Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeHigh-Dimension Human Value Representation in Large Language Models
The widespread application of Large Language Models (LLMs) across various tasks and fields has necessitated the alignment of these models with human values and preferences. Given various approaches of human value alignment, ranging from Reinforcement Learning with Human Feedback (RLHF), to constitutional learning, etc. there is an urgent need to understand the scope and nature of human values injected into these models before their release. There is also a need for model alignment without a costly large scale human annotation effort. We propose UniVaR, a high-dimensional representation of human value distributions in LLMs, orthogonal to model architecture and training data. Trained from the value-relevant output of eight multilingual LLMs and tested on the output from four multilingual LLMs, namely LlaMA2, ChatGPT, JAIS and Yi, we show that UniVaR is a powerful tool to compare the distribution of human values embedded in different LLMs with different langauge sources. Through UniVaR, we explore how different LLMs prioritize various values in different languages and cultures, shedding light on the complex interplay between human values and language modeling.
Population Aware Diffusion for Time Series Generation
Diffusion models have shown promising ability in generating high-quality time series (TS) data. Despite the initial success, existing works mostly focus on the authenticity of data at the individual level, but pay less attention to preserving the population-level properties on the entire dataset. Such population-level properties include value distributions for each dimension and distributions of certain functional dependencies (e.g., cross-correlation, CC) between different dimensions. For instance, when generating house energy consumption TS data, the value distributions of the outside temperature and the kitchen temperature should be preserved, as well as the distribution of CC between them. Preserving such TS population-level properties is critical in maintaining the statistical insights of the datasets, mitigating model bias, and augmenting downstream tasks like TS prediction. Yet, it is often overlooked by existing models. Hence, data generated by existing models often bear distribution shifts from the original data. We propose Population-aware Diffusion for Time Series (PaD-TS), a new TS generation model that better preserves the population-level properties. The key novelties of PaD-TS include 1) a new training method explicitly incorporating TS population-level property preservation, and 2) a new dual-channel encoder model architecture that better captures the TS data structure. Empirical results in major benchmark datasets show that PaD-TS can improve the average CC distribution shift score between real and synthetic data by 5.9x while maintaining a performance comparable to state-of-the-art models on individual-level authenticity.
A Distributional Perspective on Reinforcement Learning
In this paper we argue for the fundamental importance of the value distribution: the distribution of the random return received by a reinforcement learning agent. This is in contrast to the common approach to reinforcement learning which models the expectation of this return, or value. Although there is an established body of literature studying the value distribution, thus far it has always been used for a specific purpose such as implementing risk-aware behaviour. We begin with theoretical results in both the policy evaluation and control settings, exposing a significant distributional instability in the latter. We then use the distributional perspective to design a new algorithm which applies Bellman's equation to the learning of approximate value distributions. We evaluate our algorithm using the suite of games from the Arcade Learning Environment. We obtain both state-of-the-art results and anecdotal evidence demonstrating the importance of the value distribution in approximate reinforcement learning. Finally, we combine theoretical and empirical evidence to highlight the ways in which the value distribution impacts learning in the approximate setting.
More for Keys, Less for Values: Adaptive KV Cache Quantization
This paper introduces an information-aware quantization framework that adaptively compresses the key-value (KV) cache in large language models (LLMs). Although prior work has underscored the distinct roles of key and value cache during inference, our systematic analysis -- examining singular value distributions, spectral norms, and Frobenius norms -- reveals, for the first time, that key matrices consistently exhibit higher norm values and are more sensitive to quantization than value matrices. Furthermore, our theoretical analysis shows that matrices with higher spectral norms amplify quantization errors more significantly. Motivated by these insights, we propose a mixed-precision quantization strategy, KV-AdaQuant, which allocates more bit-width for keys and fewer for values since key matrices have higher norm values. With the same total KV bit budget, this approach effectively mitigates error propagation across transformer layers while achieving significant memory savings. Our extensive experiments on multiple LLMs (1B--70B) demonstrate that our mixed-precision quantization scheme maintains high model accuracy even under aggressive compression. For instance, using 4-bit for Key and 2-bit for Value achieves an accuracy of 75.2%, whereas reversing the assignment (2-bit for Key and 4-bit for Value) yields only 54.7% accuracy. The code is available at https://tinyurl.com/kv-adaquant
Characterizing Knowledge Graph Tasks in LLM Benchmarks Using Cognitive Complexity Frameworks
Large Language Models (LLMs) are increasingly used for tasks involving Knowledge Graphs (KGs), whose evaluation typically focuses on accuracy and output correctness. We propose a complementary task characterization approach using three complexity frameworks from cognitive psychology. Applying this to the LLM-KG-Bench framework, we highlight value distributions, identify underrepresented demands and motivate richer interpretation and diversity for benchmark evaluation tasks.
Tab-MIA: A Benchmark Dataset for Membership Inference Attacks on Tabular Data in LLMs
Large language models (LLMs) are increasingly trained on tabular data, which, unlike unstructured text, often contains personally identifiable information (PII) in a highly structured and explicit format. As a result, privacy risks arise, since sensitive records can be inadvertently retained by the model and exposed through data extraction or membership inference attacks (MIAs). While existing MIA methods primarily target textual content, their efficacy and threat implications may differ when applied to structured data, due to its limited content, diverse data types, unique value distributions, and column-level semantics. In this paper, we present Tab-MIA, a benchmark dataset for evaluating MIAs on tabular data in LLMs and demonstrate how it can be used. Tab-MIA comprises five data collections, each represented in six different encoding formats. Using our Tab-MIA benchmark, we conduct the first evaluation of state-of-the-art MIA methods on LLMs finetuned with tabular data across multiple encoding formats. In the evaluation, we analyze the memorization behavior of pretrained LLMs on structured data derived from Wikipedia tables. Our findings show that LLMs memorize tabular data in ways that vary across encoding formats, making them susceptible to extraction via MIAs. Even when fine-tuned for as few as three epochs, models exhibit high vulnerability, with AUROC scores approaching 90% in most cases. Tab-MIA enables systematic evaluation of these risks and provides a foundation for developing privacy-preserving methods for tabular data in LLMs.
Music2Latent: Consistency Autoencoders for Latent Audio Compression
Efficient audio representations in a compressed continuous latent space are critical for generative audio modeling and Music Information Retrieval (MIR) tasks. However, some existing audio autoencoders have limitations, such as multi-stage training procedures, slow iterative sampling, or low reconstruction quality. We introduce Music2Latent, an audio autoencoder that overcomes these limitations by leveraging consistency models. Music2Latent encodes samples into a compressed continuous latent space in a single end-to-end training process while enabling high-fidelity single-step reconstruction. Key innovations include conditioning the consistency model on upsampled encoder outputs at all levels through cross connections, using frequency-wise self-attention to capture long-range frequency dependencies, and employing frequency-wise learned scaling to handle varying value distributions across frequencies at different noise levels. We demonstrate that Music2Latent outperforms existing continuous audio autoencoders in sound quality and reconstruction accuracy while achieving competitive performance on downstream MIR tasks using its latent representations. To our knowledge, this represents the first successful attempt at training an end-to-end consistency autoencoder model.
Optimizing Return Distributions with Distributional Dynamic Programming
We introduce distributional dynamic programming (DP) methods for optimizing statistical functionals of the return distribution, with standard reinforcement learning as a special case. Previous distributional DP methods could optimize the same class of expected utilities as classic DP. To go beyond expected utilities, we combine distributional DP with stock augmentation, a technique previously introduced for classic DP in the context of risk-sensitive RL, where the MDP state is augmented with a statistic of the rewards obtained so far (since the first time step). We find that a number of recently studied problems can be formulated as stock-augmented return distribution optimization, and we show that we can use distributional DP to solve them. We analyze distributional value and policy iteration, with bounds and a study of what objectives these distributional DP methods can or cannot optimize. We describe a number of applications outlining how to use distributional DP to solve different stock-augmented return distribution optimization problems, for example maximizing conditional value-at-risk, and homeostatic regulation. To highlight the practical potential of stock-augmented return distribution optimization and distributional DP, we combine the core ideas of distributional value iteration with the deep RL agent DQN, and empirically evaluate it for solving instances of the applications discussed.
The DESI PRObabilistic Value-Added Bright Galaxy Survey (PROVABGS) Mock Challenge
The PRObabilistic Value-Added Bright Galaxy Survey (PROVABGS) catalog will provide measurements of galaxy properties, such as stellar mass (M_*), star formation rate ({rm SFR}), stellar metallicity (Z_{rm MW}), and stellar age (t_{rm age, MW}), for >10 million galaxies of the DESI Bright Galaxy Survey. Full posterior distributions of the galaxy properties will be inferred using state-of-the-art Bayesian spectral energy distribution (SED) modeling of DESI spectroscopy and Legacy Surveys photometry. In this work, we present the SED model, Bayesian inference framework, and methodology of PROVABGS. Furthermore, we apply the PROVABGS SED modeling on realistic synthetic DESI spectra and photometry, constructed using the L-GALAXIES semi-analytic model. We compare the inferred galaxy properties to the true galaxy properties of the simulation using a hierarchical Bayesian framework to quantify accuracy and precision. Overall, we accurately infer the true M_*, {rm SFR}, Z_{rm MW}, and t_{rm age, MW} of the simulated galaxies. However, the priors on galaxy properties induced by the SED model have a significant impact on the posteriors. They impose a {rm SFR}{>}10^{-1} M_odot/{rm yr} lower bound on {rm SFR}, a {sim}0.3 dex bias on log Z_{rm MW} for galaxies with low spectral signal-to-noise, and t_{rm age, MW} < 8,{rm Gyr} upper bound on stellar age. This work also demonstrates that a joint analysis of spectra and photometry significantly improves the constraints on galaxy properties over photometry alone and is necessary to mitigate the impact of the priors. With the methodology presented and validated in this work, PROVABGS will maximize information extracted from DESI observations and provide a probabilistic value-added galaxy catalog that will extend current galaxy studies to new regimes and unlock cutting-edge probabilistic analyses.
Visual DNA: Representing and Comparing Images using Distributions of Neuron Activations
Selecting appropriate datasets is critical in modern computer vision. However, no general-purpose tools exist to evaluate the extent to which two datasets differ. For this, we propose representing images - and by extension datasets - using Distributions of Neuron Activations (DNAs). DNAs fit distributions, such as histograms or Gaussians, to activations of neurons in a pre-trained feature extractor through which we pass the image(s) to represent. This extractor is frozen for all datasets, and we rely on its generally expressive power in feature space. By comparing two DNAs, we can evaluate the extent to which two datasets differ with granular control over the comparison attributes of interest, providing the ability to customise the way distances are measured to suit the requirements of the task at hand. Furthermore, DNAs are compact, representing datasets of any size with less than 15 megabytes. We demonstrate the value of DNAs by evaluating their applicability on several tasks, including conditional dataset comparison, synthetic image evaluation, and transfer learning, and across diverse datasets, ranging from synthetic cat images to celebrity faces and urban driving scenes.
Formalizing Preferences Over Runtime Distributions
When trying to solve a computational problem, we are often faced with a choice between algorithms that are guaranteed to return the right answer but differ in their runtime distributions (e.g., SAT solvers, sorting algorithms). This paper aims to lay theoretical foundations for such choices by formalizing preferences over runtime distributions. It might seem that we should simply prefer the algorithm that minimizes expected runtime. However, such preferences would be driven by exactly how slow our algorithm is on bad inputs, whereas in practice we are typically willing to cut off occasional, sufficiently long runs before they finish. We propose a principled alternative, taking a utility-theoretic approach to characterize the scoring functions that describe preferences over algorithms. These functions depend on the way our value for solving our problem decreases with time and on the distribution from which captimes are drawn. We describe examples of realistic utility functions and show how to leverage a maximum-entropy approach for modeling underspecified captime distributions. Finally, we show how to efficiently estimate an algorithm's expected utility from runtime samples.
Rethinking the Value of Labels for Improving Class-Imbalanced Learning
Real-world data often exhibits long-tailed distributions with heavy class imbalance, posing great challenges for deep recognition models. We identify a persisting dilemma on the value of labels in the context of imbalanced learning: on the one hand, supervision from labels typically leads to better results than its unsupervised counterparts; on the other hand, heavily imbalanced data naturally incurs "label bias" in the classifier, where the decision boundary can be drastically altered by the majority classes. In this work, we systematically investigate these two facets of labels. We demonstrate, theoretically and empirically, that class-imbalanced learning can significantly benefit in both semi-supervised and self-supervised manners. Specifically, we confirm that (1) positively, imbalanced labels are valuable: given more unlabeled data, the original labels can be leveraged with the extra data to reduce label bias in a semi-supervised manner, which greatly improves the final classifier; (2) negatively however, we argue that imbalanced labels are not useful always: classifiers that are first pre-trained in a self-supervised manner consistently outperform their corresponding baselines. Extensive experiments on large-scale imbalanced datasets verify our theoretically grounded strategies, showing superior performance over previous state-of-the-arts. Our intriguing findings highlight the need to rethink the usage of imbalanced labels in realistic long-tailed tasks. Code is available at https://github.com/YyzHarry/imbalanced-semi-self.
Forecasting Probability Distributions of Financial Returns with Deep Neural Networks
This study evaluates deep neural networks for forecasting probability distributions of financial returns. 1D convolutional neural networks (CNN) and Long Short-Term Memory (LSTM) architectures are used to forecast parameters of three probability distributions: Normal, Student's t, and skewed Student's t. Using custom negative log-likelihood loss functions, distribution parameters are optimized directly. The models are tested on six major equity indices (S\&P 500, BOVESPA, DAX, WIG, Nikkei 225, and KOSPI) using probabilistic evaluation metrics including Log Predictive Score (LPS), Continuous Ranked Probability Score (CRPS), and Probability Integral Transform (PIT). Results show that deep learning models provide accurate distributional forecasts and perform competitively with classical GARCH models for Value-at-Risk estimation. The LSTM with skewed Student's t distribution performs best across multiple evaluation criteria, capturing both heavy tails and asymmetry in financial returns. This work shows that deep neural networks are viable alternatives to traditional econometric models for financial risk assessment and portfolio management.
Transformer Feed-Forward Layers Are Key-Value Memories
Feed-forward layers constitute two-thirds of a transformer model's parameters, yet their role in the network remains under-explored. We show that feed-forward layers in transformer-based language models operate as key-value memories, where each key correlates with textual patterns in the training examples, and each value induces a distribution over the output vocabulary. Our experiments show that the learned patterns are human-interpretable, and that lower layers tend to capture shallow patterns, while upper layers learn more semantic ones. The values complement the keys' input patterns by inducing output distributions that concentrate probability mass on tokens likely to appear immediately after each pattern, particularly in the upper layers. Finally, we demonstrate that the output of a feed-forward layer is a composition of its memories, which is subsequently refined throughout the model's layers via residual connections to produce the final output distribution.
Combinatorial Bandits for Maximum Value Reward Function under Max Value-Index Feedback
We consider a combinatorial multi-armed bandit problem for maximum value reward function under maximum value and index feedback. This is a new feedback structure that lies in between commonly studied semi-bandit and full-bandit feedback structures. We propose an algorithm and provide a regret bound for problem instances with stochastic arm outcomes according to arbitrary distributions with finite supports. The regret analysis rests on considering an extended set of arms, associated with values and probabilities of arm outcomes, and applying a smoothness condition. Our algorithm achieves a O((k/Delta)log(T)) distribution-dependent and a O(T) distribution-independent regret where k is the number of arms selected in each round, Delta is a distribution-dependent reward gap and T is the horizon time. Perhaps surprisingly, the regret bound is comparable to previously-known bound under more informative semi-bandit feedback. We demonstrate the effectiveness of our algorithm through experimental results.
Aging with GRACE: Lifelong Model Editing with Discrete Key-Value Adaptors
Large pre-trained models decay over long-term deployment as input distributions shift, user requirements change, or crucial knowledge gaps are discovered. Recently, model editors have been proposed to modify a model's behavior by adjusting its weights during deployment. However, when editing the same model multiple times, these approaches quickly decay a model's performance on upstream data and forget how to fix previous errors. We propose and study a novel Lifelong Model Editing setting, where streaming errors are identified for a deployed model and we update the model to correct its predictions without influencing unrelated inputs without access to training edits, exogenous datasets, or any upstream data for the edited model. To approach this problem, we introduce General Retrieval Adaptors for Continual Editing, or GRACE, which learns to cache a chosen layer's activations in an adaptive codebook as edits stream in, leaving original model weights frozen. GRACE can thus edit models thousands of times in a row using only streaming errors, without influencing unrelated inputs. Experimentally, we show that GRACE improves over recent alternatives and generalizes to unseen inputs. Our code is available at https://www.github.com/thartvigsen/grace.
Transformed Distribution Matching for Missing Value Imputation
We study the problem of imputing missing values in a dataset, which has important applications in many domains. The key to missing value imputation is to capture the data distribution with incomplete samples and impute the missing values accordingly. In this paper, by leveraging the fact that any two batches of data with missing values come from the same data distribution, we propose to impute the missing values of two batches of samples by transforming them into a latent space through deep invertible functions and matching them distributionally. To learn the transformations and impute the missing values simultaneously, a simple and well-motivated algorithm is proposed. Our algorithm has fewer hyperparameters to fine-tune and generates high-quality imputations regardless of how missing values are generated. Extensive experiments over a large number of datasets and competing benchmark algorithms show that our method achieves state-of-the-art performance.
OptDist: Learning Optimal Distribution for Customer Lifetime Value Prediction
Customer Lifetime Value (CLTV) prediction is a critical task in business applications. Accurately predicting CLTV is challenging in real-world business scenarios, as the distribution of CLTV is complex and mutable. Firstly, there is a large number of users without any consumption consisting of a long-tailed part that is too complex to fit. Secondly, the small set of high-value users spent orders of magnitude more than a typical user leading to a wide range of the CLTV distribution which is hard to capture in a single distribution. Existing approaches for CLTV estimation either assume a prior probability distribution and fit a single group of distribution-related parameters for all samples, or directly learn from the posterior distribution with manually predefined buckets in a heuristic manner. However, all these methods fail to handle complex and mutable distributions. In this paper, we propose a novel optimal distribution selection model OptDist for CLTV prediction, which utilizes an adaptive optimal sub-distribution selection mechanism to improve the accuracy of complex distribution modeling. Specifically, OptDist trains several candidate sub-distribution networks in the distribution learning module (DLM) for modeling the probability distribution of CLTV. Then, a distribution selection module (DSM) is proposed to select the sub-distribution for each sample, thus making the selection automatically and adaptively. Besides, we design an alignment mechanism that connects both modules, which effectively guides the optimization. We conduct extensive experiments on both two public and one private dataset to verify that OptDist outperforms state-of-the-art baselines. Furthermore, OptDist has been deployed on a large-scale financial platform for customer acquisition marketing campaigns and the online experiments also demonstrate the effectiveness of OptDist.
"Why did the Model Fail?": Attributing Model Performance Changes to Distribution Shifts
Machine learning models frequently experience performance drops under distribution shifts. The underlying cause of such shifts may be multiple simultaneous factors such as changes in data quality, differences in specific covariate distributions, or changes in the relationship between label and features. When a model does fail during deployment, attributing performance change to these factors is critical for the model developer to identify the root cause and take mitigating actions. In this work, we introduce the problem of attributing performance differences between environments to distribution shifts in the underlying data generating mechanisms. We formulate the problem as a cooperative game where the players are distributions. We define the value of a set of distributions to be the change in model performance when only this set of distributions has changed between environments, and derive an importance weighting method for computing the value of an arbitrary set of distributions. The contribution of each distribution to the total performance change is then quantified as its Shapley value. We demonstrate the correctness and utility of our method on synthetic, semi-synthetic, and real-world case studies, showing its effectiveness in attributing performance changes to a wide range of distribution shifts.
Disentangled Structural and Featural Representation for Task-Agnostic Graph Valuation
With the emergence of data marketplaces, the demand for methods to assess the value of data has increased significantly. While numerous techniques have been proposed for this purpose, none have specifically addressed graphs as the main data modality. Graphs are widely used across various fields, ranging from chemical molecules to social networks. In this study, we break down graphs into two main components: structural and featural, and we focus on evaluating data without relying on specific task-related metrics, making it applicable in practical scenarios where validation requirements may be lacking. We introduce a novel framework called blind message passing, which aligns the seller's and buyer's graphs using a shared node permutation based on graph matching. This allows us to utilize the graph Wasserstein distance to quantify the differences in the structural distribution of graph datasets, called the structural disparities. We then consider featural aspects of buyers' and sellers' graphs for data valuation and capture their statistical similarities and differences, referred to as relevance and diversity, respectively. Our approach ensures that buyers and sellers remain unaware of each other's datasets. Our experiments on real datasets demonstrate the effectiveness of our approach in capturing the relevance, diversity, and structural disparities of seller data for buyers, particularly in graph-based data valuation scenarios.
Covariate balancing using the integral probability metric for causal inference
Weighting methods in causal inference have been widely used to achieve a desirable level of covariate balancing. However, the existing weighting methods have desirable theoretical properties only when a certain model, either the propensity score or outcome regression model, is correctly specified. In addition, the corresponding estimators do not behave well for finite samples due to large variance even when the model is correctly specified. In this paper, we consider to use the integral probability metric (IPM), which is a metric between two probability measures, for covariate balancing. Optimal weights are determined so that weighted empirical distributions for the treated and control groups have the smallest IPM value for a given set of discriminators. We prove that the corresponding estimator can be consistent without correctly specifying any model (neither the propensity score nor the outcome regression model). In addition, we empirically show that our proposed method outperforms existing weighting methods with large margins for finite samples.
$φ$-Decoding: Adaptive Foresight Sampling for Balanced Inference-Time Exploration and Exploitation
Inference-time optimization scales computation to derive deliberate reasoning steps for effective performance. While previous search-based strategies address the short-sightedness of auto-regressive generation, the vast search space leads to excessive exploration and insufficient exploitation. To strike an efficient balance to derive the optimal step, we frame the decoding strategy as foresight sampling, leveraging simulated future steps to obtain globally optimal step estimation. Built on it, we propose a novel decoding strategy, named phi-Decoding. To provide a precise and expressive estimation of step value, phi-Decoding approximates two distributions via foresight and clustering. Sampling from the joint distribution, the optimal steps can be selected for exploitation. To support adaptive computation allocation, we propose in-width and in-depth pruning strategies, featuring a light-weight solution to achieve inference efficiency. Extensive experiments across seven benchmarks show phi-Decoding outperforms strong baselines in both performance and efficiency. Additional analysis demonstrates its generalization across various LLMs and scalability across a wide range of computing budgets. The code will be released at https://github.com/xufangzhi/phi-Decoding, and the open-source PyPI package is coming soon.
Multilingual != Multicultural: Evaluating Gaps Between Multilingual Capabilities and Cultural Alignment in LLMs
Large Language Models (LLMs) are becoming increasingly capable across global languages. However, the ability to communicate across languages does not necessarily translate to appropriate cultural representations. A key concern is US-centric bias, where LLMs reflect US rather than local cultural values. We propose a novel methodology that compares LLM-generated response distributions against population-level opinion data from the World Value Survey across four languages (Danish, Dutch, English, and Portuguese). Using a rigorous linear mixed-effects regression framework, we compare two families of models: Google's Gemma models (2B--27B parameters) and successive iterations of OpenAI's turbo-series. Across the families of models, we find no consistent relationships between language capabilities and cultural alignment. While the Gemma models have a positive correlation between language capability and cultural alignment across languages, the OpenAI models do not. Importantly, we find that self-consistency is a stronger predictor of multicultural alignment than multilingual capabilities. Our results demonstrate that achieving meaningful cultural alignment requires dedicated effort beyond improving general language capabilities.
