Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeOmniCharacter: Towards Immersive Role-Playing Agents with Seamless Speech-Language Personality Interaction
Role-Playing Agents (RPAs), benefiting from large language models, is an emerging interactive AI system that simulates roles or characters with diverse personalities. However, existing methods primarily focus on mimicking dialogues among roles in textual form, neglecting the role's voice traits (e.g., voice style and emotions) as playing a crucial effect in interaction, which tends to be more immersive experiences in realistic scenarios. Towards this goal, we propose OmniCharacter, a first seamless speech-language personality interaction model to achieve immersive RPAs with low latency. Specifically, OmniCharacter enables agents to consistently exhibit role-specific personality traits and vocal traits throughout the interaction, enabling a mixture of speech and language responses. To align the model with speech-language scenarios, we construct a dataset named OmniCharacter-10K, which involves more distinctive characters (20), richly contextualized multi-round dialogue (10K), and dynamic speech response (135K). Experimental results showcase that our method yields better responses in terms of both content and style compared to existing RPAs and mainstream speech-language models, with a response latency as low as 289ms. Code and dataset are available at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/OmniCharacter.
Integrating Language Models into Direct Speech Translation: An Inference-Time Solution to Control Gender Inflection
When translating words referring to the speaker, speech translation (ST) systems should not resort to default masculine generics nor rely on potentially misleading vocal traits. Rather, they should assign gender according to the speakers' preference. The existing solutions to do so, though effective, are hardly feasible in practice as they involve dedicated model re-training on gender-labeled ST data. To overcome these limitations, we propose the first inference-time solution to control speaker-related gender inflections in ST. Our approach partially replaces the (biased) internal language model (LM) implicitly learned by the ST decoder with gender-specific external LMs. Experiments on en->es/fr/it show that our solution outperforms the base models and the best training-time mitigation strategy by up to 31.0 and 1.6 points in gender accuracy, respectively, for feminine forms. The gains are even larger (up to 32.0 and 3.4) in the challenging condition where speakers' vocal traits conflict with their gender.
REWIND: Speech Time Reversal for Enhancing Speaker Representations in Diffusion-based Voice Conversion
Speech time reversal refers to the process of reversing the entire speech signal in time, causing it to play backward. Such signals are completely unintelligible since the fundamental structures of phonemes and syllables are destroyed. However, they still retain tonal patterns that enable perceptual speaker identification despite losing linguistic content. In this paper, we propose leveraging speaker representations learned from time reversed speech as an augmentation strategy to enhance speaker representation. Notably, speaker and language disentanglement in voice conversion (VC) is essential to accurately preserve a speaker's unique vocal traits while minimizing interference from linguistic content. The effectiveness of the proposed approach is evaluated in the context of state-of-the-art diffusion-based VC models. Experimental results indicate that the proposed approach significantly improves speaker similarity-related scores while maintaining high speech quality.
Vox-Profile: A Speech Foundation Model Benchmark for Characterizing Diverse Speaker and Speech Traits
We introduce Vox-Profile, a comprehensive benchmark to characterize rich speaker and speech traits using speech foundation models. Unlike existing works that focus on a single dimension of speaker traits, Vox-Profile provides holistic and multi-dimensional profiles that reflect both static speaker traits (e.g., age, sex, accent) and dynamic speech properties (e.g., emotion, speech flow). This benchmark is grounded in speech science and linguistics, developed with domain experts to accurately index speaker and speech characteristics. We report benchmark experiments using over 15 publicly available speech datasets and several widely used speech foundation models that target various static and dynamic speaker and speech properties. In addition to benchmark experiments, we showcase several downstream applications supported by Vox-Profile. First, we show that Vox-Profile can augment existing speech recognition datasets to analyze ASR performance variability. Vox-Profile is also used as a tool to evaluate the performance of speech generation systems. Finally, we assess the quality of our automated profiles through comparison with human evaluation and show convergent validity. Vox-Profile is publicly available at: https://github.com/tiantiaf0627/vox-profile-release.
Identifying Personality Traits Using Overlap Dynamics in Multiparty Dialogue
Research on human spoken language has shown that speech plays an important role in identifying speaker personality traits. In this work, we propose an approach for identifying speaker personality traits using overlap dynamics in multiparty spoken dialogues. We first define a set of novel features representing the overlap dynamics of each speaker. We then investigate the impact of speaker personality traits on these features using ANOVA tests. We find that features of overlap dynamics significantly vary for speakers with different levels of both Extraversion and Conscientiousness. Finally, we find that classifiers using only overlap dynamics features outperform random guessing in identifying Extraversion and Agreeableness, and that the improvements are statistically significant.
Leveraging Content-based Features from Multiple Acoustic Models for Singing Voice Conversion
Singing voice conversion (SVC) is a technique to enable an arbitrary singer to sing an arbitrary song. To achieve that, it is important to obtain speaker-agnostic representations from source audio, which is a challenging task. A common solution is to extract content-based features (e.g., PPGs) from a pretrained acoustic model. However, the choices for acoustic models are vast and varied. It is yet to be explored what characteristics of content features from different acoustic models are, and whether integrating multiple content features can help each other. Motivated by that, this study investigates three distinct content features, sourcing from WeNet, Whisper, and ContentVec, respectively. We explore their complementary roles in intelligibility, prosody, and conversion similarity for SVC. By integrating the multiple content features with a diffusion-based SVC model, our SVC system achieves superior conversion performance on both objective and subjective evaluation in comparison to a single source of content features. Our demo page and code can be available https://www.zhangxueyao.com/data/MultipleContentsSVC/index.html.
Constructing a Singing Style Caption Dataset
Singing voice synthesis and conversion have emerged as significant subdomains of voice generation, leading to much demands on prompt-conditioned generation. Unlike common voice data, generating a singing voice requires an understanding of various associated vocal and musical characteristics, such as the vocal tone of the singer or emotional expressions. However, existing open-source audio-text datasets for voice generation tend to capture only a very limited range of attributes, often missing musical characteristics of the audio. To fill this gap, we introduce S2Cap, an audio-text pair dataset with a diverse set of attributes. S2Cap consists of pairs of textual prompts and music audio samples with a wide range of vocal and musical attributes, including pitch, volume, tempo, mood, singer's gender and age, and musical genre and emotional expression. Utilizing S2Cap, we suggest an effective novel baseline algorithm for singing style captioning. Singing style captioning is a relative task to voice generation that generates text descriptions of vocal characteristics, which we first suggested. First, to mitigate the misalignment between the audio encoder and the text decoder, we present a novel mechanism called CRESCENDO, which utilizes positive-pair similarity learning to synchronize the embedding spaces of a pretrained audio encoder to get similar embeddings with a text encoder. We additionally supervise the model using the singer's voice, which is demixed by the accompaniment. This supervision allows the model to more accurately capture vocal characteristics, leading to improved singing style captions that better reflect the style of the singer. The dataset and the codes are available at https://github.com/HJ-Ok/S2cap.
Personalized Dialogue Generation with Diversified Traits
Endowing a dialogue system with particular personality traits is essential to deliver more human-like conversations. However, due to the challenge of embodying personality via language expression and the lack of large-scale persona-labeled dialogue data, this research problem is still far from well-studied. In this paper, we investigate the problem of incorporating explicit personality traits in dialogue generation to deliver personalized dialogues. To this end, firstly, we construct PersonalDialog, a large-scale multi-turn dialogue dataset containing various traits from a large number of speakers. The dataset consists of 20.83M sessions and 56.25M utterances from 8.47M speakers. Each utterance is associated with a speaker who is marked with traits like Age, Gender, Location, Interest Tags, etc. Several anonymization schemes are designed to protect the privacy of each speaker. This large-scale dataset will facilitate not only the study of personalized dialogue generation, but also other researches on sociolinguistics or social science. Secondly, to study how personality traits can be captured and addressed in dialogue generation, we propose persona-aware dialogue generation models within the sequence to sequence learning framework. Explicit personality traits (structured by key-value pairs) are embedded using a trait fusion module. During the decoding process, two techniques, namely persona-aware attention and persona-aware bias, are devised to capture and address trait-related information. Experiments demonstrate that our model is able to address proper traits in different contexts. Case studies also show interesting results for this challenging research problem.
Prompt-Singer: Controllable Singing-Voice-Synthesis with Natural Language Prompt
Recent singing-voice-synthesis (SVS) methods have achieved remarkable audio quality and naturalness, yet they lack the capability to control the style attributes of the synthesized singing explicitly. We propose Prompt-Singer, the first SVS method that enables attribute controlling on singer gender, vocal range and volume with natural language. We adopt a model architecture based on a decoder-only transformer with a multi-scale hierarchy, and design a range-melody decoupled pitch representation that enables text-conditioned vocal range control while keeping melodic accuracy. Furthermore, we explore various experiment settings, including different types of text representations, text encoder fine-tuning, and introducing speech data to alleviate data scarcity, aiming to facilitate further research. Experiments show that our model achieves favorable controlling ability and audio quality. Audio samples are available at http://prompt-singer.github.io .
