new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jul 31

A Dataset for Greek Traditional and Folk Music: Lyra

Studying under-represented music traditions under the MIR scope is crucial, not only for developing novel analysis tools, but also for unveiling musical functions that might prove useful in studying world musics. This paper presents a dataset for Greek Traditional and Folk music that includes 1570 pieces, summing in around 80 hours of data. The dataset incorporates YouTube timestamped links for retrieving audio and video, along with rich metadata information with regards to instrumentation, geography and genre, among others. The content has been collected from a Greek documentary series that is available online, where academics present music traditions of Greece with live music and dance performance during the show, along with discussions about social, cultural and musicological aspects of the presented music. Therefore, this procedure has resulted in a significant wealth of descriptions regarding a variety of aspects, such as musical genre, places of origin and musical instruments. In addition, the audio recordings were performed under strict production-level specifications, in terms of recording equipment, leading to very clean and homogeneous audio content. In this work, apart from presenting the dataset in detail, we propose a baseline deep-learning classification approach to recognize the involved musicological attributes. The dataset, the baseline classification methods and the models are provided in public repositories. Future directions for further refining the dataset are also discussed.

Toward Inclusive Educational AI: Auditing Frontier LLMs through a Multiplexity Lens

As large language models (LLMs) like GPT-4 and Llama 3 become integral to educational contexts, concerns are mounting over the cultural biases, power imbalances, and ethical limitations embedded within these technologies. Though generative AI tools aim to enhance learning experiences, they often reflect values rooted in Western, Educated, Industrialized, Rich, and Democratic (WEIRD) cultural paradigms, potentially sidelining diverse global perspectives. This paper proposes a framework to assess and mitigate cultural bias within LLMs through the lens of applied multiplexity. Multiplexity, inspired by Senturk et al. and rooted in Islamic and other wisdom traditions, emphasizes the coexistence of diverse cultural viewpoints, supporting a multi-layered epistemology that integrates both empirical sciences and normative values. Our analysis reveals that LLMs frequently exhibit cultural polarization, with biases appearing in both overt responses and subtle contextual cues. To address inherent biases and incorporate multiplexity in LLMs, we propose two strategies: Contextually-Implemented Multiplex LLMs, which embed multiplex principles directly into the system prompt, influencing LLM outputs at a foundational level and independent of individual prompts, and Multi-Agent System (MAS)-Implemented Multiplex LLMs, where multiple LLM agents, each representing distinct cultural viewpoints, collaboratively generate a balanced, synthesized response. Our findings demonstrate that as mitigation strategies evolve from contextual prompting to MAS-implementation, cultural inclusivity markedly improves, evidenced by a significant rise in the Perspectives Distribution Score (PDS) and a PDS Entropy increase from 3.25\% at baseline to 98\% with the MAS-Implemented Multiplex LLMs. Sentiment analysis further shows a shift towards positive sentiment across cultures,...

Crowdsource, Crawl, or Generate? Creating SEA-VL, a Multicultural Vision-Language Dataset for Southeast Asia

Southeast Asia (SEA) is a region of extraordinary linguistic and cultural diversity, yet it remains significantly underrepresented in vision-language (VL) research. This often results in artificial intelligence (AI) models that fail to capture SEA cultural nuances. To fill this gap, we present SEA-VL, an open-source initiative dedicated to developing high-quality, culturally relevant data for SEA languages. By involving contributors from SEA countries, SEA-VL aims to ensure better cultural relevance and diversity, fostering greater inclusivity of underrepresented languages in VL research. Beyond crowdsourcing, our initiative goes one step further in the exploration of the automatic collection of culturally relevant images through crawling and image generation. First, we find that image crawling achieves approximately ~85% cultural relevance while being more cost- and time-efficient than crowdsourcing. Second, despite the substantial progress in generative vision models, synthetic images remain unreliable in accurately reflecting SEA cultures. The generated images often fail to reflect the nuanced traditions and cultural contexts of the region. Collectively, we gather 1.28M SEA culturally-relevant images, more than 50 times larger than other existing datasets. Through SEA-VL, we aim to bridge the representation gap in SEA, fostering the development of more inclusive AI systems that authentically represent diverse cultures across SEA.

