new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jul 29

RaVL: Discovering and Mitigating Spurious Correlations in Fine-Tuned Vision-Language Models

Fine-tuned vision-language models (VLMs) often capture spurious correlations between image features and textual attributes, resulting in degraded zero-shot performance at test time. Existing approaches for addressing spurious correlations (i) primarily operate at the global image-level rather than intervening directly on fine-grained image features and (ii) are predominantly designed for unimodal settings. In this work, we present RaVL, which takes a fine-grained perspective on VLM robustness by discovering and mitigating spurious correlations using local image features rather than operating at the global image level. Given a fine-tuned VLM, RaVL first discovers spurious correlations by leveraging a region-level clustering approach to identify precise image features contributing to zero-shot classification errors. Then, RaVL mitigates the identified spurious correlation with a novel region-aware loss function that enables the VLM to focus on relevant regions and ignore spurious relationships during fine-tuning. We evaluate RaVL on 654 VLMs with various model architectures, data domains, and learned spurious correlations. Our results show that RaVL accurately discovers (191% improvement over the closest baseline) and mitigates (8.2% improvement on worst-group image classification accuracy) spurious correlations. Qualitative evaluations on general-domain and medical-domain VLMs confirm our findings.

Accuracy on the Curve: On the Nonlinear Correlation of ML Performance Between Data Subpopulations

Understanding the performance of machine learning (ML) models across diverse data distributions is critically important for reliable applications. Despite recent empirical studies positing a near-perfect linear correlation between in-distribution (ID) and out-of-distribution (OOD) accuracies, we empirically demonstrate that this correlation is more nuanced under subpopulation shifts. Through rigorous experimentation and analysis across a variety of datasets, models, and training epochs, we demonstrate that OOD performance often has a nonlinear correlation with ID performance in subpopulation shifts. Our findings, which contrast previous studies that have posited a linear correlation in model performance during distribution shifts, reveal a "moon shape" correlation (parabolic uptrend curve) between the test performance on the majority subpopulation and the minority subpopulation. This non-trivial nonlinear correlation holds across model architectures, hyperparameters, training durations, and the imbalance between subpopulations. Furthermore, we found that the nonlinearity of this "moon shape" is causally influenced by the degree of spurious correlations in the training data. Our controlled experiments show that stronger spurious correlation in the training data creates more nonlinear performance correlation. We provide complementary experimental and theoretical analyses for this phenomenon, and discuss its implications for ML reliability and fairness. Our work highlights the importance of understanding the nonlinear effects of model improvement on performance in different subpopulations, and has the potential to inform the development of more equitable and responsible machine learning models.

Mask of truth: model sensitivity to unexpected regions of medical images

The development of larger models for medical image analysis has led to increased performance. However, it also affected our ability to explain and validate model decisions. Models can use non-relevant parts of images, also called spurious correlations or shortcuts, to obtain high performance on benchmark datasets but fail in real-world scenarios. In this work, we challenge the capacity of convolutional neural networks (CNN) to classify chest X-rays and eye fundus images while masking out clinically relevant parts of the image. We show that all models trained on the PadChest dataset, irrespective of the masking strategy, are able to obtain an Area Under the Curve (AUC) above random. Moreover, the models trained on full images obtain good performance on images without the region of interest (ROI), even superior to the one obtained on images only containing the ROI. We also reveal a possible spurious correlation in the Chaksu dataset while the performances are more aligned with the expectation of an unbiased model. We go beyond the performance analysis with the usage of the explainability method SHAP and the analysis of embeddings. We asked a radiology resident to interpret chest X-rays under different masking to complement our findings with clinical knowledge. Our code is available at https://github.com/TheoSourget/MMC_Masking and https://github.com/TheoSourget/MMC_Masking_EyeFundus

Debiasing Multimodal Models via Causal Information Minimization

Most existing debiasing methods for multimodal models, including causal intervention and inference methods, utilize approximate heuristics to represent the biases, such as shallow features from early stages of training or unimodal features for multimodal tasks like VQA, etc., which may not be accurate. In this paper, we study bias arising from confounders in a causal graph for multimodal data and examine a novel approach that leverages causally-motivated information minimization to learn the confounder representations. Robust predictive features contain diverse information that helps a model generalize to out-of-distribution data. Hence, minimizing the information content of features obtained from a pretrained biased model helps learn the simplest predictive features that capture the underlying data distribution. We treat these features as confounder representations and use them via methods motivated by causal theory to remove bias from models. We find that the learned confounder representations indeed capture dataset biases, and the proposed debiasing methods improve out-of-distribution (OOD) performance on multiple multimodal datasets without sacrificing in-distribution performance. Additionally, we introduce a novel metric to quantify the sufficiency of spurious features in models' predictions that further demonstrates the effectiveness of our proposed methods. Our code is available at: https://github.com/Vaidehi99/CausalInfoMin

MetaCoCo: A New Few-Shot Classification Benchmark with Spurious Correlation

Out-of-distribution (OOD) problems in few-shot classification (FSC) occur when novel classes sampled from testing distributions differ from base classes drawn from training distributions, which considerably degrades the performance of deep learning models deployed in real-world applications. Recent studies suggest that the OOD problems in FSC mainly including: (a) cross-domain few-shot classification (CD-FSC) and (b) spurious-correlation few-shot classification (SC-FSC). Specifically, CD-FSC occurs when a classifier learns transferring knowledge from base classes drawn from seen training distributions but recognizes novel classes sampled from unseen testing distributions. In contrast, SC-FSC arises when a classifier relies on non-causal features (or contexts) that happen to be correlated with the labels (or concepts) in base classes but such relationships no longer hold during the model deployment. Despite CD-FSC has been extensively studied, SC-FSC remains understudied due to lack of the corresponding evaluation benchmarks. To this end, we present Meta Concept Context (MetaCoCo), a benchmark with spurious-correlation shifts collected from real-world scenarios. Moreover, to quantify the extent of spurious-correlation shifts of the presented MetaCoCo, we further propose a metric by using CLIP as a pre-trained vision-language model. Extensive experiments on the proposed benchmark are performed to evaluate the state-of-the-art methods in FSC, cross-domain shifts, and self-supervised learning. The experimental results show that the performance of the existing methods degrades significantly in the presence of spurious-correlation shifts. We open-source all codes of our benchmark and hope that the proposed MetaCoCo can facilitate future research on spurious-correlation shifts problems in FSC. The code is available at: https://github.com/remiMZ/MetaCoCo-ICLR24.

Can Multimodal LLMs Perform Time Series Anomaly Detection?

Large language models (LLMs) have been increasingly used in time series analysis. However, the potential of multimodal LLMs (MLLMs), particularly vision-language models, for time series remains largely under-explored. One natural way for humans to detect time series anomalies is through visualization and textual description. Motivated by this, we raise a critical and practical research question: Can multimodal LLMs perform time series anomaly detection? To answer this, we propose VisualTimeAnomaly benchmark to evaluate MLLMs in time series anomaly detection (TSAD). Our approach transforms time series numerical data into the image format and feed these images into various MLLMs, including proprietary models (GPT-4o and Gemini-1.5) and open-source models (LLaVA-NeXT and Qwen2-VL), each with one larger and one smaller variant. In total, VisualTimeAnomaly contains 12.4k time series images spanning 3 scenarios and 3 anomaly granularities with 9 anomaly types across 8 MLLMs. Starting with the univariate case (point- and range-wise anomalies), we extend our evaluation to more practical scenarios, including multivariate and irregular time series scenarios, and variate-wise anomalies. Our study reveals several key insights: 1) MLLMs detect range- and variate-wise anomalies more effectively than point-wise anomalies. 2) MLLMs are highly robust to irregular time series, even with 25% of the data missing. 3) Open-source MLLMs perform comparably to proprietary models in TSAD. While open-source MLLMs excel on univariate time series, proprietary MLLMs demonstrate superior effectiveness on multivariate time series. To the best of our knowledge, this is the first work to comprehensively investigate MLLMs for TSAD, particularly for multivariate and irregular time series scenarios. We release our dataset and code at https://github.com/mllm-ts/VisualTimeAnomaly to support future research.

Spurious Feature Diversification Improves Out-of-distribution Generalization

Generalization to out-of-distribution (OOD) data is a critical challenge in machine learning. Ensemble-based methods, like weight space ensembles that interpolate model parameters, have been shown to achieve superior OOD performance. However, the underlying mechanism for their effectiveness remains unclear. In this study, we closely examine WiSE-FT, a popular weight space ensemble method that interpolates between a pre-trained and a fine-tuned model. We observe an unexpected phenomenon, in which WiSE-FT successfully corrects many cases where each individual model makes incorrect predictions, which contributes significantly to its OOD effectiveness. To gain further insights, we conduct theoretical analysis in a multi-class setting with a large number of spurious features. Our analysis predicts the above phenomenon and it further shows that ensemble-based models reduce prediction errors in the OOD settings by utilizing a more diverse set of spurious features. Contrary to the conventional wisdom that focuses on learning invariant features for better OOD performance, our findings suggest that incorporating a large number of diverse spurious features weakens their individual contributions, leading to improved overall OOD generalization performance. Empirically we demonstrate the effectiveness of utilizing diverse spurious features on a MultiColorMNIST dataset, and our experimental results are consistent with the theoretical analysis. Building upon the new theoretical insights into the efficacy of ensemble methods, we further identify an issue of WiSE-FT caused by the overconfidence of fine-tuned models in OOD situations. This overconfidence magnifies the fine-tuned model's incorrect prediction, leading to deteriorated OOD ensemble performance. To remedy this problem, we propose a novel method called BAlaNced averaGing (BANG), which significantly enhances the OOD performance of WiSE-FT.