Zero-shot Cross-lingual Voice Transfer for TTS
In this paper, we introduce a zero-shot Voice Transfer (VT) module that can be seamlessly integrated into a multi-lingual Text-to-speech (TTS) system to transfer an individual's voice across languages. Our proposed VT module comprises a speaker-encoder that processes reference speech, a bottleneck layer, and residual adapters, connected to preexisting TTS layers. We compare the performance of various configurations of these components and report Mean Opinion Score (MOS) and Speaker Similarity across languages. Using a single English reference speech per speaker, we achieve an average voice transfer similarity score of 73% across nine target languages. Vocal characteristics contribute significantly to the construction and perception of individual identity. The loss of one's voice, due to physical or neurological conditions, can lead to a profound sense of loss, impacting one's core identity. As a case study, we demonstrate that our approach can not only transfer typical speech but also restore the voices of individuals with dysarthria, even when only atypical speech samples are available - a valuable utility for those who have never had typical speech or banked their voice. Cross-lingual typical audio samples, plus videos demonstrating voice restoration for dysarthric speakers are available here (google.github.io/tacotron/publications/zero_shot_voice_transfer).
FaceSpeak: Expressive and High-Quality Speech Synthesis from Human Portraits of Different Styles
Humans can perceive speakers' characteristics (e.g., identity, gender, personality and emotion) by their appearance, which are generally aligned to their voice style. Recently, vision-driven Text-to-speech (TTS) scholars grounded their investigations on real-person faces, thereby restricting effective speech synthesis from applying to vast potential usage scenarios with diverse characters and image styles. To solve this issue, we introduce a novel FaceSpeak approach. It extracts salient identity characteristics and emotional representations from a wide variety of image styles. Meanwhile, it mitigates the extraneous information (e.g., background, clothing, and hair color, etc.), resulting in synthesized speech closely aligned with a character's persona. Furthermore, to overcome the scarcity of multi-modal TTS data, we have devised an innovative dataset, namely Expressive Multi-Modal TTS, which is diligently curated and annotated to facilitate research in this domain. The experimental results demonstrate our proposed FaceSpeak can generate portrait-aligned voice with satisfactory naturalness and quality.
VANPY: Voice Analysis Framework
Voice data is increasingly being used in modern digital communications, yet there is still a lack of comprehensive tools for automated voice analysis and characterization. To this end, we developed the VANPY (Voice Analysis in Python) framework for automated pre-processing, feature extraction, and classification of voice data. The VANPY is an open-source end-to-end comprehensive framework that was developed for the purpose of speaker characterization from voice data. The framework is designed with extensibility in mind, allowing for easy integration of new components and adaptation to various voice analysis applications. It currently incorporates over fifteen voice analysis components - including music/speech separation, voice activity detection, speaker embedding, vocal feature extraction, and various classification models. Four of the VANPY's components were developed in-house and integrated into the framework to extend its speaker characterization capabilities: gender classification, emotion classification, age regression, and height regression. The models demonstrate robust performance across various datasets, although not surpassing state-of-the-art performance. As a proof of concept, we demonstrate the framework's ability to extract speaker characteristics on a use-case challenge of analyzing character voices from the movie "Pulp Fiction." The results illustrate the framework's capability to extract multiple speaker characteristics, including gender, age, height, emotion type, and emotion intensity measured across three dimensions: arousal, dominance, and valence.
Att-HACK: An Expressive Speech Database with Social Attitudes
This paper presents Att-HACK, the first large database of acted speech with social attitudes. Available databases of expressive speech are rare and very often restricted to the primary emotions: anger, joy, sadness, fear. This greatly limits the scope of the research on expressive speech. Besides, a fundamental aspect of speech prosody is always ignored and missing from such databases: its variety, i.e. the possibility to repeat an utterance while varying its prosody. This paper represents a first attempt to widen the scope of expressivity in speech, by providing a database of acted speech with social attitudes: friendly, seductive, dominant, and distant. The proposed database comprises 25 speakers interpreting 100 utterances in 4 social attitudes, with 3-5 repetitions each per attitude for a total of around 30 hours of speech. The Att-HACK is freely available for academic research under a Creative Commons Licence.
PromptTTS++: Controlling Speaker Identity in Prompt-Based Text-to-Speech Using Natural Language Descriptions
We propose PromptTTS++, a prompt-based text-to-speech (TTS) synthesis system that allows control over speaker identity using natural language descriptions. To control speaker identity within the prompt-based TTS framework, we introduce the concept of speaker prompt, which describes voice characteristics (e.g., gender-neutral, young, old, and muffled) designed to be approximately independent of speaking style. Since there is no large-scale dataset containing speaker prompts, we first construct a dataset based on the LibriTTS-R corpus with manually annotated speaker prompts. We then employ a diffusion-based acoustic model with mixture density networks to model diverse speaker factors in the training data. Unlike previous studies that rely on style prompts describing only a limited aspect of speaker individuality, such as pitch, speaking speed, and energy, our method utilizes an additional speaker prompt to effectively learn the mapping from natural language descriptions to the acoustic features of diverse speakers. Our subjective evaluation results show that the proposed method can better control speaker characteristics than the methods without the speaker prompt. Audio samples are available at https://reppy4620.github.io/demo.promptttspp/.
Speech Fusion to Face: Bridging the Gap Between Human's Vocal Characteristics and Facial Imaging
While deep learning technologies are now capable of generating realistic images confusing humans, the research efforts are turning to the synthesis of images for more concrete and application-specific purposes. Facial image generation based on vocal characteristics from speech is one of such important yet challenging tasks. It is the key enabler to influential use cases of image generation, especially for business in public security and entertainment. Existing solutions to the problem of speech2face renders limited image quality and fails to preserve facial similarity due to the lack of quality dataset for training and appropriate integration of vocal features. In this paper, we investigate these key technical challenges and propose Speech Fusion to Face, or SF2F in short, attempting to address the issue of facial image quality and the poor connection between vocal feature domain and modern image generation models. By adopting new strategies on data model and training, we demonstrate dramatic performance boost over state-of-the-art solution, by doubling the recall of individual identity, and lifting the quality score from 15 to 19 based on the mutual information score with VGGFace classifier.
MVP: Multi-source Voice Pathology detection
Voice disorders significantly impact patient quality of life, yet non-invasive automated diagnosis remains under-explored due to both the scarcity of pathological voice data, and the variability in recording sources. This work introduces MVP (Multi-source Voice Pathology detection), a novel approach that leverages transformers operating directly on raw voice signals. We explore three fusion strategies to combine sentence reading and sustained vowel recordings: waveform concatenation, intermediate feature fusion, and decision-level combination. Empirical validation across the German, Portuguese, and Italian languages shows that intermediate feature fusion using transformers best captures the complementary characteristics of both recording types. Our approach achieves up to +13% AUC improvement over single-source methods.
Make-A-Voice: Unified Voice Synthesis With Discrete Representation
Various applications of voice synthesis have been developed independently despite the fact that they generate "voice" as output in common. In addition, the majority of voice synthesis models currently rely on annotated audio data, but it is crucial to scale them to self-supervised datasets in order to effectively capture the wide range of acoustic variations present in human voice, including speaker identity, emotion, and prosody. In this work, we propose Make-A-Voice, a unified framework for synthesizing and manipulating voice signals from discrete representations. Make-A-Voice leverages a "coarse-to-fine" approach to model the human voice, which involves three stages: 1) semantic stage: model high-level transformation between linguistic content and self-supervised semantic tokens, 2) acoustic stage: introduce varying control signals as acoustic conditions for semantic-to-acoustic modeling, and 3) generation stage: synthesize high-fidelity waveforms from acoustic tokens. Make-A-Voice offers notable benefits as a unified voice synthesis framework: 1) Data scalability: the major backbone (i.e., acoustic and generation stage) does not require any annotations, and thus the training data could be scaled up. 2) Controllability and conditioning flexibility: we investigate different conditioning mechanisms and effectively handle three voice synthesis applications, including text-to-speech (TTS), voice conversion (VC), and singing voice synthesis (SVS) by re-synthesizing the discrete voice representations with prompt guidance. Experimental results demonstrate that Make-A-Voice exhibits superior audio quality and style similarity compared with competitive baseline models. Audio samples are available at https://Make-A-Voice.github.io
ELF: Encoding Speaker-Specific Latent Speech Feature for Speech Synthesis
In this work, we propose a novel method for modeling numerous speakers, which enables expressing the overall characteristics of speakers in detail like a trained multi-speaker model without additional training on the target speaker's dataset. Although various works with similar purposes have been actively studied, their performance has not yet reached that of trained multi-speaker models due to their fundamental limitations. To overcome previous limitations, we propose effective methods for feature learning and representing target speakers' speech characteristics by discretizing the features and conditioning them to a speech synthesis model. Our method obtained a significantly higher similarity mean opinion score (SMOS) in subjective similarity evaluation than seen speakers of a high-performance multi-speaker model, even with unseen speakers. The proposed method also outperforms a zero-shot method by significant margins. Furthermore, our method shows remarkable performance in generating new artificial speakers. In addition, we demonstrate that the encoded latent features are sufficiently informative to reconstruct an original speaker's speech completely. It implies that our method can be used as a general methodology to encode and reconstruct speakers' characteristics in various tasks.
