objects with specific properties. These proofs are particularly suitable for LLM evaluation, as solution correctness can be easily verified. Our automated verifiers also enable MathConstruct to generate problem variations, used to evaluate robustness. State-of-the-art LLMs solve only 54% of MathConstruct problems, highlighting its complexity and importance for LLM evaluation.
Can Large Language Models Understand Symbolic Graphics Programs?
Assessing the capabilities of large language models (LLMs) is often challenging, in part, because it is hard to find tasks to which they have not been exposed during training. We take one step to address this challenge by turning to a new task: focusing on symbolic graphics programs, which are a popular representation for graphics content that procedurally generates visual data. LLMs have shown exciting promise towards program synthesis, but do they understand symbolic graphics programs? Unlike conventional programs, symbolic graphics programs can be translated to graphics content. Here, we characterize an LLM's understanding of symbolic programs in terms of their ability to answer questions related to the graphics content. This task is challenging as the questions are difficult to answer from the symbolic programs alone -- yet, they would be easy to answer from the corresponding graphics content as we verify through a human experiment. To understand symbolic programs, LLMs may need to possess the ability to imagine how the corresponding graphics content would look without directly accessing the rendered visual content. We use this task to evaluate LLMs by creating a large benchmark for the semantic understanding of symbolic graphics programs. This benchmark is built via program-graphics correspondence, hence requiring minimal human efforts. We evaluate current LLMs on our benchmark to elucidate a preliminary assessment of their ability to reason about visual scenes from programs. We find that this task distinguishes existing LLMs and models considered good at reasoning perform better. Lastly, we introduce Symbolic Instruction Tuning (SIT) to improve this ability. Specifically, we query GPT4-o with questions and images generated by symbolic programs. Such data are then used to finetune an LLM. We also find that SIT data can improve the general instruction following ability of LLMs.
Decomposed Prompting: A Modular Approach for Solving Complex Tasks
Few-shot prompting is a surprisingly powerful way to use Large Language Models (LLMs) to solve various tasks. However, this approach struggles as the task complexity increases or when the individual reasoning steps of the task themselves are hard to learn, especially when embedded in more complex tasks. To address this, we propose Decomposed Prompting, a new approach to solve complex tasks by decomposing them (via prompting) into simpler sub-tasks that can be delegated to a library of prompting-based LLMs dedicated to these sub-tasks. This modular structure allows each prompt to be optimized for its specific sub-task, further decomposed if necessary, and even easily replaced with more effective prompts, trained models, or symbolic functions if desired. We show that the flexibility and modularity of Decomposed Prompting allows it to outperform prior work on few-shot prompting using GPT3. On symbolic reasoning tasks, we can further decompose sub-tasks that are hard for LLMs into even simpler solvable sub-tasks. When the complexity comes from the input length, we can recursively decompose the task into the same task but with smaller inputs. We also evaluate our approach on textual multi-step reasoning tasks: on long-context multi-hop QA task, we can more effectively teach the sub-tasks via our separate sub-tasks prompts; and on open-domain multi-hop QA, we can incorporate a symbolic information retrieval within our decomposition framework, leading to improved performance on both tasks. Datasets, Code and Prompts available at https://github.com/allenai/DecomP.
PAL: Program-aided Language Models
Large language models (LLMs) have recently demonstrated an impressive ability to perform arithmetic and symbolic reasoning tasks, when provided with a few examples at test time ("few-shot prompting"). Much of this success can be attributed to prompting methods such as "chain-of-thought'', which employ LLMs for both understanding the problem description by decomposing it into steps, as well as solving each step of the problem. While LLMs seem to be adept at this sort of step-by-step decomposition, LLMs often make logical and arithmetic mistakes in the solution part, even when the problem is decomposed correctly. In this paper, we present Program-Aided Language models (PAL): a novel approach that uses the LLM to read natural language problems and generate programs as the intermediate reasoning steps, but offloads the solution step to a runtime such as a Python interpreter. With PAL, decomposing the natural language problem into runnable steps remains the only learning task for the LLM, while solving is delegated to the interpreter. We demonstrate this synergy between a neural LLM and a symbolic interpreter across 13 mathematical, symbolic, and algorithmic reasoning tasks from BIG-Bench Hard and other benchmarks. In all these natural language reasoning tasks, generating code using an LLM and reasoning using a Python interpreter leads to more accurate results than much larger models. For example, PAL using Codex achieves state-of-the-art few-shot accuracy on the GSM8K benchmark of math word problems, surpassing PaLM-540B which uses chain-of-thought by absolute 15% top-1. Our code and data are publicly available at http://reasonwithpal.com/ .
Saturation-Driven Dataset Generation for LLM Mathematical Reasoning in the TPTP Ecosystem
The scarcity of high-quality, logically sound data is a critical bottleneck for advancing the mathematical reasoning of Large Language Models (LLMs). Our work confronts this challenge by turning decades of automated theorem proving research into a scalable data engine. Rather than relying on error-prone LLMs or complex proof-assistant syntax like Lean and Isabelle, our framework leverages E-prover's saturation capabilities on the vast TPTP axiom library to derive a massive, guaranteed-valid corpus of theorems. Our pipeline is principled and simple: saturate axioms, filter for "interesting" theorems, and generate tasks. With no LLMs in the loop, we eliminate factual errors by construction. This purely symbolic data is then transformed into three difficulty-controlled challenges: entailment verification, premise selection, and proof reconstruction. Our zero-shot experiments on frontier models reveal a clear weakness: performance collapses on tasks requiring deep, structural reasoning. Our framework provides both the diagnostic tool to measure this gap and a scalable source of symbolic training data to address it. We make the code and data publicly available. https://github.com/sileod/reasoning_core https://hf.co/datasets/reasoning-core/rc1
Automated Formalization via Conceptual Retrieval-Augmented LLMs
Interactive theorem provers (ITPs) require manual formalization, which is labor-intensive and demands expert knowledge. While automated formalization offers a potential solution, it faces two major challenges: model hallucination (e.g., undefined predicates, symbol misuse, and version incompatibility) and the semantic gap caused by ambiguous or missing premises in natural language descriptions. To address these issues, we propose CRAMF, a Concept-driven Retrieval-Augmented Mathematical Formalization framework. CRAMF enhances LLM-based autoformalization by retrieving formal definitions of core mathematical concepts, providing contextual grounding during code generation. However, applying retrieval-augmented generation (RAG) in this setting is non-trivial due to the lack of structured knowledge bases, the polymorphic nature of mathematical concepts, and the high precision required in formal retrieval. We introduce a framework for automatically constructing a concept-definition knowledge base from Mathlib4, the standard mathematical library for the Lean 4 theorem prover, indexing over 26,000 formal definitions and 1,000+ core mathematical concepts. To address conceptual polymorphism, we propose contextual query augmentation with domain- and application-level signals. In addition, we design a dual-channel hybrid retrieval strategy with reranking to ensure accurate and relevant definition retrieval. Experiments on miniF2F, ProofNet, and our newly proposed AdvancedMath benchmark show that CRAMF can be seamlessly integrated into LLM-based autoformalizers, yielding consistent improvements in translation accuracy, achieving up to 62.1% and an average of 29.9% relative improvement.