Robust Reward Modeling via Causal Rubrics

Reward models (RMs) are fundamental to aligning Large Language Models (LLMs) via human feedback, yet they often suffer from reward hacking. They tend to latch on to superficial or spurious attributes, such as response length or formatting, mistaking these cues learned from correlations in training data for the true causal drivers of quality (e.g., factuality, relevance). This occurs because standard training objectives struggle to disentangle these factors, leading to brittle RMs and misaligned policies. We introduce Crome (Causally Robust Reward Modeling), a novel framework grounded in an explicit causal model designed to mitigate reward hacking. Crome employs the following synthetic targeted augmentations during training: (1) Causal Augmentations, which are pairs that differ along specific causal attributes, to enforce sensitivity along each causal attribute individually, and (2) Neutral Augmentations, which are tie-label pairs varying primarily in spurious attributes, to enforce invariance along spurious attributes. Notably, our augmentations are produced without any knowledge of spurious factors, via answer interventions only along causal rubrics, that are identified by querying an oracle LLM. Empirically, Crome significantly outperforms standard baselines on RewardBench, improving average accuracy by up to 5.4% and achieving gains of up to 13.2% and 7.2% in specific categories. The robustness of Crome is further testified by the consistent gains obtained in a Best-of-N inference setting across increasing N, across various benchmarks, including the popular RewardBench (covering chat, chat-hard, safety, and reasoning tasks), the safety-focused WildGuardTest, and the reasoning-specific GSM8k.

ASPIRE: Language-Guided Augmentation for Robust Image Classification

Neural image classifiers can often learn to make predictions by overly relying on non-predictive features that are spuriously correlated with the class labels in the training data. This leads to poor performance in real-world atypical scenarios where such features are absent. Supplementing the training dataset with images without such spurious features can aid robust learning against spurious correlations via better generalization. This paper presents ASPIRE (Language-guided data Augmentation for SPurIous correlation REmoval), a simple yet effective solution for expanding the training dataset with synthetic images without spurious features. ASPIRE, guided by language, generates these images without requiring any form of additional supervision or existing examples. Precisely, we employ LLMs to first extract foreground and background features from textual descriptions of an image, followed by advanced language-guided image editing to discover the features that are spuriously correlated with the class label. Finally, we personalize a text-to-image generation model to generate diverse in-domain images without spurious features. We demonstrate the effectiveness of ASPIRE on 4 datasets, including the very challenging Hard ImageNet dataset, and 9 baselines and show that ASPIRE improves the classification accuracy of prior methods by 1% - 38%. Code soon at: https://github.com/Sreyan88/ASPIRE.

Going Beyond Conventional OOD Detection

Out-of-distribution (OOD) detection is critical to ensure the safe deployment of deep learning models in critical applications. Deep learning models can often misidentify OOD samples as in-distribution (ID) samples. This vulnerability worsens in the presence of spurious correlation in the training set. Likewise, in fine-grained classification settings, detection of fine-grained OOD samples becomes inherently challenging due to their high similarity to ID samples. However, current research on OOD detection has largely ignored these challenging scenarios, focusing instead on relatively easier (conventional) cases. In this work, we present a unified Approach to Spurious, fine-grained, and Conventional OOD Detection (ASCOOD). First, we propose synthesizing virtual outliers from ID data by approximating the destruction of invariant features. To this end, we identify invariant features with the pixel attribution method using the model being learned. This approach eliminates the burden of curating external OOD datasets. Then, we simultaneously incentivize ID classification and predictive uncertainty towards virtual outliers leveraging standardized feature representation. Our approach effectively mitigates the impact of spurious correlations and encourages capturing fine-grained attributes. Extensive experiments across seven datasets demonstrate the merit of ASCOOD in spurious, fine-grained, and conventional settings. The code is available at: https://github.com/sudarshanregmi/ASCOOD/

CSTS: A Benchmark for the Discovery of Correlation Structures in Time Series Clustering

Time series clustering promises to uncover hidden structural patterns in data with applications across healthcare, finance, industrial systems, and other critical domains. However, without validated ground truth information, researchers cannot objectively assess clustering quality or determine whether poor results stem from absent structures in the data, algorithmic limitations, or inappropriate validation methods, raising the question whether clustering is "more art than science" (Guyon et al., 2009). To address these challenges, we introduce CSTS (Correlation Structures in Time Series), a synthetic benchmark for evaluating the discovery of correlation structures in multivariate time series data. CSTS provides a clean benchmark that enables researchers to isolate and identify specific causes of clustering failures by differentiating between correlation structure deterioration and limitations of clustering algorithms and validation methods. Our contributions are: (1) a comprehensive benchmark for correlation structure discovery with distinct correlation structures, systematically varied data conditions, established performance thresholds, and recommended evaluation protocols; (2) empirical validation of correlation structure preservation showing moderate distortion from downsampling and minimal effects from distribution shifts and sparsification; and (3) an extensible data generation framework enabling structure-first clustering evaluation. A case study demonstrates CSTS's practical utility by identifying an algorithm's previously undocumented sensitivity to non-normal distributions, illustrating how the benchmark enables precise diagnosis of methodological limitations. CSTS advances rigorous evaluation standards for correlation-based time series clustering.

From Fake to Real: Pretraining on Balanced Synthetic Images to Prevent Spurious Correlations in Image Recognition

Visual recognition models are prone to learning spurious correlations induced by a biased training set where certain conditions B (\eg, Indoors) are over-represented in certain classes Y (\eg, Big Dogs). Synthetic data from off-the-shelf large-scale generative models offers a promising direction to mitigate this issue by augmenting underrepresented subgroups in the real dataset. However, by using a mixed distribution of real and synthetic data, we introduce another source of bias due to distributional differences between synthetic and real data (\eg synthetic artifacts). As we will show, prior work's approach for using synthetic data to resolve the model's bias toward B do not correct the model's bias toward the pair (B, G), where G denotes whether the sample is real or synthetic. Thus, the model could simply learn signals based on the pair (B, G) (\eg, Synthetic Indoors) to make predictions about Y (\eg, Big Dogs). To address this issue, we propose a simple, easy-to-implement, two-step training pipeline that we call From Fake to Real (FFR). The first step of FFR pre-trains a model on balanced synthetic data to learn robust representations across subgroups. In the second step, FFR fine-tunes the model on real data using ERM or common loss-based bias mitigation methods. By training on real and synthetic data separately, FFR does not expose the model to the statistical differences between real and synthetic data and thus avoids the issue of bias toward the pair (B, G). Our experiments show that FFR improves worst group accuracy over the state-of-the-art by up to 20\% over three datasets. Code available: https://github.com/mqraitem/From-Fake-to-Real

Unraveling the Key Components of OOD Generalization via Diversification

Supervised learning datasets may contain multiple cues that explain the training set equally well, i.e., learning any of them would lead to the correct predictions on the training data. However, many of them can be spurious, i.e., lose their predictive power under a distribution shift and consequently fail to generalize to out-of-distribution (OOD) data. Recently developed "diversification" methods (Lee et al., 2023; Pagliardini et al., 2023) approach this problem by finding multiple diverse hypotheses that rely on different features. This paper aims to study this class of methods and identify the key components contributing to their OOD generalization abilities. We show that (1) diversification methods are highly sensitive to the distribution of the unlabeled data used for diversification and can underperform significantly when away from a method-specific sweet spot. (2) Diversification alone is insufficient for OOD generalization. The choice of the used learning algorithm, e.g., the model's architecture and pretraining, is crucial. In standard experiments (classification on Waterbirds and Office-Home datasets), using the second-best choice leads to an up to 20\% absolute drop in accuracy. (3) The optimal choice of learning algorithm depends on the unlabeled data and vice versa i.e. they are co-dependent. (4) Finally, we show that, in practice, the above pitfalls cannot be alleviated by increasing the number of diverse hypotheses, the major feature of diversification methods. These findings provide a clearer understanding of the critical design factors influencing the OOD generalization abilities of diversification methods. They can guide practitioners in how to use the existing methods best and guide researchers in developing new, better ones.

Partial Correlations in Compositional Data Analysis

Partial correlations quantify linear association between two variables adjusting for the influence of the remaining variables. They form the backbone for graphical models and are readily obtained from the inverse of the covariance matrix. For compositional data, the covariance structure is specified from log ratios of variables, so unless we try to "open" the data via a normalization, this implies changes in the definition and interpretation of partial correlations. In the present work, we elucidate how results derived by Aitchison (1986) lead to a natural definition of partial correlation that has a number of advantages over current measures of association. For this, we show that the residuals of log-ratios between a variable with a reference, when adjusting for all remaining variables including the reference, are reference-independent. Since the reference itself can be controlled for, correlations between residuals are defined for the variables directly without the necessity to recur to ratios except when specifying which variables are partialled out. Thus, perhaps surprisingly, partial correlations do not have the problems commonly found with measures of pairwise association on compositional data. They are well-defined between two variables, are properly scaled, and allow for negative association. By design, they are subcompositionally incoherent, but they share this property with conventional partial correlations (where results change when adjusting for the influence of fewer variables). We discuss the equivalence with normalization-based approaches whenever the normalizing variables are controlled for. We also discuss the partial variances and correlations we obtain from a previously studied data set of Roman glass cups.

