new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jul 29

DifFace: Blind Face Restoration with Diffused Error Contraction

While deep learning-based methods for blind face restoration have achieved unprecedented success, they still suffer from two major limitations. First, most of them deteriorate when facing complex degradations out of their training data. Second, these methods require multiple constraints, e.g., fidelity, perceptual, and adversarial losses, which require laborious hyper-parameter tuning to stabilize and balance their influences. In this work, we propose a novel method named DifFace that is capable of coping with unseen and complex degradations more gracefully without complicated loss designs. The key of our method is to establish a posterior distribution from the observed low-quality (LQ) image to its high-quality (HQ) counterpart. In particular, we design a transition distribution from the LQ image to the intermediate state of a pre-trained diffusion model and then gradually transmit from this intermediate state to the HQ target by recursively applying a pre-trained diffusion model. The transition distribution only relies on a restoration backbone that is trained with L_2 loss on some synthetic data, which favorably avoids the cumbersome training process in existing methods. Moreover, the transition distribution can contract the error of the restoration backbone and thus makes our method more robust to unknown degradations. Comprehensive experiments show that DifFace is superior to current state-of-the-art methods, especially in cases with severe degradations. Our code and model are available at https://github.com/zsyOAOA/DifFace.

DORNet: A Degradation Oriented and Regularized Network for Blind Depth Super-Resolution

Recent RGB-guided depth super-resolution methods have achieved impressive performance under the assumption of fixed and known degradation (e.g., bicubic downsampling). However, in real-world scenarios, captured depth data often suffer from unconventional and unknown degradation due to sensor limitations and complex imaging environments (e.g., low reflective surfaces, varying illumination). Consequently, the performance of these methods significantly declines when real-world degradation deviate from their assumptions. In this paper, we propose the Degradation Oriented and Regularized Network (DORNet), a novel framework designed to adaptively address unknown degradation in real-world scenes through implicit degradation representations. Our approach begins with the development of a self-supervised degradation learning strategy, which models the degradation representations of low-resolution depth data using routing selection-based degradation regularization. To facilitate effective RGB-D fusion, we further introduce a degradation-oriented feature transformation module that selectively propagates RGB content into the depth data based on the learned degradation priors. Extensive experimental results on both real and synthetic datasets demonstrate the superiority of our DORNet in handling unknown degradation, outperforming existing methods. The code is available at https://github.com/yanzq95/DORNet.

Prompt-In-Prompt Learning for Universal Image Restoration

Image restoration, which aims to retrieve and enhance degraded images, is fundamental across a wide range of applications. While conventional deep learning approaches have notably improved the image quality across various tasks, they still suffer from (i) the high storage cost needed for various task-specific models and (ii) the lack of interactivity and flexibility, hindering their wider application. Drawing inspiration from the pronounced success of prompts in both linguistic and visual domains, we propose novel Prompt-In-Prompt learning for universal image restoration, named PIP. First, we present two novel prompts, a degradation-aware prompt to encode high-level degradation knowledge and a basic restoration prompt to provide essential low-level information. Second, we devise a novel prompt-to-prompt interaction module to fuse these two prompts into a universal restoration prompt. Third, we introduce a selective prompt-to-feature interaction module to modulate the degradation-related feature. By doing so, the resultant PIP works as a plug-and-play module to enhance existing restoration models for universal image restoration. Extensive experimental results demonstrate the superior performance of PIP on multiple restoration tasks, including image denoising, deraining, dehazing, deblurring, and low-light enhancement. Remarkably, PIP is interpretable, flexible, efficient, and easy-to-use, showing promising potential for real-world applications. The code is available at https://github.com/longzilicart/pip_universal.

AdaIR: Adaptive All-in-One Image Restoration via Frequency Mining and Modulation

In the image acquisition process, various forms of degradation, including noise, haze, and rain, are frequently introduced. These degradations typically arise from the inherent limitations of cameras or unfavorable ambient conditions. To recover clean images from degraded versions, numerous specialized restoration methods have been developed, each targeting a specific type of degradation. Recently, all-in-one algorithms have garnered significant attention by addressing different types of degradations within a single model without requiring prior information of the input degradation type. However, these methods purely operate in the spatial domain and do not delve into the distinct frequency variations inherent to different degradation types. To address this gap, we propose an adaptive all-in-one image restoration network based on frequency mining and modulation. Our approach is motivated by the observation that different degradation types impact the image content on different frequency subbands, thereby requiring different treatments for each restoration task. Specifically, we first mine low- and high-frequency information from the input features, guided by the adaptively decoupled spectra of the degraded image. The extracted features are then modulated by a bidirectional operator to facilitate interactions between different frequency components. Finally, the modulated features are merged into the original input for a progressively guided restoration. With this approach, the model achieves adaptive reconstruction by accentuating the informative frequency subbands according to different input degradations. Extensive experiments demonstrate that the proposed method achieves state-of-the-art performance on different image restoration tasks, including denoising, dehazing, deraining, motion deblurring, and low-light image enhancement. Our code is available at https://github.com/c-yn/AdaIR.

GenDeg: Diffusion-Based Degradation Synthesis for Generalizable All-in-One Image Restoration

Deep learning-based models for All-In-One Image Restoration (AIOR) have achieved significant advancements in recent years. However, their practical applicability is limited by poor generalization to samples outside the training distribution. This limitation arises primarily from insufficient diversity in degradation variations and scenes within existing datasets, resulting in inadequate representations of real-world scenarios. Additionally, capturing large-scale real-world paired data for degradations such as haze, low-light, and raindrops is often cumbersome and sometimes infeasible. In this paper, we leverage the generative capabilities of latent diffusion models to synthesize high-quality degraded images from their clean counterparts. Specifically, we introduce GenDeg, a degradation and intensity-aware conditional diffusion model capable of producing diverse degradation patterns on clean images. Using GenDeg, we synthesize over 550k samples across six degradation types: haze, rain, snow, motion blur, low-light, and raindrops. These generated samples are integrated with existing datasets to form the GenDS dataset, comprising over 750k samples. Our experiments reveal that image restoration models trained on the GenDS dataset exhibit significant improvements in out-of-distribution performance compared to those trained solely on existing datasets. Furthermore, we provide comprehensive analyses on the implications of diffusion model-based synthetic degradations for AIOR. The code will be made publicly available.