FormalMATH: Benchmarking Formal Mathematical Reasoning of Large Language Models
Formal mathematical reasoning remains a critical challenge for artificial intelligence, hindered by limitations of existing benchmarks in scope and scale. To address this, we present FormalMATH, a large-scale Lean4 benchmark comprising 5,560 formally verified problems spanning from high-school Olympiad challenges to undergraduate-level theorems across diverse domains (e.g., algebra, applied mathematics, calculus, number theory, and discrete mathematics). To mitigate the inefficiency of manual formalization, we introduce a novel human-in-the-loop autoformalization pipeline that integrates: (1) specialized large language models (LLMs) for statement autoformalization, (2) multi-LLM semantic verification, and (3) negation-based disproof filtering strategies using off-the-shelf LLM-based provers. This approach reduces expert annotation costs by retaining 72.09% of statements before manual verification while ensuring fidelity to the original natural-language problems. Our evaluation of state-of-the-art LLM-based theorem provers reveals significant limitations: even the strongest models achieve only 16.46% success rate under practical sampling budgets, exhibiting pronounced domain bias (e.g., excelling in algebra but failing in calculus) and over-reliance on simplified automation tactics. Notably, we identify a counterintuitive inverse relationship between natural-language solution guidance and proof success in chain-of-thought reasoning scenarios, suggesting that human-written informal reasoning introduces noise rather than clarity in the formal reasoning settings. We believe that FormalMATH provides a robust benchmark for benchmarking formal mathematical reasoning.
Automated Search for Conjectures on Mathematical Constants using Analysis of Integer Sequences
Formulas involving fundamental mathematical constants had a great impact on various fields of science and mathematics, for example aiding in proofs of irrationality of constants. However, the discovery of such formulas has historically remained scarce, often perceived as an act of mathematical genius by great mathematicians such as Ramanujan, Euler, and Gauss. Recent efforts to automate the discovery of formulas for mathematical constants, such as the Ramanujan Machine project, relied on exhaustive search. Despite several successful discoveries, exhaustive search remains limited by the space of options that can be covered and by the need for vast amounts of computational resources. Here we propose a fundamentally different method to search for conjectures on mathematical constants: through analysis of integer sequences. We introduce the Enumerated Signed-continued-fraction Massey Approve (ESMA) algorithm, which builds on the Berlekamp-Massey algorithm to identify patterns in integer sequences that represent mathematical constants. The ESMA algorithm found various known formulas for e, e^2, tan(1), and ratios of values of Bessel functions. The algorithm further discovered a large number of new conjectures for these constants, some providing simpler representations and some providing faster numerical convergence than the corresponding simple continued fractions. Along with the algorithm, we present mathematical tools for manipulating continued fractions. These connections enable us to characterize what space of constants can be found by ESMA and quantify its algorithmic advantage in certain scenarios. Altogether, this work continues in the development of augmenting mathematical intuition by computer algorithms, to help reveal mathematical structures and accelerate mathematical research.
Discovering Symbolic Models from Deep Learning with Inductive Biases
We develop a general approach to distill symbolic representations of a learned deep model by introducing strong inductive biases. We focus on Graph Neural Networks (GNNs). The technique works as follows: we first encourage sparse latent representations when we train a GNN in a supervised setting, then we apply symbolic regression to components of the learned model to extract explicit physical relations. We find the correct known equations, including force laws and Hamiltonians, can be extracted from the neural network. We then apply our method to a non-trivial cosmology example-a detailed dark matter simulation-and discover a new analytic formula which can predict the concentration of dark matter from the mass distribution of nearby cosmic structures. The symbolic expressions extracted from the GNN using our technique also generalized to out-of-distribution data better than the GNN itself. Our approach offers alternative directions for interpreting neural networks and discovering novel physical principles from the representations they learn.
LLM-SR: Scientific Equation Discovery via Programming with Large Language Models
Mathematical equations have been unreasonably effective in describing complex natural phenomena across various scientific disciplines. However, discovering such insightful equations from data presents significant challenges due to the necessity of navigating extremely high-dimensional combinatorial and nonlinear hypothesis spaces. Traditional methods of equation discovery largely focus on extracting equations from data alone, often neglecting the rich domain-specific prior knowledge that scientists typically depend on. To bridge this gap, we introduce LLM-SR, a novel approach that leverages the extensive scientific knowledge and robust code generation capabilities of Large Language Models (LLMs) to discover scientific equations from data in an efficient manner. Specifically, LLM-SR treats equations as programs with mathematical operators and combines LLMs' scientific priors with evolutionary search over equation programs. The LLM iteratively proposes new equation skeletons, drawing from its physical understanding, which are then optimized against data to estimate skeleton parameters. We demonstrate LLM-SR's effectiveness across three diverse scientific domains, where it discovers physically accurate equations that provide significantly better fits to in-domain and out-of-domain data compared to the well-established equation discovery baselines
Arrows of Math Reasoning Data Synthesis for Large Language Models: Diversity, Complexity and Correctness
Enhancing the mathematical reasoning of large language models (LLMs) demands high-quality training data, yet conventional methods face critical challenges in scalability, cost, and data reliability. To address these limitations, we propose a novel program-assisted synthesis framework that systematically generates a high-quality mathematical corpus with guaranteed diversity, complexity, and correctness. This framework integrates mathematical knowledge systems and domain-specific tools to create executable programs. These programs are then translated into natural language problem-solution pairs and vetted by a bilateral validation mechanism that verifies solution correctness against program outputs and ensures program-problem consistency. We have generated 12.3 million such problem-solving triples. Experiments demonstrate that models fine-tuned on our data significantly improve their inference capabilities, achieving state-of-the-art performance on several benchmark datasets and showcasing the effectiveness of our synthesis approach.
MathFimer: Enhancing Mathematical Reasoning by Expanding Reasoning Steps through Fill-in-the-Middle Task
Mathematical reasoning represents a critical frontier in advancing large language models (LLMs). While step-by-step approaches have emerged as the dominant paradigm for mathematical problem-solving in LLMs, the quality of reasoning steps in training data fundamentally constrains the performance of the models. Recent studies has demonstrated that more detailed intermediate steps can enhance model performance, yet existing methods for step expansion either require more powerful external models or incur substantial computational costs. In this paper, we introduce MathFimer, a novel framework for mathematical reasoning step expansion inspired by the "Fill-in-the-middle" task from code completion. By decomposing solution chains into prefix-suffix pairs and training models to reconstruct missing intermediate steps, we develop a specialized model, MathFimer-7B, on our carefully curated NuminaMath-FIM dataset. We then apply these models to enhance existing mathematical reasoning datasets by inserting detailed intermediate steps into their solution chains, creating MathFimer-expanded versions. Through comprehensive experiments on multiple mathematical reasoning datasets, including MathInstruct, MetaMathQA and etc., we demonstrate that models trained on MathFimer-expanded data consistently outperform their counterparts trained on original data across various benchmarks such as GSM8K and MATH. Our approach offers a practical, scalable solution for enhancing mathematical reasoning capabilities in LLMs without relying on powerful external models or expensive inference procedures.
PuzzleClone: An SMT-Powered Framework for Synthesizing Verifiable Data
High-quality mathematical and logical datasets with verifiable answers are essential for strengthening the reasoning capabilities of large language models (LLMs). While recent data augmentation techniques have facilitated the creation of large-scale benchmarks, existing LLM-generated datasets often suffer from limited reliability, diversity, and scalability. To address these challenges, we introduce PuzzleClone, a formal framework for synthesizing verifiable data at scale using Satisfiability Modulo Theories (SMT). Our approach features three key innovations: (1) encoding seed puzzles into structured logical specifications, (2) generating scalable variants through systematic variable and constraint randomization, and (3) ensuring validity via a reproduction mechanism. Applying PuzzleClone, we construct a curated benchmark comprising over 83K diverse and programmatically validated puzzles. The generated puzzles span a wide spectrum of difficulty and formats, posing significant challenges to current state-of-the-art models. We conduct post training (SFT and RL) on PuzzleClone datasets. Experimental results show that training on PuzzleClone yields substantial improvements not only on PuzzleClone testset but also on logic and mathematical benchmarks. Post training raises PuzzleClone average from 14.4 to 56.2 and delivers consistent improvements across 7 logic and mathematical benchmarks up to 12.5 absolute percentage points (AMC2023 from 52.5 to 65.0). Our code and data are available at https://github.com/puzzleclone.