RL on Incorrect Synthetic Data Scales the Efficiency of LLM Math Reasoning by Eight-Fold

Training on model-generated synthetic data is a promising approach for finetuning LLMs, but it remains unclear when it helps or hurts. In this paper, we investigate this question for math reasoning via an empirical study, followed by building a conceptual understanding of our observations. First, we find that while the typical approach of finetuning a model on synthetic correct or positive problem-solution pairs generated by capable models offers modest performance gains, sampling more correct solutions from the finetuned learner itself followed by subsequent fine-tuning on this self-generated data doubles the efficiency of the same synthetic problems. At the same time, training on model-generated positives can amplify various spurious correlations, resulting in flat or even inverse scaling trends as the amount of data increases. Surprisingly, we find that several of these issues can be addressed if we also utilize negative responses, i.e., model-generated responses that are deemed incorrect by a final answer verifier. Crucially, these negatives must be constructed such that the training can appropriately recover the utility or advantage of each intermediate step in the negative response. With this per-step scheme, we are able to attain consistent gains over only positive data, attaining performance similar to amplifying the amount of synthetic data by 8 times. We show that training on per-step negatives can help to unlearn spurious correlations in the positive data, and is equivalent to advantage-weighted reinforcement learning (RL), implying that it inherits robustness benefits of RL over imitating positive data alone.

Better May Not Be Fairer: A Study on Subgroup Discrepancy in Image Classification

In this paper, we provide 20,000 non-trivial human annotations on popular datasets as a first step to bridge gap to studying how natural semantic spurious features affect image classification, as prior works often study datasets mixing low-level features due to limitations in accessing realistic datasets. We investigate how natural background colors play a role as spurious features by annotating the test sets of CIFAR10 and CIFAR100 into subgroups based on the background color of each image. We name our datasets CIFAR10-B and CIFAR100-B and integrate them with CIFAR-Cs. We find that overall human-level accuracy does not guarantee consistent subgroup performances, and the phenomenon remains even on models pre-trained on ImageNet or after data augmentation (DA). To alleviate this issue, we propose FlowAug, a semantic DA that leverages decoupled semantic representations captured by a pre-trained generative flow. Experimental results show that FlowAug achieves more consistent subgroup results than other types of DA methods on CIFAR10/100 and on CIFAR10/100-C. Additionally, it shows better generalization performance. Furthermore, we propose a generic metric, MacroStd, for studying model robustness to spurious correlations, where we take a macro average on the weighted standard deviations across different classes. We show MacroStd being more predictive of better performances; per our metric, FlowAug demonstrates improvements on subgroup discrepancy. Although this metric is proposed to study our curated datasets, it applies to all datasets that have subgroups or subclasses. Lastly, we also show superior out-of-distribution results on CIFAR10.1.

Multimodal Inconsistency Reasoning (MMIR): A New Benchmark for Multimodal Reasoning Models

Existing Multimodal Large Language Models (MLLMs) are predominantly trained and tested on consistent visual-textual inputs, leaving open the question of whether they can handle inconsistencies in real-world, layout-rich content. To bridge this gap, we propose the Multimodal Inconsistency Reasoning (MMIR) benchmark to assess MLLMs' ability to detect and reason about semantic mismatches in artifacts such as webpages, presentation slides, and posters. MMIR comprises 534 challenging samples, each containing synthetically injected errors across five reasoning-heavy categories: Factual Contradiction, Identity Misattribution, Contextual Mismatch, Quantitative Discrepancy, and Temporal/Spatial Incoherence. We evaluate six state-of-the-art MLLMs, showing that models with dedicated multimodal reasoning capabilities, such as o1, substantially outperform their counterparts while open-source models remain particularly vulnerable to inconsistency errors. Detailed error analyses further show that models excel in detecting inconsistencies confined to a single modality, particularly in text, but struggle with cross-modal conflicts and complex layouts. Probing experiments reveal that single-modality prompting, including Chain-of-Thought (CoT) and Set-of-Mark (SoM) methods, yields marginal gains, revealing a key bottleneck in cross-modal reasoning. Our findings highlight the need for advanced multimodal reasoning and point to future research on multimodal inconsistency.

Bt-GAN: Generating Fair Synthetic Healthdata via Bias-transforming Generative Adversarial Networks

Synthetic data generation offers a promising solution to enhance the usefulness of Electronic Healthcare Records (EHR) by generating realistic de-identified data. However, the existing literature primarily focuses on the quality of synthetic health data, neglecting the crucial aspect of fairness in downstream predictions. Consequently, models trained on synthetic EHR have faced criticism for producing biased outcomes in target tasks. These biases can arise from either spurious correlations between features or the failure of models to accurately represent sub-groups. To address these concerns, we present Bias-transforming Generative Adversarial Networks (Bt-GAN), a GAN-based synthetic data generator specifically designed for the healthcare domain. In order to tackle spurious correlations (i), we propose an information-constrained Data Generation Process that enables the generator to learn a fair deterministic transformation based on a well-defined notion of algorithmic fairness. To overcome the challenge of capturing exact sub-group representations (ii), we incentivize the generator to preserve sub-group densities through score-based weighted sampling. This approach compels the generator to learn from underrepresented regions of the data manifold. We conduct extensive experiments using the MIMIC-III database. Our results demonstrate that Bt-GAN achieves SOTA accuracy while significantly improving fairness and minimizing bias amplification. We also perform an in-depth explainability analysis to provide additional evidence supporting the validity of our study. In conclusion, our research introduces a novel and professional approach to addressing the limitations of synthetic data generation in the healthcare domain. By incorporating fairness considerations and leveraging advanced techniques such as GANs, we pave the way for more reliable and unbiased predictions in healthcare applications.

Super(ficial)-alignment: Strong Models May Deceive Weak Models in Weak-to-Strong Generalization

Superalignment, where humans are weak supervisors of superhuman models, has become an important and widely discussed issue in the current era of rapid development of Large Language Models (LLMs). The recent work preliminarily studies this problem by using weak models to supervise strong models. It discovers that weakly supervised strong students can consistently outperform weak teachers towards the alignment target, leading to a weak-to-strong generalization phenomenon. However, we are concerned that behind such a promising phenomenon, whether there exists an issue of weak-to-strong deception, where strong models may deceive weak models by exhibiting well-aligned in areas known to weak models but producing misaligned behaviors in cases weak models do not know. We then take an initial step towards exploring this security issue in a specific but realistic multi-objective alignment case, where there may be some alignment targets conflicting with each other (e.g., helpfulness v.s. harmlessness). Such a conflict is likely to cause strong models to deceive weak models in one alignment dimension to gain high reward in other alignment dimension. Our experiments on both the reward modeling task and the preference optimization scenario indicate: (1) the weak-to-strong deception exists; (2) the deception phenomenon may intensify as the capability gap between weak and strong models increases. We also discuss potential solutions and find bootstrapping with an intermediate model can mitigate the deception to some extent. Our work highlights the urgent need to pay more attention to the true reliability of superalignment.

Causal Analysis for Robust Interpretability of Neural Networks

Interpreting the inner function of neural networks is crucial for the trustworthy development and deployment of these black-box models. Prior interpretability methods focus on correlation-based measures to attribute model decisions to individual examples. However, these measures are susceptible to noise and spurious correlations encoded in the model during the training phase (e.g., biased inputs, model overfitting, or misspecification). Moreover, this process has proven to result in noisy and unstable attributions that prevent any transparent understanding of the model's behavior. In this paper, we develop a robust interventional-based method grounded by causal analysis to capture cause-effect mechanisms in pre-trained neural networks and their relation to the prediction. Our novel approach relies on path interventions to infer the causal mechanisms within hidden layers and isolate relevant and necessary information (to model prediction), avoiding noisy ones. The result is task-specific causal explanatory graphs that can audit model behavior and express the actual causes underlying its performance. We apply our method to vision models trained on classification tasks. On image classification tasks, we provide extensive quantitative experiments to show that our approach can capture more stable and faithful explanations than standard attribution-based methods. Furthermore, the underlying causal graphs reveal the neural interactions in the model, making it a valuable tool in other applications (e.g., model repair).

DISCO: Distilling Counterfactuals with Large Language Models

Models trained with counterfactually augmented data learn representations of the causal structure of tasks, enabling robust generalization. However, high-quality counterfactual data is scarce for most tasks and not easily generated at scale. When crowdsourced, such data is typically limited in scale and diversity; when generated using supervised methods, it is computationally expensive to extend to new counterfactual dimensions. In this work, we introduce DISCO (DIStilled COunterfactual Data), a new method for automatically generating high quality counterfactual data at scale. DISCO engineers prompts to generate phrasal perturbations with a large general language model. Then, a task-specific teacher model filters these generations to distill high-quality counterfactual data. While task-agnostic, we apply our pipeline to the task of natural language inference (NLI) and find that on challenging evaluations such as the NLI stress test, comparatively smaller student models trained with DISCO generated counterfactuals are more robust (6% absolute) and generalize better across distributions (2%) compared to models trained without data augmentation. Furthermore, DISCO augmented models are 10% more consistent between counterfactual pairs on three evaluation sets, demonstrating that DISCO augmentation enables models to more reliably learn causal representations. Our repository is available at: https://github.com/eric11eca/disco

Causal Inference by String Diagram Surgery

Extracting causal relationships from observed correlations is a growing area in probabilistic reasoning, originating with the seminal work of Pearl and others from the early 1990s. This paper develops a new, categorically oriented view based on a clear distinction between syntax (string diagrams) and semantics (stochastic matrices), connected via interpretations as structure-preserving functors. A key notion in the identification of causal effects is that of an intervention, whereby a variable is forcefully set to a particular value independent of any prior propensities. We represent the effect of such an intervention as an endofunctor which performs `string diagram surgery' within the syntactic category of string diagrams. This diagram surgery in turn yields a new, interventional distribution via the interpretation functor. While in general there is no way to compute interventional distributions purely from observed data, we show that this is possible in certain special cases using a calculational tool called comb disintegration. We demonstrate the use of this technique on a well-known toy example, where we predict the causal effect of smoking on cancer in the presence of a confounding common cause. After developing this specific example, we show this technique provides simple sufficient conditions for computing interventions which apply to a wide variety of situations considered in the causal inference literature.