Textual Prompt Guided Image Restoration

Image restoration has always been a cutting-edge topic in the academic and industrial fields of computer vision. Since degradation signals are often random and diverse, "all-in-one" models that can do blind image restoration have been concerned in recent years. Early works require training specialized headers and tails to handle each degradation of concern, which are manually cumbersome. Recent works focus on learning visual prompts from data distribution to identify degradation type. However, the prompts employed in most of models are non-text, lacking sufficient emphasis on the importance of human-in-the-loop. In this paper, an effective textual prompt guided image restoration model has been proposed. In this model, task-specific BERT is fine-tuned to accurately understand user's instructions and generating textual prompt guidance. Depth-wise multi-head transposed attentions and gated convolution modules are designed to bridge the gap between textual prompts and visual features. The proposed model has innovatively introduced semantic prompts into low-level visual domain. It highlights the potential to provide a natural, precise, and controllable way to perform image restoration tasks. Extensive experiments have been done on public denoising, dehazing and deraining datasets. The experiment results demonstrate that, compared with popular state-of-the-art methods, the proposed model can obtain much more superior performance, achieving accurate recognition and removal of degradation without increasing model's complexity. Related source codes and data will be publicly available on github site https://github.com/MoTong-AI-studio/TextPromptIR.

UNOPose: Unseen Object Pose Estimation with an Unposed RGB-D Reference Image

Unseen object pose estimation methods often rely on CAD models or multiple reference views, making the onboarding stage costly. To simplify reference acquisition, we aim to estimate the unseen object's pose through a single unposed RGB-D reference image. While previous works leverage reference images as pose anchors to limit the range of relative pose, our scenario presents significant challenges since the relative transformation could vary across the entire SE(3) space. Moreover, factors like occlusion, sensor noise, and extreme geometry could result in low viewpoint overlap. To address these challenges, we present a novel approach and benchmark, termed UNOPose, for unseen one-reference-based object pose estimation. Building upon a coarse-to-fine paradigm, UNOPose constructs an SE(3)-invariant reference frame to standardize object representation despite pose and size variations. To alleviate small overlap across viewpoints, we recalibrate the weight of each correspondence based on its predicted likelihood of being within the overlapping region. Evaluated on our proposed benchmark based on the BOP Challenge, UNOPose demonstrates superior performance, significantly outperforming traditional and learning-based methods in the one-reference setting and remaining competitive with CAD-model-based methods. The code and dataset are available at https://github.com/shanice-l/UNOPose.

FoundPose: Unseen Object Pose Estimation with Foundation Features

We propose FoundPose, a model-based method for 6D pose estimation of unseen objects from a single RGB image. The method can quickly onboard new objects using their 3D models without requiring any object- or task-specific training. In contrast, existing methods typically pre-train on large-scale, task-specific datasets in order to generalize to new objects and to bridge the image-to-model domain gap. We demonstrate that such generalization capabilities can be observed in a recent vision foundation model trained in a self-supervised manner. Specifically, our method estimates the object pose from image-to-model 2D-3D correspondences, which are established by matching patch descriptors from the recent DINOv2 model between the image and pre-rendered object templates. We find that reliable correspondences can be established by kNN matching of patch descriptors from an intermediate DINOv2 layer. Such descriptors carry stronger positional information than descriptors from the last layer, and we show their importance when semantic information is ambiguous due to object symmetries or a lack of texture. To avoid establishing correspondences against all object templates, we develop an efficient template retrieval approach that integrates the patch descriptors into the bag-of-words representation and can promptly propose a handful of similarly looking templates. Additionally, we apply featuremetric alignment to compensate for discrepancies in the 2D-3D correspondences caused by coarse patch sampling. The resulting method noticeably outperforms existing RGB methods for refinement-free pose estimation on the standard BOP benchmark with seven diverse datasets and can be seamlessly combined with an existing render-and-compare refinement method to achieve RGB-only state-of-the-art results. Project page: evinpinar.github.io/foundpose.

Answering Unseen Questions With Smaller Language Models Using Rationale Generation and Dense Retrieval

When provided with sufficient explanatory context, smaller Language Models have been shown to exhibit strong reasoning ability on challenging short-answer question-answering tasks where the questions are unseen in training. We evaluate two methods for further improvement in this setting. Both methods focus on combining rationales generated by a larger Language Model with longer contexts created from a multi-hop dense retrieval system. The first method (RR) involves training a Rationale Ranking model to score both generated rationales and retrieved contexts with respect to relevance and truthfulness. We then use the scores to derive combined contexts from both knowledge sources using a number of combinatory strategies. For the second method (RATD) we utilise retrieval-augmented training datasets developed by Hartill et al. 2023 to train a smaller Reasoning model such that it becomes proficient at utilising relevant information from longer text sequences that may be only partially evidential and frequently contain many irrelevant sentences. We find that both methods significantly improve results. Our single best Reasoning model materially improves upon strong comparable prior baselines for unseen evaluation datasets (StrategyQA 58.9 rightarrow 61.7 acc., CommonsenseQA 63.6 rightarrow 72.7 acc., ARC-DA 31.6 rightarrow 52.1 F1, IIRC 25.5 rightarrow 27.3 F1) and a version utilising our prior knowledge of each type of question in selecting a context combination strategy does even better. Our proposed models also generally outperform direct prompts against much larger models (BLOOM 175B and StableVicuna 13B) in both few-shot chain-of-thought and standard few-shot settings.

Reconstructing unseen modalities and pathology with an efficient Recurrent Inference Machine

Objective: To allow efficient learning using the Recurrent Inference Machine (RIM) for image reconstruction whereas not being strictly dependent on the training data distribution so that unseen modalities and pathologies are still accurately recovered. Methods: Theoretically, the RIM learns to solve the inverse problem of accelerated-MRI reconstruction whereas being robust to variable imaging conditions. The efficiency and generalization capabilities with different training datasets were studied, as well as recurrent network units with decreasing complexity: the Gated Recurrent Unit (GRU), the Minimal Gated Unit (MGU), and the Independently Recurrent Neural Network (IndRNN), to reduce inference times. Validation was performed against Compressed Sensing (CS) and further assessed based on data unseen during training. A pathology study was conducted by reconstructing simulated white matter lesions and prospectively undersampled data of a Multiple Sclerosis patient. Results: Training on a single modality of 3T T_1-weighted brain data appeared sufficient to also reconstruct 7T T_{2}^*-weighted brain and 3T T_2-weighted knee data. The IndRNN is an efficient recurrent unit, reducing inference time by 68\% compared to CS, whereas maintaining performance. The RIM was able to reconstruct lesions unseen during training more accurately than CS when trained on T_2-weighted knee data. Training on T_1-weighted brain data and on combined data slightly enhanced the signal compared to CS. Conclusion: The RIM is efficient when decreasing its complexity, which reduces the inference time, whereas still being able to reconstruct data and pathology that was unseen during training.