Personality Style Recognition via Machine Learning: Identifying Anaclitic and Introjective Personality Styles from Patients' Speech
In disentangling the heterogeneity observed in psychopathology, personality of the patients is considered crucial. While it has been demonstrated that personality traits are reflected in the language used by a patient, we hypothesize that this enables automatic inference of the personality type directly from speech utterances, potentially more accurately than through a traditional questionnaire-based approach explicitly designed for personality classification. To validate this hypothesis, we adopt natural language processing (NLP) and standard machine learning tools for classification. We test this on a dataset of recorded clinical diagnostic interviews (CDI) on a sample of 79 patients diagnosed with major depressive disorder (MDD) -- a condition for which differentiated treatment based on personality styles has been advocated -- and classified into anaclitic and introjective personality styles. We start by analyzing the interviews to see which linguistic features are associated with each style, in order to gain a better understanding of the styles. Then, we develop automatic classifiers based on (a) standardized questionnaire responses; (b) basic text features, i.e., TF-IDF scores of words and word sequences; (c) more advanced text features, using LIWC (linguistic inquiry and word count) and context-aware features using BERT (bidirectional encoder representations from transformers); (d) audio features. We find that automated classification with language-derived features (i.e., based on LIWC) significantly outperforms questionnaire-based classification models. Furthermore, the best performance is achieved by combining LIWC with the questionnaire features. This suggests that more work should be put into developing linguistically based automated techniques for characterizing personality, however questionnaires still to some extent complement such methods.
Attention Is Not Always the Answer: Optimizing Voice Activity Detection with Simple Feature Fusion
Voice Activity Detection (VAD) plays a key role in speech processing, often utilizing hand-crafted or neural features. This study examines the effectiveness of Mel-Frequency Cepstral Coefficients (MFCCs) and pre-trained model (PTM) features, including wav2vec 2.0, HuBERT, WavLM, UniSpeech, MMS, and Whisper. We propose FusionVAD, a unified framework that combines both feature types using three fusion strategies: concatenation, addition, and cross-attention (CA). Experimental results reveal that simple fusion techniques, particularly addition, outperform CA in both accuracy and efficiency. Fusion-based models consistently surpass single-feature models, highlighting the complementary nature of MFCCs and PTM features. Notably, our best-performing fusion model exceeds the state-of-the-art Pyannote across multiple datasets, achieving an absolute average improvement of 2.04%. These results confirm that simple feature fusion enhances VAD robustness while maintaining computational efficiency.
Towards Expressive Zero-Shot Speech Synthesis with Hierarchical Prosody Modeling
Recent research in zero-shot speech synthesis has made significant progress in speaker similarity. However, current efforts focus on timbre generalization rather than prosody modeling, which results in limited naturalness and expressiveness. To address this, we introduce a novel speech synthesis model trained on large-scale datasets, including both timbre and hierarchical prosody modeling. As timbre is a global attribute closely linked to expressiveness, we adopt a global vector to model speaker timbre while guiding prosody modeling. Besides, given that prosody contains both global consistency and local variations, we introduce a diffusion model as the pitch predictor and employ a prosody adaptor to model prosody hierarchically, further enhancing the prosody quality of the synthesized speech. Experimental results show that our model not only maintains comparable timbre quality to the baseline but also exhibits better naturalness and expressiveness.
Adversarial Disentanglement of Speaker Representation for Attribute-Driven Privacy Preservation
In speech technologies, speaker's voice representation is used in many applications such as speech recognition, voice conversion, speech synthesis and, obviously, user authentication. Modern vocal representations of the speaker are based on neural embeddings. In addition to the targeted information, these representations usually contain sensitive information about the speaker, like the age, sex, physical state, education level or ethnicity. In order to allow the user to choose which information to protect, we introduce in this paper the concept of attribute-driven privacy preservation in speaker voice representation. It allows a person to hide one or more personal aspects to a potential malicious interceptor and to the application provider. As a first solution to this concept, we propose to use an adversarial autoencoding method that disentangles in the voice representation a given speaker attribute thus allowing its concealment. We focus here on the sex attribute for an Automatic Speaker Verification (ASV) task. Experiments carried out using the VoxCeleb datasets have shown that the proposed method enables the concealment of this attribute while preserving ASV ability.
EchoMind: An Interrelated Multi-level Benchmark for Evaluating Empathetic Speech Language Models
Speech Language Models (SLMs) have made significant progress in spoken language understanding. Yet it remains unclear whether they can fully perceive non lexical vocal cues alongside spoken words, and respond with empathy that aligns with both emotional and contextual factors. Existing benchmarks typically evaluate linguistic, acoustic, reasoning, or dialogue abilities in isolation, overlooking the integration of these skills that is crucial for human-like, emotionally intelligent conversation. We present EchoMind, the first interrelated, multi-level benchmark that simulates the cognitive process of empathetic dialogue through sequential, context-linked tasks: spoken-content understanding, vocal-cue perception, integrated reasoning, and response generation. All tasks share identical and semantically neutral scripts that are free of explicit emotional or contextual cues, and controlled variations in vocal style are used to test the effect of delivery independent of the transcript. EchoMind is grounded in an empathy-oriented framework spanning 3 coarse and 12 fine-grained dimensions, encompassing 39 vocal attributes, and evaluated using both objective and subjective metrics. Testing 12 advanced SLMs reveals that even state-of-the-art models struggle with high-expressive vocal cues, limiting empathetic response quality. Analyses of prompt strength, speech source, and ideal vocal cue recognition reveal persistent weaknesses in instruction-following, resilience to natural speech variability, and effective use of vocal cues for empathy. These results underscore the need for SLMs that integrate linguistic content with diverse vocal cues to achieve truly empathetic conversational ability.
Eliciting Personality Traits in Large Language Models
Large Language Models (LLMs) are increasingly being utilized by both candidates and employers in the recruitment context. However, with this comes numerous ethical concerns, particularly related to the lack of transparency in these "black-box" models. Although previous studies have sought to increase the transparency of these models by investigating the personality traits of LLMs, many of the previous studies have provided them with personality assessments to complete. On the other hand, this study seeks to obtain a better understanding of such models by examining their output variations based on different input prompts. Specifically, we use a novel elicitation approach using prompts derived from common interview questions, as well as prompts designed to elicit particular Big Five personality traits to examine whether the models were susceptible to trait-activation like humans are, to measure their personality based on the language used in their outputs. To do so, we repeatedly prompted multiple LMs with different parameter sizes, including Llama-2, Falcon, Mistral, Bloom, GPT, OPT, and XLNet (base and fine tuned versions) and examined their personality using classifiers trained on the myPersonality dataset. Our results reveal that, generally, all LLMs demonstrate high openness and low extraversion. However, whereas LMs with fewer parameters exhibit similar behaviour in personality traits, newer and LMs with more parameters exhibit a broader range of personality traits, with increased agreeableness, emotional stability, and openness. Furthermore, a greater number of parameters is positively associated with openness and conscientiousness. Moreover, fine-tuned models exhibit minor modulations in their personality traits, contingent on the dataset. Implications and directions for future research are discussed.
TechSinger: Technique Controllable Multilingual Singing Voice Synthesis via Flow Matching
Singing voice synthesis has made remarkable progress in generating natural and high-quality voices. However, existing methods rarely provide precise control over vocal techniques such as intensity, mixed voice, falsetto, bubble, and breathy tones, thus limiting the expressive potential of synthetic voices. We introduce TechSinger, an advanced system for controllable singing voice synthesis that supports five languages and seven vocal techniques. TechSinger leverages a flow-matching-based generative model to produce singing voices with enhanced expressive control over various techniques. To enhance the diversity of training data, we develop a technique detection model that automatically annotates datasets with phoneme-level technique labels. Additionally, our prompt-based technique prediction model enables users to specify desired vocal attributes through natural language, offering fine-grained control over the synthesized singing. Experimental results demonstrate that TechSinger significantly enhances the expressiveness and realism of synthetic singing voices, outperforming existing methods in terms of audio quality and technique-specific control. Audio samples can be found at https://tech-singer.github.io.