Enhancing Mathematical Reasoning in LLMs with Background Operators
We propose utilizing background operators for mathematical reasoning in large language models (LLMs). To achieve this, we define a set of fundamental mathematical predicates as the basic building blocks. For each mathematical problem, we develop a Prolog solution that includes problem-specific predicates and intermediate predicates derived from these background operators, ensuring that each solution adheres to the defined operator set. We introduce the MATH-Prolog corpus, which is derived from the counting and probability categories of the MATH corpus. For efficient data augmentation, we apply K-fold cross-validated self-training. This method incrementally generates new Prolog solutions for each fold, incorporating those verified as correct into the training set throughout the model training process. Our experimental results demonstrate that 5-fold crossvalidated self-training effectively identifies new, accurate Prolog solutions, achieving an accuracy of 84.6% on the cross-validated set, and 84.8% on the test set during fine-tuning the Meta-Llama-3.1-8B-Instruct model. This approach successfully uncovers new solutions with fully computable inference steps for previously unseen problems. Additionally, incorporating the background mathematical predicates into the prompt enhances solution coverage.
Towards Neural Synthesis for SMT-Assisted Proof-Oriented Programming
Proof-oriented programs mix computational content with proofs of program correctness. However, the human effort involved in programming and proving is still substantial, despite the use of Satisfiability Modulo Theories (SMT) solvers to automate proofs in languages such as F*. Seeking to spur research on using AI to automate the construction of proof-oriented programs, we curate a dataset of 600K lines of open-source F* programs and proofs, including software used in production systems ranging from Windows and Linux, to Python and Firefox. Our dataset includes around 32K top-level F* definitions, each representing a type-directed program and proof synthesis problem -- producing a definition given a formal specification expressed as an F* type. We provide a program-fragment checker that queries F* to check the correctness of candidate solutions. We believe this is the largest corpus of SMT-assisted program proofs coupled with a reproducible program-fragment checker. Grounded in this dataset, we investigate the use of AI to synthesize programs and their proofs in F*, with promising results. Our main finding in that the performance of fine-tuned smaller language models (such as Phi-2 or StarCoder) compare favorably with large language models (such as GPT-4), at a much lower computational cost. We also identify various type-based retrieval augmentation techniques and find that they boost performance significantly. With detailed error analysis and case studies, we identify potential strengths and weaknesses of models and techniques and suggest directions for future improvements.
Proof or Bluff? Evaluating LLMs on 2025 USA Math Olympiad
Recent math benchmarks for large language models (LLMs) such as MathArena indicate that state-of-the-art reasoning models achieve impressive performance on mathematical competitions like AIME, with the leading model, o3-mini, achieving scores comparable to top human competitors. However, these benchmarks evaluate models solely based on final numerical answers, neglecting rigorous reasoning and proof generation which are essential for real-world mathematical tasks. To address this, we introduce the first comprehensive evaluation of full-solution reasoning for challenging mathematical problems. Using expert human annotators, we evaluated several state-of-the-art reasoning models on the six problems from the 2025 USAMO within hours of their release. Our results reveal that all tested models struggled significantly, achieving less than 5% on average. Through detailed analysis of reasoning traces, we identify the most common failure modes and find several unwanted artifacts arising from the optimization strategies employed during model training. Overall, our results suggest that current LLMs are inadequate for rigorous mathematical reasoning tasks, highlighting the need for substantial improvements in reasoning and proof generation capabilities.
Executable Functional Abstractions: Inferring Generative Programs for Advanced Math Problems
Scientists often infer abstract procedures from specific instances of problems and use the abstractions to generate new, related instances. For example, programs encoding the formal rules and properties of a system have been useful in fields ranging from RL (procedural environments) to physics (simulation engines). These programs can be seen as functions which execute to different outputs based on their parameterizations (e.g., gridworld configuration or initial physical conditions). We introduce the term EFA (Executable Functional Abstraction) to denote such programs for math problems. EFA-like constructs have been shown to be useful for math reasoning as problem generators for stress-testing models. However, prior work has been limited to abstractions for grade-school math (whose simple rules are easy to encode in programs), while generating EFAs for advanced math has thus far required human engineering. We explore the automatic construction of EFAs for advanced math problems. We operationalize the task of automatically constructing EFAs as a program synthesis task, and develop EFAGen, which conditions an LLM on a seed math problem and its step-by-step solution to generate candidate EFA programs that are faithful to the generalized problem and solution class underlying the seed problem. Furthermore, we formalize properties any valid EFA must possess in terms of executable unit tests, and show how the tests can be used as verifiable rewards to train LLMs to become better writers of EFAs. We demonstrate that EFAs constructed by EFAGen behave rationally by remaining faithful to seed problems, produce learnable problem variations, and that EFAGen can infer EFAs across multiple diverse sources of competition-level math problems. Finally, we show downstream uses of model-written EFAs e.g. finding problem variations that are harder or easier for a learner to solve, as well as data generation.
HUNYUANPROVER: A Scalable Data Synthesis Framework and Guided Tree Search for Automated Theorem Proving
We introduce HunyuanProver, an language model finetuned from the Hunyuan 7B for interactive automatic theorem proving with LEAN4. To alleviate the data sparsity issue, we design a scalable framework to iterative synthesize data with low cost. Besides, guided tree search algorithms are designed to enable effective ``system 2 thinking`` of the prover. HunyuanProver achieves state-of-the-art (SOTA) performances on major benchmarks. Specifically, it achieves a pass of 68.4% on the miniF2F-test compared to 65.9%, the current SOTA results. It proves 4 IMO statements (imo_1960_p2, imo_1962_p2}, imo_1964_p2 and imo_1983_p6) in miniF2F-test. To benefit the community, we will open-source a dataset of 30k synthesized instances, where each instance contains the original question in natural language, the converted statement by autoformalization, and the proof by HunyuanProver.
Boolformer: Symbolic Regression of Logic Functions with Transformers
In this work, we introduce Boolformer, the first Transformer architecture trained to perform end-to-end symbolic regression of Boolean functions. First, we show that it can predict compact formulas for complex functions which were not seen during training, when provided a clean truth table. Then, we demonstrate its ability to find approximate expressions when provided incomplete and noisy observations. We evaluate the Boolformer on a broad set of real-world binary classification datasets, demonstrating its potential as an interpretable alternative to classic machine learning methods. Finally, we apply it to the widespread task of modelling the dynamics of gene regulatory networks. Using a recent benchmark, we show that Boolformer is competitive with state-of-the art genetic algorithms with a speedup of several orders of magnitude. Our code and models are available publicly.
PutnamBench: Evaluating Neural Theorem-Provers on the Putnam Mathematical Competition
We present PutnamBench, a new multilingual benchmark for evaluating the ability of neural theorem-provers to solve competition mathematics problems. PutnamBench consists of 1697 hand-constructed formalizations of 640 theorems sourced from the William Lowell Putnam Mathematical Competition, the premier undergraduate-level mathematics competition in North America. All the theorems have formalizations in Lean 4 and Isabelle; a substantial subset also has Coq formalizations. Proving the theorems requires significant problem-solving ability and proficiency in a broad range of topics taught in undergraduate mathematics courses. We use PutnamBench to evaluate several established neural and symbolic theorem-provers. These approaches can only solve a handful of the PutnamBench problems, establishing the benchmark as a difficult open challenge for research on neural theorem-proving. PutnamBench is available at https://github.com/trishullab/PutnamBench.