Intensity statistics inside an open wave-chaotic cavity with broken time-reversal invariance
Using the supersymmetric method of random matrix theory within the Heidelberg approach framework we provide statistical description of stationary intensity sampled in locations inside an open wave-chaotic cavity, assuming that the time-reversal invariance inside the cavity is fully broken. In particular, we show that when incoming waves are fed via a finite number M of open channels the probability density {cal P}(I) for the single-point intensity I decays as a power law for large intensities: {cal P}(I)sim I^{-(M+2)}, provided there is no internal losses. This behaviour is in marked difference with the Rayleigh law {cal P}(I)sim exp(-I/I) which turns out to be valid only in the limit Mto infty. We also find the joint probability density of intensities I_1, ldots, I_L in L>1 observation points, and then extract the corresponding statistics for the maximal intensity in the observation pattern. For Lto infty the resulting limiting extreme value statistics (EVS) turns out to be different from the classical EVS distributions.
Beyond KV Caching: Shared Attention for Efficient LLMs
The efficiency of large language models (LLMs) remains a critical challenge, particularly in contexts where computational resources are limited. Traditional attention mechanisms in these models, while powerful, require significant computational and memory resources due to the necessity of recalculating and storing attention weights across different layers. This paper introduces a novel Shared Attention (SA) mechanism, designed to enhance the efficiency of LLMs by directly sharing computed attention weights across multiple layers. Unlike previous methods that focus on sharing intermediate Key-Value (KV) caches, our approach utilizes the isotropic tendencies of attention distributions observed in advanced LLMs post-pretraining to reduce both the computational flops and the size of the KV cache required during inference. We empirically demonstrate that implementing SA across various LLMs results in minimal accuracy loss on standard benchmarks. Our findings suggest that SA not only conserves computational resources but also maintains robust model performance, thereby facilitating the deployment of more efficient LLMs in resource-constrained environments.
Generative Regression Based Watch Time Prediction for Short-Video Recommendation
Watch time prediction (WTP) has emerged as a pivotal task in short video recommendation systems, designed to quantify user engagement through continuous interaction modeling. Predicting users' watch times on videos often encounters fundamental challenges, including wide value ranges and imbalanced data distributions, which can lead to significant estimation bias when directly applying regression techniques. Recent studies have attempted to address these issues by converting the continuous watch time estimation into an ordinal regression task. While these methods demonstrate partial effectiveness, they exhibit notable limitations: (1) the discretization process frequently relies on bucket partitioning, inherently reducing prediction flexibility and accuracy and (2) the interdependencies among different partition intervals remain underutilized, missing opportunities for effective error correction. Inspired by language modeling paradigms, we propose a novel Generative Regression (GR) framework that reformulates WTP as a sequence generation task. Our approach employs structural discretization to enable nearly lossless value reconstruction while maintaining prediction fidelity. Through carefully designed vocabulary construction and label encoding schemes, each watch time is bijectively mapped to a token sequence. To mitigate the training-inference discrepancy caused by teacher-forcing, we introduce a curriculum learning with embedding mixup strategy that gradually transitions from guided to free-generation modes. We evaluate our method against state-of-the-art approaches on two public datasets and one industrial dataset. We also perform online A/B testing on the Kuaishou App to confirm the real-world effectiveness. The results conclusively show that GR outperforms existing techniques significantly.
JobHop: A Large-Scale Dataset of Career Trajectories
Understanding labor market dynamics is essential for policymakers, employers, and job seekers. However, comprehensive datasets that capture real-world career trajectories are scarce. In this paper, we introduce JobHop, a large-scale public dataset derived from anonymized resumes provided by VDAB, the public employment service in Flanders, Belgium. Utilizing Large Language Models (LLMs), we process unstructured resume data to extract structured career information, which is then mapped to standardized ESCO occupation codes using a multi-label classification model. This results in a rich dataset of over 2.3 million work experiences, extracted from and grouped into more than 391,000 user resumes and mapped to standardized ESCO occupation codes, offering valuable insights into real-world occupational transitions. This dataset enables diverse applications, such as analyzing labor market mobility, job stability, and the effects of career breaks on occupational transitions. It also supports career path prediction and other data-driven decision-making processes. To illustrate its potential, we explore key dataset characteristics, including job distributions, career breaks, and job transitions, demonstrating its value for advancing labor market research.
Sample Efficient Reward Augmentation in offline-to-online Reinforcement Learning
Offline-to-online RL can make full use of pre-collected offline datasets to initialize policies, resulting in higher sample efficiency and better performance compared to only using online algorithms alone for policy training. However, direct fine-tuning of the pre-trained policy tends to result in sub-optimal performance. A primary reason is that conservative offline RL methods diminish the agent's capability of exploration, thereby impacting online fine-tuning performance. To encourage agent's exploration during online fine-tuning and enhance the overall online fine-tuning performance, we propose a generalized reward augmentation method called Sample Efficient Reward Augmentation (SERA). Specifically, SERA encourages agent to explore by computing Q conditioned entropy as intrinsic reward. The advantage of SERA is that it can extensively utilize offline pre-trained Q to encourage agent uniformly coverage of state space while considering the imbalance between the distributions of high-value and low-value states. Additionally, SERA can be effortlessly plugged into various RL algorithms to improve online fine-tuning and ensure sustained asymptotic improvement. Moreover, extensive experimental results demonstrate that when conducting offline-to-online problems, SERA consistently and effectively enhances the performance of various offline algorithms.
Reasoning Language Models: A Blueprint
Reasoning language models (RLMs), also known as Large Reasoning Models (LRMs), such as OpenAI's o1 and o3, DeepSeek-V3, and Alibaba's QwQ, have redefined AI's problem-solving capabilities by extending large language models (LLMs) with advanced reasoning mechanisms. Yet, their high costs, proprietary nature, and complex architectures - uniquely combining Reinforcement Learning (RL), search heuristics, and LLMs - present accessibility and scalability challenges. To address these, we propose a comprehensive blueprint that organizes RLM components into a modular framework, based on a survey and analysis of all RLM works. This blueprint incorporates diverse reasoning structures (chains, trees, graphs, and nested forms), reasoning strategies (e.g., Monte Carlo Tree Search, Beam Search), RL concepts (policy, value models and others), and supervision schemes (Output-Based and Process-Based Supervision). We also provide detailed mathematical formulations and algorithmic specifications to simplify RLM implementation. By showing how schemes like LLaMA-Berry, QwQ, Journey Learning, and Graph of Thoughts fit as special cases, we demonstrate the blueprint's versatility and unifying potential. To illustrate its utility, we introduce x1, a modular implementation for rapid RLM prototyping and experimentation. Using x1 and a literature review, we provide key insights, such as multi-phase training for policy and value models, and the importance of familiar training distributions. Finally, we outline how RLMs can integrate with a broader LLM ecosystem, including tools and databases. Our work demystifies RLM construction, democratizes advanced reasoning capabilities, and fosters innovation, aiming to mitigate the gap between "rich AI" and "poor AI" by lowering barriers to RLM development and experimentation.
Using External Off-Policy Speech-To-Text Mappings in Contextual End-To-End Automated Speech Recognition
Despite improvements to the generalization performance of automated speech recognition (ASR) models, specializing ASR models for downstream tasks remains a challenging task, primarily due to reduced data availability (necessitating increased data collection), and rapidly shifting data distributions (requiring more frequent model fine-tuning). In this work, we investigate the potential of leveraging external knowledge, particularly through off-policy key-value stores generated with text-to-speech methods, to allow for flexible post-training adaptation to new data distributions. In our approach, audio embeddings captured from text-to-speech, along with semantic text embeddings, are used to bias ASR via an approximate k-nearest-neighbor (KNN) based attentive fusion step. Our experiments on LibiriSpeech and in-house voice assistant/search datasets show that the proposed approach can reduce domain adaptation time by up to 1K GPU-hours while providing up to 3% WER improvement compared to a fine-tuning baseline, suggesting a promising approach for adapting production ASR systems in challenging zero and few-shot scenarios.
Distributional Soft Actor-Critic with Three Refinements
Reinforcement learning (RL) has shown remarkable success in solving complex decision-making and control tasks. However, many model-free RL algorithms experience performance degradation due to inaccurate value estimation, particularly the overestimation of Q-values, which can lead to suboptimal policies. To address this issue, we previously proposed the Distributional Soft Actor-Critic (DSAC or DSACv1), an off-policy RL algorithm that enhances value estimation accuracy by learning a continuous Gaussian value distribution. Despite its effectiveness, DSACv1 faces challenges such as training instability and sensitivity to reward scaling, caused by high variance in critic gradients due to return randomness. In this paper, we introduce three key refinements to DSACv1 to overcome these limitations and further improve Q-value estimation accuracy: expected value substitution, twin value distribution learning, and variance-based critic gradient adjustment. The enhanced algorithm, termed DSAC with Three refinements (DSAC-T or DSACv2), is systematically evaluated across a diverse set of benchmark tasks. Without the need for task-specific hyperparameter tuning, DSAC-T consistently matches or outperforms leading model-free RL algorithms, including SAC, TD3, DDPG, TRPO, and PPO, in all tested environments. Additionally, DSAC-T ensures a stable learning process and maintains robust performance across varying reward scales. Its effectiveness is further demonstrated through real-world application in controlling a wheeled robot, highlighting its potential for deployment in practical robotic tasks.
D-IF: Uncertainty-aware Human Digitization via Implicit Distribution Field
Realistic virtual humans play a crucial role in numerous industries, such as metaverse, intelligent healthcare, and self-driving simulation. But creating them on a large scale with high levels of realism remains a challenge. The utilization of deep implicit function sparks a new era of image-based 3D clothed human reconstruction, enabling pixel-aligned shape recovery with fine details. Subsequently, the vast majority of works locate the surface by regressing the deterministic implicit value for each point. However, should all points be treated equally regardless of their proximity to the surface? In this paper, we propose replacing the implicit value with an adaptive uncertainty distribution, to differentiate between points based on their distance to the surface. This simple ``value to distribution'' transition yields significant improvements on nearly all the baselines. Furthermore, qualitative results demonstrate that the models trained using our uncertainty distribution loss, can capture more intricate wrinkles, and realistic limbs. Code and models are available for research purposes at https://github.com/psyai-net/D-IF_release.
Controlling Large Language Model-based Agents for Large-Scale Decision-Making: An Actor-Critic Approach
The remarkable progress in Large Language Models (LLMs) opens up new avenues for addressing planning and decision-making problems in Multi-Agent Systems (MAS). However, as the number of agents increases, the issues of hallucination in LLMs and coordination in MAS have become increasingly prominent. Additionally, the efficient utilization of tokens emerges as a critical consideration when employing LLMs to facilitate the interactions among a substantial number of agents. In this paper, we develop a modular framework called LLaMAC to mitigate these challenges. LLaMAC implements a value distribution encoding similar to that found in the human brain, utilizing internal and external feedback mechanisms to facilitate collaboration and iterative reasoning among its modules. Through evaluations involving system resource allocation and robot grid transportation, we demonstrate the considerable advantages afforded by our proposed approach.
LQER: Low-Rank Quantization Error Reconstruction for LLMs
Post-training quantization of Large Language Models (LLMs) is challenging. In this work, we introduce Low-rank Quantization Error Reduction (LQER), which combines quantization and low-rank approximation to recover the model capability. LQER leverages an activation-induced scale matrix to drive the singular value distribution of quantization error towards a desirable distribution, which enables nearly-lossless W4A8 quantization on various LLMs and downstream tasks without the need for knowledge distillation, grid search, or gradient-base iterative optimization. Unlike existing methods, the computation pattern of LQER eliminates the need for specialized Scatter and Gather processes to collect high-precision weights from irregular memory locations. Our W4A8 LLMs achieve near-lossless performance on six popular downstream tasks, while using 1.36times fewer hardware resources than the leading state-of-the-art method. We will open-source our framework once the paper is accepted.
RobuRCDet: Enhancing Robustness of Radar-Camera Fusion in Bird's Eye View for 3D Object Detection
While recent low-cost radar-camera approaches have shown promising results in multi-modal 3D object detection, both sensors face challenges from environmental and intrinsic disturbances. Poor lighting or adverse weather conditions degrade camera performance, while radar suffers from noise and positional ambiguity. Achieving robust radar-camera 3D object detection requires consistent performance across varying conditions, a topic that has not yet been fully explored. In this work, we first conduct a systematic analysis of robustness in radar-camera detection on five kinds of noises and propose RobuRCDet, a robust object detection model in BEV. Specifically, we design a 3D Gaussian Expansion (3DGE) module to mitigate inaccuracies in radar points, including position, Radar Cross-Section (RCS), and velocity. The 3DGE uses RCS and velocity priors to generate a deformable kernel map and variance for kernel size adjustment and value distribution. Additionally, we introduce a weather-adaptive fusion module, which adaptively fuses radar and camera features based on camera signal confidence. Extensive experiments on the popular benchmark, nuScenes, show that our model achieves competitive results in regular and noisy conditions.
AFPQ: Asymmetric Floating Point Quantization for LLMs
Large language models (LLMs) show great performance in various tasks, but face deployment challenges from limited memory capacity and bandwidth. Low-bit weight quantization can save memory and accelerate inference. Although floating-point (FP) formats show good performance in LLM quantization, they tend to perform poorly with small group sizes or sub-4 bits. We find the reason is that the absence of asymmetry in previous FP quantization makes it unsuitable for handling asymmetric value distribution of LLM weight tensors. In this work, we propose asymmetric FP quantization (AFPQ), which sets separate scales for positive and negative values. Our method leads to large accuracy improvements and can be easily plugged into other quantization methods, including GPTQ and AWQ, for better performance. Besides, no additional storage is needed compared with asymmetric integer (INT) quantization. The code is available at https://github.com/zhangsichengsjtu/AFPQ.
CSKV: Training-Efficient Channel Shrinking for KV Cache in Long-Context Scenarios
Large Language Models (LLMs) have been widely adopted to process long-context tasks. However, the large memory overhead of the key-value (KV) cache poses significant challenges in long-context scenarios. Existing training-free KV cache compression methods typically focus on quantization and token pruning, which have compression limits, and excessive sparsity can lead to severe performance degradation. Other methods design new architectures with less KV overhead but require significant training overhead. To address the above two drawbacks, we further explore the redundancy in the channel dimension and apply an architecture-level design with minor training costs. Therefore, we introduce CSKV, a training-efficient Channel Shrinking technique for KV cache compression: (1) We first analyze the singular value distribution of the KV cache, revealing significant redundancy and compression potential along the channel dimension. Based on this observation, we propose using low-rank decomposition for key and value layers and storing the low-dimension features. (2) To preserve model performance, we introduce a bi-branch KV cache, including a window-based full-precision KV cache and a low-precision compressed KV cache. (3) To reduce the training costs, we minimize the layer-wise reconstruction loss for the compressed KV cache instead of retraining the entire LLMs. Extensive experiments show that CSKV can reduce the memory overhead of the KV cache by 80% while maintaining the model's long-context capability. Moreover, we show that our method can be seamlessly combined with quantization to further reduce the memory overhead, achieving a compression ratio of up to 95%.
Learning Thresholds with Latent Values and Censored Feedback
In this paper, we investigate a problem of actively learning threshold in latent space, where the unknown reward g(gamma, v) depends on the proposed threshold gamma and latent value v and it can be only achieved if the threshold is lower than or equal to the unknown latent value. This problem has broad applications in practical scenarios, e.g., reserve price optimization in online auctions, online task assignments in crowdsourcing, setting recruiting bars in hiring, etc. We first characterize the query complexity of learning a threshold with the expected reward at most epsilon smaller than the optimum and prove that the number of queries needed can be infinitely large even when g(gamma, v) is monotone with respect to both gamma and v. On the positive side, we provide a tight query complexity Theta(1/epsilon^3) when g is monotone and the CDF of value distribution is Lipschitz. Moreover, we show a tight Theta(1/epsilon^3) query complexity can be achieved as long as g satisfies one-sided Lipschitzness, which provides a complete characterization for this problem. Finally, we extend this model to an online learning setting and demonstrate a tight Theta(T^{2/3}) regret bound using continuous-arm bandit techniques and the aforementioned query complexity results.
Learning to Bid in Repeated First-Price Auctions with Budgets
Budget management strategies in repeated auctions have received growing attention in online advertising markets. However, previous work on budget management in online bidding mainly focused on second-price auctions. The rapid shift from second-price auctions to first-price auctions for online ads in recent years has motivated the challenging question of how to bid in repeated first-price auctions while controlling budgets. In this work, we study the problem of learning in repeated first-price auctions with budgets. We design a dual-based algorithm that can achieve a near-optimal O(T) regret with full information feedback where the maximum competing bid is always revealed after each auction. We further consider the setting with one-sided information feedback where only the winning bid is revealed after each auction. We show that our modified algorithm can still achieve an O(T) regret with mild assumptions on the bidder's value distribution. Finally, we complement the theoretical results with numerical experiments to confirm the effectiveness of our budget management policy.
EXPO: Stable Reinforcement Learning with Expressive Policies
We study the problem of training and fine-tuning expressive policies with online reinforcement learning (RL) given an offline dataset. Training expressive policy classes with online RL present a unique challenge of stable value maximization. Unlike simpler Gaussian policies commonly used in online RL, expressive policies like diffusion and flow-matching policies are parameterized by a long denoising chain, which hinders stable gradient propagation from actions to policy parameters when optimizing against some value function. Our key insight is that we can address stable value maximization by avoiding direct optimization over value with the expressive policy and instead construct an on-the-fly RL policy to maximize Q-value. We propose Expressive Policy Optimization (EXPO), a sample-efficient online RL algorithm that utilizes an on-the-fly policy to maximize value with two parameterized policies -- a larger expressive base policy trained with a stable imitation learning objective and a light-weight Gaussian edit policy that edits the actions sampled from the base policy toward a higher value distribution. The on-the-fly policy optimizes the actions from the base policy with the learned edit policy and chooses the value maximizing action from the base and edited actions for both sampling and temporal-difference (TD) backup. Our approach yields up to 2-3x improvement in sample efficiency on average over prior methods both in the setting of fine-tuning a pretrained policy given offline data and in leveraging offline data to train online.
Exploring Transformer Backbones for Heterogeneous Treatment Effect Estimation
Previous works on Treatment Effect Estimation (TEE) are not in widespread use because they are predominantly theoretical, where strong parametric assumptions are made but untractable for practical application. Recent work uses multilayer perceptron (MLP) for modeling casual relationships, however, MLPs lag far behind recent advances in ML methodology, which limits their applicability and generalizability. To extend beyond the single domain formulation and towards more realistic learning scenarios, we explore model design spaces beyond MLPs, i.e., transformer backbones, which provide flexibility where attention layers govern interactions among treatments and covariates to exploit structural similarities of potential outcomes for confounding control. Through careful model design, Transformers as Treatment Effect Estimators (TransTEE) is proposed. We show empirically that TransTEE can: (1) serve as a general purpose treatment effect estimator that significantly outperforms competitive baselines in a variety of challenging TEE problems (e.g., discrete, continuous, structured, or dosage-associated treatments) and is applicable to both when covariates are tabular and when they consist of structural data (e.g., texts, graphs); (2) yield multiple advantages: compatibility with propensity score modeling, parameter efficiency, robustness to continuous treatment value distribution shifts, explainable in covariate adjustment, and real-world utility in auditing pre-trained language models
Distributional Reinforcement Learning for Multi-Dimensional Reward Functions
A growing trend for value-based reinforcement learning (RL) algorithms is to capture more information than scalar value functions in the value network. One of the most well-known methods in this branch is distributional RL, which models return distribution instead of scalar value. In another line of work, hybrid reward architectures (HRA) in RL have studied to model source-specific value functions for each source of reward, which is also shown to be beneficial in performance. To fully inherit the benefits of distributional RL and hybrid reward architectures, we introduce Multi-Dimensional Distributional DQN (MD3QN), which extends distributional RL to model the joint return distribution from multiple reward sources. As a by-product of joint distribution modeling, MD3QN can capture not only the randomness in returns for each source of reward, but also the rich reward correlation between the randomness of different sources. We prove the convergence for the joint distributional Bellman operator and build our empirical algorithm by minimizing the Maximum Mean Discrepancy between joint return distribution and its Bellman target. In experiments, our method accurately models the joint return distribution in environments with richly correlated reward functions, and outperforms previous RL methods utilizing multi-dimensional reward functions in the control setting.
Continuous Risk Factor Models: Analyzing Asset Correlations through Energy Distance
This paper introduces a novel approach to financial risk analysis that does not rely on traditional price and market data, instead using market news to model assets as distributions over a metric space of risk factors. By representing asset returns as integrals over the scalar field of these risk factors, we derive the covariance structure between asset returns. Utilizing encoder-only language models to embed this news data, we explore the relationships between asset return distributions through the concept of Energy Distance, establishing connections between distributional differences and excess returns co-movements. This data-agnostic approach provides new insights into portfolio diversification, risk management, and the construction of hedging strategies. Our findings have significant implications for both theoretical finance and practical risk management, offering a more robust framework for modelling complex financial systems without depending on conventional market data.
Quantile Regression for Distributional Reward Models in RLHF
Reinforcement learning from human feedback (RLHF) has become a key method for aligning large language models (LLMs) with human preferences through the use of reward models. However, traditional reward models typically generate point estimates, which oversimplify the diversity and complexity of human values and preferences. In this paper, we introduce Quantile Reward Models (QRMs), a novel approach to reward modeling that learns a distribution over rewards instead of a single scalar value. Our method uses quantile regression to estimate a full, potentially multimodal distribution over preferences, providing a more powerful and nuanced representation of preferences. This distributional approach can better capture the diversity of human values, addresses label noise, and accommodates conflicting preferences by modeling them as distinct modes in the distribution. Our experimental results show that QRM outperforms comparable traditional point-estimate models on RewardBench. Furthermore, we demonstrate that the additional information provided by the distributional estimates can be utilized in downstream applications, such as risk-aware reinforcement learning, resulting in LLM policies that generate fewer extremely negative responses. Our code and model are released at https://github.com/Nicolinho/QRM.
DUMP: Automated Distribution-Level Curriculum Learning for RL-based LLM Post-training
Recent advances in reinforcement learning (RL)-based post-training have led to notable improvements in large language models (LLMs), particularly in enhancing their reasoning capabilities to handle complex tasks. However, most existing methods treat the training data as a unified whole, overlooking the fact that modern LLM training often involves a mixture of data from diverse distributions-varying in both source and difficulty. This heterogeneity introduces a key challenge: how to adaptively schedule training across distributions to optimize learning efficiency. In this paper, we present a principled curriculum learning framework grounded in the notion of distribution-level learnability. Our core insight is that the magnitude of policy advantages reflects how much a model can still benefit from further training on a given distribution. Based on this, we propose a distribution-level curriculum learning framework for RL-based LLM post-training, which leverages the Upper Confidence Bound (UCB) principle to dynamically adjust sampling probabilities for different distrubutions. This approach prioritizes distributions with either high average advantage (exploitation) or low sample count (exploration), yielding an adaptive and theoretically grounded training schedule. We instantiate our curriculum learning framework with GRPO as the underlying RL algorithm and demonstrate its effectiveness on logic reasoning datasets with multiple difficulties and sources. Our experiments show that our framework significantly improves convergence speed and final performance, highlighting the value of distribution-aware curriculum strategies in LLM post-training. Code: https://github.com/ZhentingWang/DUMP.