Improving speaker verification robustness with synthetic emotional utterances
A speaker verification (SV) system offers an authentication service designed to confirm whether a given speech sample originates from a specific speaker. This technology has paved the way for various personalized applications that cater to individual preferences. A noteworthy challenge faced by SV systems is their ability to perform consistently across a range of emotional spectra. Most existing models exhibit high error rates when dealing with emotional utterances compared to neutral ones. Consequently, this phenomenon often leads to missing out on speech of interest. This issue primarily stems from the limited availability of labeled emotional speech data, impeding the development of robust speaker representations that encompass diverse emotional states. To address this concern, we propose a novel approach employing the CycleGAN framework to serve as a data augmentation method. This technique synthesizes emotional speech segments for each specific speaker while preserving the unique vocal identity. Our experimental findings underscore the effectiveness of incorporating synthetic emotional data into the training process. The models trained using this augmented dataset consistently outperform the baseline models on the task of verifying speakers in emotional speech scenarios, reducing equal error rate by as much as 3.64% relative.
Learn to Sing by Listening: Building Controllable Virtual Singer by Unsupervised Learning from Voice Recordings
The virtual world is being established in which digital humans are created indistinguishable from real humans. Producing their audio-related capabilities is crucial since voice conveys extensive personal characteristics. We aim to create a controllable audio-form virtual singer; however, supervised modeling and controlling all different factors of the singing voice, such as timbre, tempo, pitch, and lyrics, is extremely difficult since accurately labeling all such information needs enormous labor work. In this paper, we propose a framework that could digitize a person's voice by simply "listening" to the clean voice recordings of any content in a fully unsupervised manner and predict singing voices even only using speaking recordings. A variational auto-encoder (VAE) based framework is developed, which leverages a set of pre-trained models to encode the audio as various hidden embeddings representing different factors of the singing voice, and further decodes the embeddings into raw audio. By manipulating the hidden embeddings for different factors, the resulting singing voices can be controlled, and new virtual singers can also be further generated by interpolating between timbres. Evaluations of different types of experiments demonstrate the proposed method's effectiveness. The proposed method is the critical technique for producing the AI choir, which empowered the human-AI symbiotic orchestra in Hong Kong in July 2022.
VocalBench: Benchmarking the Vocal Conversational Abilities for Speech Interaction Models
The rapid advancement of large language models (LLMs) has accelerated the development of multi-modal models capable of vocal communication. Unlike text-based interactions, speech conveys rich and diverse information, including semantic content, acoustic variations, paralanguage cues, and environmental context. However, existing evaluations of speech interaction models predominantly focus on the quality of their textual responses, often overlooking critical aspects of vocal performance and lacking benchmarks with vocal-specific test instances. To address this gap, we propose VocalBench, a comprehensive benchmark designed to evaluate speech interaction models' capabilities in vocal communication. VocalBench comprises 9,400 carefully curated instances across four key dimensions: semantic quality, acoustic performance, conversational abilities, and robustness. It covers 16 fundamental skills essential for effective vocal interaction. Experimental results reveal significant variability in current model capabilities, each exhibiting distinct strengths and weaknesses, and provide valuable insights to guide future research in speech-based interaction systems. Code and evaluation instances are available at https://github.com/SJTU-OmniAgent/VocalBench.
Affective social anthropomorphic intelligent system
Human conversational styles are measured by the sense of humor, personality, and tone of voice. These characteristics have become essential for conversational intelligent virtual assistants. However, most of the state-of-the-art intelligent virtual assistants (IVAs) are failed to interpret the affective semantics of human voices. This research proposes an anthropomorphic intelligent system that can hold a proper human-like conversation with emotion and personality. A voice style transfer method is also proposed to map the attributes of a specific emotion. Initially, the frequency domain data (Mel-Spectrogram) is created by converting the temporal audio wave data, which comprises discrete patterns for audio features such as notes, pitch, rhythm, and melody. A collateral CNN-Transformer-Encoder is used to predict seven different affective states from voice. The voice is also fed parallelly to the deep-speech, an RNN model that generates the text transcription from the spectrogram. Then the transcripted text is transferred to the multi-domain conversation agent using blended skill talk, transformer-based retrieve-and-generate generation strategy, and beam-search decoding, and an appropriate textual response is generated. The system learns an invertible mapping of data to a latent space that can be manipulated and generates a Mel-spectrogram frame based on previous Mel-spectrogram frames to voice synthesize and style transfer. Finally, the waveform is generated using WaveGlow from the spectrogram. The outcomes of the studies we conducted on individual models were auspicious. Furthermore, users who interacted with the system provided positive feedback, demonstrating the system's effectiveness.
On The Differences Between Song and Speech Emotion Recognition: Effect of Feature Sets, Feature Types, and Classifiers
In this paper, we evaluate the different features sets, feature types, and classifiers on both song and speech emotion recognition. Three feature sets: GeMAPS, pyAudioAnalysis, and LibROSA; two feature types: low-level descriptors and high-level statistical functions; and four classifiers: multilayer perceptron, LSTM, GRU, and convolution neural networks are examined on both song and speech data with the same parameter values. The results show no remarkable difference between song and speech data using the same method. In addition, high-level statistical functions of acoustic features gained higher performance scores than low-level descriptors in this classification task. This result strengthens the previous finding on the regression task which reported the advantage use of high-level features.
SingMOS: An extensive Open-Source Singing Voice Dataset for MOS Prediction
In speech generation tasks, human subjective ratings, usually referred to as the opinion score, are considered the "gold standard" for speech quality evaluation, with the mean opinion score (MOS) serving as the primary evaluation metric. Due to the high cost of human annotation, several MOS prediction systems have emerged in the speech domain, demonstrating good performance. These MOS prediction models are trained using annotations from previous speech-related challenges. However, compared to the speech domain, the singing domain faces data scarcity and stricter copyright protections, leading to a lack of high-quality MOS-annotated datasets for singing. To address this, we propose SingMOS, a high-quality and diverse MOS dataset for singing, covering a range of Chinese and Japanese datasets. These synthesized vocals are generated using state-of-the-art models in singing synthesis, conversion, or resynthesis tasks and are rated by professional annotators alongside real vocals. Data analysis demonstrates the diversity and reliability of our dataset. Additionally, we conduct further exploration on SingMOS, providing insights for singing MOS prediction and guidance for the continued expansion of SingMOS.
Beyond Discrete Personas: Personality Modeling Through Journal Intensive Conversations
Large Language Models (LLMs) have significantly improved personalized conversational capabilities. However, existing datasets like Persona Chat, Synthetic Persona Chat, and Blended Skill Talk rely on static, predefined personas. This approach often results in dialogues that fail to capture human personalities' fluid and evolving nature. To overcome these limitations, we introduce a novel dataset with around 400,000 dialogues and a framework for generating personalized conversations using long-form journal entries from Reddit. Our approach clusters journal entries for each author and filters them by selecting the most representative cluster, ensuring that the retained entries best reflect the author's personality. We further refine the data by capturing the Big Five personality traits --openness, conscientiousness, extraversion, agreeableness, and neuroticism --ensuring that dialogues authentically reflect an individual's personality. Using Llama 3 70B, we generate high-quality, personality-rich dialogues grounded in these journal entries. Fine-tuning models on this dataset leads to an 11% improvement in capturing personality traits on average, outperforming existing approaches in generating more coherent and personality-driven dialogues.
Traits Run Deep: Enhancing Personality Assessment via Psychology-Guided LLM Representations and Multimodal Apparent Behaviors
Accurate and reliable personality assessment plays a vital role in many fields, such as emotional intelligence, mental health diagnostics, and personalized education. Unlike fleeting emotions, personality traits are stable, often subconsciously leaked through language, facial expressions, and body behaviors, with asynchronous patterns across modalities. It was hard to model personality semantics with traditional superficial features and seemed impossible to achieve effective cross-modal understanding. To address these challenges, we propose a novel personality assessment framework called \textbf{Traits Run Deep}. It employs \textbf{psychology-informed prompts} to elicit high-level personality-relevant semantic representations. Besides, it devises a \textbf{Text-Centric Trait Fusion Network} that anchors rich text semantics to align and integrate asynchronous signals from other modalities. To be specific, such fusion module includes a Chunk-Wise Projector to decrease dimensionality, a Cross-Modal Connector and a Text Feature Enhancer for effective modality fusion and an ensemble regression head to improve generalization in data-scarce situations. To our knowledge, we are the first to apply personality-specific prompts to guide large language models (LLMs) in extracting personality-aware semantics for improved representation quality. Furthermore, extracting and fusing audio-visual apparent behavior features further improves the accuracy. Experimental results on the AVI validation set have demonstrated the effectiveness of the proposed components, i.e., approximately a 45\% reduction in mean squared error (MSE). Final evaluations on the test set of the AVI Challenge 2025 confirm our method's superiority, ranking first in the Personality Assessment track. The source code will be made available at https://github.com/MSA-LMC/TraitsRunDeep.