Double Machine Learning meets Panel Data -- Promises, Pitfalls, and Potential Solutions

Estimating causal effect using machine learning (ML) algorithms can help to relax functional form assumptions if used within appropriate frameworks. However, most of these frameworks assume settings with cross-sectional data, whereas researchers often have access to panel data, which in traditional methods helps to deal with unobserved heterogeneity between units. In this paper, we explore how we can adapt double/debiased machine learning (DML) (Chernozhukov et al., 2018) for panel data in the presence of unobserved heterogeneity. This adaptation is challenging because DML's cross-fitting procedure assumes independent data and the unobserved heterogeneity is not necessarily additively separable in settings with nonlinear observed confounding. We assess the performance of several intuitively appealing estimators in a variety of simulations. While we find violations of the cross-fitting assumptions to be largely inconsequential for the accuracy of the effect estimates, many of the considered methods fail to adequately account for the presence of unobserved heterogeneity. However, we find that using predictive models based on the correlated random effects approach (Mundlak, 1978) within DML leads to accurate coefficient estimates across settings, given a sample size that is large relative to the number of observed confounders. We also show that the influence of the unobserved heterogeneity on the observed confounders plays a significant role for the performance of most alternative methods.

Predictive Multiplicity in Probabilistic Classification

Machine learning models are often used to inform real world risk assessment tasks: predicting consumer default risk, predicting whether a person suffers from a serious illness, or predicting a person's risk to appear in court. Given multiple models that perform almost equally well for a prediction task, to what extent do predictions vary across these models? If predictions are relatively consistent for similar models, then the standard approach of choosing the model that optimizes a penalized loss suffices. But what if predictions vary significantly for similar models? In machine learning, this is referred to as predictive multiplicity i.e. the prevalence of conflicting predictions assigned by near-optimal competing models. In this paper, we present a framework for measuring predictive multiplicity in probabilistic classification (predicting the probability of a positive outcome). We introduce measures that capture the variation in risk estimates over the set of competing models, and develop optimization-based methods to compute these measures efficiently and reliably for convex empirical risk minimization problems. We demonstrate the incidence and prevalence of predictive multiplicity in real-world tasks. Further, we provide insight into how predictive multiplicity arises by analyzing the relationship between predictive multiplicity and data set characteristics (outliers, separability, and majority-minority structure). Our results emphasize the need to report predictive multiplicity more widely.

Unilaterally Aggregated Contrastive Learning with Hierarchical Augmentation for Anomaly Detection

Anomaly detection (AD), aiming to find samples that deviate from the training distribution, is essential in safety-critical applications. Though recent self-supervised learning based attempts achieve promising results by creating virtual outliers, their training objectives are less faithful to AD which requires a concentrated inlier distribution as well as a dispersive outlier distribution. In this paper, we propose Unilaterally Aggregated Contrastive Learning with Hierarchical Augmentation (UniCon-HA), taking into account both the requirements above. Specifically, we explicitly encourage the concentration of inliers and the dispersion of virtual outliers via supervised and unsupervised contrastive losses, respectively. Considering that standard contrastive data augmentation for generating positive views may induce outliers, we additionally introduce a soft mechanism to re-weight each augmented inlier according to its deviation from the inlier distribution, to ensure a purified concentration. Moreover, to prompt a higher concentration, inspired by curriculum learning, we adopt an easy-to-hard hierarchical augmentation strategy and perform contrastive aggregation at different depths of the network based on the strengths of data augmentation. Our method is evaluated under three AD settings including unlabeled one-class, unlabeled multi-class, and labeled multi-class, demonstrating its consistent superiority over other competitors.

VLUCI: Variational Learning of Unobserved Confounders for Counterfactual Inference

Causal inference plays a vital role in diverse domains like epidemiology, healthcare, and economics. De-confounding and counterfactual prediction in observational data has emerged as a prominent concern in causal inference research. While existing models tackle observed confounders, the presence of unobserved confounders remains a significant challenge, distorting causal inference and impacting counterfactual outcome accuracy. To address this, we propose a novel variational learning model of unobserved confounders for counterfactual inference (VLUCI), which generates the posterior distribution of unobserved confounders. VLUCI relaxes the unconfoundedness assumption often overlooked by most causal inference methods. By disentangling observed and unobserved confounders, VLUCI constructs a doubly variational inference model to approximate the distribution of unobserved confounders, which are used for inferring more accurate counterfactual outcomes. Extensive experiments on synthetic and semi-synthetic datasets demonstrate VLUCI's superior performance in inferring unobserved confounders. It is compatible with state-of-the-art counterfactual inference models, significantly improving inference accuracy at both group and individual levels. Additionally, VLUCI provides confidence intervals for counterfactual outcomes, aiding decision-making in risk-sensitive domains. We further clarify the considerations when applying VLUCI to cases where unobserved confounders don't strictly conform to our model assumptions using the public IHDP dataset as an example, highlighting the practical advantages of VLUCI.

MOSSBench: Is Your Multimodal Language Model Oversensitive to Safe Queries?

Humans are prone to cognitive distortions -- biased thinking patterns that lead to exaggerated responses to specific stimuli, albeit in very different contexts. This paper demonstrates that advanced Multimodal Large Language Models (MLLMs) exhibit similar tendencies. While these models are designed to respond queries under safety mechanism, they sometimes reject harmless queries in the presence of certain visual stimuli, disregarding the benign nature of their contexts. As the initial step in investigating this behavior, we identify three types of stimuli that trigger the oversensitivity of existing MLLMs: Exaggerated Risk, Negated Harm, and Counterintuitive Interpretation. To systematically evaluate MLLMs' oversensitivity to these stimuli, we propose the Multimodal OverSenSitivity Benchmark (MOSSBench). This toolkit consists of 300 manually collected benign multimodal queries, cross-verified by third-party reviewers (AMT). Empirical studies using MOSSBench on 20 MLLMs reveal several insights: (1). Oversensitivity is prevalent among SOTA MLLMs, with refusal rates reaching up to 76% for harmless queries. (2). Safer models are more oversensitive: increasing safety may inadvertently raise caution and conservatism in the model's responses. (3). Different types of stimuli tend to cause errors at specific stages -- perception, intent reasoning, and safety judgement -- in the response process of MLLMs. These findings highlight the need for refined safety mechanisms that balance caution with contextually appropriate responses, improving the reliability of MLLMs in real-world applications. We make our project available at https://turningpoint-ai.github.io/MOSSBench/.

The Slepian model based independent interval approximation of persistency and zero-level exceedance distributions

In physics and engineering literature, the distribution of the excursion-above-zero time distribution (exceedance distribution) for a stationary Gaussian process has been approximated by a stationary switching process with independently distributed switching times. The approach matched the covariance of the clipped Gaussian process with the one for the stationary switching process and the distribution of the latter was used as the so-called independent interval approximation (IIA). The approach successfully assessed the persistency exponent for many physically important processes but left an unanswered question when such an approach leads to a mathematically meaningful and proper exceedance distribution. Here we address this question by proposing an alternative matching of the expected values of the clipped Slepian process and the corresponding switched process initiated at the origin. The method has allowed resolving the mathematical correctness of the matching method for a large subclass of the Gaussian processes with monotonic covariance, for which we provide a sufficient condition for the validity of the IIA. Within this class, the IIA produces a valid distribution for the excursion time and is represented in an explicit stochastic form that connects directly to the covariance of the underlying Gaussian process. We compare the excursion level distributions as well as the corresponding persistency exponents obtained through the IIA method with numerically computed exact distributions, and the simulated distribution for several important Gaussian models. We also argue that for stationary Gaussian processes with a non-monotonic covariance, the IIA fails and should not be used.

Unintentional Unalignment: Likelihood Displacement in Direct Preference Optimization

Direct Preference Optimization (DPO) and its variants are increasingly used for aligning language models with human preferences. Although these methods are designed to teach a model to generate preferred responses more frequently relative to dispreferred responses, prior work has observed that the likelihood of preferred responses often decreases during training. The current work sheds light on the causes and implications of this counter-intuitive phenomenon, which we term likelihood displacement. We demonstrate that likelihood displacement can be catastrophic, shifting probability mass from preferred responses to responses with an opposite meaning. As a simple example, training a model to prefer No over Never can sharply increase the probability of Yes. Moreover, when aligning the model to refuse unsafe prompts, we show that such displacement can unintentionally lead to unalignment, by shifting probability mass from preferred refusal responses to harmful responses (e.g., reducing the refusal rate of Llama-3-8B-Instruct from 74.4% to 33.4%). We theoretically characterize that likelihood displacement is driven by preferences that induce similar embeddings, as measured by a centered hidden embedding similarity (CHES) score. Empirically, the CHES score enables identifying which training samples contribute most to likelihood displacement in a given dataset. Filtering out these samples effectively mitigated unintentional unalignment in our experiments. More broadly, our results highlight the importance of curating data with sufficiently distinct preferences, for which we believe the CHES score may prove valuable.