Solve-Detect-Verify: Inference-Time Scaling with Flexible Generative Verifier
Large Language Model (LLM) reasoning for complex tasks inherently involves a trade-off between solution accuracy and computational efficiency. The subsequent step of verification, while intended to improve performance, further complicates this landscape by introducing its own challenging trade-off: sophisticated Generative Reward Models (GenRMs) can be computationally prohibitive if naively integrated with LLMs at test-time, while simpler, faster methods may lack reliability. To overcome these challenges, we introduce FlexiVe, a novel generative verifier that flexibly balances computational resources between rapid, reliable fast thinking and meticulous slow thinking using a Flexible Allocation of Verification Budget strategy. We further propose the Solve-Detect-Verify pipeline, an efficient inference-time scaling framework that intelligently integrates FlexiVe, proactively identifying solution completion points to trigger targeted verification and provide focused solver feedback. Experiments show FlexiVe achieves superior accuracy in pinpointing errors within reasoning traces on ProcessBench. Furthermore, on challenging mathematical reasoning benchmarks (AIME 2024, AIME 2025, and CNMO), our full approach outperforms baselines like self-consistency in reasoning accuracy and inference efficiency. Our system offers a scalable and effective solution to enhance LLM reasoning at test time.
Neural-Symbolic Recursive Machine for Systematic Generalization
Despite the tremendous success, existing machine learning models still fall short of human-like systematic generalization -- learning compositional rules from limited data and applying them to unseen combinations in various domains. We propose Neural-Symbolic Recursive Machine (NSR) to tackle this deficiency. The core representation of NSR is a Grounded Symbol System (GSS) with combinatorial syntax and semantics, which entirely emerges from training data. Akin to the neuroscience studies suggesting separate brain systems for perceptual, syntactic, and semantic processing, NSR implements analogous separate modules of neural perception, syntactic parsing, and semantic reasoning, which are jointly learned by a deduction-abduction algorithm. We prove that NSR is expressive enough to model various sequence-to-sequence tasks. Superior systematic generalization is achieved via the inductive biases of equivariance and recursiveness embedded in NSR. In experiments, NSR achieves state-of-the-art performance in three benchmarks from different domains: SCAN for semantic parsing, PCFG for string manipulation, and HINT for arithmetic reasoning. Specifically, NSR achieves 100% generalization accuracy on SCAN and PCFG and outperforms state-of-the-art models on HINT by about 23%. Our NSR demonstrates stronger generalization than pure neural networks due to its symbolic representation and inductive biases. NSR also demonstrates better transferability than existing neural-symbolic approaches due to less domain-specific knowledge required.
CoinMath: Harnessing the Power of Coding Instruction for Math LLMs
Large Language Models (LLMs) have shown strong performance in solving mathematical problems, with code-based solutions proving particularly effective. However, the best practice to leverage coding instruction data to enhance mathematical reasoning remains underexplored. This study investigates three key questions: (1) How do different coding styles of mathematical code-based rationales impact LLMs' learning performance? (2) Can general-domain coding instructions improve performance? (3) How does integrating textual rationales with code-based ones during training enhance mathematical reasoning abilities? Our findings reveal that code-based rationales with concise comments, descriptive naming, and hardcoded solutions are beneficial, while improvements from general-domain coding instructions and textual rationales are relatively minor. Based on these insights, we propose CoinMath, a learning strategy designed to enhance mathematical reasoning by diversifying the coding styles of code-based rationales. CoinMath generates a variety of code-based rationales incorporating concise comments, descriptive naming conventions, and hardcoded solutions. Experimental results demonstrate that CoinMath significantly outperforms its baseline model, MAmmoTH, one of the SOTA math LLMs.
MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms
We introduce a large-scale dataset of math word problems and an interpretable neural math problem solver that learns to map problems to operation programs. Due to annotation challenges, current datasets in this domain have been either relatively small in scale or did not offer precise operational annotations over diverse problem types. We introduce a new representation language to model precise operation programs corresponding to each math problem that aim to improve both the performance and the interpretability of the learned models. Using this representation language, our new dataset, MathQA, significantly enhances the AQuA dataset with fully-specified operational programs. We additionally introduce a neural sequence-to-program model enhanced with automatic problem categorization. Our experiments show improvements over competitive baselines in our MathQA as well as the AQuA dataset. The results are still significantly lower than human performance indicating that the dataset poses new challenges for future research. Our dataset is available at: https://math-qa.github.io/math-QA/
Proving Olympiad Algebraic Inequalities without Human Demonstrations
Solving Olympiad-level mathematical problems represents a significant advancement in machine intelligence and automated reasoning. Current machine learning methods, however, struggle to solve Olympiad-level problems beyond Euclidean plane geometry due to a lack of large-scale, high-quality datasets. The challenge is even greater in algebraic systems, which involve infinite reasoning spaces within finite conditions. To address these issues, we propose AIPS, an Algebraic Inequality Proving System capable of autonomously generating complex inequality theorems and effectively solving Olympiad-level inequality problems without requiring human demonstrations. During proof search in a mixed reasoning manner, a value curriculum learning strategy on generated datasets is implemented to improve proving performance, demonstrating strong mathematical intuitions. On a test set of 20 International Mathematical Olympiad-level inequality problems, AIPS successfully solved 10, outperforming state-of-the-art methods. Furthermore, AIPS automatically generated a vast array of non-trivial theorems without human intervention, some of which have been evaluated by professional contestants and deemed to reach the level of the International Mathematical Olympiad. Notably, one theorem was selected as a competition problem in a major city 2024 Mathematical Olympiad.
MathCoder: Seamless Code Integration in LLMs for Enhanced Mathematical Reasoning
The recently released GPT-4 Code Interpreter has demonstrated remarkable proficiency in solving challenging math problems, primarily attributed to its ability to seamlessly reason with natural language, generate code, execute code, and continue reasoning based on the execution output. In this paper, we present a method to fine-tune open-source language models, enabling them to use code for modeling and deriving math equations and, consequently, enhancing their mathematical reasoning abilities. We propose a method of generating novel and high-quality datasets with math problems and their code-based solutions, referred to as MathCodeInstruct. Each solution interleaves natural language, code, and execution results. We also introduce a customized supervised fine-tuning and inference approach. This approach yields the MathCoder models, a family of models capable of generating code-based solutions for solving challenging math problems. Impressively, the MathCoder models achieve state-of-the-art scores among open-source LLMs on the MATH (45.2%) and GSM8K (83.9%) datasets, substantially outperforming other open-source alternatives. Notably, the MathCoder model not only surpasses ChatGPT-3.5 and PaLM-2 on GSM8K and MATH but also outperforms GPT-4 on the competition-level MATH dataset. The dataset and models will be released at https://github.com/mathllm/MathCoder.
SBSC: Step-By-Step Coding for Improving Mathematical Olympiad Performance
We propose Step-by-Step Coding (SBSC): a multi-turn math reasoning framework that enables Large Language Models (LLMs) to generate sequence of programs for solving Olympiad level math problems. At each step/turn, by leveraging the code execution outputs and programs of previous steps, the model generates the next sub-task and the corresponding program to solve it. This way, SBSC, sequentially navigates to reach the final answer. SBSC allows more granular, flexible and precise approach to problem-solving compared to existing methods. Extensive experiments highlight the effectiveness of SBSC in tackling competition and Olympiad-level math problems. For Claude-3.5-Sonnet, we observe SBSC (greedy decoding) surpasses existing state-of-the-art (SOTA) program generation based reasoning strategies by absolute 10.7% on AMC12, 8% on AIME and 12.6% on MathOdyssey. Given SBSC is multi-turn in nature, we also benchmark SBSC's greedy decoding against self-consistency decoding results of existing SOTA math reasoning strategies and observe performance gain by absolute 6.2% on AMC, 6.7% on AIME and 7.4% on MathOdyssey.