Can AI Dream of Unseen Galaxies? Conditional Diffusion Model for Galaxy Morphology Augmentation

Observational astronomy relies on visual feature identification to detect critical astrophysical phenomena. While machine learning (ML) increasingly automates this process, models often struggle with generalization in large-scale surveys due to the limited representativeness of labeled datasets -- whether from simulations or human annotation -- a challenge pronounced for rare yet scientifically valuable objects. To address this, we propose a conditional diffusion model to synthesize realistic galaxy images for augmenting ML training data. Leveraging the Galaxy Zoo 2 dataset which contains visual feature -- galaxy image pairs from volunteer annotation, we demonstrate that our model generates diverse, high-fidelity galaxy images closely adhere to the specified morphological feature conditions. Moreover, this model enables generative extrapolation to project well-annotated data into unseen domains and advancing rare object detection. Integrating synthesized images into ML pipelines improves performance in standard morphology classification, boosting completeness and purity by up to 30\% across key metrics. For rare object detection, using early-type galaxies with prominent dust lane features ( sim0.1\% in GZ2 dataset) as a test case, our approach doubled the number of detected instances from 352 to 872, compared to previous studies based on visual inspection. This study highlights the power of generative models to bridge gaps between scarce labeled data and the vast, uncharted parameter space of observational astronomy and sheds insight for future astrophysical foundation model developments. Our project homepage is available at https://galaxysd-webpage.streamlit.app/.

Contextual API Completion for Unseen Repositories Using LLMs

Large language models have made substantial progress in addressing diverse code-related tasks. However, their adoption is hindered by inconsistencies in generating output due to the lack of real-world, domain-specific information, such as for intra-repository API calls for unseen software projects. We introduce a novel technique to mitigate hallucinations by leveraging global and local contextual information within a code repository for API completion tasks. Our approach is tailored to refine code completion tasks, with a focus on optimizing local API completions. We examine relevant import statements during API completion to derive insights into local APIs, drawing from their method signatures. For API token completion, we analyze the inline variables and correlate them with the appropriate imported modules, thereby allowing our approach to rank the most contextually relevant suggestions from the available local APIs. Further, for conversational API completion, we gather APIs that are most relevant to the developer query with a retrieval-based search across the project. We employ our tool, LANCE, within the framework of our proposed benchmark, APIEval, encompassing two different programming languages. Our evaluation yields an average accuracy of 82.6% for API token completion and 76.9% for conversational API completion tasks. On average, LANCE surpasses Copilot by 143% and 142% for API token completion and conversational API completion, respectively. The implications of our findings are substantial for developers, suggesting that our lightweight context analysis can be applied to multilingual environments without language-specific training or fine-tuning, allowing for efficient implementation with minimal examples and effort.

Segmenting Known Objects and Unseen Unknowns without Prior Knowledge

Panoptic segmentation methods assign a known class to each pixel given in input. Even for state-of-the-art approaches, this inevitably enforces decisions that systematically lead to wrong predictions for objects outside the training categories. However, robustness against out-of-distribution samples and corner cases is crucial in safety-critical settings to avoid dangerous consequences. Since real-world datasets cannot contain enough data points to adequately sample the long tail of the underlying distribution, models must be able to deal with unseen and unknown scenarios as well. Previous methods targeted this by re-identifying already-seen unlabeled objects. In this work, we propose the necessary step to extend segmentation with a new setting which we term holistic segmentation. Holistic segmentation aims to identify and separate objects of unseen, unknown categories into instances without any prior knowledge about them while performing panoptic segmentation of known classes. We tackle this new problem with U3HS, which finds unknowns as highly uncertain regions and clusters their corresponding instance-aware embeddings into individual objects. By doing so, for the first time in panoptic segmentation with unknown objects, our U3HS is trained without unknown categories, reducing assumptions and leaving the settings as unconstrained as in real-life scenarios. Extensive experiments on public data from MS COCO, Cityscapes, and Lost&Found demonstrate the effectiveness of U3HS for this new, challenging, and assumptions-free setting called holistic segmentation. Project page: https://holisticseg.github.io.

OFA: A Framework of Initializing Unseen Subword Embeddings for Efficient Large-scale Multilingual Continued Pretraining

Pretraining multilingual language models from scratch requires considerable computational resources and substantial training data. Therefore, a more efficient method is to adapt existing pretrained language models (PLMs) to new languages via vocabulary extension and continued pretraining. However, this method usually randomly initializes the embeddings of new subwords and introduces substantially more embedding parameters to the language model, thus weakening the efficiency. To address these issues, we propose a novel framework: One For All (\textsc{Ofa}), which wisely initializes the embeddings of unseen subwords from target languages and thus can adapt a PLM to multiple languages efficiently and effectively. Ofa takes advantage of external well-aligned multilingual word embeddings and injects the alignment knowledge into the new embeddings. In addition, Ofa applies matrix factorization and replaces the cumbersome embeddings with two lower-dimensional matrices, which significantly reduces the number of parameters while not sacrificing the performance. Through extensive experiments, we show models initialized by Ofa are efficient and outperform several baselines. Ofa not only accelerates the convergence of continued pretraining, which is friendly to a limited computation budget, but also improves the zero-shot crosslingual transfer on a wide range of downstream tasks. We make our code and models publicly available.

MOOSE-Chem: Large Language Models for Rediscovering Unseen Chemistry Scientific Hypotheses

Scientific discovery contributes largely to human society's prosperity, and recent progress shows that LLMs could potentially catalyze this process. However, it is still unclear whether LLMs can discover novel and valid hypotheses in chemistry. In this work, we investigate this central research question: Can LLMs automatically discover novel and valid chemistry research hypotheses given only a chemistry research background (consisting of a research question and/or a background survey), without limitation on the domain of the research question? After extensive discussions with chemistry experts, we propose an assumption that a majority of chemistry hypotheses can be resulted from a research background and several inspirations. With this key insight, we break the central question into three smaller fundamental questions. In brief, they are: (1) given a background question, whether LLMs can retrieve good inspirations; (2) with background and inspirations, whether LLMs can lead to hypothesis; and (3) whether LLMs can identify good hypotheses to rank them higher. To investigate these questions, we construct a benchmark consisting of 51 chemistry papers published in Nature, Science, or a similar level in 2024 (all papers are only available online since 2024). Every paper is divided by chemistry PhD students into three components: background, inspirations, and hypothesis. The goal is to rediscover the hypothesis, given only the background and a large randomly selected chemistry literature corpus consisting the ground truth inspiration papers, with LLMs trained with data up to 2023. We also develop an LLM-based multi-agent framework that leverages the assumption, consisting of three stages reflecting the three smaller questions. The proposed method can rediscover many hypotheses with very high similarity with the ground truth ones, covering the main innovations.

