new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 9

SafeAgentBench: A Benchmark for Safe Task Planning of Embodied LLM Agents

With the integration of large language models (LLMs), embodied agents have strong capabilities to understand and plan complicated natural language instructions. However, a foreseeable issue is that those embodied agents can also flawlessly execute some hazardous tasks, potentially causing damages in the real world. Existing benchmarks predominantly overlook critical safety risks, focusing solely on planning performance, while a few evaluate LLMs' safety awareness only on non-interactive image-text data. To address this gap, we present SafeAgentBench-the first benchmark for safety-aware task planning of embodied LLM agents in interactive simulation environments. SafeAgentBench includes: (1) an executable, diverse, and high-quality dataset of 750 tasks, rigorously curated to cover 10 potential hazards and 3 task types; (2) SafeAgentEnv, a universal embodied environment with a low-level controller, supporting multi-agent execution with 17 high-level actions for 8 state-of-the-art baselines; and (3) reliable evaluation methods from both execution and semantic perspectives. Experimental results show that, although agents based on different design frameworks exhibit substantial differences in task success rates, their overall safety awareness remains weak. The most safety-conscious baseline achieves only a 10\% rejection rate for detailed hazardous tasks. Moreover, simply replacing the LLM driving the agent does not lead to notable improvements in safety awareness. More details and code are available at https://github.com/shengyin1224/SafeAgentBench.

  • 10 authors
·
Dec 17, 2024

MP1: MeanFlow Tames Policy Learning in 1-step for Robotic Manipulation

In robot manipulation, robot learning has become a prevailing approach. However, generative models within this field face a fundamental trade-off between the slow, iterative sampling of diffusion models and the architectural constraints of faster Flow-based methods, which often rely on explicit consistency losses. To address these limitations, we introduce MP1, which pairs 3D point-cloud inputs with the MeanFlow paradigm to generate action trajectories in one network function evaluation (1-NFE). By directly learning the interval-averaged velocity via the "MeanFlow Identity", our policy avoids any additional consistency constraints. This formulation eliminates numerical ODE-solver errors during inference, yielding more precise trajectories. MP1 further incorporates CFG for improved trajectory controllability while retaining 1-NFE inference without reintroducing structural constraints. Because subtle scene-context variations are critical for robot learning, especially in few-shot learning, we introduce a lightweight Dispersive Loss that repels state embeddings during training, boosting generalization without slowing inference. We validate our method on the Adroit and Meta-World benchmarks, as well as in real-world scenarios. Experimental results show MP1 achieves superior average task success rates, outperforming DP3 by 10.2% and FlowPolicy by 7.3%. Its average inference time is only 6.8 ms-19x faster than DP3 and nearly 2x faster than FlowPolicy. Our code is available at https://github.com/LogSSim/MP1.git.

  • 4 authors
·
Jul 14

GitTaskBench: A Benchmark for Code Agents Solving Real-World Tasks Through Code Repository Leveraging

Beyond scratch coding, exploiting large-scale code repositories (e.g., GitHub) for practical tasks is vital in real-world software development, yet current benchmarks rarely evaluate code agents in such authentic, workflow-driven scenarios. To bridge this gap, we introduce GitTaskBench, a benchmark designed to systematically assess this capability via 54 realistic tasks across 7 modalities and 7 domains. Each task pairs a relevant repository with an automated, human-curated evaluation harness specifying practical success criteria. Beyond measuring execution and task success, we also propose the alpha-value metric to quantify the economic benefit of agent performance, which integrates task success rates, token cost, and average developer salaries. Experiments across three state-of-the-art agent frameworks with multiple advanced LLMs show that leveraging code repositories for complex task solving remains challenging: even the best-performing system, OpenHands+Claude 3.7, solves only 48.15% of tasks. Error analysis attributes over half of failures to seemingly mundane yet critical steps like environment setup and dependency resolution, highlighting the need for more robust workflow management and increased timeout preparedness. By releasing GitTaskBench, we aim to drive progress and attention toward repository-aware code reasoning, execution, and deployment -- moving agents closer to solving complex, end-to-end real-world tasks. The benchmark and code are open-sourced at https://github.com/QuantaAlpha/GitTaskBench.

  • 18 authors
·
Aug 26 1

Scalable Multi-Robot Collaboration with Large Language Models: Centralized or Decentralized Systems?

A flurry of recent work has demonstrated that pre-trained large language models (LLMs) can be effective task planners for a variety of single-robot tasks. The planning performance of LLMs is significantly improved via prompting techniques, such as in-context learning or re-prompting with state feedback, placing new importance on the token budget for the context window. An under-explored but natural next direction is to investigate LLMs as multi-robot task planners. However, long-horizon, heterogeneous multi-robot planning introduces new challenges of coordination while also pushing up against the limits of context window length. It is therefore critical to find token-efficient LLM planning frameworks that are also able to reason about the complexities of multi-robot coordination. In this work, we compare the task success rate and token efficiency of four multi-agent communication frameworks (centralized, decentralized, and two hybrid) as applied to four coordination-dependent multi-agent 2D task scenarios for increasing numbers of agents. We find that a hybrid framework achieves better task success rates across all four tasks and scales better to more agents. We further demonstrate the hybrid frameworks in 3D simulations where the vision-to-text problem and dynamical errors are considered. See our project website https://yongchao98.github.io/MIT-REALM-Multi-Robot/ for prompts, videos, and code.

  • 5 authors
·
Sep 27, 2023

WebCoach: Self-Evolving Web Agents with Cross-Session Memory Guidance

Multimodal LLM-powered agents have recently demonstrated impressive capabilities in web navigation, enabling agents to complete complex browsing tasks across diverse domains. However, current agents struggle with repetitive errors and lack the ability to learn from past experiences across sessions, limiting their long-term robustness and sample efficiency. We introduce WebCoach, a model-agnostic self-evolving framework that equips web browsing agents with persistent cross-session memory, enabling improved long-term planning, reflection, and continual learning without retraining. WebCoach consists of three key components: (1) a WebCondenser, which standardizes raw navigation logs into concise summaries; (2) an External Memory Store, which organizes complete trajectories as episodic experiences; and (3) a Coach, which retrieves relevant experiences based on similarity and recency, and decides whether to inject task-specific advice into the agent via runtime hooks. This design empowers web agents to access long-term memory beyond their native context window, improving robustness in complex browsing tasks. Moreover, WebCoach achieves self-evolution by continuously curating episodic memory from new navigation trajectories, enabling agents to improve over time without retraining. Evaluations on the WebVoyager benchmark demonstrate that WebCoach consistently improves the performance of browser-use agents across three different LLM backbones. With a 38B model, it increases task success rates from 47% to 61% while reducing or maintaining the average number of steps. Notably, smaller base models with WebCoach achieve performance comparable to the same web agent using GPT-4o.

amazon Amazon
·
Nov 17 1

Automatic Failure Attribution and Critical Step Prediction Method for Multi-Agent Systems Based on Causal Inference

Multi-agent systems (MAS) are critical for automating complex tasks, yet their practical deployment is severely hampered by the challenge of failure attribution. Current diagnostic tools, which rely on statistical correlations, are fundamentally inadequate; on challenging benchmarks like Who\&When, state-of-the-art methods achieve less than 15\% accuracy in locating the root-cause step of a failure. To address this critical gap, we introduce the first failure attribution framework for MAS grounded in multi-granularity causal inference. Our approach makes two key technical contributions: (1) a performance causal inversion principle, which correctly models performance dependencies by reversing the data flow in execution logs, combined with Shapley values to accurately assign agent-level blame; (2) a novel causal discovery algorithm, CDC-MAS, that robustly identifies critical failure steps by tackling the non-stationary nature of MAS interaction data. The framework's attribution results directly fuel an automated optimization loop, generating targeted suggestions whose efficacy is validated via counterfactual simulations. Evaluations on the Who\&When and TRAIL benchmarks demonstrate a significant leap in performance. Our method achieves up to 36.2\% step-level accuracy. Crucially, the generated optimizations boost overall task success rates by an average of 22.4\%. This work provides a principled and effective solution for debugging complex agent interactions, paving the way for more reliable and interpretable multi-agent systems.

  • 7 authors
·
Sep 10

AutoManual: Constructing Instruction Manuals by LLM Agents via Interactive Environmental Learning

Large Language Models (LLM) based agents have shown promise in autonomously completing tasks across various domains, e.g., robotics, games, and web navigation. However, these agents typically require elaborate design and expert prompts to solve tasks in specific domains, which limits their adaptability. We introduce AutoManual, a framework enabling LLM agents to autonomously build their understanding through interaction and adapt to new environments. AutoManual categorizes environmental knowledge into diverse rules and optimizes them in an online fashion by two agents: 1) The Planner codes actionable plans based on current rules for interacting with the environment. 2) The Builder updates the rules through a well-structured rule system that facilitates online rule management and essential detail retention. To mitigate hallucinations in managing rules, we introduce a *case-conditioned prompting* strategy for the Builder. Finally, the Formulator agent compiles these rules into a comprehensive manual. The self-generated manual can not only improve the adaptability but also guide the planning of smaller LLMs while being human-readable. Given only one simple demonstration, AutoManual significantly improves task success rates, achieving 97.4\% with GPT-4-turbo and 86.2\% with GPT-3.5-turbo on ALFWorld benchmark tasks. The code is available at https://github.com/minghchen/automanual.

  • 6 authors
·
May 25, 2024

OSWorld-MCP: Benchmarking MCP Tool Invocation In Computer-Use Agents

With advances in decision-making and reasoning capabilities, multimodal agents show strong potential in computer application scenarios. Past evaluations have mainly assessed GUI interaction skills, while tool invocation abilities, such as those enabled by the Model Context Protocol (MCP), have been largely overlooked. Comparing agents with integrated tool invocation to those evaluated only on GUI interaction is inherently unfair. We present OSWorld-MCP, the first comprehensive and fair benchmark for assessing computer-use agents' tool invocation, GUI operation, and decision-making abilities in a real-world environment. We design a novel automated code-generation pipeline to create tools and combine them with a curated selection from existing tools. Rigorous manual validation yields 158 high-quality tools (covering 7 common applications), each verified for correct functionality, practical applicability, and versatility. Extensive evaluations of state-of-the-art multimodal agents on OSWorld-MCP show that MCP tools generally improve task success rates (e.g., from 8.3% to 20.4% for OpenAI o3 at 15 steps, from 40.1% to 43.3% for Claude 4 Sonnet at 50 steps), underscoring the importance of assessing tool invocation capabilities. However, even the strongest models have relatively low tool invocation rates, Only 36.3%, indicating room for improvement and highlighting the benchmark's challenge. By explicitly measuring MCP tool usage skills, OSWorld-MCP deepens understanding of multimodal agents and sets a new standard for evaluating performance in complex, tool-assisted environments. Our code, environment, and data are publicly available at https://osworld-mcp.github.io.