Entity Embedding-based Anomaly Detection for Heterogeneous Categorical Events

Anomaly detection plays an important role in modern data-driven security applications, such as detecting suspicious access to a socket from a process. In many cases, such events can be described as a collection of categorical values that are considered as entities of different types, which we call heterogeneous categorical events. Due to the lack of intrinsic distance measures among entities, and the exponentially large event space, most existing work relies heavily on heuristics to calculate abnormal scores for events. Different from previous work, we propose a principled and unified probabilistic model APE (Anomaly detection via Probabilistic pairwise interaction and Entity embedding) that directly models the likelihood of events. In this model, we embed entities into a common latent space using their observed co-occurrence in different events. More specifically, we first model the compatibility of each pair of entities according to their embeddings. Then we utilize the weighted pairwise interactions of different entity types to define the event probability. Using Noise-Contrastive Estimation with "context-dependent" noise distribution, our model can be learned efficiently regardless of the large event space. Experimental results on real enterprise surveillance data show that our methods can accurately detect abnormal events compared to other state-of-the-art abnormal detection techniques.

Predicting Rare Events by Shrinking Towards Proportional Odds

Training classifiers is difficult with severe class imbalance, but many rare events are the culmination of a sequence with much more common intermediate outcomes. For example, in online marketing a user first sees an ad, then may click on it, and finally may make a purchase; estimating the probability of purchases is difficult because of their rarity. We show both theoretically and through data experiments that the more abundant data in earlier steps may be leveraged to improve estimation of probabilities of rare events. We present PRESTO, a relaxation of the proportional odds model for ordinal regression. Instead of estimating weights for one separating hyperplane that is shifted by separate intercepts for each of the estimated Bayes decision boundaries between adjacent pairs of categorical responses, we estimate separate weights for each of these transitions. We impose an L1 penalty on the differences between weights for the same feature in adjacent weight vectors in order to shrink towards the proportional odds model. We prove that PRESTO consistently estimates the decision boundary weights under a sparsity assumption. Synthetic and real data experiments show that our method can estimate rare probabilities in this setting better than both logistic regression on the rare category, which fails to borrow strength from more abundant categories, and the proportional odds model, which is too inflexible.

Be More Active! Understanding the Differences between Mean and Sampled Representations of Variational Autoencoders

The ability of Variational Autoencoders to learn disentangled representations has made them appealing for practical applications. However, their mean representations, which are generally used for downstream tasks, have recently been shown to be more correlated than their sampled counterpart, on which disentanglement is usually measured. In this paper, we refine this observation through the lens of selective posterior collapse, which states that only a subset of the learned representations, the active variables, is encoding useful information while the rest (the passive variables) is discarded. We first extend the existing definition to multiple data examples and show that active variables are equally disentangled in mean and sampled representations. Based on this extension and the pre-trained models from disentanglement lib, we then isolate the passive variables and show that they are responsible for the discrepancies between mean and sampled representations. Specifically, passive variables exhibit high correlation scores with other variables in mean representations while being fully uncorrelated in sampled ones. We thus conclude that despite what their higher correlation might suggest, mean representations are still good candidates for downstream tasks applications. However, it may be beneficial to remove their passive variables, especially when used with models sensitive to correlated features.

Are we certain it's anomalous?

The progress in modelling time series and, more generally, sequences of structured data has recently revamped research in anomaly detection. The task stands for identifying abnormal behaviors in financial series, IT systems, aerospace measurements, and the medical domain, where anomaly detection may aid in isolating cases of depression and attend the elderly. Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations and since the definition of anomalous is sometimes subjective. Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD). HypAD learns self-supervisedly to reconstruct the input signal. We adopt best practices from the state-of-the-art to encode the sequence by an LSTM, jointly learned with a decoder to reconstruct the signal, with the aid of GAN critics. Uncertainty is estimated end-to-end by means of a hyperbolic neural network. By using uncertainty, HypAD may assess whether it is certain about the input signal but it fails to reconstruct it because this is anomalous; or whether the reconstruction error does not necessarily imply anomaly, as the model is uncertain, e.g. a complex but regular input signal. The novel key idea is that a detectable anomaly is one where the model is certain but it predicts wrongly. HypAD outperforms the current state-of-the-art for univariate anomaly detection on established benchmarks based on data from NASA, Yahoo, Numenta, Amazon, and Twitter. It also yields state-of-the-art performance on a multivariate dataset of anomaly activities in elderly home residences, and it outperforms the baseline on SWaT. Overall, HypAD yields the lowest false alarms at the best performance rate, thanks to successfully identifying detectable anomalies.

Preserving Statistical Validity in Adaptive Data Analysis

A great deal of effort has been devoted to reducing the risk of spurious scientific discoveries, from the use of sophisticated validation techniques, to deep statistical methods for controlling the false discovery rate in multiple hypothesis testing. However, there is a fundamental disconnect between the theoretical results and the practice of data analysis: the theory of statistical inference assumes a fixed collection of hypotheses to be tested, or learning algorithms to be applied, selected non-adaptively before the data are gathered, whereas in practice data is shared and reused with hypotheses and new analyses being generated on the basis of data exploration and the outcomes of previous analyses. In this work we initiate a principled study of how to guarantee the validity of statistical inference in adaptive data analysis. As an instance of this problem, we propose and investigate the question of estimating the expectations of m adaptively chosen functions on an unknown distribution given n random samples. We show that, surprisingly, there is a way to estimate an exponential in n number of expectations accurately even if the functions are chosen adaptively. This gives an exponential improvement over standard empirical estimators that are limited to a linear number of estimates. Our result follows from a general technique that counter-intuitively involves actively perturbing and coordinating the estimates, using techniques developed for privacy preservation. We give additional applications of this technique to our question.

MultiOOD: Scaling Out-of-Distribution Detection for Multiple Modalities

Detecting out-of-distribution (OOD) samples is important for deploying machine learning models in safety-critical applications such as autonomous driving and robot-assisted surgery. Existing research has mainly focused on unimodal scenarios on image data. However, real-world applications are inherently multimodal, which makes it essential to leverage information from multiple modalities to enhance the efficacy of OOD detection. To establish a foundation for more realistic Multimodal OOD Detection, we introduce the first-of-its-kind benchmark, MultiOOD, characterized by diverse dataset sizes and varying modality combinations. We first evaluate existing unimodal OOD detection algorithms on MultiOOD, observing that the mere inclusion of additional modalities yields substantial improvements. This underscores the importance of utilizing multiple modalities for OOD detection. Based on the observation of Modality Prediction Discrepancy between in-distribution (ID) and OOD data, and its strong correlation with OOD performance, we propose the Agree-to-Disagree (A2D) algorithm to encourage such discrepancy during training. Moreover, we introduce a novel outlier synthesis method, NP-Mix, which explores broader feature spaces by leveraging the information from nearest neighbor classes and complements A2D to strengthen OOD detection performance. Extensive experiments on MultiOOD demonstrate that training with A2D and NP-Mix improves existing OOD detection algorithms by a large margin. Our source code and MultiOOD benchmark are available at https://github.com/donghao51/MultiOOD.

Are Anomaly Scores Telling the Whole Story? A Benchmark for Multilevel Anomaly Detection

Anomaly detection (AD) is a machine learning task that identifies anomalies by learning patterns from normal training data. In many real-world scenarios, anomalies vary in severity, from minor anomalies with little risk to severe abnormalities requiring immediate attention. However, existing models primarily operate in a binary setting, and the anomaly scores they produce are usually based on the deviation of data points from normal data, which may not accurately reflect practical severity. In this paper, we address this gap by making three key contributions. First, we propose a novel setting, Multilevel AD (MAD), in which the anomaly score represents the severity of anomalies in real-world applications, and we highlight its diverse applications across various domains. Second, we introduce a novel benchmark, MAD-Bench, that evaluates models not only on their ability to detect anomalies, but also on how effectively their anomaly scores reflect severity. This benchmark incorporates multiple types of baselines and real-world applications involving severity. Finally, we conduct a comprehensive performance analysis on MAD-Bench. We evaluate models on their ability to assign severity-aligned scores, investigate the correspondence between their performance on binary and multilevel detection, and study their robustness. This analysis offers key insights into improving AD models for practical severity alignment. The code framework and datasets used for the benchmark will be made publicly available.

Fair coins tend to land on the same side they started: Evidence from 350,757 flips

Many people have flipped coins but few have stopped to ponder the statistical and physical intricacies of the process. We collected 350{,}757 coin flips to test the counterintuitive prediction from a physics model of human coin tossing developed by Diaconis, Holmes, and Montgomery (DHM; 2007). The model asserts that when people flip an ordinary coin, it tends to land on the same side it started -- DHM estimated the probability of a same-side outcome to be about 51\%. Our data lend strong support to this precise prediction: the coins landed on the same side more often than not, Pr(same side) = 0.508, 95\% credible interval (CI) [0.506, 0.509], BF_{same-side bias} = 2359. Furthermore, the data revealed considerable between-people variation in the degree of this same-side bias. Our data also confirmed the generic prediction that when people flip an ordinary coin -- with the initial side-up randomly determined -- it is equally likely to land heads or tails: Pr(heads) = 0.500, 95\% CI [0.498, 0.502], BF_{heads-tails bias} = 0.182. Furthermore, this lack of heads-tails bias does not appear to vary across coins. Additional analyses revealed that the within-people same-side bias decreased as more coins were flipped, an effect that is consistent with the possibility that practice makes people flip coins in a less wobbly fashion. Our data therefore provide strong evidence that when some (but not all) people flip a fair coin, it tends to land on the same side it started.