STARS: A Unified Framework for Singing Transcription, Alignment, and Refined Style Annotation
Recent breakthroughs in singing voice synthesis (SVS) have heightened the demand for high-quality annotated datasets, yet manual annotation remains prohibitively labor-intensive and resource-intensive. Existing automatic singing annotation (ASA) methods, however, primarily tackle isolated aspects of the annotation pipeline. To address this fundamental challenge, we present STARS, which is, to our knowledge, the first unified framework that simultaneously addresses singing transcription, alignment, and refined style annotation. Our framework delivers comprehensive multi-level annotations encompassing: (1) precise phoneme-audio alignment, (2) robust note transcription and temporal localization, (3) expressive vocal technique identification, and (4) global stylistic characterization including emotion and pace. The proposed architecture employs hierarchical acoustic feature processing across frame, word, phoneme, note, and sentence levels. The novel non-autoregressive local acoustic encoders enable structured hierarchical representation learning. Experimental validation confirms the framework's superior performance across multiple evaluation dimensions compared to existing annotation approaches. Furthermore, applications in SVS training demonstrate that models utilizing STARS-annotated data achieve significantly enhanced perceptual naturalness and precise style control. This work not only overcomes critical scalability challenges in the creation of singing datasets but also pioneers new methodologies for controllable singing voice synthesis. Audio samples are available at https://gwx314.github.io/stars-demo/.
SeniorTalk: A Chinese Conversation Dataset with Rich Annotations for Super-Aged Seniors
While voice technologies increasingly serve aging populations, current systems exhibit significant performance gaps due to inadequate training data capturing elderly-specific vocal characteristics like presbyphonia and dialectal variations. The limited data available on super-aged individuals in existing elderly speech datasets, coupled with overly simple recording styles and annotation dimensions, exacerbates this issue. To address the critical scarcity of speech data from individuals aged 75 and above, we introduce SeniorTalk, a carefully annotated Chinese spoken dialogue dataset. This dataset contains 55.53 hours of speech from 101 natural conversations involving 202 participants, ensuring a strategic balance across gender, region, and age. Through detailed annotation across multiple dimensions, it can support a wide range of speech tasks. We perform extensive experiments on speaker verification, speaker diarization, speech recognition, and speech editing tasks, offering crucial insights for the development of speech technologies targeting this age group.
Singing voice synthesis based on frame-level sequence-to-sequence models considering vocal timing deviation
This paper proposes singing voice synthesis (SVS) based on frame-level sequence-to-sequence models considering vocal timing deviation. In SVS, it is essential to synchronize the timing of singing with temporal structures represented by scores, taking into account that there are differences between actual vocal timing and note start timing. In many SVS systems including our previous work, phoneme-level score features are converted into frame-level ones on the basis of phoneme boundaries obtained by external aligners to take into account vocal timing deviations. Therefore, the sound quality is affected by the aligner accuracy in this system. To alleviate this problem, we introduce an attention mechanism with frame-level features. In the proposed system, the attention mechanism absorbs alignment errors in phoneme boundaries. Additionally, we evaluate the system with pseudo-phoneme-boundaries defined by heuristic rules based on musical scores when there is no aligner. The experimental results show the effectiveness of the proposed system.
Vevo2: Bridging Controllable Speech and Singing Voice Generation via Unified Prosody Learning
Controllable human voice generation, particularly for expressive domains like singing, remains a significant challenge. This paper introduces Vevo2, a unified framework for controllable speech and singing voice generation. To tackle issues like the scarcity of annotated singing data and to enable flexible controllability, Vevo2 introduces two audio tokenizers: (1) a music-notation-free prosody tokenizer that captures prosody and melody from speech, singing, and even instrumental sounds, and (2) a low-frame-rate (12.5 Hz) content-style tokenizer that encodes linguistic content, prosody, and style for both speech and singing, while enabling timbre disentanglement. Vevo2 consists of an auto-regressive (AR) content-style modeling stage, which aims to enable controllability over text, prosody, and style, as well as a flow-matching acoustic modeling stage that allows for timbre control. Particularly, during pre-training of the AR model, we propose both explicit and implicit prosody learning strategies to bridge speech and singing voice. Moreover, to further enhance the AR model's ability to follow text and prosody, we design a multi-objective post-training task that integrates both intelligibility and prosody similarity alignment. Experimental results show that the unified modeling in Vevo2 brings mutual benefits to both speech and singing voice generation. Additionally, Vevo2's effectiveness across a wide range of synthesis, conversion, and editing tasks for both speech and singing further demonstrates its strong generalization ability and versatility. Audio samples are are available at https://versasinger.github.io/.
Everyone-Can-Sing: Zero-Shot Singing Voice Synthesis and Conversion with Speech Reference
We propose a unified framework for Singing Voice Synthesis (SVS) and Conversion (SVC), addressing the limitations of existing approaches in cross-domain SVS/SVC, poor output musicality, and scarcity of singing data. Our framework enables control over multiple aspects, including language content based on lyrics, performance attributes based on a musical score, singing style and vocal techniques based on a selector, and voice identity based on a speech sample. The proposed zero-shot learning paradigm consists of one SVS model and two SVC models, utilizing pre-trained content embeddings and a diffusion-based generator. The proposed framework is also trained on mixed datasets comprising both singing and speech audio, allowing singing voice cloning based on speech reference. Experiments show substantial improvements in timbre similarity and musicality over state-of-the-art baselines, providing insights into other low-data music tasks such as instrumental style transfer. Examples can be found at: everyone-can-sing.github.io.
ChildMandarin: A Comprehensive Mandarin Speech Dataset for Young Children Aged 3-5
Automatic speech recognition (ASR) systems have advanced significantly with models like Whisper, Conformer, and self-supervised frameworks such as Wav2vec 2.0 and HuBERT. However, developing robust ASR models for young children's speech remains challenging due to differences in pronunciation, tone, and pace compared to adult speech. In this paper, we introduce a new Mandarin speech dataset focused on children aged 3 to 5, addressing the scarcity of resources in this area. The dataset comprises 41.25 hours of speech with carefully crafted manual transcriptions, collected from 397 speakers across various provinces in China, with balanced gender representation. We provide a comprehensive analysis of speaker demographics, speech duration distribution and geographic coverage. Additionally, we evaluate ASR performance on models trained from scratch, such as Conformer, as well as fine-tuned pre-trained models like HuBERT and Whisper, where fine-tuning demonstrates significant performance improvements. Furthermore, we assess speaker verification (SV) on our dataset, showing that, despite the challenges posed by the unique vocal characteristics of young children, the dataset effectively supports both ASR and SV tasks. This dataset is a valuable contribution to Mandarin child speech research and holds potential for applications in educational technology and child-computer interaction. It will be open-source and freely available for all academic purposes.
Voice Conversion for Likability Control via Automated Rating of Speech Synthesis Corpora
Perceived voice likability plays a crucial role in various social interactions, such as partner selection and advertising. A system that provides reference likable voice samples tailored to target audiences would enable users to adjust their speaking style and voice quality, facilitating smoother communication. To this end, we propose a voice conversion method that controls the likability of input speech while preserving both speaker identity and linguistic content. To improve training data scalability, we train a likability predictor on an existing voice likability dataset and employ it to automatically annotate a large speech synthesis corpus with likability ratings. Experimental evaluations reveal a significant correlation between the predictor's outputs and human-provided likability ratings. Subjective and objective evaluations further demonstrate that the proposed approach effectively controls voice likability while preserving both speaker identity and linguistic content.