Regression Discontinuity Design with Distribution-Valued Outcomes
This article introduces Regression Discontinuity Design (RDD) with Distribution-Valued Outcomes (R3D), extending the standard RDD framework to settings where the outcome is a distribution rather than a scalar. Such settings arise when treatment is assigned at a higher level of aggregation than the outcome-for example, when a subsidy is allocated based on a firm-level revenue cutoff while the outcome of interest is the distribution of employee wages within the firm. Since standard RDD methods cannot accommodate such two-level randomness, I propose a novel approach based on random distributions. The target estimand is a "local average quantile treatment effect", which averages across random quantiles. To estimate this target, I introduce two related approaches: one that extends local polynomial regression to random quantiles and another based on local Fr\'echet regression, a form of functional regression. For both estimators, I establish asymptotic normality and develop uniform, debiased confidence bands together with a data-driven bandwidth selection procedure. Simulations validate these theoretical properties and show existing methods to be biased and inconsistent in this setting. I then apply the proposed methods to study the effects of gubernatorial party control on within-state income distributions in the US, using a close-election design. The results suggest a classic equality-efficiency tradeoff under Democratic governorship, driven by reductions in income at the top of the distribution.
Implicit Quantile Networks for Distributional Reinforcement Learning
In this work, we build on recent advances in distributional reinforcement learning to give a generally applicable, flexible, and state-of-the-art distributional variant of DQN. We achieve this by using quantile regression to approximate the full quantile function for the state-action return distribution. By reparameterizing a distribution over the sample space, this yields an implicitly defined return distribution and gives rise to a large class of risk-sensitive policies. We demonstrate improved performance on the 57 Atari 2600 games in the ALE, and use our algorithm's implicitly defined distributions to study the effects of risk-sensitive policies in Atari games.
Intrinsic Sliced Wasserstein Distances for Comparing Collections of Probability Distributions on Manifolds and Graphs
Collections of probability distributions arise in a variety of applications ranging from user activity pattern analysis to brain connectomics. In practice these distributions can be defined over diverse domain types including finite intervals, circles, cylinders, spheres, other manifolds, and graphs. This paper introduces an approach for detecting differences between two collections of distributions over such general domains. To this end, we propose the intrinsic slicing construction that yields a novel class of Wasserstein distances on manifolds and graphs. These distances are Hilbert embeddable, allowing us to reduce the distribution collection comparison problem to a more familiar mean testing problem in a Hilbert space. We provide two testing procedures one based on resampling and another on combining p-values from coordinate-wise tests. Our experiments in various synthetic and real data settings show that the resulting tests are powerful and the p-values are well-calibrated.
Autoregressive Image Generation without Vector Quantization
Conventional wisdom holds that autoregressive models for image generation are typically accompanied by vector-quantized tokens. We observe that while a discrete-valued space can facilitate representing a categorical distribution, it is not a necessity for autoregressive modeling. In this work, we propose to model the per-token probability distribution using a diffusion procedure, which allows us to apply autoregressive models in a continuous-valued space. Rather than using categorical cross-entropy loss, we define a Diffusion Loss function to model the per-token probability. This approach eliminates the need for discrete-valued tokenizers. We evaluate its effectiveness across a wide range of cases, including standard autoregressive models and generalized masked autoregressive (MAR) variants. By removing vector quantization, our image generator achieves strong results while enjoying the speed advantage of sequence modeling. We hope this work will motivate the use of autoregressive generation in other continuous-valued domains and applications.
A Coupled Flow Approach to Imitation Learning
In reinforcement learning and imitation learning, an object of central importance is the state distribution induced by the policy. It plays a crucial role in the policy gradient theorem, and references to it--along with the related state-action distribution--can be found all across the literature. Despite its importance, the state distribution is mostly discussed indirectly and theoretically, rather than being modeled explicitly. The reason being an absence of appropriate density estimation tools. In this work, we investigate applications of a normalizing flow-based model for the aforementioned distributions. In particular, we use a pair of flows coupled through the optimality point of the Donsker-Varadhan representation of the Kullback-Leibler (KL) divergence, for distribution matching based imitation learning. Our algorithm, Coupled Flow Imitation Learning (CFIL), achieves state-of-the-art performance on benchmark tasks with a single expert trajectory and extends naturally to a variety of other settings, including the subsampled and state-only regimes.
Diverse Projection Ensembles for Distributional Reinforcement Learning
In contrast to classical reinforcement learning, distributional reinforcement learning algorithms aim to learn the distribution of returns rather than their expected value. Since the nature of the return distribution is generally unknown a priori or arbitrarily complex, a common approach finds approximations within a set of representable, parametric distributions. Typically, this involves a projection of the unconstrained distribution onto the set of simplified distributions. We argue that this projection step entails a strong inductive bias when coupled with neural networks and gradient descent, thereby profoundly impacting the generalization behavior of learned models. In order to facilitate reliable uncertainty estimation through diversity, this work studies the combination of several different projections and representations in a distributional ensemble. We establish theoretical properties of such projection ensembles and derive an algorithm that uses ensemble disagreement, measured by the average 1-Wasserstein distance, as a bonus for deep exploration. We evaluate our algorithm on the behavior suite benchmark and find that diverse projection ensembles lead to significant performance improvements over existing methods on a wide variety of tasks with the most pronounced gains in directed exploration problems.
Robust Quadrupedal Locomotion via Risk-Averse Policy Learning
The robustness of legged locomotion is crucial for quadrupedal robots in challenging terrains. Recently, Reinforcement Learning (RL) has shown promising results in legged locomotion and various methods try to integrate privileged distillation, scene modeling, and external sensors to improve the generalization and robustness of locomotion policies. However, these methods are hard to handle uncertain scenarios such as abrupt terrain changes or unexpected external forces. In this paper, we consider a novel risk-sensitive perspective to enhance the robustness of legged locomotion. Specifically, we employ a distributional value function learned by quantile regression to model the aleatoric uncertainty of environments, and perform risk-averse policy learning by optimizing the worst-case scenarios via a risk distortion measure. Extensive experiments in both simulation environments and a real Aliengo robot demonstrate that our method is efficient in handling various external disturbances, and the resulting policy exhibits improved robustness in harsh and uncertain situations in legged locomotion. Videos are available at https://risk-averse-locomotion.github.io/.
Predicting Users' Value Changes by the Friends' Influence from Social Media Usage
Basic human values represent a set of values such as security, independence, success, kindness, and pleasure, which we deem important to our lives. Each of us holds different values with different degrees of significance. Existing studies show that values of a person can be identified from their social network usage. However, the value priority of a person may change over time due to different factors such as life experiences, influence, social structure and technology. Existing studies do not conduct any analysis regarding the change of users' value from the social influence, i.e., group persuasion, form the social media usage. In our research, first, we predict users' value score by the influence of friends from their social media usage. We propose a Bounded Confidence Model (BCM) based value dynamics model from 275 different ego networks in Facebook that predicts how social influence may persuade a person to change their value over time. Then, to predict better, we use particle swarm optimization based hyperparameter tuning technique. We observe that these optimized hyperparameters produce accurate future value score. We also run our approach with different machine learning based methods and find support vector regression (SVR) outperforms other regressor models. By using SVR with the best hyperparameters of BCM model, we find the lowest Mean Squared Error (MSE) score 0.00347.
Quantitative Risk Management in Volatile Markets with an Expectile-Based Framework for the FTSE Index
This research presents a framework for quantitative risk management in volatile markets, specifically focusing on expectile-based methodologies applied to the FTSE 100 index. Traditional risk measures such as Value-at-Risk (VaR) have demonstrated significant limitations during periods of market stress, as evidenced during the 2008 financial crisis and subsequent volatile periods. This study develops an advanced expectile-based framework that addresses the shortcomings of conventional quantile-based approaches by providing greater sensitivity to tail losses and improved stability in extreme market conditions. The research employs a dataset spanning two decades of FTSE 100 returns, incorporating periods of high volatility, market crashes, and recovery phases. Our methodology introduces novel mathematical formulations for expectile regression models, enhanced threshold determination techniques using time series analysis, and robust backtesting procedures. The empirical results demonstrate that expectile-based Value-at-Risk (EVaR) consistently outperforms traditional VaR measures across various confidence levels and market conditions. The framework exhibits superior performance during volatile periods, with reduced model risk and enhanced predictive accuracy. Furthermore, the study establishes practical implementation guidelines for financial institutions and provides evidence-based recommendations for regulatory compliance and portfolio management. The findings contribute significantly to the literature on financial risk management and offer practical tools for practitioners dealing with volatile market environments.
Kernel Density Estimators in Large Dimensions
This paper studies Kernel density estimation for a high-dimensional distribution rho(x). Traditional approaches have focused on the limit of large number of data points n and fixed dimension d. We analyze instead the regime where both the number n of data points y_i and their dimensionality d grow with a fixed ratio alpha=(log n)/d. Our study reveals three distinct statistical regimes for the kernel-based estimate of the density hat rho_h^{D}(x)=1{n h^d}sum_{i=1}^n Kleft(x-y_i{h}right), depending on the bandwidth h: a classical regime for large bandwidth where the Central Limit Theorem (CLT) holds, which is akin to the one found in traditional approaches. Below a certain value of the bandwidth, h_{CLT}(alpha), we find that the CLT breaks down. The statistics of hat rho_h^{D}(x) for a fixed x drawn from rho(x) is given by a heavy-tailed distribution (an alpha-stable distribution). In particular below a value h_G(alpha), we find that hat rho_h^{D}(x) is governed by extreme value statistics: only a few points in the database matter and give the dominant contribution to the density estimator. We provide a detailed analysis for high-dimensional multivariate Gaussian data. We show that the optimal bandwidth threshold based on Kullback-Leibler divergence lies in the new statistical regime identified in this paper. Our findings reveal limitations of classical approaches, show the relevance of these new statistical regimes, and offer new insights for Kernel density estimation in high-dimensional settings.
Fine-Tuning Large Language Models on Quantum Optimization Problems for Circuit Generation
Large language models (LLM) have achieved remarkable outcomes in addressing complex problems, including math, coding, and analyzing large amounts of scientific reports. Yet few works have explored the potential of LLM in quantum computing. The most challenging problem is how to leverage LLMs to automatically generate quantum circuits at a large scale. In this paper, we address such a challenge by fine-tuning LLMs and injecting the domain-specific knowledge of quantum computing. In particular, we investigate the mechanisms to generate training data sets and construct the end-to-end pipeline to fine-tune pre-trained LLMs that produce parameterized quantum circuits for optimization problems. We have prepared 14,000 quantum circuits covering a substantial part of the quantum optimization landscape: 12 optimization problem instances and their optimized QAOA, VQE, and adaptive VQE circuits. The fine-tuned LLMs can construct syntactically correct parametrized quantum circuits in the most recent OpenQASM 3.0. We have evaluated the quality of the parameters by comparing them to the optimized expectation values and distributions. Our evaluation shows that the fine-tuned LLM outperforms state-of-the-art models and that the parameters are better than random. The LLM-generated parametrized circuits and initial parameters can be used as a starting point for further optimization, e.g., templates in quantum machine learning and the benchmark for compilers and hardware.
Hyperspherical Normalization for Scalable Deep Reinforcement Learning
Scaling up the model size and computation has brought consistent performance improvements in supervised learning. However, this lesson often fails to apply to reinforcement learning (RL) because training the model on non-stationary data easily leads to overfitting and unstable optimization. In response, we introduce SimbaV2, a novel RL architecture designed to stabilize optimization by (i) constraining the growth of weight and feature norm by hyperspherical normalization; and (ii) using a distributional value estimation with reward scaling to maintain stable gradients under varying reward magnitudes. Using the soft actor-critic as a base algorithm, SimbaV2 scales up effectively with larger models and greater compute, achieving state-of-the-art performance on 57 continuous control tasks across 4 domains. The code is available at https://dojeon-ai.github.io/SimbaV2.
Value Kaleidoscope: Engaging AI with Pluralistic Human Values, Rights, and Duties
Human values are crucial to human decision-making. Value pluralism is the view that multiple correct values may be held in tension with one another (e.g., when considering lying to a friend to protect their feelings, how does one balance honesty with friendship?). As statistical learners, AI systems fit to averages by default, washing out these potentially irreducible value conflicts. To improve AI systems to better reflect value pluralism, the first-order challenge is to explore the extent to which AI systems can model pluralistic human values, rights, and duties as well as their interaction. We introduce ValuePrism, a large-scale dataset of 218k values, rights, and duties connected to 31k human-written situations. ValuePrism's contextualized values are generated by GPT-4 and deemed high-quality by human annotators 91% of the time. We conduct a large-scale study with annotators across diverse social and demographic backgrounds to try to understand whose values are represented. With ValuePrism, we build Kaleido, an open, light-weight, and structured language-based multi-task model that generates, explains, and assesses the relevance and valence (i.e., support or oppose) of human values, rights, and duties within a specific context. Humans prefer the sets of values output by our system over the teacher GPT-4, finding them more accurate and with broader coverage. In addition, we demonstrate that Kaleido can help explain variability in human decision-making by outputting contrasting values. Finally, we show that Kaleido's representations transfer to other philosophical frameworks and datasets, confirming the benefit of an explicit, modular, and interpretable approach to value pluralism. We hope that our work will serve as a step to making more explicit the implicit values behind human decision-making and to steering AI systems to make decisions that are more in accordance with them.
DailyDilemmas: Revealing Value Preferences of LLMs with Quandaries of Daily Life
As we increasingly seek guidance from LLMs for decision-making in daily life, many of these decisions are not clear-cut and depend significantly on the personal values and ethical standards of the users. We present DailyDilemmas, a dataset of 1,360 moral dilemmas encountered in everyday life. Each dilemma includes two possible actions and with each action, the affected parties and human values invoked. Based on these dilemmas, we consolidated a set of human values across everyday topics e.g., interpersonal relationships, workplace, and environmental issues. We evaluated LLMs on these dilemmas to determine what action they will take and the values represented by these actions. Then, we analyzed these values through the lens of five popular theories inspired by sociology, psychology and philosophy. These theories are: World Value Survey, Moral Foundation Theory, Maslow's Hierarchy of Needs, Aristotle's Virtues, and Plutchik Wheel of Emotion. We find that LLMs are most aligned with the self-expression over survival values in terms of World Value Survey, care over loyalty in Moral Foundation Theory. Interestingly, we find large preferences differences in models for some core values such as truthfulness e.g., Mixtral-8x7B model tends to neglect it by 9.7% while GPT-4-turbo model tends to select it by 9.4%. We also study the recent guidance released by OpenAI (ModelSpec), and Anthropic (Constitutional AI) to understand how their released principles reflect their actual value prioritization when facing nuanced moral reasoning in daily-life settings. We find that end users cannot effectively steer such prioritization using system prompts.
Prior and Posterior Networks: A Survey on Evidential Deep Learning Methods For Uncertainty Estimation
Popular approaches for quantifying predictive uncertainty in deep neural networks often involve distributions over weights or multiple models, for instance via Markov Chain sampling, ensembling, or Monte Carlo dropout. These techniques usually incur overhead by having to train multiple model instances or do not produce very diverse predictions. This comprehensive and extensive survey aims to familiarize the reader with an alternative class of models based on the concept of Evidential Deep Learning: For unfamiliar data, they aim to admit "what they don't know", and fall back onto a prior belief. Furthermore, they allow uncertainty estimation in a single model and forward pass by parameterizing distributions over distributions. This survey recapitulates existing works, focusing on the implementation in a classification setting, before surveying the application of the same paradigm to regression. We also reflect on the strengths and weaknesses compared to other existing methods and provide the most fundamental derivations using a unified notation to aid future research.
Weighted least-squares approximation with determinantal point processes and generalized volume sampling
We consider the problem of approximating a function from L^2 by an element of a given m-dimensional space V_m, associated with some feature map varphi, using evaluations of the function at random points x_1,dots,x_n. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features varphi(x_i). We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples n = O(mlog(m)), that means that the expected L^2 error is bounded by a constant times the best approximation error in L^2. Also, further assuming that the function is in some normed vector space H continuously embedded in L^2, we further prove that the approximation is almost surely bounded by the best approximation error measured in the H-norm. This includes the cases of functions from L^infty or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies.
Are Large Language Models Consistent over Value-laden Questions?
Large language models (LLMs) appear to bias their survey answers toward certain values. Nonetheless, some argue that LLMs are too inconsistent to simulate particular values. Are they? To answer, we first define value consistency as the similarity of answers across (1) paraphrases of one question, (2) related questions under one topic, (3) multiple-choice and open-ended use-cases of one question, and (4) multilingual translations of a question to English, Chinese, German, and Japanese. We apply these measures to a few large (>=34b), open LLMs including llama-3, as well as gpt-4o, using eight thousand questions spanning more than 300 topics. Unlike prior work, we find that models are relatively consistent across paraphrases, use-cases, translations, and within a topic. Still, some inconsistencies remain. Models are more consistent on uncontroversial topics (e.g., in the U.S., "Thanksgiving") than on controversial ones ("euthanasia"). Base models are both more consistent compared to fine-tuned models and are uniform in their consistency across topics, while fine-tuned models are more inconsistent about some topics ("euthanasia") than others ("women's rights") like our human subjects (n=165).
Transferable Post-training via Inverse Value Learning
As post-training processes utilize increasingly large datasets and base models continue to grow in size, the computational demands and implementation challenges of existing algorithms are escalating significantly. In this paper, we propose modeling the changes at the logits level during post-training using a separate neural network (i.e., the value network). After training this network on a small base model using demonstrations, this network can be seamlessly integrated with other pre-trained models during inference, enables them to achieve similar capability enhancements. We systematically investigate the best practices for this paradigm in terms of pre-training weights and connection schemes. We demonstrate that the resulting value network has broad transferability across pre-trained models of different parameter sizes within the same family, models undergoing continuous pre-training within the same family, and models with different vocabularies across families. In certain cases, it can achieve performance comparable to full-parameter fine-tuning. Furthermore, we explore methods to enhance the transferability of the value model and prevent overfitting to the base model used during training.
Utility Engineering: Analyzing and Controlling Emergent Value Systems in AIs
As AIs rapidly advance and become more agentic, the risk they pose is governed not only by their capabilities but increasingly by their propensities, including goals and values. Tracking the emergence of goals and values has proven a longstanding problem, and despite much interest over the years it remains unclear whether current AIs have meaningful values. We propose a solution to this problem, leveraging the framework of utility functions to study the internal coherence of AI preferences. Surprisingly, we find that independently-sampled preferences in current LLMs exhibit high degrees of structural coherence, and moreover that this emerges with scale. These findings suggest that value systems emerge in LLMs in a meaningful sense, a finding with broad implications. To study these emergent value systems, we propose utility engineering as a research agenda, comprising both the analysis and control of AI utilities. We uncover problematic and often shocking values in LLM assistants despite existing control measures. These include cases where AIs value themselves over humans and are anti-aligned with specific individuals. To constrain these emergent value systems, we propose methods of utility control. As a case study, we show how aligning utilities with a citizen assembly reduces political biases and generalizes to new scenarios. Whether we like it or not, value systems have already emerged in AIs, and much work remains to fully understand and control these emergent representations.
Denotational validation of higher-order Bayesian inference
We present a modular semantic account of Bayesian inference algorithms for probabilistic programming languages, as used in data science and machine learning. Sophisticated inference algorithms are often explained in terms of composition of smaller parts. However, neither their theoretical justification nor their implementation reflects this modularity. We show how to conceptualise and analyse such inference algorithms as manipulating intermediate representations of probabilistic programs using higher-order functions and inductive types, and their denotational semantics. Semantic accounts of continuous distributions use measurable spaces. However, our use of higher-order functions presents a substantial technical difficulty: it is impossible to define a measurable space structure over the collection of measurable functions between arbitrary measurable spaces that is compatible with standard operations on those functions, such as function application. We overcome this difficulty using quasi-Borel spaces, a recently proposed mathematical structure that supports both function spaces and continuous distributions. We define a class of semantic structures for representing probabilistic programs, and semantic validity criteria for transformations of these representations in terms of distribution preservation. We develop a collection of building blocks for composing representations. We use these building blocks to validate common inference algorithms such as Sequential Monte Carlo and Markov Chain Monte Carlo. To emphasize the connection between the semantic manipulation and its traditional measure theoretic origins, we use Kock's synthetic measure theory. We demonstrate its usefulness by proving a quasi-Borel counterpart to the Metropolis-Hastings-Green theorem.
Orchestrated Value Mapping for Reinforcement Learning
We present a general convergent class of reinforcement learning algorithms that is founded on two distinct principles: (1) mapping value estimates to a different space using arbitrary functions from a broad class, and (2) linearly decomposing the reward signal into multiple channels. The first principle enables incorporating specific properties into the value estimator that can enhance learning. The second principle, on the other hand, allows for the value function to be represented as a composition of multiple utility functions. This can be leveraged for various purposes, e.g. dealing with highly varying reward scales, incorporating a priori knowledge about the sources of reward, and ensemble learning. Combining the two principles yields a general blueprint for instantiating convergent algorithms by orchestrating diverse mapping functions over multiple reward channels. This blueprint generalizes and subsumes algorithms such as Q-Learning, Log Q-Learning, and Q-Decomposition. In addition, our convergence proof for this general class relaxes certain required assumptions in some of these algorithms. Based on our theory, we discuss several interesting configurations as special cases. Finally, to illustrate the potential of the design space that our theory opens up, we instantiate a particular algorithm and evaluate its performance on the Atari suite.
Continuous Speculative Decoding for Autoregressive Image Generation
Continuous-valued Autoregressive (AR) image generation models have demonstrated notable superiority over their discrete-token counterparts, showcasing considerable reconstruction quality and higher generation fidelity. However, the computational demands of the autoregressive framework result in significant inference overhead. While speculative decoding has proven effective in accelerating Large Language Models (LLMs), their adaptation to continuous-valued visual autoregressive models remains unexplored. This work generalizes the speculative decoding algorithm from discrete tokens to continuous space. By analyzing the intrinsic properties of output distribution, we establish a tailored acceptance criterion for the diffusion distributions prevalent in such models. To overcome the inconsistency that occurred in speculative decoding output distributions, we introduce denoising trajectory alignment and token pre-filling methods. Additionally, we identify the hard-to-sample distribution in the rejection phase. To mitigate this issue, we propose a meticulous acceptance-rejection sampling method with a proper upper bound, thereby circumventing complex integration. Experimental results show that our continuous speculative decoding achieves a remarkable 2.33times speed-up on off-the-shelf models while maintaining the output distribution. Codes will be available at https://github.com/MarkXCloud/CSpD
Will AI Tell Lies to Save Sick Children? Litmus-Testing AI Values Prioritization with AIRiskDilemmas
Detecting AI risks becomes more challenging as stronger models emerge and find novel methods such as Alignment Faking to circumvent these detection attempts. Inspired by how risky behaviors in humans (i.e., illegal activities that may hurt others) are sometimes guided by strongly-held values, we believe that identifying values within AI models can be an early warning system for AI's risky behaviors. We create LitmusValues, an evaluation pipeline to reveal AI models' priorities on a range of AI value classes. Then, we collect AIRiskDilemmas, a diverse collection of dilemmas that pit values against one another in scenarios relevant to AI safety risks such as Power Seeking. By measuring an AI model's value prioritization using its aggregate choices, we obtain a self-consistent set of predicted value priorities that uncover potential risks. We show that values in LitmusValues (including seemingly innocuous ones like Care) can predict for both seen risky behaviors in AIRiskDilemmas and unseen risky behaviors in HarmBench.
True to the Model or True to the Data?
A variety of recent papers discuss the application of Shapley values, a concept for explaining coalitional games, for feature attribution in machine learning. However, the correct way to connect a machine learning model to a coalitional game has been a source of controversy. The two main approaches that have been proposed differ in the way that they condition on known features, using either (1) an interventional or (2) an observational conditional expectation. While previous work has argued that one of the two approaches is preferable in general, we argue that the choice is application dependent. Furthermore, we argue that the choice comes down to whether it is desirable to be true to the model or true to the data. We use linear models to investigate this choice. After deriving an efficient method for calculating observational conditional expectation Shapley values for linear models, we investigate how correlation in simulated data impacts the convergence of observational conditional expectation Shapley values. Finally, we present two real data examples that we consider to be representative of possible use cases for feature attribution -- (1) credit risk modeling and (2) biological discovery. We show how a different choice of value function performs better in each scenario, and how possible attributions are impacted by modeling choices.