Improving Multi-Interest Network with Stable Learning

Modeling users' dynamic preferences from historical behaviors lies at the core of modern recommender systems. Due to the diverse nature of user interests, recent advances propose the multi-interest networks to encode historical behaviors into multiple interest vectors. In real scenarios, the corresponding items of captured interests are usually retrieved together to get exposure and collected into training data, which produces dependencies among interests. Unfortunately, multi-interest networks may incorrectly concentrate on subtle dependencies among captured interests. Misled by these dependencies, the spurious correlations between irrelevant interests and targets are captured, resulting in the instability of prediction results when training and test distributions do not match. In this paper, we introduce the widely used Hilbert-Schmidt Independence Criterion (HSIC) to measure the degree of independence among captured interests and empirically show that the continuous increase of HSIC may harm model performance. Based on this, we propose a novel multi-interest network, named DEep Stable Multi-Interest Learning (DESMIL), which tries to eliminate the influence of subtle dependencies among captured interests via learning weights for training samples and make model concentrate more on underlying true causation. We conduct extensive experiments on public recommendation datasets, a large-scale industrial dataset and the synthetic datasets which simulate the out-of-distribution data. Experimental results demonstrate that our proposed DESMIL outperforms state-of-the-art models by a significant margin. Besides, we also conduct comprehensive model analysis to reveal the reason why DESMIL works to a certain extent.

Towards Trustable Skin Cancer Diagnosis via Rewriting Model's Decision

Deep neural networks have demonstrated promising performance on image recognition tasks. However, they may heavily rely on confounding factors, using irrelevant artifacts or bias within the dataset as the cue to improve performance. When a model performs decision-making based on these spurious correlations, it can become untrustable and lead to catastrophic outcomes when deployed in the real-world scene. In this paper, we explore and try to solve this problem in the context of skin cancer diagnosis. We introduce a human-in-the-loop framework in the model training process such that users can observe and correct the model's decision logic when confounding behaviors happen. Specifically, our method can automatically discover confounding factors by analyzing the co-occurrence behavior of the samples. It is capable of learning confounding concepts using easily obtained concept exemplars. By mapping the black-box model's feature representation onto an explainable concept space, human users can interpret the concept and intervene via first order-logic instruction. We systematically evaluate our method on our newly crafted, well-controlled skin lesion dataset and several public skin lesion datasets. Experiments show that our method can effectively detect and remove confounding factors from datasets without any prior knowledge about the category distribution and does not require fully annotated concept labels. We also show that our method enables the model to focus on clinical-related concepts, improving the model's performance and trustworthiness during model inference.

Inference Scaling scriptsizeFLaws: The Limits of LLM Resampling with Imperfect Verifiers

Recent research has generated hope that inference scaling could allow weaker language models to match or exceed the accuracy of stronger models, such as by repeatedly sampling solutions to a coding problem until it passes unit tests. The central thesis of this paper is that there is no free lunch for inference scaling: indefinite accuracy improvement through resampling can only be realized if the "verifier" (in this case, a set of unit tests) is perfect. When the verifier is imperfect, as it almost always is in domains such as reasoning or coding (for example, unit tests have imperfect coverage), there is a nonzero probability of false positives: incorrect solutions that pass the verifier. Resampling cannot decrease this probability, so it imposes an upper bound to the accuracy of resampling-based inference scaling even with an infinite compute budget. We find that there is a very strong correlation between the model's single-sample accuracy (i.e. accuracy without unit tests) and its false positive rate on coding benchmarks HumanEval and MBPP, whose unit tests have limited coverage. Therefore, no amount of inference scaling of weaker models can enable them to match the single-sample accuracy of a sufficiently strong model (Fig. 1a). When we consider that false positives have a negative utility compared to abstaining from producing a solution, it bends the inference scaling curve further downward. Empirically, we find that the optimal number of samples can be less than 10 under realistic assumptions (Fig. 1b). Finally, we show that beyond accuracy, false positives may have other undesirable qualities, such as poor adherence to coding style conventions.

Experts Don't Cheat: Learning What You Don't Know By Predicting Pairs

Identifying how much a model {p}_{theta}(Y|X) knows about the stochastic real-world process p(Y|X) it was trained on is important to ensure it avoids producing incorrect or "hallucinated" answers or taking unsafe actions. But this is difficult for generative models because probabilistic predictions do not distinguish between per-response noise (aleatoric uncertainty) and lack of knowledge about the process (epistemic uncertainty), and existing epistemic uncertainty quantification techniques tend to be overconfident when the model underfits. We propose a general strategy for teaching a model to both approximate p(Y|X) and also estimate the remaining gaps between {p}_{theta}(Y|X) and p(Y|X): train it to predict pairs of independent responses drawn from the true conditional distribution, allow it to "cheat" by observing one response while predicting the other, then measure how much it cheats. Remarkably, we prove that being good at cheating (i.e. cheating whenever it improves your prediction) is equivalent to being second-order calibrated, a principled extension of ordinary calibration that allows us to construct provably-correct frequentist confidence intervals for p(Y|X) and detect incorrect responses with high probability. We demonstrate empirically that our approach accurately estimates how much models don't know across ambiguous image classification, (synthetic) language modeling, and partially-observable navigation tasks, outperforming existing techniques.

Towards Enhancing Time Series Contrastive Learning: A Dynamic Bad Pair Mining Approach

Not all positive pairs are beneficial to time series contrastive learning. In this paper, we study two types of bad positive pairs that can impair the quality of time series representation learned through contrastive learning: the noisy positive pair and the faulty positive pair. We observe that, with the presence of noisy positive pairs, the model tends to simply learn the pattern of noise (Noisy Alignment). Meanwhile, when faulty positive pairs arise, the model wastes considerable amount of effort aligning non-representative patterns (Faulty Alignment). To address this problem, we propose a Dynamic Bad Pair Mining (DBPM) algorithm, which reliably identifies and suppresses bad positive pairs in time series contrastive learning. Specifically, DBPM utilizes a memory module to dynamically track the training behavior of each positive pair along training process. This allows us to identify potential bad positive pairs at each epoch based on their historical training behaviors. The identified bad pairs are subsequently down-weighted through a transformation module, thereby mitigating their negative impact on the representation learning process. DBPM is a simple algorithm designed as a lightweight plug-in without learnable parameters to enhance the performance of existing state-of-the-art methods. Through extensive experiments conducted on four large-scale, real-world time series datasets, we demonstrate DBPM's efficacy in mitigating the adverse effects of bad positive pairs.

Learning to Detect Multi-class Anomalies with Just One Normal Image Prompt

Unsupervised reconstruction networks using self-attention transformers have achieved state-of-the-art performance for multi-class (unified) anomaly detection with a single model. However, these self-attention reconstruction models primarily operate on target features, which may result in perfect reconstruction for both normal and anomaly features due to high consistency with context, leading to failure in detecting anomalies. Additionally, these models often produce inaccurate anomaly segmentation due to performing reconstruction in a low spatial resolution latent space. To enable reconstruction models enjoying high efficiency while enhancing their generalization for unified anomaly detection, we propose a simple yet effective method that reconstructs normal features and restores anomaly features with just One Normal Image Prompt (OneNIP). In contrast to previous work, OneNIP allows for the first time to reconstruct or restore anomalies with just one normal image prompt, effectively boosting unified anomaly detection performance. Furthermore, we propose a supervised refiner that regresses reconstruction errors by using both real normal and synthesized anomalous images, which significantly improves pixel-level anomaly segmentation. OneNIP outperforms previous methods on three industry anomaly detection benchmarks: MVTec, BTAD, and VisA. The code and pre-trained models are available at https://github.com/gaobb/OneNIP.

Empirical study of Machine Learning Classifier Evaluation Metrics behavior in Massively Imbalanced and Noisy data

With growing credit card transaction volumes, the fraud percentages are also rising, including overhead costs for institutions to combat and compensate victims. The use of machine learning into the financial sector permits more effective protection against fraud and other economic crime. Suitably trained machine learning classifiers help proactive fraud detection, improving stakeholder trust and robustness against illicit transactions. However, the design of machine learning based fraud detection algorithms has been challenging and slow due the massively unbalanced nature of fraud data and the challenges of identifying the frauds accurately and completely to create a gold standard ground truth. Furthermore, there are no benchmarks or standard classifier evaluation metrics to measure and identify better performing classifiers, thus keeping researchers in the dark. In this work, we develop a theoretical foundation to model human annotation errors and extreme imbalance typical in real world fraud detection data sets. By conducting empirical experiments on a hypothetical classifier, with a synthetic data distribution approximated to a popular real world credit card fraud data set, we simulate human annotation errors and extreme imbalance to observe the behavior of popular machine learning classifier evaluation matrices. We demonstrate that a combined F1 score and g-mean, in that specific order, is the best evaluation metric for typical imbalanced fraud detection model classification.