NaturalSpeech 2: Latent Diffusion Models are Natural and Zero-Shot Speech and Singing Synthesizers
Scaling text-to-speech (TTS) to large-scale, multi-speaker, and in-the-wild datasets is important to capture the diversity in human speech such as speaker identities, prosodies, and styles (e.g., singing). Current large TTS systems usually quantize speech into discrete tokens and use language models to generate these tokens one by one, which suffer from unstable prosody, word skipping/repeating issue, and poor voice quality. In this paper, we develop NaturalSpeech 2, a TTS system that leverages a neural audio codec with residual vector quantizers to get the quantized latent vectors and uses a diffusion model to generate these latent vectors conditioned on text input. To enhance the zero-shot capability that is important to achieve diverse speech synthesis, we design a speech prompting mechanism to facilitate in-context learning in the diffusion model and the duration/pitch predictor. We scale NaturalSpeech 2 to large-scale datasets with 44K hours of speech and singing data and evaluate its voice quality on unseen speakers. NaturalSpeech 2 outperforms previous TTS systems by a large margin in terms of prosody/timbre similarity, robustness, and voice quality in a zero-shot setting, and performs novel zero-shot singing synthesis with only a speech prompt. Audio samples are available at https://speechresearch.github.io/naturalspeech2.
Is Style All You Need? Dependencies Between Emotion and GST-based Speaker Recognition
In this work, we study the hypothesis that speaker identity embeddings extracted from speech samples may be used for detection and classification of emotion. In particular, we show that emotions can be effectively identified by learning speaker identities by use of a 1-D Triplet Convolutional Neural Network (CNN) & Global Style Token (GST) scheme (e.g., DeepTalk Network) and reusing the trained speaker recognition model weights to generate features in the emotion classification domain. The automatic speaker recognition (ASR) network is trained with VoxCeleb1, VoxCeleb2, and Librispeech datasets with a triplet training loss function using speaker identity labels. Using an Support Vector Machine (SVM) classifier, we map speaker identity embeddings into discrete emotion categories from the CREMA-D, IEMOCAP, and MSP-Podcast datasets. On the task of speech emotion detection, we obtain 80.8% ACC with acted emotion samples from CREMA-D, 81.2% ACC with semi-natural emotion samples in IEMOCAP, and 66.9% ACC with natural emotion samples in MSP-Podcast. We also propose a novel two-stage hierarchical classifier (HC) approach which demonstrates +2% ACC improvement on CREMA-D emotion samples. Through this work, we seek to convey the importance of holistically modeling intra-user variation within audio samples
Speaker Normalization for Self-supervised Speech Emotion Recognition
Large speech emotion recognition datasets are hard to obtain, and small datasets may contain biases. Deep-net-based classifiers, in turn, are prone to exploit those biases and find shortcuts such as speaker characteristics. These shortcuts usually harm a model's ability to generalize. To address this challenge, we propose a gradient-based adversary learning framework that learns a speech emotion recognition task while normalizing speaker characteristics from the feature representation. We demonstrate the efficacy of our method on both speaker-independent and speaker-dependent settings and obtain new state-of-the-art results on the challenging IEMOCAP dataset.
Automated speech- and text-based classification of neuropsychiatric conditions in a multidiagnostic setting
Speech patterns have been identified as potential diagnostic markers for neuropsychiatric conditions. However, most studies only compare a single clinical group to healthy controls, whereas clinical practice often requires differentiating between multiple potential diagnoses (multiclass settings). To address this, we assembled a dataset of repeated recordings from 420 participants (67 with major depressive disorder, 106 with schizophrenia and 46 with autism, as well as matched controls), and tested the performance of a range of conventional machine learning models and advanced Transformer models on both binary and multiclass classification, based on voice and text features. While binary models performed comparably to previous research (F1 scores between 0.54-0.75 for autism spectrum disorder, ASD; 0.67-0.92 for major depressive disorder, MDD; and 0.71-0.83 for schizophrenia); when differentiating between multiple diagnostic groups performance decreased markedly (F1 scores between 0.35-0.44 for ASD, 0.57-0.75 for MDD, 0.15-0.66 for schizophrenia, and 0.38-0.52 macro F1). Combining voice and text-based models yielded increased performance, suggesting that they capture complementary diagnostic information. Our results indicate that models trained on binary classification may learn to rely on markers of generic differences between clinical and non-clinical populations, or markers of clinical features that overlap across conditions, rather than identifying markers specific to individual conditions. We provide recommendations for future research in the field, suggesting increased focus on developing larger transdiagnostic datasets that include more fine-grained clinical features, and that can support the development of models that better capture the complexity of neuropsychiatric conditions and naturalistic diagnostic assessment.
Deep Learning for Speaker Identification: Architectural Insights from AB-1 Corpus Analysis and Performance Evaluation
In the fields of security systems, forensic investigations, and personalized services, the importance of speech as a fundamental human input outweighs text-based interactions. This research delves deeply into the complex field of Speaker Identification (SID), examining its essential components and emphasising Mel Spectrogram and Mel Frequency Cepstral Coefficients (MFCC) for feature extraction. Moreover, this study evaluates six slightly distinct model architectures using extensive analysis to evaluate their performance, with hyperparameter tuning applied to the best-performing model. This work performs a linguistic analysis to verify accent and gender accuracy, in addition to bias evaluation within the AB-1 Corpus dataset.
GTSinger: A Global Multi-Technique Singing Corpus with Realistic Music Scores for All Singing Tasks
The scarcity of high-quality and multi-task singing datasets significantly hinders the development of diverse controllable and personalized singing tasks, as existing singing datasets suffer from low quality, limited diversity of languages and singers, absence of multi-technique information and realistic music scores, and poor task suitability. To tackle these problems, we present GTSinger, a large Global, multi-Technique, free-to-use, high-quality singing corpus with realistic music scores, designed for all singing tasks, along with its benchmarks. Particularly, (1) we collect 80.59 hours of high-quality singing voices, forming the largest recorded singing dataset; (2) 20 professional singers across nine widely spoken languages offer diverse timbres and styles; (3) we provide controlled comparison and phoneme-level annotations of six commonly used singing techniques, helping technique modeling and control; (4) GTSinger offers realistic music scores, assisting real-world musical composition; (5) singing voices are accompanied by manual phoneme-to-audio alignments, global style labels, and 16.16 hours of paired speech for various singing tasks. Moreover, to facilitate the use of GTSinger, we conduct four benchmark experiments: technique-controllable singing voice synthesis, technique recognition, style transfer, and speech-to-singing conversion. The corpus and demos can be found at http://gtsinger.github.io. We provide the dataset and the code for processing data and conducting benchmarks at https://huggingface.co/datasets/GTSinger/GTSinger and https://github.com/GTSinger/GTSinger.
Scream Detection in Heavy Metal Music
Harsh vocal effects such as screams or growls are far more common in heavy metal vocals than the traditionally sung vocal. This paper explores the problem of detection and classification of extreme vocal techniques in heavy metal music, specifically the identification of different scream techniques. We investigate the suitability of various feature representations, including cepstral, spectral, and temporal features as input representations for classification. The main contributions of this work are (i) a manually annotated dataset comprised of over 280 minutes of heavy metal songs of various genres with a statistical analysis of occurrences of different extreme vocal techniques in heavy metal music, and (ii) a systematic study of different input feature representations for the classification of heavy metal vocals
EXPRESSO: A Benchmark and Analysis of Discrete Expressive Speech Resynthesis
Recent work has shown that it is possible to resynthesize high-quality speech based, not on text, but on low bitrate discrete units that have been learned in a self-supervised fashion and can therefore capture expressive aspects of speech that are hard to transcribe (prosody, voice styles, non-verbal vocalization). The adoption of these methods is still limited by the fact that most speech synthesis datasets are read, severely limiting spontaneity and expressivity. Here, we introduce Expresso, a high-quality expressive speech dataset for textless speech synthesis that includes both read speech and improvised dialogues rendered in 26 spontaneous expressive styles. We illustrate the challenges and potentials of this dataset with an expressive resynthesis benchmark where the task is to encode the input in low-bitrate units and resynthesize it in a target voice while preserving content and style. We evaluate resynthesis quality with automatic metrics for different self-supervised discrete encoders, and explore tradeoffs between quality, bitrate and invariance to speaker and style. All the dataset, evaluation metrics and baseline models are open source
Do LLMs Have Distinct and Consistent Personality? TRAIT: Personality Testset designed for LLMs with Psychometrics
The idea of personality in descriptive psychology, traditionally defined through observable behavior, has now been extended to Large Language Models (LLMs) to better understand their behavior. This raises a question: do LLMs exhibit distinct and consistent personality traits, similar to humans? Existing self-assessment personality tests, while applicable, lack the necessary validity and reliability for precise personality measurements. To address this, we introduce TRAIT, a new tool consisting of 8K multi-choice questions designed to assess the personality of LLMs with validity and reliability. TRAIT is built on the psychometrically validated human questionnaire, Big Five Inventory (BFI) and Short Dark Triad (SD-3), enhanced with the ATOMIC10X knowledge graph for testing personality in a variety of real scenarios. TRAIT overcomes the reliability and validity issues when measuring personality of LLM with self-assessment, showing the highest scores across three metrics: refusal rate, prompt sensitivity, and option order sensitivity. It reveals notable insights into personality of LLM: 1) LLMs exhibit distinct and consistent personality, which is highly influenced by their training data (i.e., data used for alignment tuning), and 2) current prompting techniques have limited effectiveness in eliciting certain traits, such as high psychopathy or low conscientiousness, suggesting the need for further research in this direction.