AlibabaTongyiLab TongyiLab
·
Oct 28 1

CEED-VLA: Consistency Vision-Language-Action Model with Early-Exit Decoding

In recent years, Vision-Language-Action (VLA) models have become a vital research direction in robotics due to their impressive multimodal understanding and generalization capabilities. Despite the progress, their practical deployment is severely constrained by inference speed bottlenecks, particularly in high-frequency and dexterous manipulation tasks. While recent studies have explored Jacobi decoding as a more efficient alternative to traditional autoregressive decoding, its practical benefits are marginal due to the lengthy iterations. To address it, we introduce consistency distillation training to predict multiple correct action tokens in each iteration, thereby achieving acceleration. Besides, we design mixed-label supervision to mitigate the error accumulation during distillation. Although distillation brings acceptable speedup, we identify that certain inefficient iterations remain a critical bottleneck. To tackle this, we propose an early-exit decoding strategy that moderately relaxes convergence conditions, which further improves average inference efficiency. Experimental results show that the proposed method achieves more than 4 times inference acceleration across different baselines while maintaining high task success rates in both simulated and real-world robot tasks. These experiments validate that our approach provides an efficient and general paradigm for accelerating multimodal decision-making in robotics. Our project page is available at https://irpn-eai.github.io/CEED-VLA/.

  • 7 authors
·
Jun 16

AdaptAgent: Adapting Multimodal Web Agents with Few-Shot Learning from Human Demonstrations

State-of-the-art multimodal web agents, powered by Multimodal Large Language Models (MLLMs), can autonomously execute many web tasks by processing user instructions and interacting with graphical user interfaces (GUIs). Current strategies for building web agents rely on (i) the generalizability of underlying MLLMs and their steerability via prompting, and (ii) large-scale fine-tuning of MLLMs on web-related tasks. However, web agents still struggle to automate tasks on unseen websites and domains, limiting their applicability to enterprise-specific and proprietary platforms. Beyond generalization from large-scale pre-training and fine-tuning, we propose building agents for few-shot adaptability using human demonstrations. We introduce the AdaptAgent framework that enables both proprietary and open-weights multimodal web agents to adapt to new websites and domains using few human demonstrations (up to 2). Our experiments on two popular benchmarks -- Mind2Web & VisualWebArena -- show that using in-context demonstrations (for proprietary models) or meta-adaptation demonstrations (for meta-learned open-weights models) boosts task success rate by 3.36% to 7.21% over non-adapted state-of-the-art models, corresponding to a relative increase of 21.03% to 65.75%. Furthermore, our additional analyses (a) show the effectiveness of multimodal demonstrations over text-only ones, (b) shed light on the influence of different data selection strategies during meta-learning on the generalization of the agent, and (c) demonstrate the effect of number of few-shot examples on the web agent's success rate. Overall, our results unlock a complementary axis for developing widely applicable multimodal web agents beyond large-scale pre-training and fine-tuning, emphasizing few-shot adaptability.

  • 6 authors
·
Nov 20, 2024

Scalable Vision-Language-Action Model Pretraining for Robotic Manipulation with Real-Life Human Activity Videos

This paper presents a novel approach for pretraining robotic manipulation Vision-Language-Action (VLA) models using a large corpus of unscripted real-life video recordings of human hand activities. Treating human hand as dexterous robot end-effector, we show that "in-the-wild" egocentric human videos without any annotations can be transformed into data formats fully aligned with existing robotic V-L-A training data in terms of task granularity and labels. This is achieved by the development of a fully-automated holistic human activity analysis approach for arbitrary human hand videos. This approach can generate atomic-level hand activity segments and their language descriptions, each accompanied with framewise 3D hand motion and camera motion. We process a large volume of egocentric videos and create a hand-VLA training dataset containing 1M episodes and 26M frames. This training data covers a wide range of objects and concepts, dexterous manipulation tasks, and environment variations in real life, vastly exceeding the coverage of existing robot data. We design a dexterous hand VLA model architecture and pretrain the model on this dataset. The model exhibits strong zero-shot capabilities on completely unseen real-world observations. Additionally, fine-tuning it on a small amount of real robot action data significantly improves task success rates and generalization to novel objects in real robotic experiments. We also demonstrate the appealing scaling behavior of the model's task performance with respect to pretraining data scale. We believe this work lays a solid foundation for scalable VLA pretraining, advancing robots toward truly generalizable embodied intelligence.

  • 17 authors
·
Oct 24

LearnAct: Few-Shot Mobile GUI Agent with a Unified Demonstration Benchmark

Mobile GUI agents show promise in automating tasks but face generalization challenges in diverse real-world scenarios. Traditional approaches using pre-training or fine-tuning with massive datasets struggle with the diversity of mobile applications and user-specific tasks. We propose enhancing mobile GUI agent capabilities through human demonstrations, focusing on improving performance in unseen scenarios rather than pursuing universal generalization through larger datasets. To realize this paradigm, we introduce LearnGUI, the first comprehensive dataset specifically designed for studying demonstration-based learning in mobile GUI agents, comprising 2,252 offline tasks and 101 online tasks with high-quality human demonstrations. We further develop LearnAct, a sophisticated multi-agent framework that automatically extracts knowledge from demonstrations to enhance task completion. This framework integrates three specialized agents: DemoParser for knowledge extraction, KnowSeeker for relevant knowledge retrieval, and ActExecutor for demonstration-enhanced task execution. Our experimental results show significant performance gains in both offline and online evaluations. In offline assessments, a single demonstration improves model performance, increasing Gemini-1.5-Pro's accuracy from 19.3% to 51.7%. In online evaluations, our framework enhances UI-TARS-7B-SFT's task success rate from 18.1% to 32.8%. LearnAct framework and LearnGUI benchmark establish demonstration-based learning as a promising direction for more adaptable, personalized, and deployable mobile GUI agents.

  • 9 authors
·
Apr 18 2

AHA: A Vision-Language-Model for Detecting and Reasoning Over Failures in Robotic Manipulation

Robotic manipulation in open-world settings requires not only task execution but also the ability to detect and learn from failures. While recent advances in vision-language models (VLMs) and large language models (LLMs) have improved robots' spatial reasoning and problem-solving abilities, they still struggle with failure recognition, limiting their real-world applicability. We introduce AHA, an open-source VLM designed to detect and reason about failures in robotic manipulation using natural language. By framing failure detection as a free-form reasoning task, AHA identifies failures and provides detailed, adaptable explanations across different robots, tasks, and environments. We fine-tuned AHA using FailGen, a scalable framework that generates the first large-scale dataset of robotic failure trajectories, the AHA dataset. FailGen achieves this by procedurally perturbing successful demonstrations from simulation. Despite being trained solely on the AHA dataset, AHA generalizes effectively to real-world failure datasets, robotic systems, and unseen tasks. It surpasses the second-best model (GPT-4o in-context learning) by 10.3% and exceeds the average performance of six compared models including five state-of-the-art VLMs by 35.3% across multiple metrics and datasets. We integrate AHA into three manipulation frameworks that utilize LLMs/VLMs for reinforcement learning, task and motion planning, and zero-shot trajectory generation. AHA's failure feedback enhances these policies' performances by refining dense reward functions, optimizing task planning, and improving sub-task verification, boosting task success rates by an average of 21.4% across all three tasks compared to GPT-4 models.

  • 10 authors
·
Sep 30, 2024

World-Env: Leveraging World Model as a Virtual Environment for VLA Post-Training

Vision-Language-Action (VLA) models trained via imitation learning suffer from significant performance degradation in data-scarce scenarios due to their reliance on large-scale demonstration datasets. Although reinforcement learning (RL)-based post-training has proven effective in addressing data scarcity, its application to VLA models is hindered by the non-resettable nature of real-world environments. This limitation is particularly critical in high-risk domains such as industrial automation, where interactions often induce state changes that are costly or infeasible to revert. Furthermore, existing VLA approaches lack a reliable mechanism for detecting task completion, leading to redundant actions that reduce overall task success rates. To address these challenges, we propose World-Env, an RL-based post-training framework that replaces physical interaction with a low-cost, world model-based virtual simulator. World-Env consists of two key components: (1) a video-based world simulator that generates temporally consistent future visual observations, and (2) a vision-language model (VLM)-guided instant reflector that provides continuous reward signals and predicts action termination. This simulated environment enables VLA models to safely explore and generalize beyond their initial imitation learning distribution. Our method achieves notable performance gains with as few as five expert demonstrations per task. Experiments on complex robotic manipulation tasks demonstrate that World-Env effectively overcomes the data inefficiency, safety constraints, and inefficient execution of conventional VLA models that rely on real-world interaction, offering a practical and scalable solution for post-training in resource-constrained settings.

  • 8 authors
·
Sep 29

Learning to Learn Faster from Human Feedback with Language Model Predictive Control

Large language models (LLMs) have been shown to exhibit a wide range of capabilities, such as writing robot code from language commands -- enabling non-experts to direct robot behaviors, modify them based on feedback, or compose them to perform new tasks. However, these capabilities (driven by in-context learning) are limited to short-term interactions, where users' feedback remains relevant for only as long as it fits within the context size of the LLM, and can be forgotten over longer interactions. In this work, we investigate fine-tuning the robot code-writing LLMs, to remember their in-context interactions and improve their teachability i.e., how efficiently they adapt to human inputs (measured by average number of corrections before the user considers the task successful). Our key observation is that when human-robot interactions are formulated as a partially observable Markov decision process (in which human language inputs are observations, and robot code outputs are actions), then training an LLM to complete previous interactions can be viewed as training a transition dynamics model -- that can be combined with classic robotics techniques such as model predictive control (MPC) to discover shorter paths to success. This gives rise to Language Model Predictive Control (LMPC), a framework that fine-tunes PaLM 2 to improve its teachability on 78 tasks across 5 robot embodiments -- improving non-expert teaching success rates of unseen tasks by 26.9% while reducing the average number of human corrections from 2.4 to 1.9. Experiments show that LMPC also produces strong meta-learners, improving the success rate of in-context learning new tasks on unseen robot embodiments and APIs by 31.5%. See videos, code, and demos at: https://robot-teaching.github.io/.

  • 50 authors
·
Feb 17, 2024 2

GTR: Guided Thought Reinforcement Prevents Thought Collapse in RL-based VLM Agent Training

Reinforcement learning with verifiable outcome rewards (RLVR) has effectively scaled up chain-of-thought (CoT) reasoning in large language models (LLMs). Yet, its efficacy in training vision-language model (VLM) agents for goal-directed action reasoning in visual environments is less established. This work investigates this problem through extensive experiments on complex card games, such as 24 points, and embodied tasks from ALFWorld. We find that when rewards are based solely on action outcomes, RL fails to incentivize CoT reasoning in VLMs, instead leading to a phenomenon we termed thought collapse, characterized by a rapid loss of diversity in the agent's thoughts, state-irrelevant and incomplete reasoning, and subsequent invalid actions, resulting in negative rewards. To counteract thought collapse, we highlight the necessity of process guidance and propose an automated corrector that evaluates and refines the agent's reasoning at each RL step. This simple and scalable GTR (Guided Thought Reinforcement) framework trains reasoning and action simultaneously without the need for dense, per-step human labeling. Our experiments demonstrate that GTR significantly enhances the performance and generalization of the LLaVA-7b model across various visual environments, achieving 3-5 times higher task success rates compared to SoTA models with notably smaller model sizes.