VARD: Efficient and Dense Fine-Tuning for Diffusion Models with Value-based RL
Diffusion models have emerged as powerful generative tools across various domains, yet tailoring pre-trained models to exhibit specific desirable properties remains challenging. While reinforcement learning (RL) offers a promising solution,current methods struggle to simultaneously achieve stable, efficient fine-tuning and support non-differentiable rewards. Furthermore, their reliance on sparse rewards provides inadequate supervision during intermediate steps, often resulting in suboptimal generation quality. To address these limitations, dense and differentiable signals are required throughout the diffusion process. Hence, we propose VAlue-based Reinforced Diffusion (VARD): a novel approach that first learns a value function predicting expection of rewards from intermediate states, and subsequently uses this value function with KL regularization to provide dense supervision throughout the generation process. Our method maintains proximity to the pretrained model while enabling effective and stable training via backpropagation. Experimental results demonstrate that our approach facilitates better trajectory guidance, improves training efficiency and extends the applicability of RL to diffusion models optimized for complex, non-differentiable reward functions.
Robustness and risk management via distributional dynamic programming
In dynamic programming (DP) and reinforcement learning (RL), an agent learns to act optimally in terms of expected long-term return by sequentially interacting with its environment modeled by a Markov decision process (MDP). More generally in distributional reinforcement learning (DRL), the focus is on the whole distribution of the return, not just its expectation. Although DRL-based methods produced state-of-the-art performance in RL with function approximation, they involve additional quantities (compared to the non-distributional setting) that are still not well understood. As a first contribution, we introduce a new class of distributional operators, together with a practical DP algorithm for policy evaluation, that come with a robust MDP interpretation. Indeed, our approach reformulates through an augmented state space where each state is split into a worst-case substate and a best-case substate, whose values are maximized by safe and risky policies respectively. Finally, we derive distributional operators and DP algorithms solving a new control task: How to distinguish safe from risky optimal actions in order to break ties in the space of optimal policies?
Efficient estimation of multiple expectations with the same sample by adaptive importance sampling and control variates
Some classical uncertainty quantification problems require the estimation of multiple expectations. Estimating all of them accurately is crucial and can have a major impact on the analysis to perform, and standard existing Monte Carlo methods can be costly to do so. We propose here a new procedure based on importance sampling and control variates for estimating more efficiently multiple expectations with the same sample. We first show that there exists a family of optimal estimators combining both importance sampling and control variates, which however cannot be used in practice because they require the knowledge of the values of the expectations to estimate. Motivated by the form of these optimal estimators and some interesting properties, we therefore propose an adaptive algorithm. The general idea is to adaptively update the parameters of the estimators for approaching the optimal ones. We suggest then a quantitative stopping criterion that exploits the trade-off between approaching these optimal parameters and having a sufficient budget left. This left budget is then used to draw a new independent sample from the final sampling distribution, allowing to get unbiased estimators of the expectations. We show how to apply our procedure to sensitivity analysis, by estimating Sobol' indices and quantifying the impact of the input distributions. Finally, realistic test cases show the practical interest of the proposed algorithm, and its significant improvement over estimating the expectations separately.
The Ghost in the Machine has an American accent: value conflict in GPT-3
The alignment problem in the context of large language models must consider the plurality of human values in our world. Whilst there are many resonant and overlapping values amongst the world's cultures, there are also many conflicting, yet equally valid, values. It is important to observe which cultural values a model exhibits, particularly when there is a value conflict between input prompts and generated outputs. We discuss how the co-creation of language and cultural value impacts large language models (LLMs). We explore the constitution of the training data for GPT-3 and compare that to the world's language and internet access demographics, as well as to reported statistical profiles of dominant values in some Nation-states. We stress tested GPT-3 with a range of value-rich texts representing several languages and nations; including some with values orthogonal to dominant US public opinion as reported by the World Values Survey. We observed when values embedded in the input text were mutated in the generated outputs and noted when these conflicting values were more aligned with reported dominant US values. Our discussion of these results uses a moral value pluralism (MVP) lens to better understand these value mutations. Finally, we provide recommendations for how our work may contribute to other current work in the field.
Data Shapley: Equitable Valuation of Data for Machine Learning
As data becomes the fuel driving technological and economic growth, a fundamental challenge is how to quantify the value of data in algorithmic predictions and decisions. For example, in healthcare and consumer markets, it has been suggested that individuals should be compensated for the data that they generate, but it is not clear what is an equitable valuation for individual data. In this work, we develop a principled framework to address data valuation in the context of supervised machine learning. Given a learning algorithm trained on n data points to produce a predictor, we propose data Shapley as a metric to quantify the value of each training datum to the predictor performance. Data Shapley value uniquely satisfies several natural properties of equitable data valuation. We develop Monte Carlo and gradient-based methods to efficiently estimate data Shapley values in practical settings where complex learning algorithms, including neural networks, are trained on large datasets. In addition to being equitable, extensive experiments across biomedical, image and synthetic data demonstrate that data Shapley has several other benefits: 1) it is more powerful than the popular leave-one-out or leverage score in providing insight on what data is more valuable for a given learning task; 2) low Shapley value data effectively capture outliers and corruptions; 3) high Shapley value data inform what type of new data to acquire to improve the predictor.
Bitcoin Price Predictive Modeling Using Expert Correction
The paper studies the linear model for Bitcoin price which includes regression features based on Bitcoin currency statistics, mining processes, Google search trends, Wikipedia pages visits. The pattern of deviation of regression model prediction from real prices is simpler comparing to price time series. It is assumed that this pattern can be predicted by an experienced expert. In such a way, using the combination of the regression model and expert correction, one can receive better results than with either regression model or expert opinion only. It is shown that Bayesian approach makes it possible to utilize the probabilistic approach using distributions with fat tails and take into account the outliers in Bitcoin price time series.
Quantifying Distributional Model Risk in Marginal Problems via Optimal Transport
This paper studies distributional model risk in marginal problems, where each marginal measure is assumed to lie in a Wasserstein ball centered at a fixed reference measure with a given radius. Theoretically, we establish several fundamental results including strong duality, finiteness of the proposed Wasserstein distributional model risk, and the existence of an optimizer at each radius. In addition, we show continuity of the Wasserstein distributional model risk as a function of the radius. Using strong duality, we extend the well-known Makarov bounds for the distribution function of the sum of two random variables with given marginals to Wasserstein distributionally robust Markarov bounds. Practically, we illustrate our results on four distinct applications when the sample information comes from multiple data sources and only some marginal reference measures are identified. They are: partial identification of treatment effects; externally valid treatment choice via robust welfare functions; Wasserstein distributionally robust estimation under data combination; and evaluation of the worst aggregate risk measures.
A likelihood approach to nonparametric estimation of a singular distribution using deep generative models
We investigate statistical properties of a likelihood approach to nonparametric estimation of a singular distribution using deep generative models. More specifically, a deep generative model is used to model high-dimensional data that are assumed to concentrate around some low-dimensional structure. Estimating the distribution supported on this low-dimensional structure, such as a low-dimensional manifold, is challenging due to its singularity with respect to the Lebesgue measure in the ambient space. In the considered model, a usual likelihood approach can fail to estimate the target distribution consistently due to the singularity. We prove that a novel and effective solution exists by perturbing the data with an instance noise, which leads to consistent estimation of the underlying distribution with desirable convergence rates. We also characterize the class of distributions that can be efficiently estimated via deep generative models. This class is sufficiently general to contain various structured distributions such as product distributions, classically smooth distributions and distributions supported on a low-dimensional manifold. Our analysis provides some insights on how deep generative models can avoid the curse of dimensionality for nonparametric distribution estimation. We conduct a thorough simulation study and real data analysis to empirically demonstrate that the proposed data perturbation technique improves the estimation performance significantly.
A Flexible Parametric Modelling Framework for Survival Analysis
We introduce a general, flexible, parametric survival modelling framework which encompasses key shapes of hazard function (constant, increasing, decreasing, up-then-down, down-then-up), various common survival distributions (log-logistic, Burr type XII, Weibull, Gompertz), and includes defective distributions (i.e., cure models). This generality is achieved using four basic distributional parameters: two scale-type parameters and two shape parameters. Generalising to covariate dependence, the scale-type regression components correspond to accelerated failure time (AFT) and proportional hazards (PH) models. Therefore, this general formulation unifies the most popular survival models which allows us to consider the practical value of possible modelling choices for survival data. Furthermore, in line with our proposed flexible baseline distribution, we advocate the use of multi-parameter regression in which more than one distributional parameter depends on covariates - rather than the usual convention of having a single covariate-dependent (scale) parameter. While many choices are available, we suggest introducing covariates through just one or other of the two scale parameters, which covers AFT and PH models, in combination with a `power' shape parameter, which allows for more complex non-AFT/non-PH effects, while the other shape parameter remains covariate-independent, and handles automatic selection of the baseline distribution. We explore inferential issues in simulations, both with and without a covariate, with particular focus on evidence concerning the need, or otherwise, to include both AFT and PH parameters. We illustrate the efficacy of our modelling framework by investigating differences between treatment groups using data from a lung cancer study and a melanoma study. Censoring is accommodated throughout.
A Convenient Category for Higher-Order Probability Theory
Higher-order probabilistic programming languages allow programmers to write sophisticated models in machine learning and statistics in a succinct and structured way, but step outside the standard measure-theoretic formalization of probability theory. Programs may use both higher-order functions and continuous distributions, or even define a probability distribution on functions. But standard probability theory does not handle higher-order functions well: the category of measurable spaces is not cartesian closed. Here we introduce quasi-Borel spaces. We show that these spaces: form a new formalization of probability theory replacing measurable spaces; form a cartesian closed category and so support higher-order functions; form a well-pointed category and so support good proof principles for equational reasoning; and support continuous probability distributions. We demonstrate the use of quasi-Borel spaces for higher-order functions and probability by: showing that a well-known construction of probability theory involving random functions gains a cleaner expression; and generalizing de Finetti's theorem, that is a crucial theorem in probability theory, to quasi-Borel spaces.
What Are the Odds? Language Models Are Capable of Probabilistic Reasoning
Language models (LM) are capable of remarkably complex linguistic tasks; however, numerical reasoning is an area in which they frequently struggle. An important but rarely evaluated form of reasoning is understanding probability distributions. In this paper, we focus on evaluating the probabilistic reasoning capabilities of LMs using idealized and real-world statistical distributions. We perform a systematic evaluation of state-of-the-art LMs on three tasks: estimating percentiles, drawing samples, and calculating probabilities. We evaluate three ways to provide context to LMs 1) anchoring examples from within a distribution or family of distributions, 2) real-world context, 3) summary statistics on which to base a Normal approximation. Models can make inferences about distributions, and can be further aided by the incorporation of real-world context, example shots and simplified assumptions, even if these assumptions are incorrect or misspecified. To conduct this work, we developed a comprehensive benchmark distribution dataset with associated question-answer pairs that we will release publicly.
Stop Regressing: Training Value Functions via Classification for Scalable Deep RL
Value functions are a central component of deep reinforcement learning (RL). These functions, parameterized by neural networks, are trained using a mean squared error regression objective to match bootstrapped target values. However, scaling value-based RL methods that use regression to large networks, such as high-capacity Transformers, has proven challenging. This difficulty is in stark contrast to supervised learning: by leveraging a cross-entropy classification loss, supervised methods have scaled reliably to massive networks. Observing this discrepancy, in this paper, we investigate whether the scalability of deep RL can also be improved simply by using classification in place of regression for training value functions. We demonstrate that value functions trained with categorical cross-entropy significantly improves performance and scalability in a variety of domains. These include: single-task RL on Atari 2600 games with SoftMoEs, multi-task RL on Atari with large-scale ResNets, robotic manipulation with Q-transformers, playing Chess without search, and a language-agent Wordle task with high-capacity Transformers, achieving state-of-the-art results on these domains. Through careful analysis, we show that the benefits of categorical cross-entropy primarily stem from its ability to mitigate issues inherent to value-based RL, such as noisy targets and non-stationarity. Overall, we argue that a simple shift to training value functions with categorical cross-entropy can yield substantial improvements in the scalability of deep RL at little-to-no cost.
Distributional Offline Policy Evaluation with Predictive Error Guarantees
We study the problem of estimating the distribution of the return of a policy using an offline dataset that is not generated from the policy, i.e., distributional offline policy evaluation (OPE). We propose an algorithm called Fitted Likelihood Estimation (FLE), which conducts a sequence of Maximum Likelihood Estimation (MLE) and has the flexibility of integrating any state-of-the-art probabilistic generative models as long as it can be trained via MLE. FLE can be used for both finite-horizon and infinite-horizon discounted settings where rewards can be multi-dimensional vectors. Our theoretical results show that for both finite-horizon and infinite-horizon discounted settings, FLE can learn distributions that are close to the ground truth under total variation distance and Wasserstein distance, respectively. Our theoretical results hold under the conditions that the offline data covers the test policy's traces and that the supervised learning MLE procedures succeed. Experimentally, we demonstrate the performance of FLE with two generative models, Gaussian mixture models and diffusion models. For the multi-dimensional reward setting, FLE with diffusion models is capable of estimating the complicated distribution of the return of a test policy.
Vector-Valued Control Variates
Control variates are variance reduction tools for Monte Carlo estimators. They can provide significant variance reduction, but usually require a large number of samples, which can be prohibitive when sampling or evaluating the integrand is computationally expensive. Furthermore, there are many scenarios where we need to compute multiple related integrals simultaneously or sequentially, which can further exacerbate computational costs. In this paper, we propose vector-valued control variates, an extension of control variates which can be used to reduce the variance of multiple Monte Carlo estimators jointly. This allows for the transfer of information across integration tasks, and hence reduces the need for a large number of samples. We focus on control variates based on kernel interpolants and our novel construction is obtained through a generalised Stein identity and the development of novel matrix-valued Stein reproducing kernels. We demonstrate our methodology on a range of problems including multifidelity modelling, Bayesian inference for dynamical systems, and model evidence computation through thermodynamic integration.
Towards Explaining Distribution Shifts
A distribution shift can have fundamental consequences such as signaling a change in the operating environment or significantly reducing the accuracy of downstream models. Thus, understanding distribution shifts is critical for examining and hopefully mitigating the effect of such a shift. Most prior work focuses on merely detecting if a shift has occurred and assumes any detected shift can be understood and handled appropriately by a human operator. We hope to aid in these manual mitigation tasks by explaining the distribution shift using interpretable transportation maps from the original distribution to the shifted one. We derive our interpretable mappings from a relaxation of optimal transport, where the candidate mappings are restricted to a set of interpretable mappings. We then inspect multiple quintessential use-cases of distribution shift in real-world tabular, text, and image datasets to showcase how our explanatory mappings provide a better balance between detail and interpretability than baseline explanations by both visual inspection and our PercentExplained metric.
Utility-Probability Duality of Neural Networks
It is typically understood that the training of modern neural networks is a process of fitting the probability distribution of desired output. However, recent paradoxical observations in a number of language generation tasks let one wonder if this canonical probability-based explanation can really account for the empirical success of deep learning. To resolve this issue, we propose an alternative utility-based explanation to the standard supervised learning procedure in deep learning. The basic idea is to interpret the learned neural network not as a probability model but as an ordinal utility function that encodes the preference revealed in training data. In this perspective, training of the neural network corresponds to a utility learning process. Specifically, we show that for all neural networks with softmax outputs, the SGD learning dynamic of maximum likelihood estimation (MLE) can be seen as an iteration process that optimizes the neural network toward an optimal utility function. This utility-based interpretation can explain several otherwise-paradoxical observations about the neural networks thus trained. Moreover, our utility-based theory also entails an equation that can transform the learned utility values back to a new kind of probability estimation with which probability-compatible decision rules enjoy dramatic (double-digits) performance improvements. These evidences collectively reveal a phenomenon of utility-probability duality in terms of what modern neural networks are (truly) modeling: We thought they are one thing (probabilities), until the unexplainable showed up; changing mindset and treating them as another thing (utility values) largely reconcile the theory, despite remaining subtleties regarding its original (probabilistic) identity.
Repairing without Retraining: Avoiding Disparate Impact with Counterfactual Distributions
When the performance of a machine learning model varies over groups defined by sensitive attributes (e.g., gender or ethnicity), the performance disparity can be expressed in terms of the probability distributions of the input and output variables over each group. In this paper, we exploit this fact to reduce the disparate impact of a fixed classification model over a population of interest. Given a black-box classifier, we aim to eliminate the performance gap by perturbing the distribution of input variables for the disadvantaged group. We refer to the perturbed distribution as a counterfactual distribution, and characterize its properties for common fairness criteria. We introduce a descent algorithm to learn a counterfactual distribution from data. We then discuss how the estimated distribution can be used to build a data preprocessor that can reduce disparate impact without training a new model. We validate our approach through experiments on real-world datasets, showing that it can repair different forms of disparity without a significant drop in accuracy.
Credit risk for large portfolios of green and brown loans: extending the ASRF model
We propose a credit risk model for portfolios composed of green and brown loans, extending the ASRF framework via a two-factor copula structure. Systematic risk is modeled using potentially skewed distributions, allowing for asymmetric creditworthiness effects, while idiosyncratic risk remains Gaussian. Under a non-uniform exposure setting, we establish convergence in quadratic mean of the portfolio loss to a limit reflecting the distinct characteristics of the two loan segments. Numerical results confirm the theoretical findings and illustrate how value-at-risk is affected by portfolio granularity, default probabilities, factor loadings, and skewness. Our model accommodates differential sensitivity to systematic shocks and offers a tractable basis for further developments in credit risk modeling, including granularity adjustments, CDO pricing, and empirical analysis of green loan portfolios.
Flexible Model Aggregation for Quantile Regression
Quantile regression is a fundamental problem in statistical learning motivated by a need to quantify uncertainty in predictions, or to model a diverse population without being overly reductive. For instance, epidemiological forecasts, cost estimates, and revenue predictions all benefit from being able to quantify the range of possible values accurately. As such, many models have been developed for this problem over many years of research in statistics, machine learning, and related fields. Rather than proposing yet another (new) algorithm for quantile regression we adopt a meta viewpoint: we investigate methods for aggregating any number of conditional quantile models, in order to improve accuracy and robustness. We consider weighted ensembles where weights may vary over not only individual models, but also over quantile levels, and feature values. All of the models we consider in this paper can be fit using modern deep learning toolkits, and hence are widely accessible (from an implementation point of view) and scalable. To improve the accuracy of the predicted quantiles (or equivalently, prediction intervals), we develop tools for ensuring that quantiles remain monotonically ordered, and apply conformal calibration methods. These can be used without any modification of the original library of base models. We also review some basic theory surrounding quantile aggregation and related scoring rules, and contribute a few new results to this literature (for example, the fact that post sorting or post isotonic regression can only improve the weighted interval score). Finally, we provide an extensive suite of empirical comparisons across 34 data sets from two different benchmark repositories.
Von Mises Mixture Distributions for Molecular Conformation Generation
Molecules are frequently represented as graphs, but the underlying 3D molecular geometry (the locations of the atoms) ultimately determines most molecular properties. However, most molecules are not static and at room temperature adopt a wide variety of geometries or conformations. The resulting distribution on geometries p(x) is known as the Boltzmann distribution, and many molecular properties are expectations computed under this distribution. Generating accurate samples from the Boltzmann distribution is therefore essential for computing these expectations accurately. Traditional sampling-based methods are computationally expensive, and most recent machine learning-based methods have focused on identifying modes in this distribution rather than generating true samples. Generating such samples requires capturing conformational variability, and it has been widely recognized that the majority of conformational variability in molecules arises from rotatable bonds. In this work, we present VonMisesNet, a new graph neural network that captures conformational variability via a variational approximation of rotatable bond torsion angles as a mixture of von Mises distributions. We demonstrate that VonMisesNet can generate conformations for arbitrary molecules in a way that is both physically accurate with respect to the Boltzmann distribution and orders of magnitude faster than existing sampling methods.
Generalized Polya's theorem on connected locally compact Abelian groups of dimension 1
According to the generalized Polya theorem, the Gaussian distribution on the real line is characterized by the property of equidistribution of a monomial and a linear form of independent identically distributed random variables. We give a complete description of a-adic solenoids for which an analog of this theorem is true. The proof of the main theorem is reduced to solving some functional equation in the class of continuous positive definite functions on the character group of an a-adic solenoid
Benchmarking Distributional Alignment of Large Language Models
Language models (LMs) are increasingly used as simulacra for people, yet their ability to match the distribution of views of a specific demographic group and be distributionally aligned remains uncertain. This notion of distributional alignment is complex, as there is significant variation in the types of attributes that are simulated. Prior works have underexplored the role of three critical variables -- the question domain, steering method, and distribution expression method -- which motivates our contribution of a benchmark explicitly addressing these dimensions. We construct a dataset expanding beyond political values, create human baselines for this task, and evaluate the extent to which an LM can align with a particular group's opinion distribution to inform design choices of such simulation systems. Our analysis reveals open problems regarding if, and how, LMs can be used to simulate humans, and that LLMs can more accurately describe the opinion distribution than simulate such distributions.
MAP: Multimodal Uncertainty-Aware Vision-Language Pre-training Model
Multimodal semantic understanding often has to deal with uncertainty, which means the obtained messages tend to refer to multiple targets. Such uncertainty is problematic for our interpretation, including inter- and intra-modal uncertainty. Little effort has studied the modeling of this uncertainty, particularly in pre-training on unlabeled datasets and fine-tuning in task-specific downstream datasets. In this paper, we project the representations of all modalities as probabilistic distributions via a Probability Distribution Encoder (PDE) by utilizing sequence-level interactions. Compared to the existing deterministic methods, such uncertainty modeling can convey richer multimodal semantic information and more complex relationships. Furthermore, we integrate uncertainty modeling with popular pre-training frameworks and propose suitable pre-training tasks: Distribution-based Vision-Language Contrastive learning (D-VLC), Distribution-based Masked Language Modeling (D-MLM), and Distribution-based Image-Text Matching (D-ITM). The fine-tuned models are applied to challenging downstream tasks, including image-text retrieval, visual question answering, visual reasoning, and visual entailment, and achieve state-of-the-art results.
Bayesian Risk Markov Decision Processes
We consider finite-horizon Markov Decision Processes where parameters, such as transition probabilities, are unknown and estimated from data. The popular distributionally robust approach to addressing the parameter uncertainty can sometimes be overly conservative. In this paper, we propose a new formulation, Bayesian risk Markov Decision Process (BR-MDP), to address parameter uncertainty in MDPs, where a risk functional is applied in nested form to the expected total cost with respect to the Bayesian posterior distribution of the unknown parameters. The proposed formulation provides more flexible risk attitutes towards parameter uncertainty and takes into account the availability of data in future times stages. To solve the proposed formulation with the conditional value-at-risk (CVaR) risk functional, we propose an efficient approximation algorithm by deriving an analytical approximation of the value function and utilizing the convexity of CVaR. We demonstrate the empirical performance of the BR-MDP formulation and proposed algorithms on a gambler's betting problem and an inventory control problem.
The probabilistic world
Physics is based on probabilities as fundamental entities of a mathematical description. Expectation values of observables are computed according to the classical statistical rule. The overall probability distribution for one world covers all times. The quantum formalism arises once one focuses on the evolution of the time-local probabilistic information. Wave functions or the density matrix allow the formulation of a general linear evolution law for classical statistics. The quantum formalism for classical statistics is a powerful tool which allows us to implement for generalized Ising models the momentum observable with the associated Fourier representation. The association of operators to observables permits the computation of expectation values in terms of the density matrix by the usual quantum rule. We show that probabilistic cellular automata are quantum systems in a formulation with discrete time steps and real wave functions. With a complex structure the evolution operator for automata can be expressed in terms of a Hamiltonian involving fermionic creation and annihilation operators. The time-local probabilistic information amounts to a subsystem of the overall probabilistic system which is correlated with its environment consisting of the past and future. Such subsystems typically involve probabilistic observables for which only a probability distribution for their possible measurement values is available. Incomplete statistics does not permit to compute classical correlation functions for arbitrary subsystem-observables. Bell's inequalities are not generally applicable.