Draft, Sketch, and Prove: Guiding Formal Theorem Provers with Informal Proofs
The formalization of existing mathematical proofs is a notoriously difficult process. Despite decades of research on automation and proof assistants, writing formal proofs remains arduous and only accessible to a few experts. While previous studies to automate formalization focused on powerful search algorithms, no attempts were made to take advantage of available informal proofs. In this work, we introduce Draft, Sketch, and Prove (DSP), a method that maps informal proofs to formal proof sketches, and uses the sketches to guide an automated prover by directing its search to easier sub-problems. We investigate two relevant setups where informal proofs are either written by humans or generated by a language model. Our experiments and ablation studies show that large language models are able to produce well-structured formal sketches that follow the same reasoning steps as the informal proofs. Guiding an automated prover with these sketches enhances its performance from 20.9% to 39.3% on a collection of mathematical competition problems.
Logic Contrastive Reasoning with Lightweight Large Language Model for Math Word Problems
This study focuses on improving the performance of lightweight Large Language Models (LLMs) in mathematical reasoning tasks. We introduce a novel method for measuring mathematical logic similarity and design an automatic screening mechanism to construct a set of reference problems that integrate both semantic and logical similarity. By employing carefully crafted positive and negative example prompts, we guide the model towards adopting sound reasoning logic. To the best of our knowledge, this is the first attempt to utilize retrieval-enhanced generation for mathematical problem-solving. Experimental results demonstrate that our method achieves a 15.8% improvement over the Chain of Thought approach on the SVAMP dataset and a 21.5 % improvement on the GSM8K dataset. Further application of this method to a large-scale model with 175 billion parameters yields performance comparable to the best results on both aforementioned datasets. Finally, we conduct an analysis of errors during the reasoning process, providing valuable insights and directions for future research on reasoning tasks using large language models.
EXplainable Neural-Symbolic Learning (X-NeSyL) methodology to fuse deep learning representations with expert knowledge graphs: the MonuMAI cultural heritage use case
The latest Deep Learning (DL) models for detection and classification have achieved an unprecedented performance over classical machine learning algorithms. However, DL models are black-box methods hard to debug, interpret, and certify. DL alone cannot provide explanations that can be validated by a non technical audience. In contrast, symbolic AI systems that convert concepts into rules or symbols -- such as knowledge graphs -- are easier to explain. However, they present lower generalisation and scaling capabilities. A very important challenge is to fuse DL representations with expert knowledge. One way to address this challenge, as well as the performance-explainability trade-off is by leveraging the best of both streams without obviating domain expert knowledge. We tackle such problem by considering the symbolic knowledge is expressed in form of a domain expert knowledge graph. We present the eXplainable Neural-symbolic learning (X-NeSyL) methodology, designed to learn both symbolic and deep representations, together with an explainability metric to assess the level of alignment of machine and human expert explanations. The ultimate objective is to fuse DL representations with expert domain knowledge during the learning process to serve as a sound basis for explainability. X-NeSyL methodology involves the concrete use of two notions of explanation at inference and training time respectively: 1) EXPLANet: Expert-aligned eXplainable Part-based cLAssifier NETwork Architecture, a compositional CNN that makes use of symbolic representations, and 2) SHAP-Backprop, an explainable AI-informed training procedure that guides the DL process to align with such symbolic representations in form of knowledge graphs. We showcase X-NeSyL methodology using MonuMAI dataset for monument facade image classification, and demonstrate that our approach improves explainability and performance.
Proof2Hybrid: Automatic Mathematical Benchmark Synthesis for Proof-Centric Problems
Evaluating the mathematical capability of Large Language Models (LLMs) is a critical yet challenging frontier. Existing benchmarks fall short, particularly for proof-centric problems, as manual creation is unscalable and costly, leaving the true mathematical abilities of LLMs largely unassessed. To overcome these barriers, we propose Proof2Hybrid, the first fully automated framework that synthesizes high-quality, proof-centric benchmarks from natural language mathematical corpora. The key novelty of our solution is Proof2X, a roadmap of converting mathematical proofs into various kinds of questions that are easy to verify. Instructed by this roadmap, we propose a new type of hybrid-formatted questions, named ``m-out-of-n multiple judge questions'', specifically designed to enable robust, automatic evaluation while being resilient to guessing and superficial pattern matching inherent in traditional formats. As a demonstration of our framework, we introduce AlgGeoTest, a benchmark for algebraic geometry--a frontier domain of modern mathematics--comprising 456 challenging items. Our extensive evaluations on state-of-the-art LLMs using AlgGeoTest reveal profound deficits in their comprehension of algebraic geometry, providing a more precise measure of their true mathematical capabilities. Our framework and benchmark pave the way for a new wave of in-depth research into the mathematical intelligence of AI systems.
FormalML: A Benchmark for Evaluating Formal Subgoal Completion in Machine Learning Theory
Large language models (LLMs) have recently demonstrated remarkable progress in formal theorem proving. Yet their ability to serve as practical assistants for mathematicians, filling in missing steps within complex proofs, remains underexplored. We identify this challenge as the task of subgoal completion, where an LLM must discharge short but nontrivial proof obligations left unresolved in a human-provided sketch. To study this problem, we introduce FormalML, a Lean 4 benchmark built from foundational theories of machine learning. Using a translation tactic that converts procedural proofs into declarative form, we extract 4937 problems spanning optimization and probability inequalities, with varying levels of difficulty. FormalML is the first subgoal completion benchmark to combine premise retrieval and complex research-level contexts. Evaluation of state-of-the-art provers highlights persistent limitations in accuracy and efficiency, underscoring the need for more capable LLM-based theorem provers for effective subgoal completion,
AIMO-2 Winning Solution: Building State-of-the-Art Mathematical Reasoning Models with OpenMathReasoning dataset
This paper presents our winning submission to the AI Mathematical Olympiad - Progress Prize 2 (AIMO-2) competition. Our recipe for building state-of-the-art mathematical reasoning models relies on three key pillars. First, we create a large-scale dataset comprising 540K unique high-quality math problems, including olympiad-level problems, and their 3.2M long-reasoning solutions. Second, we develop a novel method to integrate code execution with long reasoning models through iterative training, generation, and quality filtering, resulting in 1.7M high-quality Tool-Integrated Reasoning solutions. Third, we create a pipeline to train models to select the most promising solution from many candidates. We show that such generative solution selection (GenSelect) can significantly improve upon majority voting baseline. Combining these ideas, we train a series of models that achieve state-of-the-art results on mathematical reasoning benchmarks. To facilitate further research, we release our code, models, and the complete OpenMathReasoning dataset under a commercially permissive license.
NaturalProver: Grounded Mathematical Proof Generation with Language Models
Theorem proving in natural mathematical language - the mixture of symbolic and natural language used by humans - plays a central role in mathematical advances and education, and tests aspects of reasoning that are core to intelligence. Yet it has remained underexplored with modern generative models. We study large-scale language models on two new generation tasks: suggesting the next step in a mathematical proof, and full proof generation. We develop NaturalProver, a language model that generates proofs by conditioning on background references (e.g. theorems and definitions that are either retrieved or human-provided), and optionally enforces their presence with constrained decoding. On theorems from the NaturalProofs benchmark, NaturalProver improves the quality of next-step suggestions and generated proofs over fine-tuned GPT-3, according to human evaluations from university-level mathematics students. NaturalProver is capable of proving some theorems that require short (2-6 step) proofs, and providing next-step suggestions that are rated as correct and useful over 40% of the time, which is to our knowledge the first demonstration of these capabilities using neural language models.