  • 6 authors
·
Mar 11 2

Efficient Multi-turn RL for GUI Agents via Decoupled Training and Adaptive Data Curation

Vision-language model (VLM) based GUI agents show promise for automating complex desktop and mobile tasks, but face significant challenges in applying reinforcement learning (RL): (1) slow multi-turn interactions with GUI environments for policy rollout, and (2) insufficient high-quality agent-environment interactions for policy learning. To address these challenges, we propose DART, a Decoupled Agentic RL Training framework for GUI agents, which coordinates heterogeneous modules in a highly decoupled manner. DART separates the training system into four asynchronous modules: environment cluster, rollout service, data manager, and trainer. This design enables non-blocking communication, asynchronous training, rollout-wise trajectory sampling, and per-worker model synchronization, significantly improving the system efficiency: 1.6*GPU utilization for rollout, 1.9* training throughput, and 5.5* environment utilization. To facilitate effective learning from abundant samples, we introduce an adaptive data curation scheme: (1) pre-collecting successful trajectories for challenging tasks to supplement sparse success in online sampling; (2) dynamically adjusting rollout numbers and trajectory lengths based on task difficulty; (3) training selectively on high-entropy steps to prioritize critical decisions; (4) stabilizing learning via truncated importance sampling for policy mismatch between policy rollout and updating. On the OSWorld benchmark, DART-GUI-7B achieves a 42.13% task success rate, a 14.61% absolute gain over the base model, and 7.34% higher than open-source SOTA. We will fully open-source our training framework, data, and model checkpoints via computer-use-agents.github.io/dart-gui, which we believe is a timely contribution to the open-source community of agentic RL training.

TGPO: Temporal Grounded Policy Optimization for Signal Temporal Logic Tasks

Learning control policies for complex, long-horizon tasks is a central challenge in robotics and autonomous systems. Signal Temporal Logic (STL) offers a powerful and expressive language for specifying such tasks, but its non-Markovian nature and inherent sparse reward make it difficult to be solved via standard Reinforcement Learning (RL) algorithms. Prior RL approaches focus only on limited STL fragments or use STL robustness scores as sparse terminal rewards. In this paper, we propose TGPO, Temporal Grounded Policy Optimization, to solve general STL tasks. TGPO decomposes STL into timed subgoals and invariant constraints and provides a hierarchical framework to tackle the problem. The high-level component of TGPO proposes concrete time allocations for these subgoals, and the low-level time-conditioned policy learns to achieve the sequenced subgoals using a dense, stage-wise reward signal. During inference, we sample various time allocations and select the most promising assignment for the policy network to rollout the solution trajectory. To foster efficient policy learning for complex STL with multiple subgoals, we leverage the learned critic to guide the high-level temporal search via Metropolis-Hastings sampling, focusing exploration on temporally feasible solutions. We conduct experiments on five environments, ranging from low-dimensional navigation to manipulation, drone, and quadrupedal locomotion. Under a wide range of STL tasks, TGPO significantly outperforms state-of-the-art baselines (especially for high-dimensional and long-horizon cases), with an average of 31.6% improvement in task success rate compared to the best baseline. The code will be available at https://github.com/mengyuest/TGPO

Text2Reward: Automated Dense Reward Function Generation for Reinforcement Learning

Designing reward functions is a longstanding challenge in reinforcement learning (RL); it requires specialized knowledge or domain data, leading to high costs for development. To address this, we introduce Text2Reward, a data-free framework that automates the generation of dense reward functions based on large language models (LLMs). Given a goal described in natural language, Text2Reward generates dense reward functions as an executable program grounded in a compact representation of the environment. Unlike inverse RL and recent work that uses LLMs to write sparse reward codes, Text2Reward produces interpretable, free-form dense reward codes that cover a wide range of tasks, utilize existing packages, and allow iterative refinement with human feedback. We evaluate Text2Reward on two robotic manipulation benchmarks (ManiSkill2, MetaWorld) and two locomotion environments of MuJoCo. On 13 of the 17 manipulation tasks, policies trained with generated reward codes achieve similar or better task success rates and convergence speed than expert-written reward codes. For locomotion tasks, our method learns six novel locomotion behaviors with a success rate exceeding 94%. Furthermore, we show that the policies trained in the simulator with our method can be deployed in the real world. Finally, Text2Reward further improves the policies by refining their reward functions with human feedback. Video results are available at https://text-to-reward.github.io

  • 8 authors
·
Sep 20, 2023

OpenHA: A Series of Open-Source Hierarchical Agentic Models in Minecraft

The choice of action spaces is a critical yet unresolved challenge in developing capable, end-to-end trainable agents. This paper first presents a large-scale, systematic comparison of prominent abstracted action spaces and tokenizers for Vision-Language-Action (VLA) or hierarchical agent models in the open-ended Minecraft. Our analysis reveals that no single action space is universally optimal; instead, the most effective abstraction is highly task-dependent, creating a dilemma for building generalist agents. To resolve this, we introduce Chain of Action (CoA), a novel framework that unifies high-level planning and low-level control within a single, monolithic VLA model. CoA treats an abstracted action not as a command for a separate policy, but as an intermediate reasoning step--akin to a chain of thought--that guides the generation of the final, executable action. Furthermore, we demonstrate that an All-in-One agent trained on a diverse mixture of action spaces using the CoA paradigm learns a more robust and generalizable policy. This unified agent achieves a new state-of-the-art, improving the overall task success rate over strong, specialized baselines. To foster reproducible research, we release the OpenHA (Open Hierarchical Agents) suite, which includes our comprehensive benchmark of over 800 distinct tasks, curated datasets, source code, and all pretrained model checkpoints at https://github.com/CraftJarvis/OpenHA

  • 7 authors
·
Sep 12 1

SFHand: A Streaming Framework for Language-guided 3D Hand Forecasting and Embodied Manipulation

Real-time 3D hand forecasting is a critical component for fluid human-computer interaction in applications like AR and assistive robotics. However, existing methods are ill-suited for these scenarios, as they typically require offline access to accumulated video sequences and cannot incorporate language guidance that conveys task intent. To overcome these limitations, we introduce SFHand, the first streaming framework for language-guided 3D hand forecasting. SFHand autoregressively predicts a comprehensive set of future 3D hand states, including hand type, 2D bounding box, 3D pose, and trajectory, from a continuous stream of video and language instructions. Our framework combines a streaming autoregressive architecture with an ROI-enhanced memory layer, capturing temporal context while focusing on salient hand-centric regions. To enable this research, we also introduce EgoHaFL, the first large-scale dataset featuring synchronized 3D hand poses and language instructions. We demonstrate that SFHand achieves new state-of-the-art results in 3D hand forecasting, outperforming prior work by a significant margin of up to 35.8%. Furthermore, we show the practical utility of our learned representations by transferring them to downstream embodied manipulation tasks, improving task success rates by up to 13.4% on multiple benchmarks. Dataset page: https://huggingface.co/datasets/ut-vision/EgoHaFL, project page: https://github.com/ut-vision/SFHand.

  • 5 authors
·
Nov 22

Atomic-to-Compositional Generalization for Mobile Agents with A New Benchmark and Scheduling System

Autonomous agents powered by multimodal large language models have been developed to facilitate task execution on mobile devices. However, prior work has predominantly focused on atomic tasks -- such as shot-chain execution tasks and single-screen grounding tasks -- while overlooking the generalization to compositional tasks, which are indispensable for real-world applications. This work introduces UI-NEXUS, a comprehensive benchmark designed to evaluate mobile agents on three categories of compositional operations: Simple Concatenation, Context Transition, and Deep Dive. UI-NEXUS supports interactive evaluation in 20 fully controllable local utility app environments, as well as 30 online Chinese and English service apps. It comprises 100 interactive task templates with an average optimal step count of 14.05. Experimental results across a range of mobile agents with agentic workflow or agent-as-a-model show that UI-NEXUS presents significant challenges. Specifically, existing agents generally struggle to balance performance and efficiency, exhibiting representative failure modes such as under-execution, over-execution, and attention drift, causing visible atomic-to-compositional generalization gap. Inspired by these findings, we propose AGENT-NEXUS, a lightweight and efficient scheduling system to tackle compositional mobile tasks. AGENT-NEXUS extrapolates the abilities of existing mobile agents by dynamically decomposing long-horizon tasks to a series of self-contained atomic subtasks. AGENT-NEXUS achieves 24% to 40% task success rate improvement for existing mobile agents on compositional operation tasks within the UI-NEXUS benchmark without significantly sacrificing inference overhead. The demo video, dataset, and code are available on the project page at https://ui-nexus.github.io.

  • 6 authors
·
Jun 10

BEAST: Efficient Tokenization of B-Splines Encoded Action Sequences for Imitation Learning

We present the B-spline Encoded Action Sequence Tokenizer (BEAST), a novel action tokenizer that encodes action sequences into compact discrete or continuous tokens using B-splines. In contrast to existing action tokenizers based on vector quantization or byte pair encoding, BEAST requires no separate tokenizer training and consistently produces tokens of uniform length, enabling fast action sequence generation via parallel decoding. Leveraging our B-spline formulation, BEAST inherently ensures generating smooth trajectories without discontinuities between adjacent segments. We extensively evaluate BEAST by integrating it with three distinct model architectures: a Variational Autoencoder (VAE) with continuous tokens, a decoder-only Transformer with discrete tokens, and Florence-2, a pretrained Vision-Language Model with an encoder-decoder architecture, demonstrating BEAST's compatibility and scalability with large pretrained models. We evaluate BEAST across three established benchmarks consisting of 166 simulated tasks and on three distinct robot settings with a total of 8 real-world tasks. Experimental results demonstrate that BEAST (i) significantly reduces both training and inference computational costs, and (ii) consistently generates smooth, high-frequency control signals suitable for continuous control tasks while (iii) reliably achieves competitive task success rates compared to state-of-the-art methods.

  • 14 authors
·
Jun 6

RoboHorizon: An LLM-Assisted Multi-View World Model for Long-Horizon Robotic Manipulation

Efficient control in long-horizon robotic manipulation is challenging due to complex representation and policy learning requirements. Model-based visual reinforcement learning (RL) has shown great potential in addressing these challenges but still faces notable limitations, particularly in handling sparse rewards and complex visual features in long-horizon environments. To address these limitations, we propose the Recognize-Sense-Plan-Act (RSPA) pipeline for long-horizon tasks and further introduce RoboHorizon, an LLM-assisted multi-view world model tailored for long-horizon robotic manipulation. In RoboHorizon, pre-trained LLMs generate dense reward structures for multi-stage sub-tasks based on task language instructions, enabling robots to better recognize long-horizon tasks. Keyframe discovery is then integrated into the multi-view masked autoencoder (MAE) architecture to enhance the robot's ability to sense critical task sequences, strengthening its multi-stage perception of long-horizon processes. Leveraging these dense rewards and multi-view representations, a robotic world model is constructed to efficiently plan long-horizon tasks, enabling the robot to reliably act through RL algorithms. Experiments on two representative benchmarks, RLBench and FurnitureBench, show that RoboHorizon outperforms state-of-the-art visual model-based RL methods, achieving a 23.35% improvement in task success rates on RLBench's 4 short-horizon tasks and a 29.23% improvement on 6 long-horizon tasks from RLBench and 3 furniture assembly tasks from FurnitureBench.