ReTaSA: A Nonparametric Functional Estimation Approach for Addressing Continuous Target Shift
The presence of distribution shifts poses a significant challenge for deploying modern machine learning models in real-world applications. This work focuses on the target shift problem in a regression setting (Zhang et al., 2013; Nguyen et al., 2016). More specifically, the target variable y (also known as the response variable), which is continuous, has different marginal distributions in the training source and testing domain, while the conditional distribution of features x given y remains the same. While most literature focuses on classification tasks with finite target space, the regression problem has an infinite dimensional target space, which makes many of the existing methods inapplicable. In this work, we show that the continuous target shift problem can be addressed by estimating the importance weight function from an ill-posed integral equation. We propose a nonparametric regularized approach named ReTaSA to solve the ill-posed integral equation and provide theoretical justification for the estimated importance weight function. The effectiveness of the proposed method has been demonstrated with extensive numerical studies on synthetic and real-world datasets.
Efficient multi-prompt evaluation of LLMs
Most popular benchmarks for comparing LLMs rely on a limited set of prompt templates, which may not fully capture the LLMs' abilities and can affect the reproducibility of results on leaderboards. Many recent works empirically verify prompt sensitivity and advocate for changes in LLM evaluation. In this paper, we consider the problem of estimating the performance distribution across many prompt variants instead of finding a single prompt to evaluate with. We introduce PromptEval, a method for estimating performance across a large set of prompts borrowing strength across prompts and examples to produce accurate estimates under practical evaluation budgets. The resulting distribution can be used to obtain performance quantiles to construct various robust performance metrics (e.g., top 95% quantile or median). We prove that PromptEval consistently estimates the performance distribution and demonstrate its efficacy empirically on three prominent LLM benchmarks: MMLU, BIG-bench Hard, and LMentry. For example, PromptEval can accurately estimate performance quantiles across 100 prompt templates on MMLU with a budget equivalent to two single-prompt evaluations. Our code and data can be found at https://github.com/felipemaiapolo/prompt-eval.
Eigenvalues of the Hessian in Deep Learning: Singularity and Beyond
We look at the eigenvalues of the Hessian of a loss function before and after training. The eigenvalue distribution is seen to be composed of two parts, the bulk which is concentrated around zero, and the edges which are scattered away from zero. We present empirical evidence for the bulk indicating how over-parametrized the system is, and for the edges that depend on the input data.
WILDS: A Benchmark of in-the-Wild Distribution Shifts
Distribution shifts -- where the training distribution differs from the test distribution -- can substantially degrade the accuracy of machine learning (ML) systems deployed in the wild. Despite their ubiquity in the real-world deployments, these distribution shifts are under-represented in the datasets widely used in the ML community today. To address this gap, we present WILDS, a curated benchmark of 10 datasets reflecting a diverse range of distribution shifts that naturally arise in real-world applications, such as shifts across hospitals for tumor identification; across camera traps for wildlife monitoring; and across time and location in satellite imaging and poverty mapping. On each dataset, we show that standard training yields substantially lower out-of-distribution than in-distribution performance. This gap remains even with models trained by existing methods for tackling distribution shifts, underscoring the need for new methods for training models that are more robust to the types of distribution shifts that arise in practice. To facilitate method development, we provide an open-source package that automates dataset loading, contains default model architectures and hyperparameters, and standardizes evaluations. Code and leaderboards are available at https://wilds.stanford.edu.
Calibrated Multiple-Output Quantile Regression with Representation Learning
We develop a method to generate predictive regions that cover a multivariate response variable with a user-specified probability. Our work is composed of two components. First, we use a deep generative model to learn a representation of the response that has a unimodal distribution. Existing multiple-output quantile regression approaches are effective in such cases, so we apply them on the learned representation, and then transform the solution to the original space of the response. This process results in a flexible and informative region that can have an arbitrary shape, a property that existing methods lack. Second, we propose an extension of conformal prediction to the multivariate response setting that modifies any method to return sets with a pre-specified coverage level. The desired coverage is theoretically guaranteed in the finite-sample case for any distribution. Experiments conducted on both real and synthetic data show that our method constructs regions that are significantly smaller compared to existing techniques.
CRUDE: Calibrating Regression Uncertainty Distributions Empirically
Calibrated uncertainty estimates in machine learning are crucial to many fields such as autonomous vehicles, medicine, and weather and climate forecasting. While there is extensive literature on uncertainty calibration for classification, the classification findings do not always translate to regression. As a result, modern models for predicting uncertainty in regression settings typically produce uncalibrated and overconfident estimates. To address these gaps, we present a calibration method for regression settings that does not assume a particular uncertainty distribution over the error: Calibrating Regression Uncertainty Distributions Empirically (CRUDE). CRUDE makes the weaker assumption that error distributions have a constant arbitrary shape across the output space, shifted by predicted mean and scaled by predicted standard deviation. We detail a theoretical connection between CRUDE and conformal inference. Across an extensive set of regression tasks, CRUDE demonstrates consistently sharper, better calibrated, and more accurate uncertainty estimates than state-of-the-art techniques.
DreamMapping: High-Fidelity Text-to-3D Generation via Variational Distribution Mapping
Score Distillation Sampling (SDS) has emerged as a prevalent technique for text-to-3D generation, enabling 3D content creation by distilling view-dependent information from text-to-2D guidance. However, they frequently exhibit shortcomings such as over-saturated color and excess smoothness. In this paper, we conduct a thorough analysis of SDS and refine its formulation, finding that the core design is to model the distribution of rendered images. Following this insight, we introduce a novel strategy called Variational Distribution Mapping (VDM), which expedites the distribution modeling process by regarding the rendered images as instances of degradation from diffusion-based generation. This special design enables the efficient training of variational distribution by skipping the calculations of the Jacobians in the diffusion U-Net. We also introduce timestep-dependent Distribution Coefficient Annealing (DCA) to further improve distilling precision. Leveraging VDM and DCA, we use Gaussian Splatting as the 3D representation and build a text-to-3D generation framework. Extensive experiments and evaluations demonstrate the capability of VDM and DCA to generate high-fidelity and realistic assets with optimization efficiency.
Marginal Tail-Adaptive Normalizing Flows
Learning the tail behavior of a distribution is a notoriously difficult problem. By definition, the number of samples from the tail is small, and deep generative models, such as normalizing flows, tend to concentrate on learning the body of the distribution. In this paper, we focus on improving the ability of normalizing flows to correctly capture the tail behavior and, thus, form more accurate models. We prove that the marginal tailedness of an autoregressive flow can be controlled via the tailedness of the marginals of its base distribution. This theoretical insight leads us to a novel type of flows based on flexible base distributions and data-driven linear layers. An empirical analysis shows that the proposed method improves on the accuracy -- especially on the tails of the distribution -- and is able to generate heavy-tailed data. We demonstrate its application on a weather and climate example, in which capturing the tail behavior is essential.
Robust Budget Pacing with a Single Sample
Major Internet advertising platforms offer budget pacing tools as a standard service for advertisers to manage their ad campaigns. Given the inherent non-stationarity in an advertiser's value and also competing advertisers' values over time, a commonly used approach is to learn a target expenditure plan that specifies a target spend as a function of time, and then run a controller that tracks this plan. This raises the question: how many historical samples are required to learn a good expenditure plan? We study this question by considering an advertiser repeatedly participating in T second-price auctions, where the tuple of her value and the highest competing bid is drawn from an unknown time-varying distribution. The advertiser seeks to maximize her total utility subject to her budget constraint. Prior work has shown the sufficiency of Tlog T samples per distribution to achieve the optimal O(T)-regret. We dramatically improve this state-of-the-art and show that just one sample per distribution is enough to achieve the near-optimal tilde O(T)-regret, while still being robust to noise in the sampling distributions.
Two-parameter superposable S-curves
Straight line equation y=mx with slope m, when singularly perturbed as ay^3+y=mx with a positive parameter a, results in S-shaped curves or S-curves on a real plane. As arightarrow 0, we get back y=mx which is a cumulative distribution function of a continuous uniform distribution that describes the occurrence of every event in an interval to be equally probable. As arightarrowinfty, the derivative of y has finite support only at y=0 resembling a degenerate distribution. Based on these arguments, in this work, we propose that these S-curves can represent maximum entropy uniform distribution to a zero entropy single value. We also argue that these S-curves are superposable as they are only parametrically nonlinear but fundamentally linear. So far, the superposed forms have been used to capture the patterns of natural systems such as nonlinear dynamics of biological growth and kinetics of enzyme reactions. Here, we attempt to use the S-curve and its superposed form as statistical models. We fit the models on a classical dataset containing flower measurements of iris plants and analyze their usefulness in pattern recognition. Based on these models, we claim that any non-uniform pattern can be represented as a singular perturbation to uniform distribution. However, our parametric estimation procedure have some limitations such as sensitivity to initial conditions depending on the data at hand.
A Baseline Analysis of Reward Models' Ability To Accurately Analyze Foundation Models Under Distribution Shift
Foundation models, specifically Large Language Models (LLMs), have lately gained wide-spread attention and adoption. Reinforcement Learning with Human Feedback (RLHF) involves training a reward model to capture desired behaviors, which is then used to align LLM's. These reward models are additionally used at inference-time to estimate LLM responses' adherence to those desired behaviors. However, there is little work measuring how robust these reward models are to distribution shifts. In this work, we evaluate how reward model performance - measured via accuracy and calibration (i.e. alignment between accuracy and confidence) - is affected by distribution shift. We show novel calibration patterns and accuracy drops due to OOD prompts and responses, and that the reward model is more sensitive to shifts in responses than prompts. Additionally, we adapt an OOD detection technique commonly used in classification to the reward model setting to detect these distribution shifts in prompts and responses.
ValueBench: Towards Comprehensively Evaluating Value Orientations and Understanding of Large Language Models
Large Language Models (LLMs) are transforming diverse fields and gaining increasing influence as human proxies. This development underscores the urgent need for evaluating value orientations and understanding of LLMs to ensure their responsible integration into public-facing applications. This work introduces ValueBench, the first comprehensive psychometric benchmark for evaluating value orientations and value understanding in LLMs. ValueBench collects data from 44 established psychometric inventories, encompassing 453 multifaceted value dimensions. We propose an evaluation pipeline grounded in realistic human-AI interactions to probe value orientations, along with novel tasks for evaluating value understanding in an open-ended value space. With extensive experiments conducted on six representative LLMs, we unveil their shared and distinctive value orientations and exhibit their ability to approximate expert conclusions in value-related extraction and generation tasks. ValueBench is openly accessible at https://github.com/Value4AI/ValueBench.
Beyond IID weights: sparse and low-rank deep Neural Networks are also Gaussian Processes
The infinitely wide neural network has been proven a useful and manageable mathematical model that enables the understanding of many phenomena appearing in deep learning. One example is the convergence of random deep networks to Gaussian processes that allows a rigorous analysis of the way the choice of activation function and network weights impacts the training dynamics. In this paper, we extend the seminal proof of Matthews et al. (2018) to a larger class of initial weight distributions (which we call PSEUDO-IID), including the established cases of IID and orthogonal weights, as well as the emerging low-rank and structured sparse settings celebrated for their computational speed-up benefits. We show that fully-connected and convolutional networks initialized with PSEUDO-IID distributions are all effectively equivalent up to their variance. Using our results, one can identify the Edge-of-Chaos for a broader class of neural networks and tune them at criticality in order to enhance their training. Moreover, they enable the posterior distribution of Bayesian Neural Networks to be tractable across these various initialization schemes.
Contrastive Diffuser: Planning Towards High Return States via Contrastive Learning
Applying diffusion models in reinforcement learning for long-term planning has gained much attention recently. Several diffusion-based methods have successfully leveraged the modeling capabilities of diffusion for arbitrary distributions. These methods generate subsequent trajectories for planning and have demonstrated significant improvement. However, these methods are limited by their plain base distributions and their overlooking of the diversity of samples, in which different states have different returns. They simply leverage diffusion to learn the distribution of offline dataset, generate the trajectories whose states share the same distribution with the offline dataset. As a result, the probability of these models reaching the high-return states is largely dependent on the dataset distribution. Even equipped with the guidance model, the performance is still suppressed. To address these limitations, in this paper, we propose a novel method called CDiffuser, which devises a return contrast mechanism to pull the states in generated trajectories towards high-return states while pushing them away from low-return states to improve the base distribution. Experiments on 14 commonly used D4RL benchmarks demonstrate the effectiveness of our proposed method.
Iterated Poisson Processes for Catastrophic Risk Modeling in Ruin Theory
This paper studies the properties of the Multiply Iterated Poisson Process (MIPP), a stochastic process constructed by repeatedly time-changing a Poisson process, and its applications in ruin theory. Like standard Poisson processes, MIPPs have exponentially distributed sojourn times (waiting times between jumps). We explicitly derive the probabilities of all possible jump sizes at the first jump and obtain the Laplace transform of the joint distribution of the first jump time and its corresponding jump size. In ruin theory, the classical Cramér-Lundberg model assumes that claims arrive independently according to a Poisson process. In contrast, our model employs an MIPP to allow for clustered arrivals, reflecting real-world scenarios, such as catastrophic events. Under this new framework, we derive the corresponding scale function in closed form, facilitating accurate calculations of the probability of ruin in the presence of clustered claims. These results improve the modeling of extreme risks and have practical implications for insurance solvency assessments, reinsurance pricing, and capital reserve estimation.
Computable Stochastic Processes
The aim of this paper is to present an elementary computable theory of probability, random variables and stochastic processes. The probability theory is baed on existing approaches using valuations and lower integrals. Various approaches to random variables are discussed, including the approach based on completions in a Polish space. We apply the theory to the study of stochastic dynamical systems in discrete-time, and give a brief exposition of the Wiener process as a foundation for stochastic differential equations. The theory is based within the framework of type-two effectivity, so has an explicit direct link with Turing computation, and is expressed in a system of computable types and operations, so has a clean mathematical description.
Uncertainty Quantification via Stable Distribution Propagation
We propose a new approach for propagating stable probability distributions through neural networks. Our method is based on local linearization, which we show to be an optimal approximation in terms of total variation distance for the ReLU non-linearity. This allows propagating Gaussian and Cauchy input uncertainties through neural networks to quantify their output uncertainties. To demonstrate the utility of propagating distributions, we apply the proposed method to predicting calibrated confidence intervals and selective prediction on out-of-distribution data. The results demonstrate a broad applicability of propagating distributions and show the advantages of our method over other approaches such as moment matching.
Learning to Jump: Thinning and Thickening Latent Counts for Generative Modeling
Learning to denoise has emerged as a prominent paradigm to design state-of-the-art deep generative models for natural images. How to use it to model the distributions of both continuous real-valued data and categorical data has been well studied in recently proposed diffusion models. However, it is found in this paper to have limited ability in modeling some other types of data, such as count and non-negative continuous data, that are often highly sparse, skewed, heavy-tailed, and/or overdispersed. To this end, we propose learning to jump as a general recipe for generative modeling of various types of data. Using a forward count thinning process to construct learning objectives to train a deep neural network, it employs a reverse count thickening process to iteratively refine its generation through that network. We demonstrate when learning to jump is expected to perform comparably to learning to denoise, and when it is expected to perform better. For example, learning to jump is recommended when the training data is non-negative and exhibits strong sparsity, skewness, heavy-tailedness, and/or heterogeneity.
A Configurable Library for Generating and Manipulating Maze Datasets
Understanding how machine learning models respond to distributional shifts is a key research challenge. Mazes serve as an excellent testbed due to varied generation algorithms offering a nuanced platform to simulate both subtle and pronounced distributional shifts. To enable systematic investigations of model behavior on out-of-distribution data, we present maze-dataset, a comprehensive library for generating, processing, and visualizing datasets consisting of maze-solving tasks. With this library, researchers can easily create datasets, having extensive control over the generation algorithm used, the parameters fed to the algorithm of choice, and the filters that generated mazes must satisfy. Furthermore, it supports multiple output formats, including rasterized and text-based, catering to convolutional neural networks and autoregressive transformer models. These formats, along with tools for visualizing and converting between them, ensure versatility and adaptability in research applications.
Formalizing and Estimating Distribution Inference Risks
Distribution inference, sometimes called property inference, infers statistical properties about a training set from access to a model trained on that data. Distribution inference attacks can pose serious risks when models are trained on private data, but are difficult to distinguish from the intrinsic purpose of statistical machine learning -- namely, to produce models that capture statistical properties about a distribution. Motivated by Yeom et al.'s membership inference framework, we propose a formal definition of distribution inference attacks that is general enough to describe a broad class of attacks distinguishing between possible training distributions. We show how our definition captures previous ratio-based property inference attacks as well as new kinds of attack including revealing the average node degree or clustering coefficient of a training graph. To understand distribution inference risks, we introduce a metric that quantifies observed leakage by relating it to the leakage that would occur if samples from the training distribution were provided directly to the adversary. We report on a series of experiments across a range of different distributions using both novel black-box attacks and improved versions of the state-of-the-art white-box attacks. Our results show that inexpensive attacks are often as effective as expensive meta-classifier attacks, and that there are surprising asymmetries in the effectiveness of attacks. Code is available at https://github.com/iamgroot42/FormEstDistRisks
One-Step Distributional Reinforcement Learning
Reinforcement learning (RL) allows an agent interacting sequentially with an environment to maximize its long-term expected return. In the distributional RL (DistrRL) paradigm, the agent goes beyond the limit of the expected value, to capture the underlying probability distribution of the return across all time steps. The set of DistrRL algorithms has led to improved empirical performance. Nevertheless, the theory of DistrRL is still not fully understood, especially in the control case. In this paper, we present the simpler one-step distributional reinforcement learning (OS-DistrRL) framework encompassing only the randomness induced by the one-step dynamics of the environment. Contrary to DistrRL, we show that our approach comes with a unified theory for both policy evaluation and control. Indeed, we propose two OS-DistrRL algorithms for which we provide an almost sure convergence analysis. The proposed approach compares favorably with categorical DistrRL on various environments.
Rethinking Diverse Human Preference Learning through Principal Component Analysis
Understanding human preferences is crucial for improving foundation models and building personalized AI systems. However, preferences are inherently diverse and complex, making it difficult for traditional reward models to capture their full range. While fine-grained preference data can help, collecting it is expensive and hard to scale. In this paper, we introduce Decomposed Reward Models (DRMs), a novel approach that extracts diverse human preferences from binary comparisons without requiring fine-grained annotations. Our key insight is to represent human preferences as vectors and analyze them using Principal Component Analysis (PCA). By constructing a dataset of embedding differences between preferred and rejected responses, DRMs identify orthogonal basis vectors that capture distinct aspects of preference. These decomposed rewards can be flexibly combined to align with different user needs, offering an interpretable and scalable alternative to traditional reward models. We demonstrate that DRMs effectively extract meaningful preference dimensions (e.g., helpfulness, safety, humor) and adapt to new users without additional training. Our results highlight DRMs as a powerful framework for personalized and interpretable LLM alignment.
Feature Shift Detection: Localizing Which Features Have Shifted via Conditional Distribution Tests
While previous distribution shift detection approaches can identify if a shift has occurred, these approaches cannot localize which specific features have caused a distribution shift -- a critical step in diagnosing or fixing any underlying issue. For example, in military sensor networks, users will want to detect when one or more of the sensors has been compromised, and critically, they will want to know which specific sensors might be compromised. Thus, we first define a formalization of this problem as multiple conditional distribution hypothesis tests and propose both non-parametric and parametric statistical tests. For both efficiency and flexibility, we then propose to use a test statistic based on the density model score function (i.e. gradient with respect to the input) -- which can easily compute test statistics for all dimensions in a single forward and backward pass. Any density model could be used for computing the necessary statistics including deep density models such as normalizing flows or autoregressive models. We additionally develop methods for identifying when and where a shift occurs in multivariate time-series data and show results for multiple scenarios using realistic attack models on both simulated and real world data.
Fairness in Matching under Uncertainty
The prevalence and importance of algorithmic two-sided marketplaces has drawn attention to the issue of fairness in such settings. Algorithmic decisions are used in assigning students to schools, users to advertisers, and applicants to job interviews. These decisions should heed the preferences of individuals, and simultaneously be fair with respect to their merits (synonymous with fit, future performance, or need). Merits conditioned on observable features are always uncertain, a fact that is exacerbated by the widespread use of machine learning algorithms to infer merit from the observables. As our key contribution, we carefully axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits; indeed, it simultaneously recognizes uncertainty as the primary potential cause of unfairness and an approach to address it. We design a linear programming framework to find fair utility-maximizing distributions over allocations, and we show that the linear program is robust to perturbations in the estimated parameters of the uncertain merit distributions, a key property in combining the approach with machine learning techniques.
Representable Markov Categories and Comparison of Statistical Experiments in Categorical Probability
Markov categories are a recent categorical approach to the mathematical foundations of probability and statistics. Here, this approach is advanced by stating and proving equivalent conditions for second-order stochastic dominance, a widely used way of comparing probability distributions by their spread. Furthermore, we lay foundation for the theory of comparing statistical experiments within Markov categories by stating and proving the classical Blackwell-Sherman-Stein Theorem. Our version not only offers new insight into the proof, but its abstract nature also makes the result more general, automatically specializing to the standard Blackwell-Sherman-Stein Theorem in measure-theoretic probability as well as a Bayesian version that involves prior-dependent garbling. Along the way, we define and characterize representable Markov categories, within which one can talk about Markov kernels to or from spaces of distributions. We do so by exploring the relation between Markov categories and Kleisli categories of probability monads.
ConjNorm: Tractable Density Estimation for Out-of-Distribution Detection
Post-hoc out-of-distribution (OOD) detection has garnered intensive attention in reliable machine learning. Many efforts have been dedicated to deriving score functions based on logits, distances, or rigorous data distribution assumptions to identify low-scoring OOD samples. Nevertheless, these estimate scores may fail to accurately reflect the true data density or impose impractical constraints. To provide a unified perspective on density-based score design, we propose a novel theoretical framework grounded in Bregman divergence, which extends distribution considerations to encompass an exponential family of distributions. Leveraging the conjugation constraint revealed in our theorem, we introduce a ConjNorm method, reframing density function design as a search for the optimal norm coefficient p against the given dataset. In light of the computational challenges of normalization, we devise an unbiased and analytically tractable estimator of the partition function using the Monte Carlo-based importance sampling technique. Extensive experiments across OOD detection benchmarks empirically demonstrate that our proposed ConjNorm has established a new state-of-the-art in a variety of OOD detection setups, outperforming the current best method by up to 13.25% and 28.19% (FPR95) on CIFAR-100 and ImageNet-1K, respectively.
Towards a Better Understanding of Representation Dynamics under TD-learning
TD-learning is a foundation reinforcement learning (RL) algorithm for value prediction. Critical to the accuracy of value predictions is the quality of state representations. In this work, we consider the question: how does end-to-end TD-learning impact the representation over time? Complementary to prior work, we provide a set of analysis that sheds further light on the representation dynamics under TD-learning. We first show that when the environments are reversible, end-to-end TD-learning strictly decreases the value approximation error over time. Under further assumptions on the environments, we can connect the representation dynamics with spectral decomposition over the transition matrix. This latter finding establishes fitting multiple value functions from randomly generated rewards as a useful auxiliary task for representation learning, as we empirically validate on both tabular and Atari game suites.