CultureMERT: Continual Pre-Training for Cross-Cultural Music Representation Learning

Recent advances in music foundation models have improved audio representation learning, yet their effectiveness across diverse musical traditions remains limited. We introduce CultureMERT-95M, a multi-culturally adapted foundation model developed to enhance cross-cultural music representation learning and understanding. To achieve this, we propose a two-stage continual pre-training strategy that integrates learning rate re-warming and re-decaying, enabling stable adaptation even with limited computational resources. Training on a 650-hour multi-cultural data mix, comprising Greek, Turkish, and Indian music traditions, results in an average improvement of 4.9% in ROC-AUC and AP across diverse non-Western music auto-tagging tasks, surpassing prior state-of-the-art, with minimal forgetting on Western-centric benchmarks. We further investigate task arithmetic, an alternative approach to multi-cultural adaptation that merges single-culture adapted models in the weight space. Task arithmetic performs on par with our multi-culturally trained model on non-Western auto-tagging tasks and shows no regression on Western datasets. Cross-cultural evaluation reveals that single-culture models transfer with varying effectiveness across musical traditions, whereas the multi-culturally adapted model achieves the best overall performance. To support research on world music representation learning, we publicly release CultureMERT-95M and CultureMERT-TA-95M, fostering the development of more culturally aware music foundation models.

All Languages Matter: Evaluating LMMs on Culturally Diverse 100 Languages

Existing Large Multimodal Models (LMMs) generally focus on only a few regions and languages. As LMMs continue to improve, it is increasingly important to ensure they understand cultural contexts, respect local sensitivities, and support low-resource languages, all while effectively integrating corresponding visual cues. In pursuit of culturally diverse global multimodal models, our proposed All Languages Matter Benchmark (ALM-bench) represents the largest and most comprehensive effort to date for evaluating LMMs across 100 languages. ALM-bench challenges existing models by testing their ability to understand and reason about culturally diverse images paired with text in various languages, including many low-resource languages traditionally underrepresented in LMM research. The benchmark offers a robust and nuanced evaluation framework featuring various question formats, including true/false, multiple choice, and open-ended questions, which are further divided into short and long-answer categories. ALM-bench design ensures a comprehensive assessment of a model's ability to handle varied levels of difficulty in visual and linguistic reasoning. To capture the rich tapestry of global cultures, ALM-bench carefully curates content from 13 distinct cultural aspects, ranging from traditions and rituals to famous personalities and celebrations. Through this, ALM-bench not only provides a rigorous testing ground for state-of-the-art open and closed-source LMMs but also highlights the importance of cultural and linguistic inclusivity, encouraging the development of models that can serve diverse global populations effectively. Our benchmark is publicly available.

Beyond Color and Lines: Zero-Shot Style-Specific Image Variations with Coordinated Semantics

Traditionally, style has been primarily considered in terms of artistic elements such as colors, brushstrokes, and lighting. However, identical semantic subjects, like people, boats, and houses, can vary significantly across different artistic traditions, indicating that style also encompasses the underlying semantics. Therefore, in this study, we propose a zero-shot scheme for image variation with coordinated semantics. Specifically, our scheme transforms the image-to-image problem into an image-to-text-to-image problem. The image-to-text operation employs vision-language models e.g., BLIP) to generate text describing the content of the input image, including the objects and their positions. Subsequently, the input style keyword is elaborated into a detailed description of this style and then merged with the content text using the reasoning capabilities of ChatGPT. Finally, the text-to-image operation utilizes a Diffusion model to generate images based on the text prompt. To enable the Diffusion model to accommodate more styles, we propose a fine-tuning strategy that injects text and style constraints into cross-attention. This ensures that the output image exhibits similar semantics in the desired style. To validate the performance of the proposed scheme, we constructed a benchmark comprising images of various styles and scenes and introduced two novel metrics. Despite its simplicity, our scheme yields highly plausible results in a zero-shot manner, particularly for generating stylized images with high-fidelity semantics.