Opening the AI black box: program synthesis via mechanistic interpretability
We present MIPS, a novel method for program synthesis based on automated mechanistic interpretability of neural networks trained to perform the desired task, auto-distilling the learned algorithm into Python code. We test MIPS on a benchmark of 62 algorithmic tasks that can be learned by an RNN and find it highly complementary to GPT-4: MIPS solves 32 of them, including 13 that are not solved by GPT-4 (which also solves 30). MIPS uses an integer autoencoder to convert the RNN into a finite state machine, then applies Boolean or integer symbolic regression to capture the learned algorithm. As opposed to large language models, this program synthesis technique makes no use of (and is therefore not limited by) human training data such as algorithms and code from GitHub. We discuss opportunities and challenges for scaling up this approach to make machine-learned models more interpretable and trustworthy.
Hermes 4 Technical Report
We present Hermes 4, a family of hybrid reasoning models that combine structured, multi-turn reasoning with broad instruction-following ability. We describe the challenges encountered during data curation, synthesis, training, and evaluation, and outline the solutions employed to address these challenges at scale. We comprehensively evaluate across mathematical reasoning, coding, knowledge, comprehension, and alignment benchmarks, and we report both quantitative performance and qualitative behavioral analysis. To support open research, all model weights are published publicly at https://huggingface.co/collections/NousResearch/hermes-4-collection-68a731bfd452e20816725728
MathOdyssey: Benchmarking Mathematical Problem-Solving Skills in Large Language Models Using Odyssey Math Data
Large language models (LLMs) have significantly advanced natural language understanding and demonstrated strong problem-solving abilities. Despite these successes, most LLMs still struggle with solving mathematical problems due to the intricate reasoning required. This paper investigates the mathematical problem-solving capabilities of LLMs using the newly developed "MathOdyssey" dataset. The dataset includes diverse mathematical problems at high school and university levels, created by experts from notable institutions to rigorously test LLMs in advanced problem-solving scenarios and cover a wider range of subject areas. By providing the MathOdyssey dataset as a resource to the AI community, we aim to contribute to the understanding and improvement of AI capabilities in complex mathematical problem-solving. We conduct benchmarking on open-source models, such as Llama-3 and DBRX-Instruct, and closed-source models from the GPT series and Gemini models. Our results indicate that while LLMs perform well on routine and moderately difficult tasks, they face significant challenges with Olympiad-level problems and complex university-level questions. Our analysis shows a narrowing performance gap between open-source and closed-source models, yet substantial challenges remain, particularly with the most demanding problems. This study highlights the ongoing need for research to enhance the mathematical reasoning of LLMs. The dataset, results, and code are publicly available.
MathBode: Frequency-Domain Fingerprints of LLM Mathematical Reasoning
This paper presents MathBode, a dynamic diagnostic for mathematical reasoning in large language models (LLMs). Instead of one-shot accuracy, MathBode treats each parametric problem as a system: we drive a single parameter sinusoidally and fit first-harmonic responses of model outputs and exact solutions. This yields interpretable, frequency-resolved metrics -- gain (amplitude tracking) and phase (lag) -- that form Bode-style fingerprints. Across five closed-form families (linear solve, ratio/saturation, compound interest, 2x2 linear systems, similar triangles), the diagnostic surfaces systematic low-pass behavior and growing phase lag that accuracy alone obscures. We compare several models against a symbolic baseline that calibrates the instrument (G approx 1, phi approx 0). Results separate frontier from mid-tier models on dynamics, providing a compact, reproducible protocol that complements standard benchmarks with actionable measurements of reasoning fidelity and consistency. We open-source the dataset and code to enable further research and adoption.
DART-Math: Difficulty-Aware Rejection Tuning for Mathematical Problem-Solving
Solving mathematical problems requires advanced reasoning abilities and presents notable challenges for large language models. Previous works usually synthesize data from proprietary models to augment existing datasets, followed by instruction tuning to achieve top-tier results. However, our analysis of these datasets reveals severe biases towards easy queries, with frequent failures to generate any correct response for the most challenging queries. Hypothesizing that difficult queries are crucial to learn complex reasoning, we propose Difficulty-Aware Rejection Tuning (DART), a method that allocates difficult queries more trials during the synthesis phase, enabling more extensive training on difficult samples. Utilizing DART, we have created new datasets for mathematical problem-solving that focus more on difficult queries and are substantially smaller than previous ones. Remarkably, our synthesis process solely relies on a 7B-sized open-weight model, without reliance on the commonly used proprietary GPT-4. We fine-tune various base models on our datasets ranging from 7B to 70B in size, resulting in a series of strong models called DART-MATH. In comprehensive in-domain and out-of-domain evaluation on 6 mathematical benchmarks, DART-MATH outperforms vanilla rejection tuning significantly, being superior or comparable to previous arts, despite using much smaller datasets and no proprietary models. Furthermore, our results position our synthetic datasets as the most effective and cost-efficient publicly available resources for advancing mathematical problem-solving.
Emergent Symbolic Mechanisms Support Abstract Reasoning in Large Language Models
Many recent studies have found evidence for emergent reasoning capabilities in large language models (LLMs), but debate persists concerning the robustness of these capabilities, and the extent to which they depend on structured reasoning mechanisms. To shed light on these issues, we study the internal mechanisms that support abstract reasoning in LLMs. We identify an emergent symbolic architecture that implements abstract reasoning via a series of three computations. In early layers, symbol abstraction heads convert input tokens to abstract variables based on the relations between those tokens. In intermediate layers, symbolic induction heads perform sequence induction over these abstract variables. Finally, in later layers, retrieval heads predict the next token by retrieving the value associated with the predicted abstract variable. These results point toward a resolution of the longstanding debate between symbolic and neural network approaches, suggesting that emergent reasoning in neural networks depends on the emergence of symbolic mechanisms.
Kimina-Prover Preview: Towards Large Formal Reasoning Models with Reinforcement Learning
We introduce Kimina-Prover Preview, a large language model that pioneers a novel reasoning-driven exploration paradigm for formal theorem proving, as showcased in this preview release. Trained with a large-scale reinforcement learning pipeline from Qwen2.5-72B, Kimina-Prover demonstrates strong performance in Lean 4 proof generation by employing a structured reasoning pattern we term formal reasoning pattern. This approach allows the model to emulate human problem-solving strategies in Lean, iteratively generating and refining proof steps. Kimina-Prover sets a new state-of-the-art on the miniF2F benchmark, reaching 80.7% with pass@8192. Beyond improved benchmark performance, our work yields several key insights: (1) Kimina-Prover exhibits high sample efficiency, delivering strong results even with minimal sampling (pass@1) and scaling effectively with computational budget, stemming from its unique reasoning pattern and RL training; (2) we demonstrate clear performance scaling with model size, a trend previously unobserved for neural theorem provers in formal mathematics; (3) the learned reasoning style, distinct from traditional search algorithms, shows potential to bridge the gap between formal verification and informal mathematical intuition. We open source distilled versions with 1.5B and 7B parameters of Kimina-Prover
FIMO: A Challenge Formal Dataset for Automated Theorem Proving
We present FIMO, an innovative dataset comprising formal mathematical problem statements sourced from the International Mathematical Olympiad (IMO) Shortlisted Problems. Designed to facilitate advanced automated theorem proving at the IMO level, FIMO is currently tailored for the Lean formal language. It comprises 149 formal problem statements, accompanied by both informal problem descriptions and their corresponding LaTeX-based informal proofs. Through initial experiments involving GPT-4, our findings underscore the existing limitations in current methodologies, indicating a substantial journey ahead before achieving satisfactory IMO-level automated theorem proving outcomes.