Does Pre-trained Language Model Actually Infer Unseen Links in Knowledge Graph Completion?

Knowledge graphs (KGs) consist of links that describe relationships between entities. Due to the difficulty of manually enumerating all relationships between entities, automatically completing them is essential for KGs. Knowledge Graph Completion (KGC) is a task that infers unseen relationships between entities in a KG. Traditional embedding-based KGC methods, such as RESCAL, TransE, DistMult, ComplEx, RotatE, HAKE, HousE, etc., infer missing links using only the knowledge from training data. In contrast, the recent Pre-trained Language Model (PLM)-based KGC utilizes knowledge obtained during pre-training. Therefore, PLM-based KGC can estimate missing links between entities by reusing memorized knowledge from pre-training without inference. This approach is problematic because building KGC models aims to infer unseen links between entities. However, conventional evaluations in KGC do not consider inference and memorization abilities separately. Thus, a PLM-based KGC method, which achieves high performance in current KGC evaluations, may be ineffective in practical applications. To address this issue, we analyze whether PLM-based KGC methods make inferences or merely access memorized knowledge. For this purpose, we propose a method for constructing synthetic datasets specified in this analysis and conclude that PLMs acquire the inference abilities required for KGC through pre-training, even though the performance improvements mostly come from textual information of entities and relations.

Generalizing Neural Human Fitting to Unseen Poses With Articulated SE(3) Equivariance

We address the problem of fitting a parametric human body model (SMPL) to point cloud data. Optimization-based methods require careful initialization and are prone to becoming trapped in local optima. Learning-based methods address this but do not generalize well when the input pose is far from those seen during training. For rigid point clouds, remarkable generalization has been achieved by leveraging SE(3)-equivariant networks, but these methods do not work on articulated objects. In this work we extend this idea to human bodies and propose ArtEq, a novel part-based SE(3)-equivariant neural architecture for SMPL model estimation from point clouds. Specifically, we learn a part detection network by leveraging local SO(3) invariance, and regress shape and pose using articulated SE(3) shape-invariant and pose-equivariant networks, all trained end-to-end. Our novel pose regression module leverages the permutation-equivariant property of self-attention layers to preserve rotational equivariance. Experimental results show that ArtEq generalizes to poses not seen during training, outperforming state-of-the-art methods by ~44% in terms of body reconstruction accuracy, without requiring an optimization refinement step. Furthermore, ArtEq is three orders of magnitude faster during inference than prior work and has 97.3% fewer parameters. The code and model are available for research purposes at https://arteq.is.tue.mpg.de.

RepLiQA: A Question-Answering Dataset for Benchmarking LLMs on Unseen Reference Content

Large Language Models (LLMs) are trained on vast amounts of data, most of which is automatically scraped from the internet. This data includes encyclopedic documents that harbor a vast amount of general knowledge (e.g., Wikipedia) but also potentially overlap with benchmark datasets used for evaluating LLMs. Consequently, evaluating models on test splits that might have leaked into the training set is prone to misleading conclusions. To foster sound evaluation of language models, we introduce a new test dataset named RepLiQA, suited for question-answering and topic retrieval tasks. RepLiQA is a collection of five splits of test sets, four of which have not been released to the internet or exposed to LLM APIs prior to this publication. Each sample in RepLiQA comprises (1) a reference document crafted by a human annotator and depicting an imaginary scenario (e.g., a news article) absent from the internet; (2) a question about the document's topic; (3) a ground-truth answer derived directly from the information in the document; and (4) the paragraph extracted from the reference document containing the answer. As such, accurate answers can only be generated if a model can find relevant content within the provided document. We run a large-scale benchmark comprising several state-of-the-art LLMs to uncover differences in performance across models of various types and sizes in a context-conditional language modeling setting. Released splits of RepLiQA can be found here: https://huggingface.co/datasets/ServiceNow/repliqa.

SPVLoc: Semantic Panoramic Viewport Matching for 6D Camera Localization in Unseen Environments

In this paper, we present SPVLoc, a global indoor localization method that accurately determines the six-dimensional (6D) camera pose of a query image and requires minimal scene-specific prior knowledge and no scene-specific training. Our approach employs a novel matching procedure to localize the perspective camera's viewport, given as an RGB image, within a set of panoramic semantic layout representations of the indoor environment. The panoramas are rendered from an untextured 3D reference model, which only comprises approximate structural information about room shapes, along with door and window annotations. We demonstrate that a straightforward convolutional network structure can successfully achieve image-to-panorama and ultimately image-to-model matching. Through a viewport classification score, we rank reference panoramas and select the best match for the query image. Then, a 6D relative pose is estimated between the chosen panorama and query image. Our experiments demonstrate that this approach not only efficiently bridges the domain gap but also generalizes well to previously unseen scenes that are not part of the training data. Moreover, it achieves superior localization accuracy compared to the state of the art methods and also estimates more degrees of freedom of the camera pose. Our source code is publicly available at https://fraunhoferhhi.github.io/spvloc .

Finetuning a Weather Foundation Model with Lightweight Decoders for Unseen Physical Processes

Recent advances in AI weather forecasting have led to the emergence of so-called "foundation models", typically defined by expensive pretraining and minimal fine-tuning for downstream tasks. However, in the natural sciences, a desirable foundation model should also encode meaningful statistical relationships between the underlying physical variables. This study evaluates the performance of the state-of-the-art Aurora foundation model in predicting hydrological variables, which were not considered during pretraining. We introduce a lightweight approach using shallow decoders trained on the latent representations of the pretrained model to predict these new variables. As a baseline, we compare this to fine-tuning the full model, which allows further optimization of the latent space while incorporating new variables into both inputs and outputs. The decoder-based approach requires 50% less training time and 35% less memory, while achieving strong accuracy across various hydrological variables and preserving desirable properties of the foundation model, such as autoregressive stability. Notably, decoder accuracy depends on the physical correlation between the new variables and those used during pretraining, indicating that Aurora's latent space captures meaningful physical relationships. In this sense, we argue that an important quality metric for foundation models in Earth sciences is their ability to be extended to new variables without a full fine-tuning. This provides a new perspective for making foundation models more accessible to communities with limited computational resources, while supporting broader adoption in Earth sciences.