LLMs Simulate Big Five Personality Traits: Further Evidence
An empirical investigation into the simulation of the Big Five personality traits by large language models (LLMs), namely Llama2, GPT4, and Mixtral, is presented. We analyze the personality traits simulated by these models and their stability. This contributes to the broader understanding of the capabilities of LLMs to simulate personality traits and the respective implications for personalized human-computer interaction.
Vevo: Controllable Zero-Shot Voice Imitation with Self-Supervised Disentanglement
The imitation of voice, targeted on specific speech attributes such as timbre and speaking style, is crucial in speech generation. However, existing methods rely heavily on annotated data, and struggle with effectively disentangling timbre and style, leading to challenges in achieving controllable generation, especially in zero-shot scenarios. To address these issues, we propose Vevo, a versatile zero-shot voice imitation framework with controllable timbre and style. Vevo operates in two core stages: (1) Content-Style Modeling: Given either text or speech's content tokens as input, we utilize an autoregressive transformer to generate the content-style tokens, which is prompted by a style reference; (2) Acoustic Modeling: Given the content-style tokens as input, we employ a flow-matching transformer to produce acoustic representations, which is prompted by a timbre reference. To obtain the content and content-style tokens of speech, we design a fully self-supervised approach that progressively decouples the timbre, style, and linguistic content of speech. Specifically, we adopt VQ-VAE as the tokenizer for the continuous hidden features of HuBERT. We treat the vocabulary size of the VQ-VAE codebook as the information bottleneck, and adjust it carefully to obtain the disentangled speech representations. Solely self-supervised trained on 60K hours of audiobook speech data, without any fine-tuning on style-specific corpora, Vevo matches or surpasses existing methods in accent and emotion conversion tasks. Additionally, Vevo's effectiveness in zero-shot voice conversion and text-to-speech tasks further demonstrates its strong generalization and versatility. Audio samples are available at https://versavoice.github.io.
On feature representations for marmoset vocal communication analysis
The acoustic analysis of marmoset (Callithrix jacchus) vocalizations is often used to understand the evolutionary origins of human language. Currently, the analysis is largely carried out in a manual or semi-manual manner. Thus, there is a need to develop automatic call analysis methods. In that direction, research has been limited to the development of analysis methods with small amounts of data or for specific scenarios. Furthermore, there is lack of prior knowledge about what type of information is relevant for different call analysis tasks. To address these issues, as a first step, this paper explores different feature representation methods, namely, HCTSA-based hand-crafted features Catch22, pre-trained self supervised learning (SSL) based features extracted from neural networks trained on human speech and end-to-end acoustic modeling for call-type classification, caller identification and caller sex identification. Through an investigation on three different marmoset call datasets, we demonstrate that SSL-based feature representations and end-to-end acoustic modeling tend to lead to better systems than Catch22 features for call-type and caller classification. Furthermore, we also highlight the impact of signal bandwidth on the obtained task performances.
Singing Voice Data Scaling-up: An Introduction to ACE-Opencpop and KiSing-v2
In singing voice synthesis (SVS), generating singing voices from musical scores faces challenges due to limited data availability, a constraint less common in text-to-speech (TTS). This study proposes a new approach to address this data scarcity. We utilize an existing singing voice synthesizer for data augmentation and apply precise manual tuning to reduce unnatural voice synthesis. Our development of two extensive singing voice corpora, ACE-Opencpop and KiSing-v2, facilitates large-scale, multi-singer voice synthesis. Utilizing pre-trained models derived from these corpora, we achieve notable improvements in voice quality, evident in both in-domain and out-of-domain scenarios. The corpora, pre-trained models, and their related training recipes are publicly available at Muskits-ESPnet (https://github.com/espnet/espnet).
StyleSinger: Style Transfer for Out-of-Domain Singing Voice Synthesis
Style transfer for out-of-domain (OOD) singing voice synthesis (SVS) focuses on generating high-quality singing voices with unseen styles (such as timbre, emotion, pronunciation, and articulation skills) derived from reference singing voice samples. However, the endeavor to model the intricate nuances of singing voice styles is an arduous task, as singing voices possess a remarkable degree of expressiveness. Moreover, existing SVS methods encounter a decline in the quality of synthesized singing voices in OOD scenarios, as they rest upon the assumption that the target vocal attributes are discernible during the training phase. To overcome these challenges, we propose StyleSinger, the first singing voice synthesis model for zero-shot style transfer of out-of-domain reference singing voice samples. StyleSinger incorporates two critical approaches for enhanced effectiveness: 1) the Residual Style Adaptor (RSA) which employs a residual quantization module to capture diverse style characteristics in singing voices, and 2) the Uncertainty Modeling Layer Normalization (UMLN) to perturb the style attributes within the content representation during the training phase and thus improve the model generalization. Our extensive evaluations in zero-shot style transfer undeniably establish that StyleSinger outperforms baseline models in both audio quality and similarity to the reference singing voice samples. Access to singing voice samples can be found at https://stylesinger.github.io/.
SingMOS-Pro: An Comprehensive Benchmark for Singing Quality Assessment
Singing voice generation progresses rapidly, yet evaluating singing quality remains a critical challenge. Human subjective assessment, typically in the form of listening tests, is costly and time consuming, while existing objective metrics capture only limited perceptual aspects. In this work, we introduce SingMOS-Pro, a dataset for automatic singing quality assessment. Building on our preview version SingMOS, which provides only overall ratings, SingMOS-Pro expands annotations of the additional part to include lyrics, melody, and overall quality, offering broader coverage and greater diversity. The dataset contains 7,981 singing clips generated by 41 models across 12 datasets, spanning from early systems to recent advances. Each clip receives at least five ratings from professional annotators, ensuring reliability and consistency. Furthermore, we explore how to effectively utilize MOS data annotated under different standards and benchmark several widely used evaluation methods from related tasks on SingMOS-Pro, establishing strong baselines and practical references for future research. The dataset can be accessed at https://huggingface.co/datasets/TangRain/SingMOS-Pro.
Voicing Personas: Rewriting Persona Descriptions into Style Prompts for Controllable Text-to-Speech
In this paper, we propose a novel framework to control voice style in prompt-based, controllable text-to-speech systems by leveraging textual personas as voice style prompts. We present two persona rewriting strategies to transform generic persona descriptions into speech-oriented prompts, enabling fine-grained manipulation of prosodic attributes such as pitch, emotion, and speaking rate. Experimental results demonstrate that our methods enhance the naturalness, clarity, and consistency of synthesized speech. Finally, we analyze implicit social biases introduced by LLM-based rewriting, with a focus on gender. We underscore voice style as a crucial factor for persona-driven AI dialogue systems.
Audio-Aware Large Language Models as Judges for Speaking Styles
Audio-aware large language models (ALLMs) can understand the textual and non-textual information in the audio input. In this paper, we explore using ALLMs as an automatic judge to assess the speaking styles of speeches. We use ALLM judges to evaluate the speeches generated by SLMs on two tasks: voice style instruction following and role-playing. The speaking style we consider includes emotion, volume, speaking pace, word emphasis, pitch control, and non-verbal elements. We use four spoken language models (SLMs) to complete the two tasks and use humans and ALLMs to judge the SLMs' responses. We compare two ALLM judges, GPT-4o-audio and Gemini-2.5-pro, with human evaluation results and show that the agreement between Gemini and human judges is comparable to the agreement between human evaluators. These promising results show that ALLMs can be used as a judge to evaluate SLMs. Our results also reveal that current SLMs, even GPT-4o-audio, still have room for improvement in controlling the speaking style and generating natural dialogues.
A unified one-shot prosody and speaker conversion system with self-supervised discrete speech units
We present a unified system to realize one-shot voice conversion (VC) on the pitch, rhythm, and speaker attributes. Existing works generally ignore the correlation between prosody and language content, leading to the degradation of naturalness in converted speech. Additionally, the lack of proper language features prevents these systems from accurately preserving language content after conversion. To address these issues, we devise a cascaded modular system leveraging self-supervised discrete speech units as language representation. These discrete units provide duration information essential for rhythm modeling. Our system first extracts utterance-level prosody and speaker representations from the raw waveform. Given the prosody representation, a prosody predictor estimates pitch, energy, and duration for each discrete unit in the utterance. A synthesizer further reconstructs speech based on the predicted prosody, speaker representation, and discrete units. Experiments show that our system outperforms previous approaches in naturalness, intelligibility, speaker transferability, and prosody transferability. Code and samples are publicly available.