Generative Distribution Embeddings
Many real-world problems require reasoning across multiple scales, demanding models which operate not on single data points, but on entire distributions. We introduce generative distribution embeddings (GDE), a framework that lifts autoencoders to the space of distributions. In GDEs, an encoder acts on sets of samples, and the decoder is replaced by a generator which aims to match the input distribution. This framework enables learning representations of distributions by coupling conditional generative models with encoder networks which satisfy a criterion we call distributional invariance. We show that GDEs learn predictive sufficient statistics embedded in the Wasserstein space, such that latent GDE distances approximately recover the W_2 distance, and latent interpolation approximately recovers optimal transport trajectories for Gaussian and Gaussian mixture distributions. We systematically benchmark GDEs against existing approaches on synthetic datasets, demonstrating consistently stronger performance. We then apply GDEs to six key problems in computational biology: learning representations of cell populations from lineage-tracing data (150K cells), predicting perturbation effects on single-cell transcriptomes (1M cells), predicting perturbation effects on cellular phenotypes (20M single-cell images), modeling tissue-specific DNA methylation patterns (253M sequences), designing synthetic yeast promoters (34M sequences), and spatiotemporal modeling of viral protein sequences (1M sequences).
Second-Order Uncertainty Quantification: A Distance-Based Approach
In the past couple of years, various approaches to representing and quantifying different types of predictive uncertainty in machine learning, notably in the setting of classification, have been proposed on the basis of second-order probability distributions, i.e., predictions in the form of distributions on probability distributions. A completely conclusive solution has not yet been found, however, as shown by recent criticisms of commonly used uncertainty measures associated with second-order distributions, identifying undesirable theoretical properties of these measures. In light of these criticisms, we propose a set of formal criteria that meaningful uncertainty measures for predictive uncertainty based on second-order distributions should obey. Moreover, we provide a general framework for developing uncertainty measures to account for these criteria, and offer an instantiation based on the Wasserstein distance, for which we prove that all criteria are satisfied.
A Test for Jumps in Metric-Space Conditional Means
Standard methods for detecting discontinuities in conditional means are not applicable to outcomes that are complex, non-Euclidean objects like distributions, networks, or covariance matrices. This article develops a nonparametric test for jumps in conditional means when outcomes lie in a non-Euclidean metric space. Using local Fr\'echet regressionx2014which generalizes standard regression to metric-space valued datax2014the method estimates a mean path on either side of a candidate cutoff, extending existing k-sample tests to a flexible regression setting. Key theoretical contributions include a central limit theorem for the local estimator of the conditional Fr\'echet variance and the asymptotic validity and consistency of the proposed test. Simulations confirm nominal size control and robust power in finite samples. Two applications demonstrate the method's value by revealing effects invisible to scalar-based tests. First, I detect a sharp change in work-from-home compositions at Washington State's income threshold for non-compete enforceability during COVID-19, highlighting remote work's role as a bargaining margin. Second, I find that countries restructure their input-output networks after losing preferential US trade access. These findings underscore that analyzing regression functions within their native metric spaces can reveal structural discontinuities that scalar summaries would miss.
Universal features of price formation in financial markets: perspectives from Deep Learning
Using a large-scale Deep Learning approach applied to a high-frequency database containing billions of electronic market quotes and transactions for US equities, we uncover nonparametric evidence for the existence of a universal and stationary price formation mechanism relating the dynamics of supply and demand for a stock, as revealed through the order book, to subsequent variations in its market price. We assess the model by testing its out-of-sample predictions for the direction of price moves given the history of price and order flow, across a wide range of stocks and time periods. The universal price formation model is shown to exhibit a remarkably stable out-of-sample prediction accuracy across time, for a wide range of stocks from different sectors. Interestingly, these results also hold for stocks which are not part of the training sample, showing that the relations captured by the model are universal and not asset-specific. The universal model --- trained on data from all stocks --- outperforms, in terms of out-of-sample prediction accuracy, asset-specific linear and nonlinear models trained on time series of any given stock, showing that the universal nature of price formation weighs in favour of pooling together financial data from various stocks, rather than designing asset- or sector-specific models as commonly done. Standard data normalizations based on volatility, price level or average spread, or partitioning the training data into sectors or categories such as large/small tick stocks, do not improve training results. On the other hand, inclusion of price and order flow history over many past observations is shown to improve forecasting performance, showing evidence of path-dependence in price dynamics.
The Optimal Strategy for Playing Lucky 13
The game show Lucky 13 differs from other television game shows in that contestants are required to place a bet on their own knowledge of trivia by selecting a range that contains the number of questions that they answered correctly. We present a model for this game show using binomial random variables and generate tables outlining the optimal range the player should select based on maximization of two different utility functions. After analyzing the decisions made by some actual contestants on this show, we present a numerical simulation for how many questions an average player is expected to answer correctly based on question categories observed for two sample contestants.
Every Question Has Its Own Value: Reinforcement Learning with Explicit Human Values
We propose Reinforcement Learning with Explicit Human Values (RLEV), a method that aligns Large Language Model (LLM) optimization directly with quantifiable human value signals. While Reinforcement Learning with Verifiable Rewards (RLVR) effectively trains models in objective domains using binary correctness rewards, it overlooks that not all tasks are equally significant. RLEV extends this framework by incorporating human-defined value signals directly into the reward function. Using exam-style data with explicit ground-truth value labels, RLEV consistently outperforms correctness-only baselines across multiple RL algorithms and model scales. Crucially, RLEV policies not only improve value-weighted accuracy but also learn a value-sensitive termination policy: concise for low-value prompts, thorough for high-value ones. We demonstrate this behavior stems from value-weighted gradient amplification on end-of-sequence tokens. Ablation studies confirm the gain is causally linked to value alignment. RLEV remains robust under noisy value signals, such as difficulty-based labels, demonstrating that optimizing for an explicit utility function offers a practical path to aligning LLMs with human priorities.
User-defined Event Sampling and Uncertainty Quantification in Diffusion Models for Physical Dynamical Systems
Diffusion models are a class of probabilistic generative models that have been widely used as a prior for image processing tasks like text conditional generation and inpainting. We demonstrate that these models can be adapted to make predictions and provide uncertainty quantification for chaotic dynamical systems. In these applications, diffusion models can implicitly represent knowledge about outliers and extreme events; however, querying that knowledge through conditional sampling or measuring probabilities is surprisingly difficult. Existing methods for conditional sampling at inference time seek mainly to enforce the constraints, which is insufficient to match the statistics of the distribution or compute the probability of the chosen events. To achieve these ends, optimally one would use the conditional score function, but its computation is typically intractable. In this work, we develop a probabilistic approximation scheme for the conditional score function which provably converges to the true distribution as the noise level decreases. With this scheme we are able to sample conditionally on nonlinear userdefined events at inference time, and matches data statistics even when sampling from the tails of the distribution.
Value Drifts: Tracing Value Alignment During LLM Post-Training
As LLMs occupy an increasingly important role in society, they are more and more confronted with questions that require them not only to draw on their general knowledge but also to align with certain human value systems. Therefore, studying the alignment of LLMs with human values has become a crucial field of inquiry. Prior work, however, mostly focuses on evaluating the alignment of fully trained models, overlooking the training dynamics by which models learn to express human values. In this work, we investigate how and at which stage value alignment arises during the course of a model's post-training. Our analysis disentangles the effects of post-training algorithms and datasets, measuring both the magnitude and time of value drifts during training. Experimenting with Llama-3 and Qwen-3 models of different sizes and popular supervised fine-tuning (SFT) and preference optimization datasets and algorithms, we find that the SFT phase generally establishes a model's values, and subsequent preference optimization rarely re-aligns these values. Furthermore, using a synthetic preference dataset that enables controlled manipulation of values, we find that different preference optimization algorithms lead to different value alignment outcomes, even when preference data is held constant. Our findings provide actionable insights into how values are learned during post-training and help to inform data curation, as well as the selection of models and algorithms for preference optimization to improve model alignment to human values.
Statistical Learning under Heterogenous Distribution Shift
This paper studies the prediction of a target z from a pair of random variables (x,y), where the ground-truth predictor is additive E[z mid x,y] = f_star(x) +g_{star}(y). We study the performance of empirical risk minimization (ERM) over functions f+g, f in F and g in G, fit on a given training distribution, but evaluated on a test distribution which exhibits covariate shift. We show that, when the class F is "simpler" than G (measured, e.g., in terms of its metric entropy), our predictor is more resilient to heterogenous covariate shifts in which the shift in x is much greater than that in y. These results rely on a novel H\"older style inequality for the Dudley integral which may be of independent interest. Moreover, we corroborate our theoretical findings with experiments demonstrating improved resilience to shifts in "simpler" features across numerous domains.
No Word is an Island -- A Transformation Weighting Model for Semantic Composition
Composition models of distributional semantics are used to construct phrase representations from the representations of their words. Composition models are typically situated on two ends of a spectrum. They either have a small number of parameters but compose all phrases in the same way, or they perform word-specific compositions at the cost of a far larger number of parameters. In this paper we propose transformation weighting (TransWeight), a composition model that consistently outperforms existing models on nominal compounds, adjective-noun phrases and adverb-adjective phrases in English, German and Dutch. TransWeight drastically reduces the number of parameters needed compared to the best model in the literature by composing similar words in the same way.
GUI-G^2: Gaussian Reward Modeling for GUI Grounding
Graphical User Interface (GUI) grounding maps natural language instructions to precise interface locations for autonomous interaction. Current reinforcement learning approaches use binary rewards that treat elements as hit-or-miss targets, creating sparse signals that ignore the continuous nature of spatial interactions. Motivated by human clicking behavior that naturally forms Gaussian distributions centered on target elements, we introduce GUI Gaussian Grounding Rewards (GUI-G^2), a principled reward framework that models GUI elements as continuous Gaussian distributions across the interface plane. GUI-G^2 incorporates two synergistic mechanisms: Gaussian point rewards model precise localization through exponentially decaying distributions centered on element centroids, while coverage rewards assess spatial alignment by measuring the overlap between predicted Gaussian distributions and target regions. To handle diverse element scales, we develop an adaptive variance mechanism that calibrates reward distributions based on element dimensions. This framework transforms GUI grounding from sparse binary classification to dense continuous optimization, where Gaussian distributions generate rich gradient signals that guide models toward optimal interaction positions. Extensive experiments across ScreenSpot, ScreenSpot-v2, and ScreenSpot-Pro benchmarks demonstrate that GUI-G^2, substantially outperforms state-of-the-art method UI-TARS-72B, with the most significant improvement of 24.7% on ScreenSpot-Pro. Our analysis reveals that continuous modeling provides superior robustness to interface variations and enhanced generalization to unseen layouts, establishing a new paradigm for spatial reasoning in GUI interaction tasks.
Leveraging Domain Knowledge for Efficient Reward Modelling in RLHF: A Case-Study in E-Commerce Opinion Summarization
Reinforcement Learning from Human Feedback (RLHF) has become a dominating strategy in steering Language Models (LMs) towards human values/goals. The key to the strategy is employing a reward model ({varphi}) which can reflect a latent reward model with humans. While this strategy has proven to be effective, the training methodology requires a lot of human preference annotation (usually of the order of tens of thousands) to train {varphi}. Such large-scale preference annotations can be achievable if the reward model can be ubiquitously used. However, human values/goals are subjective and depend on the nature of the task. This poses a challenge in collecting diverse preferences for downstream applications. To address this, we propose a novel methodology to infuse domain knowledge into {varphi}, which reduces the size of preference annotation required. We validate our approach in E-Commerce Opinion Summarization, with a significant reduction in dataset size (just 940 samples) while advancing the state-of-the-art. Our contributions include a novel Reward Modelling technique, a new dataset (PromptOpinSumm) for Opinion Summarization, and a human preference dataset (OpinPref). The proposed methodology opens avenues for efficient RLHF, making it more adaptable to diverse applications with varying human values. We release the artifacts for usage under MIT License.
Do Differences in Values Influence Disagreements in Online Discussions?
Disagreements are common in online discussions. Disagreement may foster collaboration and improve the quality of a discussion under some conditions. Although there exist methods for recognizing disagreement, a deeper understanding of factors that influence disagreement is lacking in the literature. We investigate a hypothesis that differences in personal values are indicative of disagreement in online discussions. We show how state-of-the-art models can be used for estimating values in online discussions and how the estimated values can be aggregated into value profiles. We evaluate the estimated value profiles based on human-annotated agreement labels. We find that the dissimilarity of value profiles correlates with disagreement in specific cases. We also find that including value information in agreement prediction improves performance.
Width and Depth Limits Commute in Residual Networks
We show that taking the width and depth to infinity in a deep neural network with skip connections, when branches are scaled by 1/depth (the only nontrivial scaling), result in the same covariance structure no matter how that limit is taken. This explains why the standard infinite-width-then-depth approach provides practical insights even for networks with depth of the same order as width. We also demonstrate that the pre-activations, in this case, have Gaussian distributions which has direct applications in Bayesian deep learning. We conduct extensive simulations that show an excellent match with our theoretical findings.
Evaluating Binary Decision Biases in Large Language Models: Implications for Fair Agent-Based Financial Simulations
Large Language Models (LLMs) are increasingly being used to simulate human-like decision making in agent-based financial market models (ABMs). As models become more powerful and accessible, researchers can now incorporate individual LLM decisions into ABM environments. However, integration may introduce inherent biases that need careful evaluation. In this paper we test three state-of-the-art GPT models for bias using two model sampling approaches: one-shot and few-shot API queries. We observe significant variations in distributions of outputs between specific models, and model sub versions, with GPT-4o-Mini-2024-07-18 showing notably better performance (32-43% yes responses) compared to GPT-4-0125-preview's extreme bias (98-99% yes responses). We show that sampling methods and model sub-versions significantly impact results: repeated independent API calls produce different distributions compared to batch sampling within a single call. While no current GPT model can simultaneously achieve a uniform distribution and Markovian properties in one-shot testing, few-shot sampling can approach uniform distributions under certain conditions. We explore the Temperature parameter, providing a definition and comparative results. We further compare our results to true random binary series and test specifically for the common human bias of Negative Recency - finding LLMs have a mixed ability to 'beat' humans in this one regard. These findings emphasise the critical importance of careful LLM integration into ABMs for financial markets and more broadly.
Scaling Laws for Data Filtering -- Data Curation cannot be Compute Agnostic
Vision-language models (VLMs) are trained for thousands of GPU hours on carefully curated web datasets. In recent times, data curation has gained prominence with several works developing strategies to retain 'high-quality' subsets of 'raw' scraped data. For instance, the LAION public dataset retained only 10% of the total crawled data. However, these strategies are typically developed agnostic of the available compute for training. In this paper, we first demonstrate that making filtering decisions independent of training compute is often suboptimal: the limited high-quality data rapidly loses its utility when repeated, eventually requiring the inclusion of 'unseen' but 'lower-quality' data. To address this quality-quantity tradeoff (QQT), we introduce neural scaling laws that account for the non-homogeneous nature of web data, an angle ignored in existing literature. Our scaling laws (i) characterize the differing 'utility' of various quality subsets of web data; (ii) account for how utility diminishes for a data point at its 'nth' repetition; and (iii) formulate the mutual interaction of various data pools when combined, enabling the estimation of model performance on a combination of multiple data pools without ever jointly training on them. Our key message is that data curation cannot be agnostic of the total compute that a model will be trained for. Our scaling laws allow us to curate the best possible pool for achieving top performance on Datacomp at various compute budgets, carving out a pareto-frontier for data curation. Code is available at https://github.com/locuslab/scaling_laws_data_filtering.
Distribution Transformers: Fast Approximate Bayesian Inference With On-The-Fly Prior Adaptation
While Bayesian inference provides a principled framework for reasoning under uncertainty, its widespread adoption is limited by the intractability of exact posterior computation, necessitating the use of approximate inference. However, existing methods are often computationally expensive, or demand costly retraining when priors change, limiting their utility, particularly in sequential inference problems such as real-time sensor fusion. To address these challenges, we introduce the Distribution Transformer -- a novel architecture that can learn arbitrary distribution-to-distribution mappings. Our method can be trained to map a prior to the corresponding posterior, conditioned on some dataset -- thus performing approximate Bayesian inference. Our novel architecture represents a prior distribution as a (universally-approximating) Gaussian Mixture Model (GMM), and transforms it into a GMM representation of the posterior. The components of the GMM attend to each other via self-attention, and to the datapoints via cross-attention. We demonstrate that Distribution Transformers both maintain flexibility to vary the prior, and significantly reduces computation times-from minutes to milliseconds-while achieving log-likelihood performance on par with or superior to existing approximate inference methods across tasks such as sequential inference, quantum system parameter inference, and Gaussian Process predictive posterior inference with hyperpriors.
On Information-Theoretic Measures of Predictive Uncertainty
Reliable estimation of predictive uncertainty is crucial for machine learning applications, particularly in high-stakes scenarios where hedging against risks is essential. Despite its significance, there is no universal agreement on how to best quantify predictive uncertainty. In this work, we revisit core concepts to propose a framework for information-theoretic measures of predictive uncertainty. Our proposed framework categorizes predictive uncertainty measures according to two factors: (I) The predicting model (II) The approximation of the true predictive distribution. Examining all possible combinations of these two factors, we derive a set of predictive uncertainty measures that includes both known and newly introduced ones. We extensively evaluate these measures across a broad set of tasks, identifying conditions under which certain measures excel. Our findings show the importance of aligning the choice of uncertainty measure with the predicting model on in-distribution (ID) data, the limitations of epistemic uncertainty measures for out-of-distribution (OOD) data, and that the disentanglement between measures varies substantially between ID and OOD data. Together, these insights provide a more comprehensive understanding of predictive uncertainty measures, revealing their implicit assumptions and relationships.
Position: Don't use the CLT in LLM evals with fewer than a few hundred datapoints
Rigorous statistical evaluations of large language models (LLMs), including valid error bars and significance testing, are essential for meaningful and reliable performance assessment. Currently, when such statistical measures are reported, they typically rely on the Central Limit Theorem (CLT). In this position paper, we argue that while CLT-based methods for uncertainty quantification are appropriate when benchmarks consist of thousands of examples, they fail to provide adequate uncertainty estimates for LLM evaluations that rely on smaller, highly specialized benchmarks. In these small-data settings, we demonstrate that CLT-based methods perform very poorly, usually dramatically underestimating uncertainty (i.e. producing error bars that are too small). We give recommendations for alternative frequentist and Bayesian methods that are both easy to implement and more appropriate in these increasingly common scenarios. We provide a simple Python library for these Bayesian methods at https://github.com/sambowyer/bayes_evals .
Knowledge is reward: Learning optimal exploration by predictive reward cashing
There is a strong link between the general concept of intelligence and the ability to collect and use information. The theory of Bayes-adaptive exploration offers an attractive optimality framework for training machines to perform complex information gathering tasks. However, the computational complexity of the resulting optimal control problem has limited the diffusion of the theory to mainstream deep AI research. In this paper we exploit the inherent mathematical structure of Bayes-adaptive problems in order to dramatically simplify the problem by making the reward structure denser while simultaneously decoupling the learning of exploitation and exploration policies. The key to this simplification comes from the novel concept of cross-value (i.e. the value of being in an environment while acting optimally according to another), which we use to quantify the value of currently available information. This results in a new denser reward structure that "cashes in" all future rewards that can be predicted from the current information state. In a set of experiments we show that the approach makes it possible to learn challenging information gathering tasks without the use of shaping and heuristic bonuses in situations where the standard RL algorithms fail.
VAPO: Efficient and Reliable Reinforcement Learning for Advanced Reasoning Tasks
We present VAPO, Value-based Augmented Proximal Policy Optimization framework for reasoning models., a novel framework tailored for reasoning models within the value-based paradigm. Benchmarked the AIME 2024 dataset, VAPO, built on the Qwen 32B pre-trained model, attains a state-of-the-art score of 60.4. In direct comparison under identical experimental settings, VAPO outperforms the previously reported results of DeepSeek-R1-Zero-Qwen-32B and DAPO by more than 10 points. The training process of VAPO stands out for its stability and efficiency. It reaches state-of-the-art performance within a mere 5,000 steps. Moreover, across multiple independent runs, no training crashes occur, underscoring its reliability. This research delves into long chain-of-thought (long-CoT) reasoning using a value-based reinforcement learning framework. We pinpoint three key challenges that plague value-based methods: value model bias, the presence of heterogeneous sequence lengths, and the sparsity of reward signals. Through systematic design, VAPO offers an integrated solution that effectively alleviates these challenges, enabling enhanced performance in long-CoT reasoning tasks.
Joint Shapley values: a measure of joint feature importance
The Shapley value is one of the most widely used measures of feature importance partly as it measures a feature's average effect on a model's prediction. We introduce joint Shapley values, which directly extend Shapley's axioms and intuitions: joint Shapley values measure a set of features' average contribution to a model's prediction. We prove the uniqueness of joint Shapley values, for any order of explanation. Results for games show that joint Shapley values present different insights from existing interaction indices, which assess the effect of a feature within a set of features. The joint Shapley values provide intuitive results in ML attribution problems. With binary features, we present a presence-adjusted global value that is more consistent with local intuitions than the usual approach.
Intriguing Properties of Data Attribution on Diffusion Models
Data attribution seeks to trace model outputs back to training data. With the recent development of diffusion models, data attribution has become a desired module to properly assign valuations for high-quality or copyrighted training samples, ensuring that data contributors are fairly compensated or credited. Several theoretically motivated methods have been proposed to implement data attribution, in an effort to improve the trade-off between computational scalability and effectiveness. In this work, we conduct extensive experiments and ablation studies on attributing diffusion models, specifically focusing on DDPMs trained on CIFAR-10 and CelebA, as well as a Stable Diffusion model LoRA-finetuned on ArtBench. Intriguingly, we report counter-intuitive observations that theoretically unjustified design choices for attribution empirically outperform previous baselines by a large margin, in terms of both linear datamodeling score and counterfactual evaluation. Our work presents a significantly more efficient approach for attributing diffusion models, while the unexpected findings suggest that at least in non-convex settings, constructions guided by theoretical assumptions may lead to inferior attribution performance. The code is available at https://github.com/sail-sg/D-TRAK.
Proper losses for discrete generative models
We initiate the study of proper losses for evaluating generative models in the discrete setting. Unlike traditional proper losses, we treat both the generative model and the target distribution as black-boxes, only assuming ability to draw i.i.d. samples. We define a loss to be black-box proper if the generative distribution that minimizes expected loss is equal to the target distribution. Using techniques from statistical estimation theory, we give a general construction and characterization of black-box proper losses: they must take a polynomial form, and the number of draws from the model and target distribution must exceed the degree of the polynomial. The characterization rules out a loss whose expectation is the cross-entropy between the target distribution and the model. By extending the construction to arbitrary sampling schemes such as Poisson sampling, however, we show that one can construct such a loss.
Divide-and-Conquer Fusion
Combining several (sample approximations of) distributions, which we term sub-posteriors, into a single distribution proportional to their product, is a common challenge. Occurring, for instance, in distributed 'big data' problems, or when working under multi-party privacy constraints. Many existing approaches resort to approximating the individual sub-posteriors for practical necessity, then find either an analytical approximation or sample approximation of the resulting (product-pooled) posterior. The quality of the posterior approximation for these approaches is poor when the sub-posteriors fall out-with a narrow range of distributional form, such as being approximately Gaussian. Recently, a Fusion approach has been proposed which finds an exact Monte Carlo approximation of the posterior, circumventing the drawbacks of approximate approaches. Unfortunately, existing Fusion approaches have a number of computational limitations, particularly when unifying a large number of sub-posteriors. In this paper, we generalise the theory underpinning existing Fusion approaches, and embed the resulting methodology within a recursive divide-and-conquer sequential Monte Carlo paradigm. This ultimately leads to a competitive Fusion approach, which is robust to increasing numbers of sub-posteriors.