Is This the Subspace You Are Looking for? An Interpretability Illusion for Subspace Activation Patching

Mechanistic interpretability aims to understand model behaviors in terms of specific, interpretable features, often hypothesized to manifest as low-dimensional subspaces of activations. Specifically, recent studies have explored subspace interventions (such as activation patching) as a way to simultaneously manipulate model behavior and attribute the features behind it to given subspaces. In this work, we demonstrate that these two aims diverge, potentially leading to an illusory sense of interpretability. Counterintuitively, even if a subspace intervention makes the model's output behave as if the value of a feature was changed, this effect may be achieved by activating a dormant parallel pathway leveraging another subspace that is causally disconnected from model outputs. We demonstrate this phenomenon in a distilled mathematical example, in two real-world domains (the indirect object identification task and factual recall), and present evidence for its prevalence in practice. In the context of factual recall, we further show a link to rank-1 fact editing, providing a mechanistic explanation for previous work observing an inconsistency between fact editing performance and fact localization. However, this does not imply that activation patching of subspaces is intrinsically unfit for interpretability. To contextualize our findings, we also show what a success case looks like in a task (indirect object identification) where prior manual circuit analysis informs an understanding of the location of a feature. We explore the additional evidence needed to argue that a patched subspace is faithful.

Calibrated Language Models Must Hallucinate

Recent language models have a mysterious tendency to generate false but plausible-sounding text. Such "hallucinations" are an obstacle to the usability of language-based AI systems and can harm people who rely upon their outputs. This work shows shows that there is an inherent statistical reason that pretrained language models hallucinate certain types of facts, having nothing to do with the transformer LM architecture or data quality. For "arbitrary" facts whose veracity cannot be determined from the training data, we show that hallucination is necessary for language models that satisfy a statistical calibration condition appropriate for generative language models. Specifically, if the maximum probability of any fact is bounded, we show that the probability of generating a hallucination is close to the fraction of facts that occur exactly once in the training data (a "Good-Turing" estimate), even assuming ideal training data without errors. One conclusion is that models pretrained to be sufficiently good predictors (i.e., calibrated) may require post-training to mitigate hallucinations on the type of arbitrary facts that tend to appear once in the training set. However, our analysis also suggests that there is no statistical reason that pretraining will lead to hallucination on facts that tend to appear more than once in the training data (like references to publications such as articles and books, whose hallucinations have been particularly notable and problematic) or on systematic facts (like arithmetic calculations). Therefore, different architectures and learning algorithms may mitigate these latter types of hallucinations.

TAROT: Targeted Data Selection via Optimal Transport

We propose TAROT, a targeted data selection framework grounded in optimal transport theory. Previous targeted data selection methods primarily rely on influence-based greedy heuristics to enhance domain-specific performance. While effective on limited, unimodal data (i.e., data following a single pattern), these methods struggle as target data complexity increases. Specifically, in multimodal distributions, these heuristics fail to account for multiple inherent patterns, leading to suboptimal data selection. This work identifies two primary factors contributing to this limitation: (i) the disproportionate impact of dominant feature components in high-dimensional influence estimation, and (ii) the restrictive linear additive assumptions inherent in greedy selection strategies. To address these challenges, TAROT incorporates whitened feature distance to mitigate dominant feature bias, providing a more reliable measure of data influence. Building on this, TAROT uses whitened feature distance to quantify and minimize the optimal transport distance between the selected data and target domains. Notably, this minimization also facilitates the estimation of optimal selection ratios. We evaluate TAROT across multiple tasks, including semantic segmentation, motion prediction, and instruction tuning. Results consistently show that TAROT outperforms state-of-the-art methods, highlighting its versatility across various deep learning tasks. Code is available at https://github.com/vita-epfl/TAROT.

Distilled Prompt Learning for Incomplete Multimodal Survival Prediction

The integration of multimodal data including pathology images and gene profiles is widely applied in precise survival prediction. Despite recent advances in multimodal survival models, collecting complete modalities for multimodal fusion still poses a significant challenge, hindering their application in clinical settings. Current approaches tackling incomplete modalities often fall short, as they typically compensate for only a limited part of the knowledge of missing modalities. To address this issue, we propose a Distilled Prompt Learning framework (DisPro) to utilize the strong robustness of Large Language Models (LLMs) to missing modalities, which employs two-stage prompting for compensation of comprehensive information for missing modalities. In the first stage, Unimodal Prompting (UniPro) distills the knowledge distribution of each modality, preparing for supplementing modality-specific knowledge of the missing modality in the subsequent stage. In the second stage, Multimodal Prompting (MultiPro) leverages available modalities as prompts for LLMs to infer the missing modality, which provides modality-common information. Simultaneously, the unimodal knowledge acquired in the first stage is injected into multimodal inference to compensate for the modality-specific knowledge of the missing modality. Extensive experiments covering various missing scenarios demonstrated the superiority of the proposed method. The code is available at https://github.com/Innse/DisPro.

Aligning Language Models with Observational Data: Opportunities and Risks from a Causal Perspective

Large language models are being widely used across industries to generate content that contributes directly to key performance metrics, such as conversion rates. Pretrained models, however, often fall short when it comes to aligning with human preferences or optimizing for business objectives. As a result, fine-tuning with good-quality labeled data is essential to guide models to generate content that achieves better results. Controlled experiments, like A/B tests, can provide such data, but they are often expensive and come with significant engineering and logistical challenges. Meanwhile, companies have access to a vast amount of historical (observational) data that remains underutilized. In this work, we study the challenges and opportunities of fine-tuning LLMs using observational data. We show that while observational outcomes can provide valuable supervision, directly fine-tuning models on such data can lead them to learn spurious correlations. We present empirical evidence of this issue using various real-world datasets and propose DeconfoundLM, a method that explicitly removes the effect of known confounders from reward signals. Using simulation experiments, we demonstrate that DeconfoundLM improves the recovery of causal relationships and mitigates failure modes found in fine-tuning methods that ignore or naively incorporate confounding variables. Our findings highlight that while observational data presents risks, with the right causal corrections, it can be a powerful source of signal for LLM alignment. Please refer to the project page for code and related resources.

Diversify and Conquer: Open-set Disagreement for Robust Semi-supervised Learning with Outliers

Conventional semi-supervised learning (SSL) ideally assumes that labeled and unlabeled data share an identical class distribution, however in practice, this assumption is easily violated, as unlabeled data often includes unknown class data, i.e., outliers. The outliers are treated as noise, considerably degrading the performance of SSL models. To address this drawback, we propose a novel framework, Diversify and Conquer (DAC), to enhance SSL robustness in the context of open-set semi-supervised learning. In particular, we note that existing open-set SSL methods rely on prediction discrepancies between inliers and outliers from a single model trained on labeled data. This approach can be easily failed when the labeled data is insufficient, leading to performance degradation that is worse than naive SSL that do not account for outliers. In contrast, our approach exploits prediction disagreements among multiple models that are differently biased towards the unlabeled distribution. By leveraging the discrepancies arising from training on unlabeled data, our method enables robust outlier detection even when the labeled data is underspecified. Our key contribution is constructing a collection of differently biased models through a single training process. By encouraging divergent heads to be differently biased towards outliers while making consistent predictions for inliers, we exploit the disagreement among these heads as a measure to identify unknown concepts. Our code is available at https://github.com/heejokong/DivCon.

Exploring the cloud of feature interaction scores in a Rashomon set

Interactions among features are central to understanding the behavior of machine learning models. Recent research has made significant strides in detecting and quantifying feature interactions in single predictive models. However, we argue that the feature interactions extracted from a single pre-specified model may not be trustworthy since: a well-trained predictive model may not preserve the true feature interactions and there exist multiple well-performing predictive models that differ in feature interaction strengths. Thus, we recommend exploring feature interaction strengths in a model class of approximately equally accurate predictive models. In this work, we introduce the feature interaction score (FIS) in the context of a Rashomon set, representing a collection of models that achieve similar accuracy on a given task. We propose a general and practical algorithm to calculate the FIS in the model class. We demonstrate the properties of the FIS via synthetic data and draw connections to other areas of statistics. Additionally, we introduce a Halo plot for visualizing the feature interaction variance in high-dimensional space and a swarm plot for analyzing FIS in a Rashomon set. Experiments with recidivism prediction and image classification illustrate how feature interactions can vary dramatically in importance for similarly accurate predictive models. Our results suggest that the proposed FIS can provide valuable insights into the nature of feature interactions in machine learning models.

Rethinking the Bias of Foundation Model under Long-tailed Distribution

Long-tailed learning has garnered increasing attention due to its practical significance. Among the various approaches, the fine-tuning paradigm has gained considerable interest with the advent of foundation models. However, most existing methods primarily focus on leveraging knowledge from these models, overlooking the inherent biases introduced by the imbalanced training data they rely on. In this paper, we examine how such imbalances from pre-training affect long-tailed downstream tasks. Specifically, we find the imbalance biases inherited in foundation models on downstream task as parameter imbalance and data imbalance. During fine-tuning, we observe that parameter imbalance plays a more critical role, while data imbalance can be mitigated using existing re-balancing strategies. Moreover, we find that parameter imbalance cannot be effectively addressed by current re-balancing techniques, such as adjusting the logits, during training, unlike data imbalance. To tackle both imbalances simultaneously, we build our method on causal learning and view the incomplete semantic factor as the confounder, which brings spurious correlations between input samples and labels. To resolve the negative effects of this, we propose a novel backdoor adjustment method that learns the true causal effect between input samples and labels, rather than merely fitting the correlations in the data. Notably, we achieve an average performance increase of about 1.67% on each dataset.