MORDA: A Synthetic Dataset to Facilitate Adaptation of Object Detectors to Unseen Real-target Domain While Preserving Performance on Real-source Domain

Deep neural network (DNN) based perception models are indispensable in the development of autonomous vehicles (AVs). However, their reliance on large-scale, high-quality data is broadly recognized as a burdensome necessity due to the substantial cost of data acquisition and labeling. Further, the issue is not a one-time concern, as AVs might need a new dataset if they are to be deployed to another region (real-target domain) that the in-hand dataset within the real-source domain cannot incorporate. To mitigate this burden, we propose leveraging synthetic environments as an auxiliary domain where the characteristics of real domains are reproduced. This approach could enable indirect experience about the real-target domain in a time- and cost-effective manner. As a practical demonstration of our methodology, nuScenes and South Korea are employed to represent real-source and real-target domains, respectively. That means we construct digital twins for several regions of South Korea, and the data-acquisition framework of nuScenes is reproduced. Blending the aforementioned components within a simulator allows us to obtain a synthetic-fusion domain in which we forge our novel driving dataset, MORDA: Mixture Of Real-domain characteristics for synthetic-data-assisted Domain Adaptation. To verify the value of synthetic features that MORDA provides in learning about driving environments of South Korea, 2D/3D detectors are trained solely on a combination of nuScenes and MORDA. Afterward, their performance is evaluated on the unforeseen real-world dataset (AI-Hub) collected in South Korea. Our experiments present that MORDA can significantly improve mean Average Precision (mAP) on AI-Hub dataset while that on nuScenes is retained or slightly enhanced.

Biomedical Large Languages Models Seem not to be Superior to Generalist Models on Unseen Medical Data

Large language models (LLMs) have shown potential in biomedical applications, leading to efforts to fine-tune them on domain-specific data. However, the effectiveness of this approach remains unclear. This study evaluates the performance of biomedically fine-tuned LLMs against their general-purpose counterparts on a variety of clinical tasks. We evaluated their performance on clinical case challenges from the New England Journal of Medicine (NEJM) and the Journal of the American Medical Association (JAMA) and on several clinical tasks (e.g., information extraction, document summarization, and clinical coding). Using benchmarks specifically chosen to be likely outside the fine-tuning datasets of biomedical models, we found that biomedical LLMs mostly perform inferior to their general-purpose counterparts, especially on tasks not focused on medical knowledge. While larger models showed similar performance on case tasks (e.g., OpenBioLLM-70B: 66.4% vs. Llama-3-70B-Instruct: 65% on JAMA cases), smaller biomedical models showed more pronounced underperformance (e.g., OpenBioLLM-8B: 30% vs. Llama-3-8B-Instruct: 64.3% on NEJM cases). Similar trends were observed across the CLUE (Clinical Language Understanding Evaluation) benchmark tasks, with general-purpose models often performing better on text generation, question answering, and coding tasks. Our results suggest that fine-tuning LLMs to biomedical data may not provide the expected benefits and may potentially lead to reduced performance, challenging prevailing assumptions about domain-specific adaptation of LLMs and highlighting the need for more rigorous evaluation frameworks in healthcare AI. Alternative approaches, such as retrieval-augmented generation, may be more effective in enhancing the biomedical capabilities of LLMs without compromising their general knowledge.

Beyond Degradation Conditions: All-in-One Image Restoration via HOG Transformers

All-in-one image restoration, which aims to address diverse degradations within a unified framework, is critical for practical applications. However, existing methods rely on predicting and integrating degradation conditions, which can misactivate degradation-specific features in complex scenarios, limiting their restoration performance. To address this issue, we propose a novel all-in-one image restoration framework guided by Histograms of Oriented Gradients (HOG), named HOGformer. By leveraging the degradation-discriminative capability of HOG descriptors, HOGformer employs a dynamic self-attention mechanism that adaptively attends to long-range spatial dependencies based on degradation-aware HOG cues. To enhance the degradation sensitivity of attention inputs, we design a HOG-guided local dynamic-range convolution module that captures long-range degradation similarities while maintaining awareness of global structural information. Furthermore, we propose a dynamic interaction feed-forward module, efficiently increasing the model capacity to adapt to different degradations through channel-spatial interactions. Extensive experiments across diverse benchmarks, including adverse weather and natural degradations, demonstrate that HOGformer achieves state-of-the-art performance and generalizes effectively to complex real-world degradations. Code is available at https://github.com/Fire-friend/HOGformer.

From Enhancement to Understanding: Build a Generalized Bridge for Low-light Vision via Semantically Consistent Unsupervised Fine-tuning

Low-level enhancement and high-level visual understanding in low-light vision have traditionally been treated separately. Low-light enhancement improves image quality for downstream tasks, but existing methods rely on physical or geometric priors, limiting generalization. Evaluation mainly focuses on visual quality rather than downstream performance. Low-light visual understanding, constrained by scarce labeled data, primarily uses task-specific domain adaptation, which lacks scalability. To address these challenges, we build a generalized bridge between low-light enhancement and low-light understanding, which we term Generalized Enhancement For Understanding (GEFU). This paradigm improves both generalization and scalability. To address the diverse causes of low-light degradation, we leverage pretrained generative diffusion models to optimize images, achieving zero-shot generalization performance. Building on this, we propose Semantically Consistent Unsupervised Fine-tuning (SCUF). Specifically, to overcome text prompt limitations, we introduce an illumination-aware image prompt to explicitly guide image generation and propose a cycle-attention adapter to maximize its semantic potential. To mitigate semantic degradation in unsupervised training, we propose caption and reflectance consistency to learn high-level semantics and image-level spatial semantics. Extensive experiments demonstrate that our proposed method outperforms current state-of-the-art methods in traditional image quality and GEFU tasks including classification, detection, and semantic segmentation.