A Benchmark Dataset with Larger Context for Non-Factoid Question Answering over Islamic Text

Accessing and comprehending religious texts, particularly the Quran (the sacred scripture of Islam) and Ahadith (the corpus of the sayings or traditions of the Prophet Muhammad), in today's digital era necessitates efficient and accurate Question-Answering (QA) systems. Yet, the scarcity of QA systems tailored specifically to the detailed nature of inquiries about the Quranic Tafsir (explanation, interpretation, context of Quran for clarity) and Ahadith poses significant challenges. To address this gap, we introduce a comprehensive dataset meticulously crafted for QA purposes within the domain of Quranic Tafsir and Ahadith. This dataset comprises a robust collection of over 73,000 question-answer pairs, standing as the largest reported dataset in this specialized domain. Importantly, both questions and answers within the dataset are meticulously enriched with contextual information, serving as invaluable resources for training and evaluating tailored QA systems. However, while this paper highlights the dataset's contributions and establishes a benchmark for evaluating QA performance in the Quran and Ahadith domains, our subsequent human evaluation uncovered critical insights regarding the limitations of existing automatic evaluation techniques. The discrepancy between automatic evaluation metrics, such as ROUGE scores, and human assessments became apparent. The human evaluation indicated significant disparities: the model's verdict consistency with expert scholars ranged between 11% to 20%, while its contextual understanding spanned a broader spectrum of 50% to 90%. These findings underscore the necessity for evaluation techniques that capture the nuances and complexities inherent in understanding religious texts, surpassing the limitations of traditional automatic metrics.

FlashRNN: Optimizing Traditional RNNs on Modern Hardware

While Transformers and other sequence-parallelizable neural network architectures seem like the current state of the art in sequence modeling, they specifically lack state-tracking capabilities. These are important for time-series tasks and logical reasoning. Traditional RNNs like LSTMs and GRUs, as well as modern variants like sLSTM do have these capabilities at the cost of strictly sequential processing. While this is often seen as a strong limitation, we show how fast these networks can get with our hardware-optimization FlashRNN in Triton and CUDA, optimizing kernels to the register level on modern GPUs. We extend traditional RNNs with a parallelization variant that processes multiple RNNs of smaller hidden state in parallel, similar to the head-wise processing in Transformers. To enable flexibility on different GPU variants, we introduce a new optimization framework for hardware-internal cache sizes, memory and compute handling. It models the hardware in a setting using polyhedral-like constraints, including the notion of divisibility. This speeds up the solution process in our ConstrINT library for general integer constraint satisfaction problems (integer CSPs). We show that our kernels can achieve 50x speed-ups over a vanilla PyTorch implementation and allow 40x larger hidden sizes compared to our Triton implementation. Our open-source kernels and the optimization library are released here to boost research in the direction of state-tracking enabled RNNs and sequence modeling: https://github.com/NX-AI/flashrnn

Comparative Evaluation of Traditional and Deep Learning-Based Segmentation Methods for Spoil Pile Delineation Using UAV Images

The stability of mine dumps is contingent upon the precise arrangement of spoil piles, taking into account their geological and geotechnical attributes. Yet, on-site characterisation of individual piles poses a formidable challenge. The utilisation of image-based techniques for spoil pile characterisation, employing remotely acquired data through unmanned aerial systems, is a promising complementary solution. Image processing, such as object-based classification and feature extraction, are dependent upon effective segmentation. This study refines and juxtaposes various segmentation approaches, specifically colour-based and morphology-based techniques. The objective is to enhance and evaluate avenues for object-based analysis for spoil characterisation within the context of mining environments. Furthermore, a comparative analysis is conducted between conventional segmentation approaches and those rooted in deep learning methodologies. Among the diverse segmentation approaches evaluated, the morphology-based deep learning segmentation approach, Segment Anything Model (SAM), exhibited superior performance in comparison to other approaches. This outcome underscores the efficacy of incorporating advanced morphological and deep learning techniques for accurate and efficient spoil pile characterisation. The findings of this study contribute valuable insights to the optimisation of segmentation strategies, thereby advancing the application of image-based techniques for the characterisation of spoil piles in mining environments.