  • 4 authors
·
Jan 11

Physically Grounded Vision-Language Models for Robotic Manipulation

Recent advances in vision-language models (VLMs) have led to improved performance on tasks such as visual question answering and image captioning. Consequently, these models are now well-positioned to reason about the physical world, particularly within domains such as robotic manipulation. However, current VLMs are limited in their understanding of the physical concepts (e.g., material, fragility) of common objects, which restricts their usefulness for robotic manipulation tasks that involve interaction and physical reasoning about such objects. To address this limitation, we propose PhysObjects, an object-centric dataset of 36.9K crowd-sourced and 417K automated physical concept annotations of common household objects. We demonstrate that fine-tuning a VLM on PhysObjects improves its understanding of physical object concepts, by capturing human priors of these concepts from visual appearance. We incorporate this physically-grounded VLM in an interactive framework with a large language model-based robotic planner, and show improved planning performance on tasks that require reasoning about physical object concepts, compared to baselines that do not leverage physically-grounded VLMs. We additionally illustrate the benefits of our physically-grounded VLM on a real robot, where it improves task success rates. We release our dataset and provide further details and visualizations of our results at https://iliad.stanford.edu/pg-vlm/.

  • 8 authors
·
Sep 5, 2023 1

Action Flow Matching for Continual Robot Learning

Continual learning in robotics seeks systems that can constantly adapt to changing environments and tasks, mirroring human adaptability. A key challenge is refining dynamics models, essential for planning and control, while addressing issues such as safe adaptation, catastrophic forgetting, outlier management, data efficiency, and balancing exploration with exploitation -- all within task and onboard resource constraints. Towards this goal, we introduce a generative framework leveraging flow matching for online robot dynamics model alignment. Rather than executing actions based on a misaligned model, our approach refines planned actions to better match with those the robot would take if its model was well aligned. We find that by transforming the actions themselves rather than exploring with a misaligned model -- as is traditionally done -- the robot collects informative data more efficiently, thereby accelerating learning. Moreover, we validate that the method can handle an evolving and possibly imperfect model while reducing, if desired, the dependency on replay buffers or legacy model snapshots. We validate our approach using two platforms: an unmanned ground vehicle and a quadrotor. The results highlight the method's adaptability and efficiency, with a record 34.2\% higher task success rate, demonstrating its potential towards enabling continual robot learning. Code: https://github.com/AlejandroMllo/action_flow_matching.

  • 2 authors
·
Apr 25 1

MMInA: Benchmarking Multihop Multimodal Internet Agents

Autonomous embodied agents live on an Internet of multimedia websites. Can they hop around multimodal websites to complete complex user tasks? Existing benchmarks fail to assess them in a realistic, evolving environment for their embodiment across websites. To answer this question, we present MMInA, a multihop and multimodal benchmark to evaluate the embodied agents for compositional Internet tasks, with several appealing properties: 1) Evolving real-world multimodal websites. Our benchmark uniquely operates on evolving real-world websites, ensuring a high degree of realism and applicability to natural user tasks. Our data includes 1,050 human-written tasks covering various domains such as shopping and travel, with each task requiring the agent to autonomously extract multimodal information from web pages as observations; 2) Multihop web browsing. Our dataset features naturally compositional tasks that require information from or actions on multiple websites to solve, to assess long-range reasoning capabilities on web tasks; 3) Holistic evaluation. We propose a novel protocol for evaluating an agent's progress in completing multihop tasks. We experiment with both standalone (multimodal) language models and heuristic-based web agents. Extensive experiments demonstrate that while long-chain multihop web tasks are easy for humans, they remain challenging for state-of-the-art web agents. We identify that agents are more likely to fail on the early hops when solving tasks of more hops, which results in lower task success rates. To address this issue, we propose a simple memory augmentation approach replaying past action trajectories to reflect. Our method significantly improved both the single-hop and multihop web browsing abilities of agents. See our code and data at https://mmina.cliangyu.com

  • 4 authors
·
Apr 15, 2024

Eliciting Compatible Demonstrations for Multi-Human Imitation Learning

Imitation learning from human-provided demonstrations is a strong approach for learning policies for robot manipulation. While the ideal dataset for imitation learning is homogenous and low-variance -- reflecting a single, optimal method for performing a task -- natural human behavior has a great deal of heterogeneity, with several optimal ways to demonstrate a task. This multimodality is inconsequential to human users, with task variations manifesting as subconscious choices; for example, reaching down, then across to grasp an object, versus reaching across, then down. Yet, this mismatch presents a problem for interactive imitation learning, where sequences of users improve on a policy by iteratively collecting new, possibly conflicting demonstrations. To combat this problem of demonstrator incompatibility, this work designs an approach for 1) measuring the compatibility of a new demonstration given a base policy, and 2) actively eliciting more compatible demonstrations from new users. Across two simulation tasks requiring long-horizon, dexterous manipulation and a real-world "food plating" task with a Franka Emika Panda arm, we show that we can both identify incompatible demonstrations via post-hoc filtering, and apply our compatibility measure to actively elicit compatible demonstrations from new users, leading to improved task success rates across simulated and real environments.

  • 4 authors
·
Oct 14, 2022

LightPlanner: Unleashing the Reasoning Capabilities of Lightweight Large Language Models in Task Planning

In recent years, lightweight large language models (LLMs) have garnered significant attention in the robotics field due to their low computational resource requirements and suitability for edge deployment. However, in task planning -- particularly for complex tasks that involve dynamic semantic logic reasoning -- lightweight LLMs have underperformed. To address this limitation, we propose a novel task planner, LightPlanner, which enhances the performance of lightweight LLMs in complex task planning by fully leveraging their reasoning capabilities. Unlike conventional planners that use fixed skill templates, LightPlanner controls robot actions via parameterized function calls, dynamically generating parameter values. This approach allows for fine-grained skill control and improves task planning success rates in complex scenarios. Furthermore, we introduce hierarchical deep reasoning. Before generating each action decision step, LightPlanner thoroughly considers three levels: action execution (feedback verification), semantic parsing (goal consistency verification), and parameter generation (parameter validity verification). This ensures the correctness of subsequent action controls. Additionally, we incorporate a memory module to store historical actions, thereby reducing context length and enhancing planning efficiency for long-term tasks. We train the LightPlanner-1.5B model on our LightPlan-40k dataset, which comprises 40,000 action controls across tasks with 2 to 13 action steps. Experiments demonstrate that our model achieves the highest task success rate despite having the smallest number of parameters. In tasks involving spatial semantic reasoning, the success rate exceeds that of ReAct by 14.9 percent. Moreover, we demonstrate LightPlanner's potential to operate on edge devices.

  • 7 authors
·
Mar 11

AutoDroid-V2: Boosting SLM-based GUI Agents via Code Generation

Large language models (LLMs) have brought exciting new advances to mobile UI agents, a long-standing research field that aims to complete arbitrary natural language tasks through mobile UI interactions. However, existing UI agents usually demand high reasoning capabilities of powerful large models that are difficult to be deployed locally on end-users' devices, which raises huge concerns about user privacy and centralized serving cost. One way to reduce the required model size is to customize a smaller domain-specific model with high-quality training data, e.g. large-scale human demonstrations of diverse types of apps and tasks, while such datasets are extremely difficult to obtain. Inspired by the remarkable coding abilities of recent small language models (SLMs), we propose to convert the UI task automation problem to a code generation problem, which can be effectively solved by an on-device SLM and efficiently executed with an on-device code interpreter. Unlike normal coding tasks that can be extensively pretrained with public datasets, generating UI automation code is challenging due to the diversity, complexity, and variability of target apps. Therefore, we adopt a document-centered approach that automatically builds fine-grained API documentation for each app and generates diverse task samples based on this documentation. By guiding the agent with the synthetic documents and task samples, it learns to generate precise and efficient scripts to complete unseen tasks. Based on detailed comparisons with state-of-the-art mobile UI agents, our approach effectively improves the mobile task automation with significantly higher success rates and lower latency/token consumption. Code will be open-sourced.

  • 11 authors
·
Dec 23, 2024

ReLI: A Language-Agnostic Approach to Human-Robot Interaction

Adapting autonomous agents to industrial, domestic, and other daily tasks is currently gaining momentum. However, in the global or cross-lingual application contexts, ensuring effective interaction with the environment and executing unrestricted human task-specified instructions in diverse languages remains an unsolved problem. To address this challenge, we propose ReLI, a language-agnostic framework designed to enable autonomous agents to converse naturally, semantically reason about the environment, and to perform downstream tasks, regardless of the task instruction's linguistic origin. First, we ground large-scale pre-trained foundation models and transform them into language-to-action models that can directly provide common-sense reasoning and high-level robot control through natural, free-flow human-robot conversational interactions. Further, we perform cross-lingual grounding of the models to ensure that ReLI generalises across the global languages. To demonstrate the ReLI's robustness, we conducted extensive simulated and real-world experiments on various short- and long-horizon tasks, including zero-shot and few-shot spatial navigation, scene information retrieval, and query-oriented tasks. We benchmarked the performance on 140 languages involving over 70K multi-turn conversations. On average, ReLI achieved over 90%pm0.2 accuracy in cross-lingual instruction parsing and task execution success rates. These results demonstrate the ReLI's potential to enhance natural human-robot interaction in the real world while championing linguistic diversity. Demonstrations and resources will be publicly available at https://linusnep.github.io/ReLI/.

  • 4 authors
·
May 3

Zero and Few-Shot Localization of Task-Oriented Dialogue Agents with a Distilled Representation

Task-oriented Dialogue (ToD) agents are mostly limited to a few widely-spoken languages, mainly due to the high cost of acquiring training data for each language. Existing low-cost approaches that rely on cross-lingual embeddings or naive machine translation sacrifice a lot of accuracy for data efficiency, and largely fail in creating a usable dialogue agent. We propose automatic methods that use ToD training data in a source language to build a high-quality functioning dialogue agent in another target language that has no training data (i.e. zero-shot) or a small training set (i.e. few-shot). Unlike most prior work in cross-lingual ToD that only focuses on Dialogue State Tracking (DST), we build an end-to-end agent. We show that our approach closes the accuracy gap between few-shot and existing full-shot methods for ToD agents. We achieve this by (1) improving the dialogue data representation, (2) improving entity-aware machine translation, and (3) automatic filtering of noisy translations. We evaluate our approach on the recent bilingual dialogue dataset BiToD. In Chinese to English transfer, in the zero-shot setting, our method achieves 46.7% and 22.0% in Task Success Rate (TSR) and Dialogue Success Rate (DSR) respectively. In the few-shot setting where 10% of the data in the target language is used, we improve the state-of-the-art by 15.2% and 14.0%, coming within 5% of full-shot training.

  • 3 authors
·
Feb 18, 2023

DM1: MeanFlow with Dispersive Regularization for 1-Step Robotic Manipulation

The ability to learn multi-modal action distributions is indispensable for robotic manipulation policies to perform precise and robust control. Flow-based generative models have recently emerged as a promising solution to learning distributions of actions, offering one-step action generation and thus achieving much higher sampling efficiency compared to diffusion-based methods. However, existing flow-based policies suffer from representation collapse, the inability to distinguish similar visual representations, leading to failures in precise manipulation tasks. We propose DM1 (MeanFlow with Dispersive Regularization for One-Step Robotic Manipulation), a novel flow matching framework that integrates dispersive regularization into MeanFlow to prevent collapse while maintaining one-step efficiency. DM1 employs multiple dispersive regularization variants across different intermediate embedding layers, encouraging diverse representations across training batches without introducing additional network modules or specialized training procedures. Experiments on RoboMimic benchmarks show that DM1 achieves 20-40 times faster inference (0.07s vs. 2-3.5s) and improves success rates by 10-20 percentage points, with the Lift task reaching 99% success over 85% of the baseline. Real-robot deployment on a Franka Panda further validates that DM1 transfers effectively from simulation to the physical world. To the best of our knowledge, this is the first work to leverage representation regularization to enable flow-based policies to achieve strong performance in robotic manipulation, establishing a simple yet powerful approach for efficient and robust manipulation.