A Categorical Framework for Learning Generalised Tree Automata
Automata learning is a popular technique used to automatically construct an automaton model from queries. Much research went into devising ad hoc adaptations of algorithms for different types of automata. The CALF project seeks to unify these using category theory in order to ease correctness proofs and guide the design of new algorithms. In this paper, we extend CALF to cover learning of algebraic structures that may not have a coalgebraic presentation. Furthermore, we provide a detailed algorithmic account of an abstract version of the popular L* algorithm, which was missing from CALF. We instantiate the abstract theory to a large class of Set functors, by which we recover for the first time practical tree automata learning algorithms from an abstract framework and at the same time obtain new algorithms to learn algebras of quotiented polynomial functors.
Reliable Fine-Grained Evaluation of Natural Language Math Proofs
Recent advances in large language models (LLMs) for mathematical reasoning have largely focused on tasks with easily verifiable final answers; however, generating and verifying natural language math proofs remains an open challenge. We identify the absence of a reliable, fine-grained evaluator for LLM-generated math proofs as a critical gap. To address this, we propose a systematic methodology for developing and validating evaluators that assign fine-grained scores on a 0-7 scale to model-generated math proofs. To enable this study, we introduce ProofBench, the first expert-annotated dataset of fine-grained proof ratings, spanning 145 problems from six major math competitions (USAMO, IMO, Putnam, etc) and 435 LLM-generated solutions from Gemini-2.5-pro, o3, and DeepSeek-R1. %with expert gradings. Using ProofBench as a testbed, we systematically explore the evaluator design space across key axes: the backbone model, input context, instructions and evaluation workflow. Our analysis delivers ProofGrader, an evaluator that combines a strong reasoning backbone LM, rich context from reference solutions and marking schemes, and a simple ensembling method; it achieves a low Mean Absolute Error (MAE) of 0.926 against expert scores, significantly outperforming naive baselines. Finally, we demonstrate its practical utility in a best-of-n selection task: at n=16, ProofGrader achieves an average score of 4.14 (out of 7), closing 78% of the gap between a naive binary evaluator (2.48) and the human oracle (4.62), highlighting its potential to advance downstream proof generation.
Exploring the Compositional Deficiency of Large Language Models in Mathematical Reasoning
Human cognition exhibits systematic compositionality, the algebraic ability to generate infinite novel combinations from finite learned components, which is the key to understanding and reasoning about complex logic. In this work, we investigate the compositionality of large language models (LLMs) in mathematical reasoning. Specifically, we construct a new dataset MathTrap by introducing carefully designed logical traps into the problem descriptions of MATH and GSM8K. Since problems with logical flaws are quite rare in the real world, these represent "unseen" cases to LLMs. Solving these requires the models to systematically compose (1) the mathematical knowledge involved in the original problems with (2) knowledge related to the introduced traps. Our experiments show that while LLMs possess both components of requisite knowledge, they do not spontaneously combine them to handle these novel cases. We explore several methods to mitigate this deficiency, such as natural language prompts, few-shot demonstrations, and fine-tuning. Additionally, we test the recently released OpenAI o1 model and find that human-like `slow thinking' helps improve the compositionality of LLMs. Overall, systematic compositionality remains an open challenge for large language models.
SoS1: O1 and R1-Like Reasoning LLMs are Sum-of-Square Solvers
Large Language Models (LLMs) have achieved human-level proficiency across diverse tasks, but their ability to perform rigorous mathematical problem solving remains an open challenge. In this work, we investigate a fundamental yet computationally intractable problem: determining whether a given multivariate polynomial is nonnegative. This problem, closely related to Hilbert's Seventeenth Problem, plays a crucial role in global polynomial optimization and has applications in various fields. First, we introduce SoS-1K, a meticulously curated dataset of approximately 1,000 polynomials, along with expert-designed reasoning instructions based on five progressively challenging criteria. Evaluating multiple state-of-the-art LLMs, we find that without structured guidance, all models perform only slightly above the random guess baseline 50%. However, high-quality reasoning instructions significantly improve accuracy, boosting performance up to 81%. Furthermore, our 7B model, SoS-7B, fine-tuned on SoS-1K for just 4 hours, outperforms the 671B DeepSeek-V3 and GPT-4o-mini in accuracy while only requiring 1.8% and 5% of the computation time needed for letters, respectively. Our findings highlight the potential of LLMs to push the boundaries of mathematical reasoning and tackle NP-hard problems.
Teaching-Inspired Integrated Prompting Framework: A Novel Approach for Enhancing Reasoning in Large Language Models
Large Language Models (LLMs) exhibit impressive performance across various domains but still struggle with arithmetic reasoning tasks. Recent work shows the effectiveness of prompt design methods in enhancing reasoning capabilities. However, these approaches overlook crucial requirements for prior knowledge of specific concepts, theorems, and tricks to tackle most arithmetic reasoning problems successfully. To address this issue, we propose a novel and effective Teaching-Inspired Integrated Framework, which emulates the instructional process of a teacher guiding students. This method equips LLMs with essential concepts, relevant theorems, and similar problems with analogous solution approaches, facilitating the enhancement of reasoning abilities. Additionally, we introduce two new Chinese datasets, MathMC and MathToF, both with detailed explanations and answers. Experiments are conducted on nine benchmarks which demonstrates that our approach improves the reasoning accuracy of LLMs. With GPT-4 and our framework, we achieve new state-of-the-art performance on four math benchmarks (AddSub, SVAMP, Math23K and AQuA) with accuracies of 98.2% (+3.3%), 93.9% (+0.2%), 94.3% (+7.2%) and 81.1% (+1.2%). Our data and code are available at https://github.com/SallyTan13/Teaching-Inspired-Prompting.
Large Language Models Are Neurosymbolic Reasoners
A wide range of real-world applications is characterized by their symbolic nature, necessitating a strong capability for symbolic reasoning. This paper investigates the potential application of Large Language Models (LLMs) as symbolic reasoners. We focus on text-based games, significant benchmarks for agents with natural language capabilities, particularly in symbolic tasks like math, map reading, sorting, and applying common sense in text-based worlds. To facilitate these agents, we propose an LLM agent designed to tackle symbolic challenges and achieve in-game objectives. We begin by initializing the LLM agent and informing it of its role. The agent then receives observations and a set of valid actions from the text-based games, along with a specific symbolic module. With these inputs, the LLM agent chooses an action and interacts with the game environments. Our experimental results demonstrate that our method significantly enhances the capability of LLMs as automated agents for symbolic reasoning, and our LLM agent is effective in text-based games involving symbolic tasks, achieving an average performance of 88% across all tasks.
CircuitSense: A Hierarchical Circuit System Benchmark Bridging Visual Comprehension and Symbolic Reasoning in Engineering Design Process
Engineering design operates through hierarchical abstraction from system specifications to component implementations, requiring visual understanding coupled with mathematical reasoning at each level. While Multi-modal Large Language Models (MLLMs) excel at natural image tasks, their ability to extract mathematical models from technical diagrams remains unexplored. We present CircuitSense, a comprehensive benchmark evaluating circuit understanding across this hierarchy through 8,006+ problems spanning component-level schematics to system-level block diagrams. Our benchmark uniquely examines the complete engineering workflow: Perception, Analysis, and Design, with a particular emphasis on the critical but underexplored capability of deriving symbolic equations from visual inputs. We introduce a hierarchical synthetic generation pipeline consisting of a grid-based schematic generator and a block diagram generator with auto-derived symbolic equation labels. Comprehensive evaluation of six state-of-the-art MLLMs, including both closed-source and open-source models, reveals fundamental limitations in visual-to-mathematical reasoning. Closed-source models achieve over 85\% accuracy on perception tasks involving component recognition and topology identification, yet their performance on symbolic derivation and analytical reasoning falls below 19\%, exposing a critical gap between visual parsing and symbolic reasoning. Models with stronger symbolic reasoning capabilities consistently achieve higher design task accuracy, confirming the fundamental role of mathematical understanding in circuit synthesis and establishing symbolic reasoning as the key metric for engineering competence.