MetaF2N: Blind Image Super-Resolution by Learning Efficient Model Adaptation from Faces

Due to their highly structured characteristics, faces are easier to recover than natural scenes for blind image super-resolution. Therefore, we can extract the degradation representation of an image from the low-quality and recovered face pairs. Using the degradation representation, realistic low-quality images can then be synthesized to fine-tune the super-resolution model for the real-world low-quality image. However, such a procedure is time-consuming and laborious, and the gaps between recovered faces and the ground-truths further increase the optimization uncertainty. To facilitate efficient model adaptation towards image-specific degradations, we propose a method dubbed MetaF2N, which leverages the contained Faces to fine-tune model parameters for adapting to the whole Natural image in a Meta-learning framework. The degradation extraction and low-quality image synthesis steps are thus circumvented in our MetaF2N, and it requires only one fine-tuning step to get decent performance. Considering the gaps between the recovered faces and ground-truths, we further deploy a MaskNet for adaptively predicting loss weights at different positions to reduce the impact of low-confidence areas. To evaluate our proposed MetaF2N, we have collected a real-world low-quality dataset with one or multiple faces in each image, and our MetaF2N achieves superior performance on both synthetic and real-world datasets. Source code, pre-trained models, and collected datasets are available at https://github.com/yinzhicun/MetaF2N.

MP-HSIR: A Multi-Prompt Framework for Universal Hyperspectral Image Restoration

Hyperspectral images (HSIs) often suffer from diverse and unknown degradations during imaging, leading to severe spectral and spatial distortions. Existing HSI restoration methods typically rely on specific degradation assumptions, limiting their effectiveness in complex scenarios. In this paper, we propose MP-HSIR, a novel multi-prompt framework that effectively integrates spectral, textual, and visual prompts to achieve universal HSI restoration across diverse degradation types and intensities. Specifically, we develop a prompt-guided spatial-spectral transformer, which incorporates spatial self-attention and a prompt-guided dual-branch spectral self-attention. Since degradations affect spectral features differently, we introduce spectral prompts in the local spectral branch to provide universal low-rank spectral patterns as prior knowledge for enhancing spectral reconstruction. Furthermore, the text-visual synergistic prompt fuses high-level semantic representations with fine-grained visual features to encode degradation information, thereby guiding the restoration process. Extensive experiments on 9 HSI restoration tasks, including all-in-one scenarios, generalization tests, and real-world cases, demonstrate that MP-HSIR not only consistently outperforms existing all-in-one methods but also surpasses state-of-the-art task-specific approaches across multiple tasks. The code and models will be released at https://github.com/ZhehuiWu/MP-HSIR.

Universal Image Restoration Pre-training via Degradation Classification

This paper proposes the Degradation Classification Pre-Training (DCPT), which enables models to learn how to classify the degradation type of input images for universal image restoration pre-training. Unlike the existing self-supervised pre-training methods, DCPT utilizes the degradation type of the input image as an extremely weak supervision, which can be effortlessly obtained, even intrinsic in all image restoration datasets. DCPT comprises two primary stages. Initially, image features are extracted from the encoder. Subsequently, a lightweight decoder, such as ResNet18, is leveraged to classify the degradation type of the input image solely based on the features extracted in the first stage, without utilizing the input image. The encoder is pre-trained with a straightforward yet potent DCPT, which is used to address universal image restoration and achieve outstanding performance. Following DCPT, both convolutional neural networks (CNNs) and transformers demonstrate performance improvements, with gains of up to 2.55 dB in the 10D all-in-one restoration task and 6.53 dB in the mixed degradation scenarios. Moreover, previous self-supervised pretraining methods, such as masked image modeling, discard the decoder after pre-training, while our DCPT utilizes the pre-trained parameters more effectively. This superiority arises from the degradation classifier acquired during DCPT, which facilitates transfer learning between models of identical architecture trained on diverse degradation types. Source code and models are available at https://github.com/MILab-PKU/dcpt.

Generative Diffusion Prior for Unified Image Restoration and Enhancement

Existing image restoration methods mostly leverage the posterior distribution of natural images. However, they often assume known degradation and also require supervised training, which restricts their adaptation to complex real applications. In this work, we propose the Generative Diffusion Prior (GDP) to effectively model the posterior distributions in an unsupervised sampling manner. GDP utilizes a pre-train denoising diffusion generative model (DDPM) for solving linear inverse, non-linear, or blind problems. Specifically, GDP systematically explores a protocol of conditional guidance, which is verified more practical than the commonly used guidance way. Furthermore, GDP is strength at optimizing the parameters of degradation model during the denoising process, achieving blind image restoration. Besides, we devise hierarchical guidance and patch-based methods, enabling the GDP to generate images of arbitrary resolutions. Experimentally, we demonstrate GDP's versatility on several image datasets for linear problems, such as super-resolution, deblurring, inpainting, and colorization, as well as non-linear and blind issues, such as low-light enhancement and HDR image recovery. GDP outperforms the current leading unsupervised methods on the diverse benchmarks in reconstruction quality and perceptual quality. Moreover, GDP also generalizes well for natural images or synthesized images with arbitrary sizes from various tasks out of the distribution of the ImageNet training set.

SEAL: A Framework for Systematic Evaluation of Real-World Super-Resolution

Real-world Super-Resolution (Real-SR) methods focus on dealing with diverse real-world images and have attracted increasing attention in recent years. The key idea is to use a complex and high-order degradation model to mimic real-world degradations. Although they have achieved impressive results in various scenarios, they are faced with the obstacle of evaluation. Currently, these methods are only assessed by their average performance on a small set of degradation cases randomly selected from a large space, which fails to provide a comprehensive understanding of their overall performance and often yields inconsistent and potentially misleading results. To overcome the limitation in evaluation, we propose SEAL, a framework for systematic evaluation of real-SR. In particular, we cluster the extensive degradation space to create a set of representative degradation cases, which serves as a comprehensive test set. Next, we propose a coarse-to-fine evaluation protocol to measure the distributed and relative performance of real-SR methods on the test set. The protocol incorporates two new metrics: acceptance rate (AR) and relative performance ratio (RPR), derived from acceptance and excellence lines. Under SEAL, we benchmark existing real-SR methods, obtain new observations and insights into their performance, and develop a new strong baseline. We consider SEAL as the first step towards creating a comprehensive real-SR evaluation platform, which can promote the development of real-SR. The source code is available at https://github.com/XPixelGroup/SEAL

DiffLLE: Diffusion-guided Domain Calibration for Unsupervised Low-light Image Enhancement