DEUP: Direct Epistemic Uncertainty Prediction

Epistemic Uncertainty is a measure of the lack of knowledge of a learner which diminishes with more evidence. While existing work focuses on using the variance of the Bayesian posterior due to parameter uncertainty as a measure of epistemic uncertainty, we argue that this does not capture the part of lack of knowledge induced by model misspecification. We discuss how the excess risk, which is the gap between the generalization error of a predictor and the Bayes predictor, is a sound measure of epistemic uncertainty which captures the effect of model misspecification. We thus propose a principled framework for directly estimating the excess risk by learning a secondary predictor for the generalization error and subtracting an estimate of aleatoric uncertainty, i.e., intrinsic unpredictability. We discuss the merits of this novel measure of epistemic uncertainty, and highlight how it differs from variance-based measures of epistemic uncertainty and addresses its major pitfall. Our framework, Direct Epistemic Uncertainty Prediction (DEUP) is particularly interesting in interactive learning environments, where the learner is allowed to acquire novel examples in each round. Through a wide set of experiments, we illustrate how existing methods in sequential model optimization can be improved with epistemic uncertainty estimates from DEUP, and how DEUP can be used to drive exploration in reinforcement learning. We also evaluate the quality of uncertainty estimates from DEUP for probabilistic image classification and predicting synergies of drug combinations.

On the Provable Advantage of Unsupervised Pretraining

Unsupervised pretraining, which learns a useful representation using a large amount of unlabeled data to facilitate the learning of downstream tasks, is a critical component of modern large-scale machine learning systems. Despite its tremendous empirical success, the rigorous theoretical understanding of why unsupervised pretraining generally helps remains rather limited -- most existing results are restricted to particular methods or approaches for unsupervised pretraining with specialized structural assumptions. This paper studies a generic framework, where the unsupervised representation learning task is specified by an abstract class of latent variable models Phi and the downstream task is specified by a class of prediction functions Psi. We consider a natural approach of using Maximum Likelihood Estimation (MLE) for unsupervised pretraining and Empirical Risk Minimization (ERM) for learning downstream tasks. We prove that, under a mild ''informative'' condition, our algorithm achieves an excess risk of mathcal{O}(mathcal{C_Phi/m} + mathcal{C_Psi/n}) for downstream tasks, where C_Phi, C_Psi are complexity measures of function classes Phi, Psi, and m, n are the number of unlabeled and labeled data respectively. Comparing to the baseline of mathcal{O}(mathcal{C_{Phi circ Psi}/n}) achieved by performing supervised learning using only the labeled data, our result rigorously shows the benefit of unsupervised pretraining when m gg n and C_{Phicirc Psi} > C_Psi. This paper further shows that our generic framework covers a wide range of approaches for unsupervised pretraining, including factor models, Gaussian mixture models, and contrastive learning.

Long-Short History of Gradients is All You Need: Detecting Malicious and Unreliable Clients in Federated Learning

Federated learning offers a framework of training a machine learning model in a distributed fashion while preserving privacy of the participants. As the server cannot govern the clients' actions, nefarious clients may attack the global model by sending malicious local gradients. In the meantime, there could also be unreliable clients who are benign but each has a portion of low-quality training data (e.g., blur or low-resolution images), thus may appearing similar as malicious clients. Therefore, a defense mechanism will need to perform a three-fold differentiation which is much more challenging than the conventional (two-fold) case. This paper introduces MUD-HoG, a novel defense algorithm that addresses this challenge in federated learning using long-short history of gradients, and treats the detected malicious and unreliable clients differently. Not only this, but we can also distinguish between targeted and untargeted attacks among malicious clients, unlike most prior works which only consider one type of the attacks. Specifically, we take into account sign-flipping, additive-noise, label-flipping, and multi-label-flipping attacks, under a non-IID setting. We evaluate MUD-HoG with six state-of-the-art methods on two datasets. The results show that MUD-HoG outperforms all of them in terms of accuracy as well as precision and recall, in the presence of a mixture of multiple (four) types of attackers as well as unreliable clients. Moreover, unlike most prior works which can only tolerate a low population of harmful users, MUD-HoG can work with and successfully detect a wide range of malicious and unreliable clients - up to 47.5% and 10%, respectively, of the total population. Our code is open-sourced at https://github.com/LabSAINT/MUD-HoG_Federated_Learning.

OPERA: Alleviating Hallucination in Multi-Modal Large Language Models via Over-Trust Penalty and Retrospection-Allocation

Hallucination, posed as a pervasive challenge of multi-modal large language models (MLLMs), has significantly impeded their real-world usage that demands precise judgment. Existing methods mitigate this issue with either training with specific designed data or inferencing with external knowledge from other sources, incurring inevitable additional costs. In this paper, we present OPERA, a novel MLLM decoding method grounded in an Over-trust Penalty and a Retrospection-Allocation strategy, serving as a nearly free lunch to alleviate the hallucination issue without additional data, knowledge, or training. Our approach begins with an interesting observation that, most hallucinations are closely tied to the knowledge aggregation patterns manifested in the self-attention matrix, i.e., MLLMs tend to generate new tokens by focusing on a few summary tokens, but not all the previous tokens. Such partial over-trust inclination results in the neglecting of image tokens and describes the image content with hallucination. Statistically, we observe an 80%sim95% co-currency rate between hallucination contents and such knowledge aggregation patterns. Based on the observation, OPERA introduces a penalty term on the model logits during the beam-search decoding to mitigate the over-trust issue, along with a rollback strategy that retrospects the presence of summary tokens in the previously generated tokens, and re-allocate the token selection if necessary. With extensive experiments, OPERA shows significant hallucination-mitigating performance on different MLLMs and metrics, proving its effectiveness and generality. Our code is available at: https://github.com/shikiw/OPERA.

Towards Characterizing Domain Counterfactuals For Invertible Latent Causal Models

Answering counterfactual queries has many important applications such as knowledge discovery and explainability, but is challenging when causal variables are unobserved and we only see a projection onto an observation space, for instance, image pixels. One approach is to recover the latent Structural Causal Model (SCM), but this typically needs unrealistic assumptions, such as linearity of the causal mechanisms. Another approach is to use na\"ive ML approximations, such as generative models, to generate counterfactual samples; however, these lack guarantees of accuracy. In this work, we strive to strike a balance between practicality and theoretical guarantees by focusing on a specific type of causal query called domain counterfactuals, which hypothesizes what a sample would have looked like if it had been generated in a different domain (or environment). Concretely, by only assuming invertibility, sparse domain interventions and access to observational data from different domains, we aim to improve domain counterfactual estimation both theoretically and practically with less restrictive assumptions. We define domain counterfactually equivalent models and prove necessary and sufficient properties for equivalent models that provide a tight characterization of the domain counterfactual equivalence classes. Building upon this result, we prove that every equivalence class contains a model where all intervened variables are at the end when topologically sorted by the causal DAG. This surprising result suggests that a model design that only allows intervention in the last k latent variables may improve model estimation for counterfactuals. We then test this model design on extensive simulated and image-based experiments which show the sparse canonical model indeed improves counterfactual estimation over baseline non-sparse models.

A Benchmark and Asymmetrical-Similarity Learning for Practical Image Copy Detection

Image copy detection (ICD) aims to determine whether a query image is an edited copy of any image from a reference set. Currently, there are very limited public benchmarks for ICD, while all overlook a critical challenge in real-world applications, i.e., the distraction from hard negative queries. Specifically, some queries are not edited copies but are inherently similar to some reference images. These hard negative queries are easily false recognized as edited copies, significantly compromising the ICD accuracy. This observation motivates us to build the first ICD benchmark featuring this characteristic. Based on existing ICD datasets, this paper constructs a new dataset by additionally adding 100, 000 and 24, 252 hard negative pairs into the training and test set, respectively. Moreover, this paper further reveals a unique difficulty for solving the hard negative problem in ICD, i.e., there is a fundamental conflict between current metric learning and ICD. This conflict is: the metric learning adopts symmetric distance while the edited copy is an asymmetric (unidirectional) process, e.g., a partial crop is close to its holistic reference image and is an edited copy, while the latter cannot be the edited copy of the former (in spite the distance is equally small). This insight results in an Asymmetrical-Similarity Learning (ASL) method, which allows the similarity in two directions (the query <-> the reference image) to be different from each other. Experimental results show that ASL outperforms state-of-the-art methods by a clear margin, confirming that solving the symmetric-asymmetric conflict is critical for ICD. The NDEC dataset and code are available at https://github.com/WangWenhao0716/ASL.

Towards Trustworthy and Aligned Machine Learning: A Data-centric Survey with Causality Perspectives

The trustworthiness of machine learning has emerged as a critical topic in the field, encompassing various applications and research areas such as robustness, security, interpretability, and fairness. The last decade saw the development of numerous methods addressing these challenges. In this survey, we systematically review these advancements from a data-centric perspective, highlighting the shortcomings of traditional empirical risk minimization (ERM) training in handling challenges posed by the data. Interestingly, we observe a convergence of these methods, despite being developed independently across trustworthy machine learning subfields. Pearl's hierarchy of causality offers a unifying framework for these techniques. Accordingly, this survey presents the background of trustworthy machine learning development using a unified set of concepts, connects this language to Pearl's causal hierarchy, and finally discusses methods explicitly inspired by causality literature. We provide a unified language with mathematical vocabulary to link these methods across robustness, adversarial robustness, interpretability, and fairness, fostering a more cohesive understanding of the field. Further, we explore the trustworthiness of large pretrained models. After summarizing dominant techniques like fine-tuning, parameter-efficient fine-tuning, prompting, and reinforcement learning with human feedback, we draw connections between them and the standard ERM. This connection allows us to build upon the principled understanding of trustworthy methods, extending it to these new techniques in large pretrained models, paving the way for future methods. Existing methods under this perspective are also reviewed. Lastly, we offer a brief summary of the applications of these methods and discuss potential future aspects related to our survey. For more information, please visit http://trustai.one.