Advancing the Evaluation of Traditional Chinese Language Models: Towards a Comprehensive Benchmark Suite

The evaluation of large language models is an essential task in the field of language understanding and generation. As language models continue to advance, the need for effective benchmarks to assess their performance has become imperative. In the context of Traditional Chinese, there is a scarcity of comprehensive and diverse benchmarks to evaluate the capabilities of language models, despite the existence of certain benchmarks such as DRCD, TTQA, CMDQA, and FGC dataset. To address this gap, we propose a novel set of benchmarks that leverage existing English datasets and are tailored to evaluate language models in Traditional Chinese. These benchmarks encompass a wide range of tasks, including contextual question-answering, summarization, classification, and table understanding. The proposed benchmarks offer a comprehensive evaluation framework, enabling the assessment of language models' capabilities across different tasks. In this paper, we evaluate the performance of GPT-3.5, Taiwan-LLaMa-v1.0, and Model 7-C, our proprietary model, on these benchmarks. The evaluation results highlight that our model, Model 7-C, achieves performance comparable to GPT-3.5 with respect to a part of the evaluated capabilities. In an effort to advance the evaluation of language models in Traditional Chinese and stimulate further research in this field, we have open-sourced our benchmark and opened the model for trial.

Characterizing Bias: Benchmarking Large Language Models in Simplified versus Traditional Chinese

While the capabilities of Large Language Models (LLMs) have been studied in both Simplified and Traditional Chinese, it is yet unclear whether LLMs exhibit differential performance when prompted in these two variants of written Chinese. This understanding is critical, as disparities in the quality of LLM responses can perpetuate representational harms by ignoring the different cultural contexts underlying Simplified versus Traditional Chinese, and can exacerbate downstream harms in LLM-facilitated decision-making in domains such as education or hiring. To investigate potential LLM performance disparities, we design two benchmark tasks that reflect real-world scenarios: regional term choice (prompting the LLM to name a described item which is referred to differently in Mainland China and Taiwan), and regional name choice (prompting the LLM to choose who to hire from a list of names in both Simplified and Traditional Chinese). For both tasks, we audit the performance of 11 leading commercial LLM services and open-sourced models -- spanning those primarily trained on English, Simplified Chinese, or Traditional Chinese. Our analyses indicate that biases in LLM responses are dependent on both the task and prompting language: while most LLMs disproportionately favored Simplified Chinese responses in the regional term choice task, they surprisingly favored Traditional Chinese names in the regional name choice task. We find that these disparities may arise from differences in training data representation, written character preferences, and tokenization of Simplified and Traditional Chinese. These findings highlight the need for further analysis of LLM biases; as such, we provide an open-sourced benchmark dataset to foster reproducible evaluations of future LLM behavior across Chinese language variants (https://github.com/brucelyu17/SC-TC-Bench).

Towards robust audio spoofing detection: a detailed comparison of traditional and learned features

Automatic speaker verification, like every other biometric system, is vulnerable to spoofing attacks. Using only a few minutes of recorded voice of a genuine client of a speaker verification system, attackers can develop a variety of spoofing attacks that might trick such systems. Detecting these attacks using the audio cues present in the recordings is an important challenge. Most existing spoofing detection systems depend on knowing the used spoofing technique. With this research, we aim at overcoming this limitation, by examining robust audio features, both traditional and those learned through an autoencoder, that are generalizable over different types of replay spoofing. Furthermore, we provide a detailed account of all the steps necessary in setting up state-of-the-art audio feature detection, pre-, and postprocessing, such that the (non-audio expert) machine learning researcher can implement such systems. Finally, we evaluate the performance of our robust replay speaker detection system with a wide variety and different combinations of both extracted and machine learned audio features on the `out in the wild' ASVspoof 2017 dataset. This dataset contains a variety of new spoofing configurations. Since our focus is on examining which features will ensure robustness, we base our system on a traditional Gaussian Mixture Model-Universal Background Model. We then systematically investigate the relative contribution of each feature set. The fused models, based on both the known audio features and the machine learned features respectively, have a comparable performance with an Equal Error Rate (EER) of 12. The final best performing model, which obtains an EER of 10.8, is a hybrid model that contains both known and machine learned features, thus revealing the importance of incorporating both types of features when developing a robust spoofing prediction model.