  • 6 authors
·
Oct 9

Scalable Multi-Task Reinforcement Learning for Generalizable Spatial Intelligence in Visuomotor Agents

While Reinforcement Learning (RL) has achieved remarkable success in language modeling, its triumph hasn't yet fully translated to visuomotor agents. A primary challenge in RL models is their tendency to overfit specific tasks or environments, thereby hindering the acquisition of generalizable behaviors across diverse settings. This paper provides a preliminary answer to this challenge by demonstrating that RL-finetuned visuomotor agents in Minecraft can achieve zero-shot generalization to unseen worlds. Specifically, we explore RL's potential to enhance generalizable spatial reasoning and interaction capabilities in 3D worlds. To address challenges in multi-task RL representation, we analyze and establish cross-view goal specification as a unified multi-task goal space for visuomotor policies. Furthermore, to overcome the significant bottleneck of manual task design, we propose automated task synthesis within the highly customizable Minecraft environment for large-scale multi-task RL training, and we construct an efficient distributed RL framework to support this. Experimental results show RL significantly boosts interaction success rates by 4times and enables zero-shot generalization of spatial reasoning across diverse environments, including real-world settings. Our findings underscore the immense potential of RL training in 3D simulated environments, especially those amenable to large-scale task generation, for significantly advancing visuomotor agents' spatial reasoning.

  • 6 authors
·
Jul 31 4

UI-CUBE: Enterprise-Grade Computer Use Agent Benchmarking Beyond Task Accuracy to Operational Reliability

While current Computer Use Agent (CUA) benchmarks measure task completion effectively, they provide limited assessment of enterprise deployment readiness, emphasizing functional correctness over the operational reliability required for production systems. We present UI-CUBE (UiPath Computer Use BEnchmark), a systematic benchmark comprising 226 tasks across two difficulty tiers designed to expose fundamental architectural limitations in current CUAs. Our evaluation covers simple UI interactions (136 tasks) and complex workflows including copy-paste tasks (50 tasks) and enterprise application scenarios (40 tasks), with systematic interface variation coverage, multi-resolution testing and automated validation of task success through the application state. Evaluation of five state-of-the-art models reveals a sharp capability cliff rather than gradual performance degradation. Simple UI interactions achieve 67-85% success rates (compared to 97.9% human performance), but complex workflows drop precipitously to 9-19%. Human evaluators with no prior application experience achieve only 61.2% on complex tasks despite near-perfect performance on simple tasks, establishing realistic performance ceilings. This discontinuous performance pattern -- where agents achieve 68-87% of human performance on simple tasks but only 15-32% on complex workflows -- indicates fundamental architectural limitations in memory management, hierarchical planning, and state coordination rather than incremental capability gaps addressable through better training or prompting. UI-CUBE functions as an enterprise-readiness diagnostic, revealing that while current CUAs can manipulate individual interface elements, they cannot yet function as reliable workflow automation tools. These findings provide architectural insights essential for developing production-ready CUAs capable of managing complex, multi-step enterprise processes.

  • 6 authors
·
Nov 21

ISR-LLM: Iterative Self-Refined Large Language Model for Long-Horizon Sequential Task Planning

Motivated by the substantial achievements observed in Large Language Models (LLMs) in the field of natural language processing, recent research has commenced investigations into the application of LLMs for complex, long-horizon sequential task planning challenges in robotics. LLMs are advantageous in offering the potential to enhance the generalizability as task-agnostic planners and facilitate flexible interaction between human instructors and planning systems. However, task plans generated by LLMs often lack feasibility and correctness. To address this challenge, we introduce ISR-LLM, a novel framework that improves LLM-based planning through an iterative self-refinement process. The framework operates through three sequential steps: preprocessing, planning, and iterative self-refinement. During preprocessing, an LLM translator is employed to convert natural language input into a Planning Domain Definition Language (PDDL) formulation. In the planning phase, an LLM planner formulates an initial plan, which is then assessed and refined in the iterative self-refinement step by using a validator. We examine the performance of ISR-LLM across three distinct planning domains. The results show that ISR-LLM is able to achieve markedly higher success rates in task accomplishments compared to state-of-the-art LLM-based planners. Moreover, it also preserves the broad applicability and generalizability of working with natural language instructions.

  • 5 authors
·
Aug 25, 2023

Scaling Up Natural Language Understanding for Multi-Robots Through the Lens of Hierarchy

Long-horizon planning is hindered by challenges such as uncertainty accumulation, computational complexity, delayed rewards and incomplete information. This work proposes an approach to exploit the task hierarchy from human instructions to facilitate multi-robot planning. Using Large Language Models (LLMs), we propose a two-step approach to translate multi-sentence instructions into a structured language, Hierarchical Linear Temporal Logic (LTL), which serves as a formal representation for planning. Initially, LLMs transform the instructions into a hierarchical representation defined as Hierarchical Task Tree, capturing the logical and temporal relations among tasks. Following this, a domain-specific fine-tuning of LLM translates sub-tasks of each task into flat LTL formulas, aggregating them to form hierarchical LTL specifications. These specifications are then leveraged for planning using off-the-shelf planners. Our framework not only bridges the gap between instructions and algorithmic planning but also showcases the potential of LLMs in harnessing hierarchical reasoning to automate multi-robot task planning. Through evaluations in both simulation and real-world experiments involving human participants, we demonstrate that our method can handle more complex instructions compared to existing methods. The results indicate that our approach achieves higher success rates and lower costs in multi-robot task allocation and plan generation. Demos videos are available at https://youtu.be/7WOrDKxIMIs .

  • 6 authors
·
Aug 15, 2024

From Supervision to Exploration: What Does Protein Language Model Learn During Reinforcement Learning?

Protein language models (PLMs) have advanced computational protein science through large-scale pretraining and scalable architectures. In parallel, reinforcement learning (RL) has broadened exploration and enabled precise multi-objective optimization in protein design. Yet whether RL can push PLMs beyond their pretraining priors to uncover latent sequence-structure-function rules remains unclear. We address this by pairing RL with PLMs across four domains: antimicrobial peptide design, kinase variant optimization, antibody engineering, and inverse folding. Using diverse RL algorithms and model classes, we ask if RL improves sampling efficiency and, more importantly, if it reveals capabilities not captured by supervised learning. Across benchmarks, RL consistently boosts success rates and sample efficiency. Performance follows a three-factor interaction: task headroom, reward fidelity, and policy capacity jointly determine gains. When rewards are accurate and informative, policies have sufficient capacity, and tasks leave room beyond supervised baselines, improvements scale; when rewards are noisy or capacity is constrained, gains saturate despite exploration. This view yields practical guidance for RL in protein design: prioritize reward modeling and calibration before scaling policy size, match algorithm and regularization strength to task difficulty, and allocate capacity where marginal gains are largest. Implementation is available at https://github.com/chq1155/RL-PLM.

  • 15 authors
·
Oct 1

Real-is-Sim: Bridging the Sim-to-Real Gap with a Dynamic Digital Twin for Real-World Robot Policy Evaluation

Recent advancements in behavior cloning have enabled robots to perform complex manipulation tasks. However, accurately assessing training performance remains challenging, particularly for real-world applications, as behavior cloning losses often correlate poorly with actual task success. Consequently, researchers resort to success rate metrics derived from costly and time-consuming real-world evaluations, making the identification of optimal policies and detection of overfitting or underfitting impractical. To address these issues, we propose real-is-sim, a novel behavior cloning framework that incorporates a dynamic digital twin (based on Embodied Gaussians) throughout the entire policy development pipeline: data collection, training, and deployment. By continuously aligning the simulated world with the physical world, demonstrations can be collected in the real world with states extracted from the simulator. The simulator enables flexible state representations by rendering image inputs from any viewpoint or extracting low-level state information from objects embodied within the scene. During training, policies can be directly evaluated within the simulator in an offline and highly parallelizable manner. Finally, during deployment, policies are run within the simulator where the real robot directly tracks the simulated robot's joints, effectively decoupling policy execution from real hardware and mitigating traditional domain-transfer challenges. We validate real-is-sim on the PushT manipulation task, demonstrating strong correlation between success rates obtained in the simulator and real-world evaluations. Videos of our system can be found at https://realissim.rai-inst.com.

  • 7 authors
·
Apr 4 2

BadVLA: Towards Backdoor Attacks on Vision-Language-Action Models via Objective-Decoupled Optimization

Vision-Language-Action (VLA) models have advanced robotic control by enabling end-to-end decision-making directly from multimodal inputs. However, their tightly coupled architectures expose novel security vulnerabilities. Unlike traditional adversarial perturbations, backdoor attacks represent a stealthier, persistent, and practically significant threat-particularly under the emerging Training-as-a-Service paradigm-but remain largely unexplored in the context of VLA models. To address this gap, we propose BadVLA, a backdoor attack method based on Objective-Decoupled Optimization, which for the first time exposes the backdoor vulnerabilities of VLA models. Specifically, it consists of a two-stage process: (1) explicit feature-space separation to isolate trigger representations from benign inputs, and (2) conditional control deviations that activate only in the presence of the trigger, while preserving clean-task performance. Empirical results on multiple VLA benchmarks demonstrate that BadVLA consistently achieves near-100% attack success rates with minimal impact on clean task accuracy. Further analyses confirm its robustness against common input perturbations, task transfers, and model fine-tuning, underscoring critical security vulnerabilities in current VLA deployments. Our work offers the first systematic investigation of backdoor vulnerabilities in VLA models, highlighting an urgent need for secure and trustworthy embodied model design practices. We have released the project page at https://badvla-project.github.io/.

  • 6 authors
·
May 22 1

Proof2Silicon: Prompt Repair for Verified Code and Hardware Generation via Reinforcement Learning

Large Language Models (LLMs) have demonstrated impressive capabilities in automated code generation but frequently produce code that fails formal verification, an essential requirement for hardware and safety-critical domains. To overcome this fundamental limitation, we previously proposed PREFACE, a model-agnostic framework based on reinforcement learning (RL) that iteratively repairs the prompts provided to frozen LLMs, systematically steering them toward generating formally verifiable Dafny code without costly fine-tuning. This work presents Proof2Silicon, a novel end-to-end synthesis framework that embeds the previously proposed PREFACE flow to enable the generation of correctness-by-construction hardware directly from natural language specifications. Proof2Silicon operates by: (1) leveraging PREFACE's verifier-driven RL agent to optimize prompt generation iteratively, ensuring Dafny code correctness; (2) automatically translating verified Dafny programs into synthesizable high-level C using Dafny's Python backend and PyLog; and (3) employing Vivado HLS to produce RTL implementations. Evaluated rigorously on a challenging 100-task benchmark, PREFACE's RL-guided prompt optimization consistently improved Dafny verification success rates across diverse LLMs by up to 21%. Crucially, Proof2Silicon achieved an end-to-end hardware synthesis success rate of up to 72%, generating RTL designs through Vivado HLS synthesis flows. These results demonstrate a robust, scalable, and automated pipeline for LLM-driven, formally verified hardware synthesis, bridging natural-language specification and silicon realization.