Existing unsupervised low-light image enhancement methods lack enough effectiveness and generalization in practical applications. We suppose this is because of the absence of explicit supervision and the inherent gap between real-world scenarios and the training data domain. In this paper, we develop Diffusion-based domain calibration to realize more robust and effective unsupervised Low-Light Enhancement, called DiffLLE. Since the diffusion model performs impressive denoising capability and has been trained on massive clean images, we adopt it to bridge the gap between the real low-light domain and training degradation domain, while providing efficient priors of real-world content for unsupervised models. Specifically, we adopt a naive unsupervised enhancement algorithm to realize preliminary restoration and design two zero-shot plug-and-play modules based on diffusion model to improve generalization and effectiveness. The Diffusion-guided Degradation Calibration (DDC) module narrows the gap between real-world and training low-light degradation through diffusion-based domain calibration and a lightness enhancement curve, which makes the enhancement model perform robustly even in sophisticated wild degradation. Due to the limited enhancement effect of the unsupervised model, we further develop the Fine-grained Target domain Distillation (FTD) module to find a more visual-friendly solution space. It exploits the priors of the pre-trained diffusion model to generate pseudo-references, which shrinks the preliminary restored results from a coarse normal-light domain to a finer high-quality clean field, addressing the lack of strong explicit supervision for unsupervised methods. Benefiting from these, our approach even outperforms some supervised methods by using only a simple unsupervised baseline. Extensive experiments demonstrate the superior effectiveness of the proposed DiffLLE.

Modular Degradation Simulation and Restoration for Under-Display Camera

Under-display camera (UDC) provides an elegant solution for full-screen smartphones. However, UDC captured images suffer from severe degradation since sensors lie under the display. Although this issue can be tackled by image restoration networks, these networks require large-scale image pairs for training. To this end, we propose a modular network dubbed MPGNet trained using the generative adversarial network (GAN) framework for simulating UDC imaging. Specifically, we note that the UDC imaging degradation process contains brightness attenuation, blurring, and noise corruption. Thus we model each degradation with a characteristic-related modular network, and all modular networks are cascaded to form the generator. Together with a pixel-wise discriminator and supervised loss, we can train the generator to simulate the UDC imaging degradation process. Furthermore, we present a Transformer-style network named DWFormer for UDC image restoration. For practical purposes, we use depth-wise convolution instead of the multi-head self-attention to aggregate local spatial information. Moreover, we propose a novel channel attention module to aggregate global information, which is critical for brightness recovery. We conduct evaluations on the UDC benchmark, and our method surpasses the previous state-of-the-art models by 1.23 dB on the P-OLED track and 0.71 dB on the T-OLED track, respectively.

Investigating Tradeoffs in Real-World Video Super-Resolution

The diversity and complexity of degradations in real-world video super-resolution (VSR) pose non-trivial challenges in inference and training. First, while long-term propagation leads to improved performance in cases of mild degradations, severe in-the-wild degradations could be exaggerated through propagation, impairing output quality. To balance the tradeoff between detail synthesis and artifact suppression, we found an image pre-cleaning stage indispensable to reduce noises and artifacts prior to propagation. Equipped with a carefully designed cleaning module, our RealBasicVSR outperforms existing methods in both quality and efficiency. Second, real-world VSR models are often trained with diverse degradations to improve generalizability, requiring increased batch size to produce a stable gradient. Inevitably, the increased computational burden results in various problems, including 1) speed-performance tradeoff and 2) batch-length tradeoff. To alleviate the first tradeoff, we propose a stochastic degradation scheme that reduces up to 40\% of training time without sacrificing performance. We then analyze different training settings and suggest that employing longer sequences rather than larger batches during training allows more effective uses of temporal information, leading to more stable performance during inference. To facilitate fair comparisons, we propose the new VideoLQ dataset, which contains a large variety of real-world low-quality video sequences containing rich textures and patterns. Our dataset can serve as a common ground for benchmarking. Code, models, and the dataset will be made publicly available.

Clear Nights Ahead: Towards Multi-Weather Nighttime Image Restoration

Restoring nighttime images affected by multiple adverse weather conditions is a practical yet under-explored research problem, as multiple weather conditions often coexist in the real world alongside various lighting effects at night. This paper first explores the challenging multi-weather nighttime image restoration task, where various types of weather degradations are intertwined with flare effects. To support the research, we contribute the AllWeatherNight dataset, featuring large-scale high-quality nighttime images with diverse compositional degradations, synthesized using our introduced illumination-aware degradation generation. Moreover, we present ClearNight, a unified nighttime image restoration framework, which effectively removes complex degradations in one go. Specifically, ClearNight extracts Retinex-based dual priors and explicitly guides the network to focus on uneven illumination regions and intrinsic texture contents respectively, thereby enhancing restoration effectiveness in nighttime scenarios. In order to better represent the common and unique characters of multiple weather degradations, we introduce a weather-aware dynamic specific-commonality collaboration method, which identifies weather degradations and adaptively selects optimal candidate units associated with specific weather types. Our ClearNight achieves state-of-the-art performance on both synthetic and real-world images. Comprehensive ablation experiments validate the necessity of AllWeatherNight dataset as well as the effectiveness of ClearNight. Project page: https://henlyta.github.io/ClearNight/mainpage.html

RestoreFormer++: Towards Real-World Blind Face Restoration from Undegraded Key-Value Pairs

Blind face restoration aims at recovering high-quality face images from those with unknown degradations. Current algorithms mainly introduce priors to complement high-quality details and achieve impressive progress. However, most of these algorithms ignore abundant contextual information in the face and its interplay with the priors, leading to sub-optimal performance. Moreover, they pay less attention to the gap between the synthetic and real-world scenarios, limiting the robustness and generalization to real-world applications. In this work, we propose RestoreFormer++, which on the one hand introduces fully-spatial attention mechanisms to model the contextual information and the interplay with the priors, and on the other hand, explores an extending degrading model to help generate more realistic degraded face images to alleviate the synthetic-to-real-world gap. Compared with current algorithms, RestoreFormer++ has several crucial benefits. First, instead of using a multi-head self-attention mechanism like the traditional visual transformer, we introduce multi-head cross-attention over multi-scale features to fully explore spatial interactions between corrupted information and high-quality priors. In this way, it can facilitate RestoreFormer++ to restore face images with higher realness and fidelity. Second, in contrast to the recognition-oriented dictionary, we learn a reconstruction-oriented dictionary as priors, which contains more diverse high-quality facial details and better accords with the restoration target. Third, we introduce an extending degrading model that contains more realistic degraded scenarios for training data synthesizing, and thus helps to enhance the robustness and generalization of our RestoreFormer++ model. Extensive experiments show that RestoreFormer++ outperforms state-of-the-art algorithms on both synthetic and real-world datasets.