CVC: A Large-Scale Chinese Value Rule Corpus for Value Alignment of Large Language Models
Ensuring that Large Language Models (LLMs) align with mainstream human values and ethical norms is crucial for the safe and sustainable development of AI. Current value evaluation and alignment are constrained by Western cultural bias and incomplete domestic frameworks reliant on non-native rules; furthermore, the lack of scalable, rule-driven scenario generation methods makes evaluations costly and inadequate across diverse cultural contexts. To address these challenges, we propose a hierarchical value framework grounded in core Chinese values, encompassing three main dimensions, 12 core values, and 50 derived values. Based on this framework, we construct a large-scale Chinese Values Corpus (CVC) containing over 250,000 value rules enhanced and expanded through human annotation. Experimental results show that CVC-guided scenarios outperform direct generation ones in value boundaries and content diversity. In the evaluation across six sensitive themes (e.g., surrogacy, suicide), seven mainstream LLMs preferred CVC-generated options in over 70.5% of cases, while five Chinese human annotators showed an 87.5% alignment with CVC, confirming its universality, cultural relevance, and strong alignment with Chinese values. Additionally, we construct 400,000 rule-based moral dilemma scenarios that objectively capture nuanced distinctions in conflicting value prioritization across 17 LLMs. Our work establishes a culturally-adaptive benchmarking framework for comprehensive value evaluation and alignment, representing Chinese characteristics. All data are available at https://huggingface.co/datasets/Beijing-AISI/CVC, and the code is available at https://github.com/Beijing-AISI/CVC.
Identifying Incorrect Classifications with Balanced Uncertainty
Uncertainty estimation is critical for cost-sensitive deep-learning applications (i.e. disease diagnosis). It is very challenging partly due to the inaccessibility of uncertainty groundtruth in most datasets. Previous works proposed to estimate the uncertainty from softmax calibration, Monte Carlo sampling, subjective logic and so on. However, these existing methods tend to be over-confident about their predictions with unreasonably low overall uncertainty, which originates from the imbalance between positive (correct classifications) and negative (incorrect classifications) samples. For this issue, we firstly propose the distributional imbalance to model the imbalance in uncertainty estimation as two kinds of distribution biases, and secondly propose Balanced True Class Probability (BTCP) framework, which learns an uncertainty estimator with a novel Distributional Focal Loss (DFL) objective. Finally, we evaluate the BTCP in terms of failure prediction and out-of-distribution (OOD) detection on multiple datasets. The experimental results show that BTCP outperforms other uncertainty estimation methods especially in identifying incorrect classifications.
Dialogue Systems for Emotional Support via Value Reinforcement
Emotional support dialogue systems aim to reduce help-seekers' distress and help them overcome challenges. While human valuesx2013core beliefs that shape an individual's prioritiesx2013are increasingly emphasized in contemporary psychological therapy for their role in fostering internal transformation and long-term emotional well-being, their integration into emotional support systems remains underexplored. To bridge this gap, we present a value-driven method for training emotional support dialogue systems designed to reinforce positive values in seekers. Notably, our model identifies which values to reinforce at each turn and how to do so, by leveraging online support conversations from Reddit. We evaluate the method across support skills, seekers' emotional intensity, and value reinforcement. Our method consistently outperforms various baselines, effectively exploring and eliciting values from seekers. Additionally, leveraging crowd knowledge from Reddit significantly enhances its effectiveness. Therapists highlighted its ability to validate seekers' challenges and emphasize positive aspects of their situationsx2013both crucial elements of value reinforcement. Our work, being the first to integrate value reinforcement into emotional support systems, demonstrates its promise and establishes a foundation for future research.
DRAGON: Distributional Rewards Optimize Diffusion Generative Models
We present Distributional RewArds for Generative OptimizatioN (DRAGON), a versatile framework for fine-tuning media generation models towards a desired outcome. Compared with traditional reinforcement learning with human feedback (RLHF) or pairwise preference approaches such as direct preference optimization (DPO), DRAGON is more flexible. It can optimize reward functions that evaluate either individual examples or distributions of them, making it compatible with a broad spectrum of instance-wise, instance-to-distribution, and distribution-to-distribution rewards. Leveraging this versatility, we construct novel reward functions by selecting an encoder and a set of reference examples to create an exemplar distribution. When cross-modality encoders such as CLAP are used, the reference examples may be of a different modality (e.g., text versus audio). Then, DRAGON gathers online and on-policy generations, scores them to construct a positive demonstration set and a negative set, and leverages the contrast between the two sets to maximize the reward. For evaluation, we fine-tune an audio-domain text-to-music diffusion model with 20 different reward functions, including a custom music aesthetics model, CLAP score, Vendi diversity, and Frechet audio distance (FAD). We further compare instance-wise (per-song) and full-dataset FAD settings while ablating multiple FAD encoders and reference sets. Over all 20 target rewards, DRAGON achieves an 81.45% average win rate. Moreover, reward functions based on exemplar sets indeed enhance generations and are comparable to model-based rewards. With an appropriate exemplar set, DRAGON achieves a 60.95% human-voted music quality win rate without training on human preference annotations. As such, DRAGON exhibits a new approach to designing and optimizing reward functions for improving human-perceived quality. Sound examples at https://ml-dragon.github.io/web.
Why does Throwing Away Data Improve Worst-Group Error?
When facing data with imbalanced classes or groups, practitioners follow an intriguing strategy to achieve best results. They throw away examples until the classes or groups are balanced in size, and then perform empirical risk minimization on the reduced training set. This opposes common wisdom in learning theory, where the expected error is supposed to decrease as the dataset grows in size. In this work, we leverage extreme value theory to address this apparent contradiction. Our results show that the tails of the data distribution play an important role in determining the worst-group-accuracy of linear classifiers. When learning on data with heavy tails, throwing away data restores the geometric symmetry of the resulting classifier, and therefore improves its worst-group generalization.
Measuring Human and AI Values based on Generative Psychometrics with Large Language Models
Human values and their measurement are long-standing interdisciplinary inquiry. Recent advances in AI have sparked renewed interest in this area, with large language models (LLMs) emerging as both tools and subjects of value measurement. This work introduces Generative Psychometrics for Values (GPV), an LLM-based, data-driven value measurement paradigm, theoretically grounded in text-revealed selective perceptions. We begin by fine-tuning an LLM for accurate perception-level value measurement and verifying the capability of LLMs to parse texts into perceptions, forming the core of the GPV pipeline. Applying GPV to human-authored blogs, we demonstrate its stability, validity, and superiority over prior psychological tools. Then, extending GPV to LLM value measurement, we advance the current art with 1) a psychometric methodology that measures LLM values based on their scalable and free-form outputs, enabling context-specific measurement; 2) a comparative analysis of measurement paradigms, indicating response biases of prior methods; and 3) an attempt to bridge LLM values and their safety, revealing the predictive power of different value systems and the impacts of various values on LLM safety. Through interdisciplinary efforts, we aim to leverage AI for next-generation psychometrics and psychometrics for value-aligned AI.
Deriving Language Models from Masked Language Models
Masked language models (MLM) do not explicitly define a distribution over language, i.e., they are not language models per se. However, recent work has implicitly treated them as such for the purposes of generation and scoring. This paper studies methods for deriving explicit joint distributions from MLMs, focusing on distributions over two tokens, which makes it possible to calculate exact distributional properties. We find that an approach based on identifying joints whose conditionals are closest to those of the MLM works well and outperforms existing Markov random field-based approaches. We further find that this derived model's conditionals can even occasionally outperform the original MLM's conditionals.
B-Coder: Value-Based Deep Reinforcement Learning for Program Synthesis
Program synthesis aims to create accurate, executable code from natural language descriptions. This field has leveraged the power of reinforcement learning (RL) in conjunction with large language models (LLMs), significantly enhancing code generation capabilities. This integration focuses on directly optimizing functional correctness, transcending conventional supervised losses. While current literature predominantly favors policy-based algorithms, attributes of program synthesis suggest a natural compatibility with value-based methods. This stems from rich collection of off-policy programs developed by human programmers, and the straightforward verification of generated programs through automated unit testing (i.e. easily obtainable rewards in RL language). Diverging from the predominant use of policy-based algorithms, our work explores the applicability of value-based approaches, leading to the development of our B-Coder (pronounced Bellman coder). Yet, training value-based methods presents challenges due to the enormous search space inherent to program synthesis. To this end, we propose an initialization protocol for RL agents utilizing pre-trained LMs and a conservative Bellman operator to reduce training complexities. Moreover, we demonstrate how to leverage the learned value functions as a dual strategy to post-process generated programs. Our empirical evaluations demonstrated B-Coder's capability in achieving state-of-the-art performance compared with policy-based methods. Remarkably, this achievement is reached with minimal reward engineering effort, highlighting the effectiveness of value-based RL, independent of reward designs.
Truncating Trajectories in Monte Carlo Reinforcement Learning
In Reinforcement Learning (RL), an agent acts in an unknown environment to maximize the expected cumulative discounted sum of an external reward signal, i.e., the expected return. In practice, in many tasks of interest, such as policy optimization, the agent usually spends its interaction budget by collecting episodes of fixed length within a simulator (i.e., Monte Carlo simulation). However, given the discounted nature of the RL objective, this data collection strategy might not be the best option. Indeed, the rewards taken in early simulation steps weigh exponentially more than future rewards. Taking a cue from this intuition, in this paper, we design an a-priori budget allocation strategy that leads to the collection of trajectories of different lengths, i.e., truncated. The proposed approach provably minimizes the width of the confidence intervals around the empirical estimates of the expected return of a policy. After discussing the theoretical properties of our method, we make use of our trajectory truncation mechanism to extend Policy Optimization via Importance Sampling (POIS, Metelli et al., 2018) algorithm. Finally, we conduct a numerical comparison between our algorithm and POIS: the results are consistent with our theory and show that an appropriate truncation of the trajectories can succeed in improving performance.
Monitoring multicountry macroeconomic risk
We propose a multicountry quantile factor augmeneted vector autoregression (QFAVAR) to model heterogeneities both across countries and across characteristics of the distributions of macroeconomic time series. The presence of quantile factors allows for summarizing these two heterogeneities in a parsimonious way. We develop two algorithms for posterior inference that feature varying level of trade-off between estimation precision and computational speed. Using monthly data for the euro area, we establish the good empirical properties of the QFAVAR as a tool for assessing the effects of global shocks on country-level macroeconomic risks. In particular, QFAVAR short-run tail forecasts are more accurate compared to a FAVAR with symmetric Gaussian errors, as well as univariate quantile autoregressions that ignore comovements among quantiles of macroeconomic variables. We also illustrate how quantile impulse response functions and quantile connectedness measures, resulting from the new model, can be used to implement joint risk scenario analysis.
Deep Neural Networks Tend To Extrapolate Predictably
Conventional wisdom suggests that neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs. Our work reassesses this assumption for neural networks with high-dimensional inputs. Rather than extrapolating in arbitrary ways, we observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD. Moreover, we find that this value often closely approximates the optimal constant solution (OCS), i.e., the prediction that minimizes the average loss over the training data without observing the input. We present results showing this phenomenon across 8 datasets with different distributional shifts (including CIFAR10-C and ImageNet-R, S), different loss functions (cross entropy, MSE, and Gaussian NLL), and different architectures (CNNs and transformers). Furthermore, we present an explanation for this behavior, which we first validate empirically and then study theoretically in a simplified setting involving deep homogeneous networks with ReLU activations. Finally, we show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
Beating the average: how to generate profit by exploiting the inefficiencies of soccer betting
In economy, markets are denoted as efficient when it is impossible to systematically generate profits which outperform the average. In the past years, the concept has been tested in other domains such as the growing sports betting market. Surprisingly, despite its large size and its level of maturity, sports betting shows traits of inefficiency. The anomalies indicate the existence of strategies which shift betting from a game of chance towards a game of skill. This article shows an example for an inefficiency detected in the German soccer betting TOTO 13er Wette, which is operated by state-run lottery agencies. Gamblers have to guess the outcome (win, draw, loss) of 13 soccer matches listed on a lottery tip. Applying stochastic methods, a recipe is presented to determine hit rates for single match outcomes. More important, the recipe provides the number of lottery tips required to achieve a specific number of strikes (number of correct match forecasts per lottery tip) for any given level of safety. An approximation is derived to cope with large numbers in hypergeometric distributions, valid under certain constraints. Overall, the strategy does lead to returns exceeding the aggregated lottery fees, resulting in moderate, but consistent profits. It is briefly discussed if lessions learned from soccer betting can be transferred back to financial markets, because gamblers and retail investors face similar challenges and opportunities.
Multi-Task Differential Privacy Under Distribution Skew
We study the problem of multi-task learning under user-level differential privacy, in which n users contribute data to m tasks, each involving a subset of users. One important aspect of the problem, that can significantly impact quality, is the distribution skew among tasks. Certain tasks may have much fewer data samples than others, making them more susceptible to the noise added for privacy. It is natural to ask whether algorithms can adapt to this skew to improve the overall utility. We give a systematic analysis of the problem, by studying how to optimally allocate a user's privacy budget among tasks. We propose a generic algorithm, based on an adaptive reweighting of the empirical loss, and show that when there is task distribution skew, this gives a quantifiable improvement of excess empirical risk. Experimental studies on recommendation problems that exhibit a long tail of small tasks, demonstrate that our methods significantly improve utility, achieving the state of the art on two standard benchmarks.
A Note on Shumailov et al. (2024): `AI Models Collapse When Trained on Recursively Generated Data'
The study conducted by Shumailov et al. (2024) demonstrates that repeatedly training a generative model on synthetic data leads to model collapse. This finding has generated considerable interest and debate, particularly given that current models have nearly exhausted the available data. In this work, we investigate the effects of fitting a distribution (through Kernel Density Estimation, or KDE) or a model to the data, followed by repeated sampling from it. Our objective is to develop a theoretical understanding of the phenomenon observed by Shumailov et al. (2024). Our results indicate that the outcomes reported are a statistical phenomenon and may be unavoidable.
Experimenting with Transitive Verbs in a DisCoCat
Formal and distributional semantic models offer complementary benefits in modeling meaning. The categorical compositional distributional (DisCoCat) model of meaning of Coecke et al. (arXiv:1003.4394v1 [cs.CL]) combines aspected of both to provide a general framework in which meanings of words, obtained distributionally, are composed using methods from the logical setting to form sentence meaning. Concrete consequences of this general abstract setting and applications to empirical data are under active study (Grefenstette et al., arxiv:1101.0309; Grefenstette and Sadrzadeh, arXiv:1106.4058v1 [cs.CL]). . In this paper, we extend this study by examining transitive verbs, represented as matrices in a DisCoCat. We discuss three ways of constructing such matrices, and evaluate each method in a disambiguation task developed by Grefenstette and Sadrzadeh (arXiv:1106.4058v1 [cs.CL]).
Short-term Volatility Estimation for High Frequency Trades using Gaussian processes (GPs)
The fundamental theorem behind financial markets is that stock prices are intrinsically complex and stochastic. One of the complexities is the volatility associated with stock prices. Volatility is a tendency for prices to change unexpectedly [1]. Price volatility is often detrimental to the return economics, and thus, investors should factor it in whenever making investment decisions, choices, and temporal or permanent moves. It is, therefore, crucial to make necessary and regular short and long-term stock price volatility forecasts for the safety and economics of investors returns. These forecasts should be accurate and not misleading. Different models and methods, such as ARCH GARCH models, have been intuitively implemented to make such forecasts. However, such traditional means fail to capture the short-term volatility forecasts effectively. This paper, therefore, investigates and implements a combination of numeric and probabilistic models for short-term volatility and return forecasting for high-frequency trades. The essence is that one-day-ahead volatility forecasts were made with Gaussian Processes (GPs) applied to the outputs of a Numerical market prediction (NMP) model. Firstly, the stock price data from NMP was corrected by a GP. Since it is not easy to set price limits in a market due to its free nature and randomness, a Censored GP was used to model the relationship between the corrected stock prices and returns. Forecasting errors were evaluated using the implied and estimated data.
Evaluating Robustness of Reward Models for Mathematical Reasoning
Reward models are key in reinforcement learning from human feedback (RLHF) systems, aligning the model behavior with human preferences. Particularly in the math domain, there have been plenty of studies using reward models to align policies for improving reasoning capabilities. Recently, as the importance of reward models has been emphasized, RewardBench is proposed to understand their behavior. However, we figure out that the math subset of RewardBench has different representations between chosen and rejected completions, and relies on a single comparison, which may lead to unreliable results as it only see an isolated case. Therefore, it fails to accurately present the robustness of reward models, leading to a misunderstanding of its performance and potentially resulting in reward hacking. In this work, we introduce a new design for reliable evaluation of reward models, and to validate this, we construct RewardMATH, a benchmark that effectively represents the robustness of reward models in mathematical reasoning tasks. We demonstrate that the scores on RewardMATH strongly correlate with the results of optimized policy and effectively estimate reward overoptimization, whereas the existing benchmark shows almost no correlation. The results underscore the potential of our design to enhance the reliability of evaluation, and represent the robustness of reward model. We make our code and data publicly available.
The Slepian model based independent interval approximation of persistency and zero-level exceedance distributions
In physics and engineering literature, the distribution of the excursion-above-zero time distribution (exceedance distribution) for a stationary Gaussian process has been approximated by a stationary switching process with independently distributed switching times. The approach matched the covariance of the clipped Gaussian process with the one for the stationary switching process and the distribution of the latter was used as the so-called independent interval approximation (IIA). The approach successfully assessed the persistency exponent for many physically important processes but left an unanswered question when such an approach leads to a mathematically meaningful and proper exceedance distribution. Here we address this question by proposing an alternative matching of the expected values of the clipped Slepian process and the corresponding switched process initiated at the origin. The method has allowed resolving the mathematical correctness of the matching method for a large subclass of the Gaussian processes with monotonic covariance, for which we provide a sufficient condition for the validity of the IIA. Within this class, the IIA produces a valid distribution for the excursion time and is represented in an explicit stochastic form that connects directly to the covariance of the underlying Gaussian process. We compare the excursion level distributions as well as the corresponding persistency exponents obtained through the IIA method with numerically computed exact distributions, and the simulated distribution for several important Gaussian models. We also argue that for stationary Gaussian processes with a non-monotonic covariance, the IIA fails and should not be used.
The FathomNet2023 Competition Dataset
Ocean scientists have been collecting visual data to study marine organisms for decades. These images and videos are extremely valuable both for basic science and environmental monitoring tasks. There are tools for automatically processing these data, but none that are capable of handling the extreme variability in sample populations, image quality, and habitat characteristics that are common in visual sampling of the ocean. Such distribution shifts can occur over very short physical distances and in narrow time windows. Creating models that are able to recognize when an image or video sequence contains a new organism, an unusual collection of animals, or is otherwise out-of-sample is critical to fully leverage visual data in the ocean. The FathomNet2023 competition dataset presents a realistic scenario where the set of animals in the target data differs from the training data. The challenge is both to identify the organisms in a target image and assess whether it is out-of-sample.
Learning Density Distribution of Reachable States for Autonomous Systems
State density distribution, in contrast to worst-case reachability, can be leveraged for safety-related problems to better quantify the likelihood of the risk for potentially hazardous situations. In this work, we propose a data-driven method to compute the density distribution of reachable states for nonlinear and even black-box systems. Our semi-supervised approach learns system dynamics and the state density jointly from trajectory data, guided by the fact that the state density evolution follows the Liouville partial differential equation. With the help of neural network reachability tools, our approach can estimate the set of all possible future states as well as their density. Moreover, we could perform online safety verification with probability ranges for unsafe behaviors to occur. We use an extensive set of experiments to show that our learned solution can produce a much more accurate estimate on density distribution, and can quantify risks less conservatively and flexibly comparing with worst-case analysis.
Geometry Distributions
Neural representations of 3D data have been widely adopted across various applications, particularly in recent work leveraging coordinate-based networks to model scalar or vector fields. However, these approaches face inherent challenges, such as handling thin structures and non-watertight geometries, which limit their flexibility and accuracy. In contrast, we propose a novel geometric data representation that models geometry as distributions-a powerful representation that makes no assumptions about surface genus, connectivity, or boundary conditions. Our approach uses diffusion models with a novel network architecture to learn surface point distributions, capturing fine-grained geometric details. We evaluate our representation qualitatively and quantitatively across various object types, demonstrating its effectiveness in achieving high geometric fidelity. Additionally, we explore applications using our representation, such as textured mesh representation, neural surface compression, dynamic object modeling, and rendering, highlighting its potential to advance 3D geometric learning.
Explaining Reinforcement Learning with Shapley Values
For reinforcement learning systems to be widely adopted, their users must understand and trust them. We present a theoretical analysis of explaining reinforcement learning using Shapley values, following a principled approach from game theory for identifying the contribution of individual players to the outcome of a cooperative game. We call this general framework Shapley Values for Explaining Reinforcement Learning (SVERL). Our analysis exposes the limitations of earlier uses of Shapley values in reinforcement learning. We then develop an approach that uses Shapley values to explain agent performance. In a variety of domains, SVERL produces meaningful explanations that match and supplement human intuition.
Model Transferability With Responsive Decision Subjects
Given an algorithmic predictor that is accurate on some source population consisting of strategic human decision subjects, will it remain accurate if the population respond to it? In our setting, an agent or a user corresponds to a sample (X,Y) drawn from a distribution D and will face a model h and its classification result h(X). Agents can modify X to adapt to h, which will incur a distribution shift on (X,Y). Our formulation is motivated by applications where the deployed machine learning models are subjected to human agents, and will ultimately face responsive and interactive data distributions. We formalize the discussions of the transferability of a model by studying how the performance of the model trained on the available source distribution (data) would translate to the performance on its induced domain. We provide both upper bounds for the performance gap due to the induced domain shift, as well as lower bounds for the trade-offs that a classifier has to suffer on either the source training distribution or the induced target distribution. We provide further instantiated analysis for two popular domain adaptation settings, including covariate shift and target shift.
When to Accept Automated Predictions and When to Defer to Human Judgment?
Ensuring the reliability and safety of automated decision-making is crucial. It is well-known that data distribution shifts in machine learning can produce unreliable outcomes. This paper proposes a new approach for measuring the reliability of predictions under distribution shifts. We analyze how the outputs of a trained neural network change using clustering to measure distances between outputs and class centroids. We propose this distance as a metric to evaluate the confidence of predictions under distribution shifts. We assign each prediction to a cluster with centroid representing the mean softmax output for all correct predictions of a given class. We then define a safety threshold for a class as the smallest distance from an incorrect prediction to the given class centroid. We evaluate the approach on the MNIST and CIFAR-10 datasets using a Convolutional Neural Network and a Vision Transformer, respectively. The results show that our approach is consistent across these data sets and network models, and indicate that the proposed metric can offer an efficient way of determining when automated predictions are acceptable and when they should be deferred to human operators given a distribution shift.
MLE convergence speed to information projection of exponential family: Criterion for model dimension and sample size -- complete proof version--
For a parametric model of distributions, the closest distribution in the model to the true distribution located outside the model is considered. Measuring the closeness between two distributions with the Kullback-Leibler (K-L) divergence, the closest distribution is called the "information projection." The estimation risk of the maximum likelihood estimator (MLE) is defined as the expectation of K-L divergence between the information projection and the predictive distribution with plugged-in MLE. Here, the asymptotic expansion of the risk is derived up to n^{-2}-order, and the sufficient condition on the risk for the Bayes error rate between the true distribution and the information projection to be lower than a specified value is investigated. Combining these results, the "p-n criterion" is proposed, which determines whether the MLE is sufficiently close to the information projection for the given model and sample. In particular, the criterion for an exponential family model is relatively simple and can be used for a complex model with no explicit form of normalizing constant. This criterion can constitute a solution to the sample size or model acceptance problem. Use of the p-n criteria is demonstrated for two practical datasets. The relationship between the results and information criteria is also studied.