  • 3 authors
·
Sep 7

Visual Backdoor Attacks on MLLM Embodied Decision Making via Contrastive Trigger Learning

Multimodal large language models (MLLMs) have advanced embodied agents by enabling direct perception, reasoning, and planning task-oriented actions from visual inputs. However, such vision driven embodied agents open a new attack surface: visual backdoor attacks, where the agent behaves normally until a visual trigger appears in the scene, then persistently executes an attacker-specified multi-step policy. We introduce BEAT, the first framework to inject such visual backdoors into MLLM-based embodied agents using objects in the environments as triggers. Unlike textual triggers, object triggers exhibit wide variation across viewpoints and lighting, making them difficult to implant reliably. BEAT addresses this challenge by (1) constructing a training set that spans diverse scenes, tasks, and trigger placements to expose agents to trigger variability, and (2) introducing a two-stage training scheme that first applies supervised fine-tuning (SFT) and then our novel Contrastive Trigger Learning (CTL). CTL formulates trigger discrimination as preference learning between trigger-present and trigger-free inputs, explicitly sharpening the decision boundaries to ensure precise backdoor activation. Across various embodied agent benchmarks and MLLMs, BEAT achieves attack success rates up to 80%, while maintaining strong benign task performance, and generalizes reliably to out-of-distribution trigger placements. Notably, compared to naive SFT, CTL boosts backdoor activation accuracy up to 39% under limited backdoor data. These findings expose a critical yet unexplored security risk in MLLM-based embodied agents, underscoring the need for robust defenses before real-world deployment.

GitChameleon: Evaluating AI Code Generation Against Python Library Version Incompatibilities

The rapid evolution of software libraries poses a considerable hurdle for code generation, necessitating continuous adaptation to frequent version updates while preserving backward compatibility. While existing code evolution benchmarks provide valuable insights, they typically lack execution-based evaluation for generating code compliant with specific library versions. To address this, we introduce GitChameleon, a novel, meticulously curated dataset comprising 328 Python code completion problems, each conditioned on specific library versions and accompanied by executable unit tests. GitChameleon rigorously evaluates the capacity of contemporary large language models (LLMs), LLM-powered agents, code assistants, and RAG systems to perform version-conditioned code generation that demonstrates functional accuracy through execution. Our extensive evaluations indicate that state-of-the-art systems encounter significant challenges with this task; enterprise models achieving baseline success rates in the 48-51\% range, underscoring the intricacy of the problem. By offering an execution-based benchmark emphasizing the dynamic nature of code libraries, GitChameleon enables a clearer understanding of this challenge and helps guide the development of more adaptable and dependable AI code generation methods. We make the dataset and evaluation code publicly available at https://github.com/mrcabbage972/GitChameleonBenchmark.

Yell At Your Robot: Improving On-the-Fly from Language Corrections

Hierarchical policies that combine language and low-level control have been shown to perform impressively long-horizon robotic tasks, by leveraging either zero-shot high-level planners like pretrained language and vision-language models (LLMs/VLMs) or models trained on annotated robotic demonstrations. However, for complex and dexterous skills, attaining high success rates on long-horizon tasks still represents a major challenge -- the longer the task is, the more likely it is that some stage will fail. Can humans help the robot to continuously improve its long-horizon task performance through intuitive and natural feedback? In this paper, we make the following observation: high-level policies that index into sufficiently rich and expressive low-level language-conditioned skills can be readily supervised with human feedback in the form of language corrections. We show that even fine-grained corrections, such as small movements ("move a bit to the left"), can be effectively incorporated into high-level policies, and that such corrections can be readily obtained from humans observing the robot and making occasional suggestions. This framework enables robots not only to rapidly adapt to real-time language feedback, but also incorporate this feedback into an iterative training scheme that improves the high-level policy's ability to correct errors in both low-level execution and high-level decision-making purely from verbal feedback. Our evaluation on real hardware shows that this leads to significant performance improvement in long-horizon, dexterous manipulation tasks without the need for any additional teleoperation. Videos and code are available at https://yay-robot.github.io/.

  • 8 authors
·
Mar 19, 2024

MergeVLA: Cross-Skill Model Merging Toward a Generalist Vision-Language-Action Agent

Recent Vision-Language-Action (VLA) models reformulate vision-language models by tuning them with millions of robotic demonstrations. While they perform well when fine-tuned for a single embodiment or task family, extending them to multi-skill settings remains challenging: directly merging VLA experts trained on different tasks results in near-zero success rates. This raises a fundamental question: what prevents VLAs from mastering multiple skills within one model? With an empirical decomposition of learnable parameters during VLA fine-tuning, we identify two key sources of non-mergeability: (1) Finetuning drives LoRA adapters in the VLM backbone toward divergent, task-specific directions beyond the capacity of existing merging methods to unify. (2) Action experts develop inter-block dependencies through self-attention feedback, causing task information to spread across layers and preventing modular recombination. To address these challenges, we present MergeVLA, a merging-oriented VLA architecture that preserves mergeability by design. MergeVLA introduces sparsely activated LoRA adapters via task masks to retain consistent parameters and reduce irreconcilable conflicts in the VLM. Its action expert replaces self-attention with cross-attention-only blocks to keep specialization localized and composable. When the task is unknown, it uses a test-time task router to adaptively select the appropriate task mask and expert head from the initial observation, enabling unsupervised task inference. Across LIBERO, LIBERO-Plus, RoboTwin, and multi-task experiments on the real SO101 robotic arm, MergeVLA achieves performance comparable to or even exceeding individually finetuned experts, demonstrating robust generalization across tasks, embodiments, and environments.

  • 6 authors
·
Nov 24

CogACT: A Foundational Vision-Language-Action Model for Synergizing Cognition and Action in Robotic Manipulation

The advancement of large Vision-Language-Action (VLA) models has significantly improved robotic manipulation in terms of language-guided task execution and generalization to unseen scenarios. While existing VLAs adapted from pretrained large Vision-Language-Models (VLM) have demonstrated promising generalizability, their task performance is still unsatisfactory as indicated by the low tasks success rates in different environments. In this paper, we present a new advanced VLA architecture derived from VLM. Unlike previous works that directly repurpose VLM for action prediction by simple action quantization, we propose a omponentized VLA architecture that has a specialized action module conditioned on VLM output. We systematically study the design of the action module and demonstrates the strong performance enhancement with diffusion action transformers for action sequence modeling, as well as their favorable scaling behaviors. We also conduct comprehensive experiments and ablation studies to evaluate the efficacy of our models with varied designs. The evaluation on 5 robot embodiments in simulation and real work shows that our model not only significantly surpasses existing VLAs in task performance and but also exhibits remarkable adaptation to new robots and generalization to unseen objects and backgrounds. It exceeds the average success rates of OpenVLA which has similar model size (7B) with ours by over 35% in simulated evaluation and 55% in real robot experiments. It also outperforms the large RT-2-X model (55B) by 18% absolute success rates in simulation. Code and models can be found on our project page (https://cogact.github.io/).

  • 18 authors
·
Nov 29, 2024

Steering Vision-Language-Action Models as Anti-Exploration: A Test-Time Scaling Approach

Vision-Language-Action (VLA) models, trained via flow-matching or diffusion objectives, excel at learning complex behaviors from large-scale, multi-modal datasets (e.g., human teleoperation, scripted policies). However, since VLAs incorporate diverse data modes in the pre-training stage, and the finetuning dataset often contains demonstration data collected in a kinematically suboptimal or undesirable way, it exists redundant action modes that are irrelevant to the success action modes of the downstream task. Specifically, we observe a critical inference-time fragility among various sampled noises after supervised finetuning of pre-trained VLAs. In this paper, we attribute this instability to the distribution shift between the VLA policy and the policy induced by stable success modes of the downstream task dataset. Thus, we propose TACO, a test-time-scaling (TTS) framework that applies a lightweight pseudo-count estimator as a high-fidelity verifier of action chunks. The VLA models integrated with TACO can execute the actions with maximum pseudo-count from all sampled action chunks, thereby preventing distribution shifts while preserving the generalization ability of VLAs since the constraint is applied only during inference. Our method resembles the classical anti-exploration principle in offline reinforcement learning (RL), and being gradient-free, it incurs significant computational benefits compared to RL update, especially for flow or diffusion-based VLAs which are difficult to perform RL update due to denoising process. Extensive experiments across four simulation benchmarks (RoboTwin2.0, Robotwin, LIBERO, SimplerEnv) and a dual-arm platform demonstrate that our method significantly improves the inference stability and success rates in downstream-task adaptations.

  • 7 authors
·
Dec 2 3

OmniVTLA: Vision-Tactile-Language-Action Model with Semantic-Aligned Tactile Sensing

Recent vision-language-action (VLA) models build upon vision-language foundations, and have achieved promising results and exhibit the possibility of task generalization in robot manipulation. However, due to the heterogeneity of tactile sensors and the difficulty of acquiring tactile data, current VLA models significantly overlook the importance of tactile perception and fail in contact-rich tasks. To address this issue, this paper proposes OmniVTLA, a novel architecture involving tactile sensing. Specifically, our contributions are threefold. First, our OmniVTLA features a dual-path tactile encoder framework. This framework enhances tactile perception across diverse vision-based and force-based tactile sensors by using a pretrained vision transformer (ViT) and a semantically-aligned tactile ViT (SA-ViT). Second, we introduce ObjTac, a comprehensive force-based tactile dataset capturing textual, visual, and tactile information for 56 objects across 10 categories. With 135K tri-modal samples, ObjTac supplements existing visuo-tactile datasets. Third, leveraging this dataset, we train a semantically-aligned tactile encoder to learn a unified tactile representation, serving as a better initialization for OmniVTLA. Real-world experiments demonstrate substantial improvements over state-of-the-art VLA baselines, achieving 96.9% success rates with grippers, (21.9% higher over baseline) and 100% success rates with dexterous hands (6.2% higher over baseline) in pick-and-place tasks. Besides, OmniVTLA significantly reduces task completion time and generates smoother trajectories through tactile sensing compared to existing VLA. Our ObjTac dataset can be found at https://readerek.github.io/Objtac.github.io

  • 7 authors
·
Aug 12

KARMA: Augmenting Embodied AI Agents with Long-and-short Term Memory Systems

Embodied AI agents responsible for executing interconnected, long-sequence household tasks often face difficulties with in-context memory, leading to inefficiencies and errors in task execution. To address this issue, we introduce KARMA, an innovative memory system that integrates long-term and short-term memory modules, enhancing large language models (LLMs) for planning in embodied agents through memory-augmented prompting. KARMA distinguishes between long-term and short-term memory, with long-term memory capturing comprehensive 3D scene graphs as representations of the environment, while short-term memory dynamically records changes in objects' positions and states. This dual-memory structure allows agents to retrieve relevant past scene experiences, thereby improving the accuracy and efficiency of task planning. Short-term memory employs strategies for effective and adaptive memory replacement, ensuring the retention of critical information while discarding less pertinent data. Compared to state-of-the-art embodied agents enhanced with memory, our memory-augmented embodied AI agent improves success rates by 1.3x and 2.3x in Composite Tasks and Complex Tasks within the AI2-THOR simulator, respectively, and enhances task execution efficiency by 3.4x and 62.7x. Furthermore, we demonstrate that KARMA's plug-and-play capability allows for seamless deployment on real-world robotic systems, such as mobile manipulation platforms.Through this plug-and-play memory system, KARMA significantly enhances the ability of embodied agents to generate coherent and contextually appropriate plans, making the execution of complex household tasks more efficient. The experimental videos from the work can be found at https://youtu.be/4BT7fnw9ehs. Our code is available at https://github.com/WZX0Swarm0Robotics/KARMA/tree/master.