Degradation-Guided One-Step Image Super-Resolution with Diffusion Priors

Diffusion-based image super-resolution (SR) methods have achieved remarkable success by leveraging large pre-trained text-to-image diffusion models as priors. However, these methods still face two challenges: the requirement for dozens of sampling steps to achieve satisfactory results, which limits efficiency in real scenarios, and the neglect of degradation models, which are critical auxiliary information in solving the SR problem. In this work, we introduced a novel one-step SR model, which significantly addresses the efficiency issue of diffusion-based SR methods. Unlike existing fine-tuning strategies, we designed a degradation-guided Low-Rank Adaptation (LoRA) module specifically for SR, which corrects the model parameters based on the pre-estimated degradation information from low-resolution images. This module not only facilitates a powerful data-dependent or degradation-dependent SR model but also preserves the generative prior of the pre-trained diffusion model as much as possible. Furthermore, we tailor a novel training pipeline by introducing an online negative sample generation strategy. Combined with the classifier-free guidance strategy during inference, it largely improves the perceptual quality of the super-resolution results. Extensive experiments have demonstrated the superior efficiency and effectiveness of the proposed model compared to recent state-of-the-art methods.

DreamClear: High-Capacity Real-World Image Restoration with Privacy-Safe Dataset Curation

Image restoration (IR) in real-world scenarios presents significant challenges due to the lack of high-capacity models and comprehensive datasets. To tackle these issues, we present a dual strategy: GenIR, an innovative data curation pipeline, and DreamClear, a cutting-edge Diffusion Transformer (DiT)-based image restoration model. GenIR, our pioneering contribution, is a dual-prompt learning pipeline that overcomes the limitations of existing datasets, which typically comprise only a few thousand images and thus offer limited generalizability for larger models. GenIR streamlines the process into three stages: image-text pair construction, dual-prompt based fine-tuning, and data generation & filtering. This approach circumvents the laborious data crawling process, ensuring copyright compliance and providing a cost-effective, privacy-safe solution for IR dataset construction. The result is a large-scale dataset of one million high-quality images. Our second contribution, DreamClear, is a DiT-based image restoration model. It utilizes the generative priors of text-to-image (T2I) diffusion models and the robust perceptual capabilities of multi-modal large language models (MLLMs) to achieve photorealistic restoration. To boost the model's adaptability to diverse real-world degradations, we introduce the Mixture of Adaptive Modulator (MoAM). It employs token-wise degradation priors to dynamically integrate various restoration experts, thereby expanding the range of degradations the model can address. Our exhaustive experiments confirm DreamClear's superior performance, underlining the efficacy of our dual strategy for real-world image restoration. Code and pre-trained models will be available at: https://github.com/shallowdream204/DreamClear.

Old Photo Restoration via Deep Latent Space Translation

We propose to restore old photos that suffer from severe degradation through a deep learning approach. Unlike conventional restoration tasks that can be solved through supervised learning, the degradation in real photos is complex and the domain gap between synthetic images and real old photos makes the network fail to generalize. Therefore, we propose a novel triplet domain translation network by leveraging real photos along with massive synthetic image pairs. Specifically, we train two variational autoencoders (VAEs) to respectively transform old photos and clean photos into two latent spaces. And the translation between these two latent spaces is learned with synthetic paired data. This translation generalizes well to real photos because the domain gap is closed in the compact latent space. Besides, to address multiple degradations mixed in one old photo, we design a global branch with apartial nonlocal block targeting to the structured defects, such as scratches and dust spots, and a local branch targeting to the unstructured defects, such as noises and blurriness. Two branches are fused in the latent space, leading to improved capability to restore old photos from multiple defects. Furthermore, we apply another face refinement network to recover fine details of faces in the old photos, thus ultimately generating photos with enhanced perceptual quality. With comprehensive experiments, the proposed pipeline demonstrates superior performance over state-of-the-art methods as well as existing commercial tools in terms of visual quality for old photos restoration.

VCISR: Blind Single Image Super-Resolution with Video Compression Synthetic Data

In the blind single image super-resolution (SISR) task, existing works have been successful in restoring image-level unknown degradations. However, when a single video frame becomes the input, these works usually fail to address degradations caused by video compression, such as mosquito noise, ringing, blockiness, and staircase noise. In this work, we for the first time, present a video compression-based degradation model to synthesize low-resolution image data in the blind SISR task. Our proposed image synthesizing method is widely applicable to existing image datasets, so that a single degraded image can contain distortions caused by the lossy video compression algorithms. This overcomes the leak of feature diversity in video data and thus retains the training efficiency. By introducing video coding artifacts to SISR degradation models, neural networks can super-resolve images with the ability to restore video compression degradations, and achieve better results on restoring generic distortions caused by image compression as well. Our proposed approach achieves superior performance in SOTA no-reference Image Quality Assessment, and shows better visual quality on various datasets. In addition, we evaluate the SISR neural network trained with our degradation model on video super-resolution (VSR) datasets. Compared to architectures specifically designed for the VSR purpose, our method exhibits similar or better performance, evidencing that the presented strategy on infusing video-based degradation is generalizable to address more complicated compression artifacts even without temporal cues.

Generalizing to Unseen Domains in Diabetic Retinopathy with Disentangled Representations

Diabetic Retinopathy (DR), induced by diabetes, poses a significant risk of visual impairment. Accurate and effective grading of DR aids in the treatment of this condition. Yet existing models experience notable performance degradation on unseen domains due to domain shifts. Previous methods address this issue by simulating domain style through simple visual transformation and mitigating domain noise via learning robust representations. However, domain shifts encompass more than image styles. They overlook biases caused by implicit factors such as ethnicity, age, and diagnostic criteria. In our work, we propose a novel framework where representations of paired data from different domains are decoupled into semantic features and domain noise. The resulting augmented representation comprises original retinal semantics and domain noise from other domains, aiming to generate enhanced representations aligned with real-world clinical needs, incorporating rich information from diverse domains. Subsequently, to improve the robustness of the decoupled representations, class and domain prototypes are employed to interpolate the disentangled representations while data-aware weights are designed to focus on rare classes and domains. Finally, we devise a robust pixel-level semantic alignment loss to align retinal semantics decoupled from features, maintaining a balance between intra-class diversity and dense class features. Experimental results on multiple benchmarks demonstrate the effectiveness of our method on unseen domains. The code implementations are accessible on https://github.com/richard-peng-xia/DECO.