Design of Chain-of-Thought in Math Problem Solving
Chain-of-Thought (CoT) plays a crucial role in reasoning for math problem solving. We conduct a comprehensive examination of methods for designing CoT, comparing conventional natural language CoT with various program CoTs, including the self-describing program, the comment-describing program, and the non-describing program. Furthermore, we investigate the impact of programming language on program CoTs, comparing Python and Wolfram Language. Through extensive experiments on GSM8K, MATHQA, and SVAMP, we find that program CoTs often have superior effectiveness in math problem solving. Notably, the best performing combination with 30B parameters beats GPT-3.5-turbo by a significant margin. The results show that self-describing program offers greater diversity and thus can generally achieve higher performance. We also find that Python is a better choice of language than Wolfram for program CoTs. The experimental results provide a valuable guideline for future CoT designs that take into account both programming language and coding style for further advancements. Our datasets and code are publicly available.
Symbolic Learning Enables Self-Evolving Agents
The AI community has been exploring a pathway to artificial general intelligence (AGI) by developing "language agents", which are complex large language models (LLMs) pipelines involving both prompting techniques and tool usage methods. While language agents have demonstrated impressive capabilities for many real-world tasks, a fundamental limitation of current language agents research is that they are model-centric, or engineering-centric. That's to say, the progress on prompts, tools, and pipelines of language agents requires substantial manual engineering efforts from human experts rather than automatically learning from data. We believe the transition from model-centric, or engineering-centric, to data-centric, i.e., the ability of language agents to autonomously learn and evolve in environments, is the key for them to possibly achieve AGI. In this work, we introduce agent symbolic learning, a systematic framework that enables language agents to optimize themselves on their own in a data-centric way using symbolic optimizers. Specifically, we consider agents as symbolic networks where learnable weights are defined by prompts, tools, and the way they are stacked together. Agent symbolic learning is designed to optimize the symbolic network within language agents by mimicking two fundamental algorithms in connectionist learning: back-propagation and gradient descent. Instead of dealing with numeric weights, agent symbolic learning works with natural language simulacrums of weights, loss, and gradients. We conduct proof-of-concept experiments on both standard benchmarks and complex real-world tasks and show that agent symbolic learning enables language agents to update themselves after being created and deployed in the wild, resulting in "self-evolving agents".
LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models
Scientific equation discovery is a fundamental task in the history of scientific progress, enabling the derivation of laws governing natural phenomena. Recently, Large Language Models (LLMs) have gained interest for this task due to their potential to leverage embedded scientific knowledge for hypothesis generation. However, evaluating the true discovery capabilities of these methods remains challenging, as existing benchmarks often rely on common equations that are susceptible to memorization by LLMs, leading to inflated performance metrics that do not reflect discovery. In this paper, we introduce LLM-SRBench, a comprehensive benchmark with 239 challenging problems across four scientific domains specifically designed to evaluate LLM-based scientific equation discovery methods while preventing trivial memorization. Our benchmark comprises two main categories: LSR-Transform, which transforms common physical models into less common mathematical representations to test reasoning beyond memorized forms, and LSR-Synth, which introduces synthetic, discovery-driven problems requiring data-driven reasoning. Through extensive evaluation of several state-of-the-art methods, using both open and closed LLMs, we find that the best-performing system so far achieves only 31.5% symbolic accuracy. These findings highlight the challenges of scientific equation discovery, positioning LLM-SRBench as a valuable resource for future research.
Large Language Models for Mathematical Reasoning: Progresses and Challenges
Mathematical reasoning serves as a cornerstone for assessing the fundamental cognitive capabilities of human intelligence. In recent times, there has been a notable surge in the development of Large Language Models (LLMs) geared towards the automated resolution of mathematical problems. However, the landscape of mathematical problem types is vast and varied, with LLM-oriented techniques undergoing evaluation across diverse datasets and settings. This diversity makes it challenging to discern the true advancements and obstacles within this burgeoning field. This survey endeavors to address four pivotal dimensions: i) a comprehensive exploration of the various mathematical problems and their corresponding datasets that have been investigated; ii) an examination of the spectrum of LLM-oriented techniques that have been proposed for mathematical problem-solving; iii) an overview of factors and concerns affecting LLMs in solving math; and iv) an elucidation of the persisting challenges within this domain. To the best of our knowledge, this survey stands as one of the first extensive examinations of the landscape of LLMs in the realm of mathematics, providing a holistic perspective on the current state, accomplishments, and future challenges in this rapidly evolving field.
SR-Scientist: Scientific Equation Discovery With Agentic AI
Recently, Large Language Models (LLMs) have been applied to scientific equation discovery, leveraging their embedded scientific knowledge for hypothesis generation. However, current methods typically confine LLMs to the role of an equation proposer within search algorithms like genetic programming. In this paper, we present SR-Scientist, a framework that elevates the LLM from a simple equation proposer to an autonomous AI scientist that writes code to analyze data, implements the equation as code, submits it for evaluation, and optimizes the equation based on experimental feedback. Specifically, we wrap the code interpreter into a set of tools for data analysis and equation evaluation. The agent is instructed to optimize the equation by utilizing these tools over a long horizon with minimal human-defined pipelines. Empirical results show that SR-Scientist outperforms baseline methods by an absolute margin of 6% to 35% on datasets covering four science disciplines. Additionally, we demonstrate our method's robustness to noise, the generalization of the discovered equations to out-of-domain data, and their symbolic accuracy. Furthermore, we develop an end-to-end reinforcement learning framework to enhance the agent's capabilities.
TreeCut: A Synthetic Unanswerable Math Word Problem Dataset for LLM Hallucination Evaluation
Large language models (LLMs) now achieve near-human performance on standard math word problem benchmarks (e.g., GSM8K), yet their true reasoning ability remains disputed. A key concern is that models often produce confident, yet unfounded, answers to unanswerable problems. We introduce TreeCut, a synthetic dataset that systematically generates infinite unanswerable math word problems and their answerable counterparts, by representing each question as a tree and removing chosen necessary conditions. Experiments show TreeCut effectively induce hallucinations in large language models, including GPT-4o and o3-mini, with rates of 64% and 44% in their respective worst-case scenarios under zero-shot setting. Further analysis highlights that deeper or more complex trees, composite item names, and removing necessary condition near the middle of a path all increase the likelihood of hallucinations, underscoring the persistent challenges LLMs face in identifying unanswerable math problems. The dataset generation code and sample data are available at https://github.com/j-bagel/treecut-math.
Text2Zinc: A Cross-Domain Dataset for Modeling Optimization and Satisfaction Problems in MiniZinc
There is growing interest in utilizing large language models (LLMs) as co-pilots for combinatorial optimization and constraint programming tasks across various problems. This paper aims to advance this line of research by introducing Text2Zinc}, a cross-domain dataset for capturing optimization and satisfaction problems specified in natural language text. Our work is distinguished from previous attempts by integrating both satisfaction and optimization problems within a unified dataset using a solver-agnostic modeling language. To achieve this, we leverage MiniZinc's solver-and-paradigm-agnostic modeling capabilities to formulate these problems. Using the Text2Zinc dataset, we conduct comprehensive baseline experiments to compare execution and solution accuracy across several methods, including off-the-shelf prompting strategies, chain-of-thought reasoning, and a compositional approach. Additionally, we explore the effectiveness of intermediary representations, specifically knowledge graphs. Our findings indicate that LLMs are not yet a push-button technology to model combinatorial problems from text. We hope that Text2Zinc serves as a valuable resource for researchers and practitioners to advance the field further.

 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
	 
	 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			