  • 9 authors
·
Sep 23, 2024

Can AI Freelancers Compete? Benchmarking Earnings, Reliability, and Task Success at Scale

This study explores Large Language Models (LLMs) as autonomous agents for real-world tasks, including freelance software development. This work presents a new benchmark that evaluates LLMs on freelance programming and data analysis tasks derived from economic data. We construct the benchmark using synthetic tasks created from a Kaggle Freelancer dataset of job postings, with all job prices standardized to USD (median fixed-project price around 250, and an average of 306). Each task is accompanied by structured input-output test cases and an estimated price tag, enabling automated correctness checking and a monetary performance valuation. This approach is inspired by OpenAI's recent SWE-Lancer benchmark (1,400 real Upwork tasks worth 1M total). Still, our framework simplifies evaluation using programmatically testable tasks and predicted price values, making it highly scalable and repeatable. On this benchmark, we evaluate four modern LLMs - Claude 3.5 Haiku, GPT-4o-mini, Qwen 2.5, and Mistral. We report each model's accuracy (task success rate and test-case pass rate) and the total "freelance earnings" it achieves (sum of prices of solved tasks). Our results show that Claude 3.5 Haiku performs best, earning approximately 1.52 million USD, followed closely by GPT-4o-mini at 1.49 million, then Qwen 2.5 (1.33M) and Mistral ($0.70M). We analyze the distribution of errors per task and observe that the strongest models solve the most tasks and rarely fail completely on any project. We discuss the implications of these results for the feasibility of AI as a freelance developer, the advantages and limitations of our automated benchmark approach, and the gap between performance on structured tasks versus the true complexity of real-world freelance jobs.

  • 2 authors
·
May 16 2

DualTAP: A Dual-Task Adversarial Protector for Mobile MLLM Agents

The reliance of mobile GUI agents on Multimodal Large Language Models (MLLMs) introduces a severe privacy vulnerability: screenshots containing Personally Identifiable Information (PII) are often sent to untrusted, third-party routers. These routers can exploit their own MLLMs to mine this data, violating user privacy. Existing privacy perturbations fail the critical dual challenge of this scenario: protecting PII from the router's MLLM while simultaneously preserving task utility for the agent's MLLM. To address this gap, we propose the Dual-Task Adversarial Protector (DualTAP), a novel framework that, for the first time, explicitly decouples these conflicting objectives. DualTAP trains a lightweight generator using two key innovations: (i) a contrastive attention module that precisely identifies and targets only the PII-sensitive regions, and (ii) a dual-task adversarial objective that simultaneously minimizes a task-preservation loss (to maintain agent utility) and a privacy-interference loss (to suppress PII leakage). To facilitate this study, we introduce PrivScreen, a new dataset of annotated mobile screenshots designed specifically for this dual-task evaluation. Comprehensive experiments on six diverse MLLMs (e.g., GPT-5) demonstrate DualTAP's state-of-the-art protection. It reduces the average privacy leakage rate by 31.6 percentage points (a 3.0x relative improvement) while, critically, maintaining an 80.8% task success rate - a negligible drop from the 83.6% unprotected baseline. DualTAP presents the first viable solution to the privacy-utility trade-off in mobile MLLM agents.

  • 9 authors
·
Nov 17

AgentOrchestra: A Hierarchical Multi-Agent Framework for General-Purpose Task Solving

Recent advances in agent systems have demonstrated remarkable capabilities in solving both general-purpose and highly complex tasks. However, most current models lack mechanisms for coordinating specialized agents and have limited ability to generalize to new or diverse domains. To this end, we introduce AgentOrchestra, a hierarchical multi-agent framework for general-purpose task solving that integrates high-level planning with modular agent collaboration. Drawing inspiration from a conductor orchestrating a symphony, and grounded in the principles of extensibility, multimodality, modularity, and coordination, it features a central planning agent that decomposes complex objectives and delegates sub-tasks to a team of specialized agents. Each sub-agent is equipped with general programming tools, as well as abilities to tackle a wide range of real-world specific tasks, including data analysis, file operations, web navigation, and interactive reasoning in dynamic multimodal environments. Notably, AgentOrchestra introduces an MCP Manager Agent that enables intelligent evolution through dynamic tool creation, retrieval, and reuse mechanisms, significantly enhancing the system's adaptability and scalability. AgentOrchestra supports flexible orchestration through explicit sub-goal formulation, inter-agent communication, and adaptive role allocation. We evaluate the framework on three widely used benchmarks for assessing LLM-based agent systems. Experimental results show that AgentOrchestra consistently outperforms flat-agent and monolithic baselines in terms of task success rate and adaptability. On the GAIA benchmark testing dataset, AgentOrchestra achieves an average score of 83.39\%, ranking among the top general-purpose agents. These results highlight the effectiveness of hierarchical organization and role specialization in building scalable and general-purpose LLM-based agent systems.

  • 8 authors
·
Jun 14

SwitchVLA: Execution-Aware Task Switching for Vision-Language-Action Models

Robots deployed in dynamic environments must be able to not only follow diverse language instructions but flexibly adapt when user intent changes mid-execution. While recent Vision-Language-Action (VLA) models have advanced multi-task learning and instruction following, they typically assume static task intent, failing to respond when new instructions arrive during ongoing execution. This limitation hinders natural and robust interaction in dynamic settings, such as retail or household environments, where real-time intent changes are common. We propose SwitchVLA, a unified, execution-aware framework that enables smooth and reactive task switching without external planners or additional switch-specific data. We model task switching as a behavior modulation problem conditioned on execution state and instruction context. Expert demonstrations are segmented into temporally grounded contact phases, allowing the policy to infer task progress and adjust its behavior accordingly. A multi-behavior conditional policy is then trained to generate flexible action chunks under varying behavior modes through conditioned trajectory modeling. Experiments in both simulation and real-world robotic manipulation demonstrate that SwitchVLA enables robust instruction adherence, fluid task switching, and strong generalization-outperforming prior VLA baselines in both task success rate and interaction naturalness.

MAPLE: A Mobile Agent with Persistent Finite State Machines for Structured Task Reasoning

Mobile GUI agents aim to autonomously complete user-instructed tasks across mobile apps. Recent advances in Multimodal Large Language Models (MLLMs) enable these agents to interpret UI screens, identify actionable elements, and perform interactions such as tapping or typing. However, existing agents remain reactive: they reason only over the current screen and lack a structured model of app navigation flow, limiting their ability to understand context, detect unexpected outcomes, and recover from errors. We present MAPLE, a state-aware multi-agent framework that abstracts app interactions as a Finite State Machine (FSM). We computationally model each UI screen as a discrete state and user actions as transitions, allowing the FSM to provide a structured representation of the app execution. MAPLE consists of specialized agents responsible for four phases of task execution: planning, execution, verification, error recovery, and knowledge retention. These agents collaborate to dynamically construct FSMs in real time based on perception data extracted from the UI screen, allowing the GUI agents to track navigation progress and flow, validate action outcomes through pre- and post-conditions of the states, and recover from errors by rolling back to previously stable states. Our evaluation results on two challenging cross-app benchmarks, Mobile-Eval-E and SPA-Bench, show that MAPLE outperforms the state-of-the-art baseline, improving task success rate by up to 12%, recovery success by 13.8%, and action accuracy by 6.5%. Our results highlight the importance of structured state modeling in guiding mobile GUI agents during task execution. Moreover, our FSM representation can be integrated into future GUI agent architectures as a lightweight, model-agnostic memory layer to support structured planning, execution verification, and error recovery.

  • 6 authors
·
May 29

Aime: Towards Fully-Autonomous Multi-Agent Framework

Multi-Agent Systems (MAS) powered by Large Language Models (LLMs) are emerging as a powerful paradigm for solving complex, multifaceted problems. However, the potential of these systems is often constrained by the prevalent plan-and-execute framework, which suffers from critical limitations: rigid plan execution, static agent capabilities, and inefficient communication. These weaknesses hinder their adaptability and robustness in dynamic environments. This paper introduces Aime, a novel multi-agent framework designed to overcome these challenges through dynamic, reactive planning and execution. Aime replaces the conventional static workflow with a fluid and adaptive architecture. Its core innovations include: (1) a Dynamic Planner that continuously refines the overall strategy based on real-time execution feedback; (2) an Actor Factory that implements Dynamic Actor instantiation, assembling specialized agents on-demand with tailored tools and knowledge; and (3) a centralized Progress Management Module that serves as a single source of truth for coherent, system-wide state awareness. We empirically evaluated Aime on a diverse suite of benchmarks spanning general reasoning (GAIA), software engineering (SWE-bench Verified), and live web navigation (WebVoyager). The results demonstrate that Aime consistently outperforms even highly specialized state-of-the-art agents in their respective domains. Its superior adaptability and task success rate establish Aime as a more resilient and effective foundation for multi-agent collaboration.

  • 15 authors
·
Jul 16

ShapefileGPT: A Multi-Agent Large Language Model Framework for Automated Shapefile Processing

Vector data is one of the two core data structures in geographic information science (GIS), essential for accurately storing and representing geospatial information. Shapefile, the most widely used vector data format, has become the industry standard supported by all major geographic information systems. However, processing this data typically requires specialized GIS knowledge and skills, creating a barrier for researchers from other fields and impeding interdisciplinary research in spatial data analysis. Moreover, while large language models (LLMs) have made significant advancements in natural language processing and task automation, they still face challenges in handling the complex spatial and topological relationships inherent in GIS vector data. To address these challenges, we propose ShapefileGPT, an innovative framework powered by LLMs, specifically designed to automate Shapefile tasks. ShapefileGPT utilizes a multi-agent architecture, in which the planner agent is responsible for task decomposition and supervision, while the worker agent executes the tasks. We developed a specialized function library for handling Shapefiles and provided comprehensive API documentation, enabling the worker agent to operate Shapefiles efficiently through function calling. For evaluation, we developed a benchmark dataset based on authoritative textbooks, encompassing tasks in categories such as geometric operations and spatial queries. ShapefileGPT achieved a task success rate of 95.24%, outperforming the GPT series models. In comparison to traditional LLMs, ShapefileGPT effectively handles complex vector data analysis tasks, overcoming the limitations of traditional LLMs in spatial analysis. This breakthrough opens new pathways for advancing automation and intelligence in the GIS field, with significant potential in interdisciplinary data analysis and application contexts.

  • 9 authors
·
Oct 16, 2024

WebShop: Towards Scalable Real-World Web Interaction with Grounded Language Agents

Existing benchmarks for grounding language in interactive environments either lack real-world linguistic elements, or prove difficult to scale up due to substantial human involvement in the collection of data or feedback signals. To bridge this gap, we develop WebShop -- a simulated e-commerce website environment with 1.18 million real-world products and 12,087 crowd-sourced text instructions. Given a text instruction specifying a product requirement, an agent needs to navigate multiple types of webpages and issue diverse actions to find, customize, and purchase an item. WebShop provides several challenges for language grounding including understanding compositional instructions, query (re-)formulation, comprehending and acting on noisy text in webpages, and performing strategic exploration. We collect over 1,600 human demonstrations for the task, and train and evaluate a diverse range of agents using reinforcement learning, imitation learning, and pre-trained image and language models. Our best model achieves a task success rate of 29%, which outperforms rule-based heuristics (9.6%) but is far lower than human expert performance (59%). We also analyze agent and human trajectories and ablate various model components to provide insights for developing future agents with stronger language understanding and decision making abilities. Finally, we show that agents trained on WebShop exhibit non-trivial sim-to-real transfer when evaluated on amazon.com and ebay.com, indicating the potential value of WebShop in developing practical web-based agents that can operate in the wild.