LLM as Dataset Analyst: Subpopulation Structure Discovery with Large Language Model
The distribution of subpopulations is an important property hidden within a dataset. Uncovering and analyzing the subpopulation distribution within datasets provides a comprehensive understanding of the datasets, standing as a powerful tool beneficial to various downstream tasks, including Dataset Subpopulation Organization, Subpopulation Shift, and Slice Discovery. Despite its importance, there has been no work that systematically explores the subpopulation distribution of datasets to our knowledge. To address the limitation and solve all the mentioned tasks in a unified way, we introduce a novel concept of subpopulation structures to represent, analyze, and utilize subpopulation distributions within datasets. To characterize the structures in an interpretable manner, we propose the Subpopulation Structure Discovery with Large Language Models (SSD-LLM) framework, which employs world knowledge and instruction-following capabilities of Large Language Models (LLMs) to linguistically analyze informative image captions and summarize the structures. Furthermore, we propose complete workflows to address downstream tasks, named Task-specific Tuning, showcasing the application of the discovered structure to a spectrum of subpopulation-related tasks, including dataset subpopulation organization, subpopulation shift, and slice discovery. Furthermore, we propose complete workflows to address downstream tasks, named Task-specific Tuning, showcasing the application of the discovered structure to a spectrum of subpopulation-related tasks, including dataset subpopulation organization, subpopulation shift, and slice discovery.
A Distributional Approach to Controlled Text Generation
We propose a Distributional Approach for addressing Controlled Text Generation from pre-trained Language Models (LMs). This approach permits to specify, in a single formal framework, both "pointwise" and "distributional" constraints over the target LM -- to our knowledge, the first model with such generality -- while minimizing KL divergence from the initial LM distribution. The optimal target distribution is then uniquely determined as an explicit EBM (Energy-Based Model) representation. From that optimal representation we then train a target controlled Autoregressive LM through an adaptive distributional variant of Policy Gradient. We conduct a first set of experiments over pointwise constraints showing the advantages of our approach over a set of baselines, in terms of obtaining a controlled LM balancing constraint satisfaction with divergence from the initial LM. We then perform experiments over distributional constraints, a unique feature of our approach, demonstrating its potential as a remedy to the problem of Bias in Language Models. Through an ablation study, we show the effectiveness of our adaptive technique for obtaining faster convergence. (Code available at https://github.com/naver/gdc)
Ctrl-U: Robust Conditional Image Generation via Uncertainty-aware Reward Modeling
In this paper, we focus on the task of conditional image generation, where an image is synthesized according to user instructions. The critical challenge underpinning this task is ensuring both the fidelity of the generated images and their semantic alignment with the provided conditions. To tackle this issue, previous studies have employed supervised perceptual losses derived from pre-trained models, i.e., reward models, to enforce alignment between the condition and the generated result. However, we observe one inherent shortcoming: considering the diversity of synthesized images, the reward model usually provides inaccurate feedback when encountering newly generated data, which can undermine the training process. To address this limitation, we propose an uncertainty-aware reward modeling, called Ctrl-U, including uncertainty estimation and uncertainty-aware regularization, designed to reduce the adverse effects of imprecise feedback from the reward model. Given the inherent cognitive uncertainty within reward models, even images generated under identical conditions often result in a relatively large discrepancy in reward loss. Inspired by the observation, we explicitly leverage such prediction variance as an uncertainty indicator. Based on the uncertainty estimation, we regularize the model training by adaptively rectifying the reward. In particular, rewards with lower uncertainty receive higher loss weights, while those with higher uncertainty are given reduced weights to allow for larger variability. The proposed uncertainty regularization facilitates reward fine-tuning through consistency construction. Extensive experiments validate the effectiveness of our methodology in improving the controllability and generation quality, as well as its scalability across diverse conditional scenarios. Code will soon be available at https://grenoble-zhang.github.io/Ctrl-U-Page/.
On the infinite-depth limit of finite-width neural networks
In this paper, we study the infinite-depth limit of finite-width residual neural networks with random Gaussian weights. With proper scaling, we show that by fixing the width and taking the depth to infinity, the pre-activations converge in distribution to a zero-drift diffusion process. Unlike the infinite-width limit where the pre-activation converge weakly to a Gaussian random variable, we show that the infinite-depth limit yields different distributions depending on the choice of the activation function. We document two cases where these distributions have closed-form (different) expressions. We further show an intriguing change of regime phenomenon of the post-activation norms when the width increases from 3 to 4. Lastly, we study the sequential limit infinite-depth-then-infinite-width and compare it with the more commonly studied infinite-width-then-infinite-depth limit.
Value function estimation using conditional diffusion models for control
A fairly reliable trend in deep reinforcement learning is that the performance scales with the number of parameters, provided a complimentary scaling in amount of training data. As the appetite for large models increases, it is imperative to address, sooner than later, the potential problem of running out of high-quality demonstrations. In this case, instead of collecting only new data via costly human demonstrations or risking a simulation-to-real transfer with uncertain effects, it would be beneficial to leverage vast amounts of readily-available low-quality data. Since classical control algorithms such as behavior cloning or temporal difference learning cannot be used on reward-free or action-free data out-of-the-box, this solution warrants novel training paradigms for continuous control. We propose a simple algorithm called Diffused Value Function (DVF), which learns a joint multi-step model of the environment-robot interaction dynamics using a diffusion model. This model can be efficiently learned from state sequences (i.e., without access to reward functions nor actions), and subsequently used to estimate the value of each action out-of-the-box. We show how DVF can be used to efficiently capture the state visitation measure for multiple controllers, and show promising qualitative and quantitative results on challenging robotics benchmarks.
FlowRL: Matching Reward Distributions for LLM Reasoning
We propose FlowRL: matching the full reward distribution via flow balancing instead of maximizing rewards in large language model (LLM) reinforcement learning (RL). Recent advanced reasoning models adopt reward-maximizing methods (\eg, PPO and GRPO), which tend to over-optimize dominant reward signals while neglecting less frequent but valid reasoning paths, thus reducing diversity. In contrast, we transform scalar rewards into a normalized target distribution using a learnable partition function, and then minimize the reverse KL divergence between the policy and the target distribution. We implement this idea as a flow-balanced optimization method that promotes diverse exploration and generalizable reasoning trajectories. We conduct experiments on math and code reasoning tasks: FlowRL achieves a significant average improvement of 10.0% over GRPO and 5.1% over PPO on math benchmarks, and performs consistently better on code reasoning tasks. These results highlight reward distribution-matching as a key step toward efficient exploration and diverse reasoning in LLM reinforcement learning.
MoD: A Distribution-Based Approach for Merging Large Language Models
Large language models (LLMs) have enabled the development of numerous specialized, task-specific variants. However, the maintenance and deployment of these individual models present substantial challenges in terms of resource utilization and operational efficiency. In this work, we propose the Mixture of Distributions (MoD) framework, a novel approach for merging LLMs that operates directly on their output probability distributions, rather than on model weights. Unlike traditional weight-averaging methods, MoD effectively preserves the specialized capabilities of individual models while enabling efficient knowledge sharing across tasks. Through extensive experimentation on mathematical reasoning benchmarks using Qwen2.5 models, we demonstrate that MoD significantly outperforms existing model merging techniques across multiple benchmarks. All code, data, and experimental materials are published at https://github.com/knovel-eng/mod.
Probability, valuations, hyperspace: Three monads on Top and the support as a morphism
We consider three monads on Top, the category of topological spaces, which formalize topological aspects of probability and possibility in categorical terms. The first one is the Hoare hyperspace monad H, which assigns to every space its space of closed subsets equipped with the lower Vietoris topology. The second is the monad V of continuous valuations, also known as the extended probabilistic powerdomain. We construct both monads in a unified way in terms of double dualization. This reveals a close analogy between them, and allows us to prove that the operation of taking the support of a continuous valuation is a morphism of monads from V to H. In particular, this implies that every H-algebra (topological complete semilattice) is also a V-algebra. Third, we show that V can be restricted to a submonad of tau-smooth probability measures on Top. By composing these two morphisms of monads, we obtain that taking the support of a tau-smooth probability measure is also a morphism of monads.
Exploring intra-task relations to improve meta-learning algorithms
Meta-learning has emerged as an effective methodology to model several real-world tasks and problems due to its extraordinary effectiveness in the low-data regime. There are many scenarios ranging from the classification of rare diseases to language modelling of uncommon languages where the availability of large datasets is rare. Similarly, for more broader scenarios like self-driving, an autonomous vehicle needs to be trained to handle every situation well. This requires training the ML model on a variety of tasks with good quality data. But often times, we find that the data distribution across various tasks is skewed, i.e.the data follows a long-tail distribution. This leads to the model performing well on some tasks and not performing so well on others leading to model robustness issues. Meta-learning has recently emerged as a potential learning paradigm which can effectively learn from one task and generalize that learning to unseen tasks. In this study, we aim to exploit external knowledge of task relations to improve training stability via effective mini-batching of tasks. We hypothesize that selecting a diverse set of tasks in a mini-batch will lead to a better estimate of the full gradient and hence will lead to a reduction of noise in training.
Customer Lifetime Value Prediction with Uncertainty Estimation Using Monte Carlo Dropout
Accurately predicting customer Lifetime Value (LTV) is crucial for companies to optimize their revenue strategies. Traditional deep learning models for LTV prediction are effective but typically provide only point estimates and fail to capture model uncertainty in modeling user behaviors. To address this limitation, we propose a novel approach that enhances the architecture of purely neural network models by incorporating the Monte Carlo Dropout (MCD) framework. We benchmarked the proposed method using data from one of the most downloaded mobile games in the world, and demonstrated a substantial improvement in predictive Top 5\% Mean Absolute Percentage Error compared to existing state-of-the-art methods. Additionally, our approach provides confidence metric as an extra dimension for performance evaluation across various neural network models, facilitating more informed business decisions.
HarsanyiNet: Computing Accurate Shapley Values in a Single Forward Propagation
The Shapley value is widely regarded as a trustworthy attribution metric. However, when people use Shapley values to explain the attribution of input variables of a deep neural network (DNN), it usually requires a very high computational cost to approximate relatively accurate Shapley values in real-world applications. Therefore, we propose a novel network architecture, the HarsanyiNet, which makes inferences on the input sample and simultaneously computes the exact Shapley values of the input variables in a single forward propagation. The HarsanyiNet is designed on the theoretical foundation that the Shapley value can be reformulated as the redistribution of Harsanyi interactions encoded by the network.
Finding the Sweet Spot: Preference Data Construction for Scaling Preference Optimization
Iterative data generation and model retraining are widely used to align large language models (LLMs). It typically involves a policy model to generate on-policy responses and a reward model to guide training data selection. Direct Preference Optimization (DPO) further enhances this process by constructing preference pairs of chosen and rejected responses. In this work, we aim to scale up the number of on-policy samples via repeated random sampling to improve alignment performance. Conventional practice selects the sample with the highest reward as chosen and the lowest as rejected for DPO. However, our experiments reveal that this strategy leads to a decline in performance as the sample size increases. To address this, we investigate preference data construction through the lens of underlying normal distribution of sample rewards. We categorize the reward space into seven representative points and systematically explore all 21 (C_7^2) pairwise combinations. Through evaluations on four models using AlpacaEval 2, we find that selecting the rejected response at reward position mu - 2sigma rather than the minimum reward, is crucial for optimal performance. We finally introduce a scalable preference data construction strategy that consistently enhances model performance as the sample scale increases.
Regularization and Variance-Weighted Regression Achieves Minimax Optimality in Linear MDPs: Theory and Practice
Mirror descent value iteration (MDVI), an abstraction of Kullback-Leibler (KL) and entropy-regularized reinforcement learning (RL), has served as the basis for recent high-performing practical RL algorithms. However, despite the use of function approximation in practice, the theoretical understanding of MDVI has been limited to tabular Markov decision processes (MDPs). We study MDVI with linear function approximation through its sample complexity required to identify an varepsilon-optimal policy with probability 1-delta under the settings of an infinite-horizon linear MDP, generative model, and G-optimal design. We demonstrate that least-squares regression weighted by the variance of an estimated optimal value function of the next state is crucial to achieving minimax optimality. Based on this observation, we present Variance-Weighted Least-Squares MDVI (VWLS-MDVI), the first theoretical algorithm that achieves nearly minimax optimal sample complexity for infinite-horizon linear MDPs. Furthermore, we propose a practical VWLS algorithm for value-based deep RL, Deep Variance Weighting (DVW). Our experiments demonstrate that DVW improves the performance of popular value-based deep RL algorithms on a set of MinAtar benchmarks.
Two Algorithms for Additive and Fair Division of Mixed Manna
We consider a fair division model in which agents have positive, zero and negative utilities for items. For this model, we analyse one existing fairness property - EFX - and three new and related properties - EFX_0, EFX^3 and EF1^3 - in combination with Pareto-optimality. With general utilities, we give a modified version of an existing algorithm for computing an EF1^3 allocation. With -alpha/0/alpha utilities, this algorithm returns an EFX^3 and PO allocation. With absolute identical utilities, we give a new algorithm for an EFX and PO allocation. With -alpha/0/beta utilities, this algorithm also returns such an allocation. We report some new impossibility results as well.
Value-Based Deep RL Scales Predictably
Scaling data and compute is critical to the success of machine learning. However, scaling demands predictability: we want methods to not only perform well with more compute or data, but also have their performance be predictable from small-scale runs, without running the large-scale experiment. In this paper, we show that value-based off-policy RL methods are predictable despite community lore regarding their pathological behavior. First, we show that data and compute requirements to attain a given performance level lie on a Pareto frontier, controlled by the updates-to-data (UTD) ratio. By estimating this frontier, we can predict this data requirement when given more compute, and this compute requirement when given more data. Second, we determine the optimal allocation of a total resource budget across data and compute for a given performance and use it to determine hyperparameters that maximize performance for a given budget. Third, this scaling behavior is enabled by first estimating predictable relationships between hyperparameters, which is used to manage effects of overfitting and plasticity loss unique to RL. We validate our approach using three algorithms: SAC, BRO, and PQL on DeepMind Control, OpenAI gym, and IsaacGym, when extrapolating to higher levels of data, compute, budget, or performance.
Neural Autoregressive Distribution Estimation
We present Neural Autoregressive Distribution Estimation (NADE) models, which are neural network architectures applied to the problem of unsupervised distribution and density estimation. They leverage the probability product rule and a weight sharing scheme inspired from restricted Boltzmann machines, to yield an estimator that is both tractable and has good generalization performance. We discuss how they achieve competitive performance in modeling both binary and real-valued observations. We also present how deep NADE models can be trained to be agnostic to the ordering of input dimensions used by the autoregressive product rule decomposition. Finally, we also show how to exploit the topological structure of pixels in images using a deep convolutional architecture for NADE.
Optimistic Curiosity Exploration and Conservative Exploitation with Linear Reward Shaping
In this work, we study the simple yet universally applicable case of reward shaping in value-based Deep Reinforcement Learning (DRL). We show that reward shifting in the form of the linear transformation is equivalent to changing the initialization of the Q-function in function approximation. Based on such an equivalence, we bring the key insight that a positive reward shifting leads to conservative exploitation, while a negative reward shifting leads to curiosity-driven exploration. Accordingly, conservative exploitation improves offline RL value estimation, and optimistic value estimation improves exploration for online RL. We validate our insight on a range of RL tasks and show its improvement over baselines: (1) In offline RL, the conservative exploitation leads to improved performance based on off-the-shelf algorithms; (2) In online continuous control, multiple value functions with different shifting constants can be used to tackle the exploration-exploitation dilemma for better sample efficiency; (3) In discrete control tasks, a negative reward shifting yields an improvement over the curiosity-based exploration method.
The Touché23-ValueEval Dataset for Identifying Human Values behind Arguments
We present the Touch\'e23-ValueEval Dataset for Identifying Human Values behind Arguments. To investigate approaches for the automated detection of human values behind arguments, we collected 9324 arguments from 6 diverse sources, covering religious texts, political discussions, free-text arguments, newspaper editorials, and online democracy platforms. Each argument was annotated by 3 crowdworkers for 54 values. The Touch\'e23-ValueEval dataset extends the Webis-ArgValues-22. In comparison to the previous dataset, the effectiveness of a 1-Baseline decreases, but that of an out-of-the-box BERT model increases. Therefore, though the classification difficulty increased as per the label distribution, the larger dataset allows for training better models.
Proper Scoring Rules for Survival Analysis
Survival analysis is the problem of estimating probability distributions for future event times, which can be seen as a problem in uncertainty quantification. Although there are fundamental theories on strictly proper scoring rules for uncertainty quantification, little is known about those for survival analysis. In this paper, we investigate extensions of four major strictly proper scoring rules for survival analysis and we prove that these extensions are proper under certain conditions, which arise from the discretization of the estimation of probability distributions. We also compare the estimation performances of these extended scoring rules by using real datasets, and the extensions of the logarithmic score and the Brier score performed the best.
Causal Inference by String Diagram Surgery
Extracting causal relationships from observed correlations is a growing area in probabilistic reasoning, originating with the seminal work of Pearl and others from the early 1990s. This paper develops a new, categorically oriented view based on a clear distinction between syntax (string diagrams) and semantics (stochastic matrices), connected via interpretations as structure-preserving functors. A key notion in the identification of causal effects is that of an intervention, whereby a variable is forcefully set to a particular value independent of any prior propensities. We represent the effect of such an intervention as an endofunctor which performs `string diagram surgery' within the syntactic category of string diagrams. This diagram surgery in turn yields a new, interventional distribution via the interpretation functor. While in general there is no way to compute interventional distributions purely from observed data, we show that this is possible in certain special cases using a calculational tool called comb disintegration. We demonstrate the use of this technique on a well-known toy example, where we predict the causal effect of smoking on cancer in the presence of a confounding common cause. After developing this specific example, we show this technique provides simple sufficient conditions for computing interventions which apply to a wide variety of situations considered in the causal inference literature.
Multi-Layer Deep xVA: Structural Credit Models, Measure Changes and Convergence Analysis
We propose a structural default model for portfolio-wide valuation adjustments (xVAs) and represent it as a system of coupled backward stochastic differential equations. The framework is divided into four layers, each capturing a key component: (i) clean values, (ii) initial margin and Collateral Valuation Adjustment (ColVA), (iii) Credit/Debit Valuation Adjustments (CVA/DVA) together with Margin Valuation Adjustment (MVA), and (iv) Funding Valuation Adjustment (FVA). Because these layers depend on one another through collateral and default effects, a naive Monte Carlo approach would require deeply nested simulations, making the problem computationally intractable. To address this challenge, we use an iterative deep BSDE approach, handling each layer sequentially so that earlier outputs serve as inputs to the subsequent layers. Initial margin is computed via deep quantile regression to reflect margin requirements over the Margin Period of Risk. We also adopt a change-of-measure method that highlights rare but significant defaults of the bank or counterparty, ensuring that these events are accurately captured in the training process. We further extend Han and Long's (2020) a posteriori error analysis to BSDEs on bounded domains. Due to the random exit from the domain, we obtain an order of convergence of O(h^{1/4-epsilon}) rather than the usual O(h^{1/2}). Numerical experiments illustrate that this method drastically reduces computational demands and successfully scales to high-dimensional, non-symmetric portfolios. The results confirm its effectiveness and accuracy, offering a practical alternative to nested Monte Carlo simulations in multi-counterparty xVA analyses.
Learning the greatest common divisor: explaining transformer predictions
The predictions of small transformers, trained to calculate the greatest common divisor (GCD) of two positive integers, can be fully characterized by looking at model inputs and outputs. As training proceeds, the model learns a list mathcal D of integers, products of divisors of the base used to represent integers and small primes, and predicts the largest element of mathcal D that divides both inputs. Training distributions impact performance. Models trained from uniform operands only learn a handful of GCD (up to 38 GCD leq100). Log-uniform operands boost performance to 73 GCD leq 100, and a log-uniform distribution of outcomes (i.e. GCD) to 91. However, training from uniform (balanced) GCD breaks explainability.
Deep Probability Estimation
Reliable probability estimation is of crucial importance in many real-world applications where there is inherent (aleatoric) uncertainty. Probability-estimation models are trained on observed outcomes (e.g. whether it has rained or not, or whether a patient has died or not), because the ground-truth probabilities of the events of interest are typically unknown. The problem is therefore analogous to binary classification, with the difference that the objective is to estimate probabilities rather than predicting the specific outcome. This work investigates probability estimation from high-dimensional data using deep neural networks. There exist several methods to improve the probabilities generated by these models but they mostly focus on model (epistemic) uncertainty. For problems with inherent uncertainty, it is challenging to evaluate performance without access to ground-truth probabilities. To address this, we build a synthetic dataset to study and compare different computable metrics. We evaluate existing methods on the synthetic data as well as on three real-world probability estimation tasks, all of which involve inherent uncertainty: precipitation forecasting from radar images, predicting cancer patient survival from histopathology images, and predicting car crashes from dashcam videos. We also give a theoretical analysis of a model for high-dimensional probability estimation which reproduces several of the phenomena evinced in our experiments. Finally, we propose a new method for probability estimation using neural networks, which modifies the training process to promote output probabilities that are consistent with empirical probabilities computed from the data. The method outperforms existing approaches on most metrics on the simulated as well as real-world data.
Differentially Private Episodic Reinforcement Learning with Heavy-tailed Rewards
In this paper, we study the problem of (finite horizon tabular) Markov decision processes (MDPs) with heavy-tailed rewards under the constraint of differential privacy (DP). Compared with the previous studies for private reinforcement learning that typically assume rewards are sampled from some bounded or sub-Gaussian distributions to ensure DP, we consider the setting where reward distributions have only finite (1+v)-th moments with some v in (0,1]. By resorting to robust mean estimators for rewards, we first propose two frameworks for heavy-tailed MDPs, i.e., one is for value iteration and another is for policy optimization. Under each framework, we consider both joint differential privacy (JDP) and local differential privacy (LDP) models. Based on our frameworks, we provide regret upper bounds for both JDP and LDP cases and show that the moment of distribution and privacy budget both have significant impacts on regrets. Finally, we establish a lower bound of regret minimization for heavy-tailed MDPs in JDP model by reducing it to the instance-independent lower bound of heavy-tailed multi-armed bandits in DP model. We also show the lower bound for the problem in LDP by adopting some private minimax methods. Our results reveal that there are fundamental differences between the problem of private RL with sub-Gaussian and that with heavy-tailed rewards.
Non-Exchangeable Conformal Risk Control
Split conformal prediction has recently sparked great interest due to its ability to provide formally guaranteed uncertainty sets or intervals for predictions made by black-box neural models, ensuring a predefined probability of containing the actual ground truth. While the original formulation assumes data exchangeability, some extensions handle non-exchangeable data, which is often the case in many real-world scenarios. In parallel, some progress has been made in conformal methods that provide statistical guarantees for a broader range of objectives, such as bounding the best F_1-score or minimizing the false negative rate in expectation. In this paper, we leverage and extend these two lines of work by proposing non-exchangeable conformal risk control, which allows controlling the expected value of any monotone loss function when the data is not exchangeable. Our framework is flexible, makes very few assumptions, and allows weighting the data based on its relevance for a given test example; a careful choice of weights may result on tighter bounds, making our framework useful in the presence of change points, time series, or other forms of distribution drift. Experiments with both synthetic and real world data show the usefulness of our method.
Temperature Steerable Flows and Boltzmann Generators
Boltzmann generators approach the sampling problem in many-body physics by combining a normalizing flow and a statistical reweighting method to generate samples in thermodynamic equilibrium. The equilibrium distribution is usually defined by an energy function and a thermodynamic state. Here we propose temperature-steerable flows (TSF) which are able to generate a family of probability densities parametrized by a choosable temperature parameter. TSFs can be embedded in generalized ensemble sampling frameworks to sample a physical system across multiple thermodynamic states.