  • 4 authors
·
Jul 4, 2022

WebCanvas: Benchmarking Web Agents in Online Environments

For web agents to be practically useful, they must adapt to the continuously evolving web environment characterized by frequent updates to user interfaces and content. However, most existing benchmarks only capture the static aspects of the web. To bridge this gap, we introduce WebCanvas, an innovative online evaluation framework for web agents that effectively addresses the dynamic nature of web interactions. WebCanvas contains three main components to facilitate realistic assessments: (1) A novel evaluation metric which reliably capture critical intermediate actions or states necessary for task completions while disregarding noise caused by insignificant events or changed web-elements. (2) A benchmark dataset called Mind2Web-Live, a refined version of original Mind2Web static dataset containing 542 tasks with 2439 intermediate evaluation states; (3) Lightweight and generalizable annotation tools and testing pipelines that enables the community to collect and maintain the high-quality, up-to-date dataset. Building on WebCanvas, we open-source an agent framework with extensible modules for reasoning, providing a foundation for the community to conduct online inference and evaluations. Our best-performing agent achieves a task success rate of 23.1% and a task completion rate of 48.8% on the Mind2Web-Live test set. Additionally, we analyze the performance discrepancies across various websites, domains, and experimental environments. We encourage the community to contribute further insights on online agent evaluation, thereby advancing this field of research.

  • 11 authors
·
Jun 18, 2024

ICAL: Continual Learning of Multimodal Agents by Transforming Trajectories into Actionable Insights

Large-scale generative language and vision-language models (LLMs and VLMs) excel in few-shot in-context learning for decision making and instruction following. However, they require high-quality exemplar demonstrations to be included in their context window. In this work, we ask: Can LLMs and VLMs generate their own prompt examples from generic, sub-optimal demonstrations? We propose In-Context Abstraction Learning (ICAL), a method that builds a memory of multimodal experience insights from sub-optimal demonstrations and human feedback. Given a noisy demonstration in a new domain, VLMs abstract the trajectory into a general program by fixing inefficient actions and annotating cognitive abstractions: task relationships, object state changes, temporal subgoals, and task construals. These abstractions are refined and adapted interactively through human feedback while the agent attempts to execute the trajectory in a similar environment. The resulting abstractions, when used as exemplars in the prompt, significantly improve decision-making in retrieval-augmented LLM and VLM agents. Our ICAL agent surpasses the state-of-the-art in dialogue-based instruction following in TEACh, multimodal web agents in VisualWebArena, and action anticipation in Ego4D. In TEACh, we achieve a 12.6% improvement in goal-condition success. In VisualWebArena, our task success rate improves over the SOTA from 14.3% to 22.7%. In Ego4D action forecasting, we improve over few-shot GPT-4V and remain competitive with supervised models. We show finetuning our retrieval-augmented in-context agent yields additional improvements. Our approach significantly reduces reliance on expert-crafted examples and consistently outperforms in-context learning from action plans that lack such insights.

  • 6 authors
·
Jun 20, 2024 2

Hi-Agent: Hierarchical Vision-Language Agents for Mobile Device Control

Building agents that autonomously operate mobile devices has attracted increasing attention. While Vision-Language Models (VLMs) show promise, most existing approaches rely on direct state-to-action mappings, which lack structured reasoning and planning, and thus generalize poorly to novel tasks or unseen UI layouts. We introduce Hi-Agent, a trainable hierarchical vision-language agent for mobile control, featuring a high-level reasoning model and a low-level action model that are jointly optimized. For efficient training, we reformulate multi-step decision-making as a sequence of single-step subgoals and propose a foresight advantage function, which leverages execution feedback from the low-level model to guide high-level optimization. This design alleviates the path explosion issue encountered by Group Relative Policy Optimization (GRPO) in long-horizon tasks and enables stable, critic-free joint training. Hi-Agent achieves a new State-Of-The-Art (SOTA) 87.9% task success rate on the Android-in-the-Wild (AitW) benchmark, significantly outperforming prior methods across three paradigms: prompt-based (AppAgent: 17.7%), supervised (Filtered BC: 54.5%), and reinforcement learning-based (DigiRL: 71.9%). It also demonstrates competitive zero-shot generalization on the ScreenSpot-v2 benchmark. On the more challenging AndroidWorld benchmark, Hi-Agent also scales effectively with larger backbones, showing strong adaptability in high-complexity mobile control scenarios.

  • 12 authors
·
Oct 16

Transferable Tactile Transformers for Representation Learning Across Diverse Sensors and Tasks

This paper presents T3: Transferable Tactile Transformers, a framework for tactile representation learning that scales across multi-sensors and multi-tasks. T3 is designed to overcome the contemporary issue that camera-based tactile sensing is extremely heterogeneous, i.e. sensors are built into different form factors, and existing datasets were collected for disparate tasks. T3 captures the shared latent information across different sensor-task pairings by constructing a shared trunk transformer with sensor-specific encoders and task-specific decoders. The pre-training of T3 utilizes a novel Foundation Tactile (FoTa) dataset, which is aggregated from several open-sourced datasets and it contains over 3 million data points gathered from 13 sensors and 11 tasks. FoTa is the largest and most diverse dataset in tactile sensing to date and it is made publicly available in a unified format. Across various sensors and tasks, experiments show that T3 pre-trained with FoTa achieved zero-shot transferability in certain sensor-task pairings, can be further fine-tuned with small amounts of domain-specific data, and its performance scales with bigger network sizes. T3 is also effective as a tactile encoder for long horizon contact-rich manipulation. Results from sub-millimeter multi-pin electronics insertion tasks show that T3 achieved a task success rate 25% higher than that of policies trained with tactile encoders trained from scratch, or 53% higher than without tactile sensing. Data, code, and model checkpoints are open-sourced at https://t3.alanz.info.

  • 4 authors
·
Jun 19, 2024

WebArena: A Realistic Web Environment for Building Autonomous Agents

With generative AI advances, the exciting potential for autonomous agents to manage daily tasks via natural language commands has emerged. However, cur rent agents are primarily created and tested in simplified synthetic environments, substantially limiting real-world scenario representation. In this paper, we build an environment for agent command and control that is highly realistic and reproducible. Specifically, we focus on agents that perform tasks on websites, and we create an environment with fully functional websites from four common domains: e-commerce, social forum discussions, collaborative software development, and content management. Our environment is enriched with tools (e.g., a map) and external knowledge bases (e.g., user manuals) to encourage human-like task-solving. Building upon our environment, we release a set of benchmark tasks focusing on evaluating the functional correctness of task completions. The tasks in our benchmark are diverse, long-horizon, and are designed to emulate tasks that humans routinely perform on the internet. We design and implement several autonomous agents, integrating recent techniques such as reasoning before acting. The results demonstrate that solving complex tasks is challenging: our best GPT-4-based agent only achieves an end-to-end task success rate of 10.59%. These results highlight the need for further development of robust agents, that current state-of-the-art LMs are far from perfect performance in these real-life tasks, and that WebArena can be used to measure such progress. Our code, data, environment reproduction resources, and video demonstrations are publicly available at https://webarena.dev/.

  • 11 authors
·
Jul 25, 2023 4

WebAgent-R1: Training Web Agents via End-to-End Multi-Turn Reinforcement Learning

While reinforcement learning (RL) has demonstrated remarkable success in enhancing large language models (LLMs), it has primarily focused on single-turn tasks such as solving math problems. Training effective web agents for multi-turn interactions remains challenging due to the complexity of long-horizon decision-making across dynamic web interfaces. In this work, we present WebAgent-R1, a simple yet effective end-to-end multi-turn RL framework for training web agents. It learns directly from online interactions with web environments by asynchronously generating diverse trajectories, entirely guided by binary rewards depending on task success. Experiments on the WebArena-Lite benchmark demonstrate the effectiveness of WebAgent-R1, boosting the task success rate of Qwen-2.5-3B from 6.1% to 33.9% and Llama-3.1-8B from 8.5% to 44.8%, significantly outperforming existing state-of-the-art methods and strong proprietary models such as OpenAI o3. In-depth analyses reveal the effectiveness of the thinking-based prompting strategy and test-time scaling through increased interactions for web tasks. We further investigate different RL initialization policies by introducing two variants, namely WebAgent-R1-Zero and WebAgent-R1-CoT, which highlight the importance of the warm-up training stage (i.e., behavior cloning) and provide insights on incorporating long chain-of-thought (CoT) reasoning in web agents.

Align-Then-stEer: Adapting the Vision-Language Action Models through Unified Latent Guidance

Vision-Language-Action (VLA) models pre-trained on large, diverse datasets show remarkable potential for general-purpose robotic manipulation. However, a primary bottleneck remains in adapting these models to downstream tasks, especially when the robot's embodiment or the task itself differs from the pre-training data. This discrepancy leads to a significant mismatch in action distributions, demanding extensive data and compute for effective fine-tuning. To address this challenge, we introduce Align-Then-stEer (\texttt{ATE)}, a novel, data-efficient, and plug-and-play adaptation framework. ATE first aligns disparate action spaces by constructing a unified latent space, where a variational autoencoder constrained by reverse KL divergence embeds adaptation actions into modes of the pre-training action latent distribution. Subsequently, it steers the diffusion- or flow-based VLA's generation process during fine-tuning via a guidance mechanism that pushes the model's output distribution towards the target domain. We conduct extensive experiments on cross-embodiment and cross-task manipulation in both simulation and real world. Compared to direct fine-tuning of representative VLAs, our method improves the average multi-task success rate by up to 9.8\% in simulation and achieves a striking 32\% success rate gain in a real-world cross-embodiment setting. Our work presents a general and lightweight solution that greatly enhances the practicality of deploying VLA models to new robotic platforms and tasks.

  • 10 authors
·
Sep 2

GraphCoT-VLA: A 3D Spatial-Aware Reasoning Vision-Language-Action Model for Robotic Manipulation with Ambiguous Instructions

Vision-language-action models have emerged as a crucial paradigm in robotic manipulation. However, existing VLA models exhibit notable limitations in handling ambiguous language instructions and unknown environmental states. Furthermore, their perception is largely constrained to static two-dimensional observations, lacking the capability to model three-dimensional interactions between the robot and its environment. To address these challenges, this paper proposes GraphCoT-VLA, an efficient end-to-end model. To enhance the model's ability to interpret ambiguous instructions and improve task planning, we design a structured Chain-of-Thought reasoning module that integrates high-level task understanding and planning, failed task feedback, and low-level imaginative reasoning about future object positions and robot actions. Additionally, we construct a real-time updatable 3D Pose-Object graph, which captures the spatial configuration of robot joints and the topological relationships between objects in 3D space, enabling the model to better understand and manipulate their interactions. We further integrates a dropout hybrid reasoning strategy to achieve efficient control outputs. Experimental results across multiple real-world robotic tasks demonstrate that GraphCoT-VLA significantly outperforms existing methods in terms of task success rate and response speed, exhibiting strong generalization and robustness in open environments and under uncertain instructions.

  • 6 authors
·
Aug 11