DelightfulTTS: The Microsoft Speech Synthesis System for Blizzard Challenge 2021
This paper describes the Microsoft end-to-end neural text to speech (TTS) system: DelightfulTTS for Blizzard Challenge 2021. The goal of this challenge is to synthesize natural and high-quality speech from text, and we approach this goal in two perspectives: The first is to directly model and generate waveform in 48 kHz sampling rate, which brings higher perception quality than previous systems with 16 kHz or 24 kHz sampling rate; The second is to model the variation information in speech through a systematic design, which improves the prosody and naturalness. Specifically, for 48 kHz modeling, we predict 16 kHz mel-spectrogram in acoustic model, and propose a vocoder called HiFiNet to directly generate 48 kHz waveform from predicted 16 kHz mel-spectrogram, which can better trade off training efficiency, modelling stability and voice quality. We model variation information systematically from both explicit (speaker ID, language ID, pitch and duration) and implicit (utterance-level and phoneme-level prosody) perspectives: 1) For speaker and language ID, we use lookup embedding in training and inference; 2) For pitch and duration, we extract the values from paired text-speech data in training and use two predictors to predict the values in inference; 3) For utterance-level and phoneme-level prosody, we use two reference encoders to extract the values in training, and use two separate predictors to predict the values in inference. Additionally, we introduce an improved Conformer block to better model the local and global dependency in acoustic model. For task SH1, DelightfulTTS achieves 4.17 mean score in MOS test and 4.35 in SMOS test, which indicates the effectiveness of our proposed system
EmoNet-Voice: A Fine-Grained, Expert-Verified Benchmark for Speech Emotion Detection
The advancement of text-to-speech and audio generation models necessitates robust benchmarks for evaluating the emotional understanding capabilities of AI systems. Current speech emotion recognition (SER) datasets often exhibit limitations in emotional granularity, privacy concerns, or reliance on acted portrayals. This paper introduces EmoNet-Voice, a new resource for speech emotion detection, which includes EmoNet-Voice Big, a large-scale pre-training dataset (featuring over 4,500 hours of speech across 11 voices, 40 emotions, and 4 languages), and EmoNet-Voice Bench, a novel benchmark dataset with human expert annotations. EmoNet-Voice is designed to evaluate SER models on a fine-grained spectrum of 40 emotion categories with different levels of intensities. Leveraging state-of-the-art voice generation, we curated synthetic audio snippets simulating actors portraying scenes designed to evoke specific emotions. Crucially, we conducted rigorous validation by psychology experts who assigned perceived intensity labels. This synthetic, privacy-preserving approach allows for the inclusion of sensitive emotional states often absent in existing datasets. Lastly, we introduce Empathic Insight Voice models that set a new standard in speech emotion recognition with high agreement with human experts. Our evaluations across the current model landscape exhibit valuable findings, such as high-arousal emotions like anger being much easier to detect than low-arousal states like concentration.
TCSinger: Zero-Shot Singing Voice Synthesis with Style Transfer and Multi-Level Style Control
Zero-shot singing voice synthesis (SVS) with style transfer and style control aims to generate high-quality singing voices with unseen timbres and styles (including singing method, emotion, rhythm, technique, and pronunciation) from audio and text prompts. However, the multifaceted nature of singing styles poses a significant challenge for effective modeling, transfer, and control. Furthermore, current SVS models often fail to generate singing voices rich in stylistic nuances for unseen singers. To address these challenges, we introduce TCSinger, the first zero-shot SVS model for style transfer across cross-lingual speech and singing styles, along with multi-level style control. Specifically, TCSinger proposes three primary modules: 1) the clustering style encoder employs a clustering vector quantization model to stably condense style information into a compact latent space; 2) the Style and Duration Language Model (S\&D-LM) concurrently predicts style information and phoneme duration, which benefits both; 3) the style adaptive decoder uses a novel mel-style adaptive normalization method to generate singing voices with enhanced details. Experimental results show that TCSinger outperforms all baseline models in synthesis quality, singer similarity, and style controllability across various tasks, including zero-shot style transfer, multi-level style control, cross-lingual style transfer, and speech-to-singing style transfer. Singing voice samples can be accessed at https://tcsinger.github.io/.
KunquDB: An Attempt for Speaker Verification in the Chinese Opera Scenario
This work aims to promote Chinese opera research in both musical and speech domains, with a primary focus on overcoming the data limitations. We introduce KunquDB, a relatively large-scale, well-annotated audio-visual dataset comprising 339 speakers and 128 hours of content. Originating from the Kunqu Opera Art Canon (Kunqu yishu dadian), KunquDB is meticulously structured by dialogue lines, providing explicit annotations including character names, speaker names, gender information, vocal manner classifications, and accompanied by preliminary text transcriptions. KunquDB provides a versatile foundation for role-centric acoustic studies and advancements in speech-related research, including Automatic Speaker Verification (ASV). Beyond enriching opera research, this dataset bridges the gap between artistic expression and technological innovation. Pioneering the exploration of ASV in Chinese opera, we construct four test trials considering two distinct vocal manners in opera voices: stage speech (ST) and singing (S). Implementing domain adaptation methods effectively mitigates domain mismatches induced by these vocal manner variations while there is still room for further improvement as a benchmark.
DreamVoice: Text-Guided Voice Conversion
Generative voice technologies are rapidly evolving, offering opportunities for more personalized and inclusive experiences. Traditional one-shot voice conversion (VC) requires a target recording during inference, limiting ease of usage in generating desired voice timbres. Text-guided generation offers an intuitive solution to convert voices to desired "DreamVoices" according to the users' needs. Our paper presents two major contributions to VC technology: (1) DreamVoiceDB, a robust dataset of voice timbre annotations for 900 speakers from VCTK and LibriTTS. (2) Two text-guided VC methods: DreamVC, an end-to-end diffusion-based text-guided VC model; and DreamVG, a versatile text-to-voice generation plugin that can be combined with any one-shot VC models. The experimental results demonstrate that our proposed methods trained on the DreamVoiceDB dataset generate voice timbres accurately aligned with the text prompt and achieve high-quality VC.
A Variational Framework for Improving Naturalness in Generative Spoken Language Models
The success of large language models in text processing has inspired their adaptation to speech modeling. However, since speech is continuous and complex, it is often discretized for autoregressive modeling. Speech tokens derived from self-supervised models (known as semantic tokens) typically focus on the linguistic aspects of speech but neglect prosodic information. As a result, models trained on these tokens can generate speech with reduced naturalness. Existing approaches try to fix this by adding pitch features to the semantic tokens. However, pitch alone cannot fully represent the range of paralinguistic attributes, and selecting the right features requires careful hand-engineering. To overcome this, we propose an end-to-end variational approach that automatically learns to encode these continuous speech attributes to enhance the semantic tokens. Our approach eliminates the need for manual extraction and selection of paralinguistic features. Moreover, it produces preferred speech continuations according to human raters. Code, samples and models are available at https://github.com/b04901014/vae-gslm.
VoiceShop: A Unified Speech-to-Speech Framework for Identity-Preserving Zero-Shot Voice Editing
We present VoiceShop, a novel speech-to-speech framework that can modify multiple attributes of speech, such as age, gender, accent, and speech style, in a single forward pass while preserving the input speaker's timbre. Previous works have been constrained to specialized models that can only edit these attributes individually and suffer from the following pitfalls: the magnitude of the conversion effect is weak, there is no zero-shot capability for out-of-distribution speakers, or the synthesized outputs exhibit undesirable timbre leakage. Our work proposes solutions for each of these issues in a simple modular framework based on a conditional diffusion backbone model with optional normalizing flow-based and sequence-to-sequence speaker attribute-editing modules, whose components can be combined or removed during inference to meet a wide array of tasks without additional model finetuning. Audio samples are available at https://voiceshopai.github.io.
The Singing Voice Conversion Challenge 2025: From Singer Identity Conversion To Singing Style Conversion
We present the findings of the latest iteration of the Singing Voice Conversion Challenge, a scientific event aiming to compare and understand different voice conversion systems in a controlled environment. Compared to previous iterations which solely focused on converting the singer identity, this year we also focused on converting the singing style of the singer. To create a controlled environment and thorough evaluations, we developed a new challenge database, introduced two tasks, open-sourced baselines, and conducted large-scale crowd-sourced listening tests and objective evaluations. The challenge was ran for two months and in total we evaluated 26 different systems. The results of the large-scale crowd-sourced listening test showed that top systems had comparable singer identity scores to ground truth samples. However, modeling the singing style and consequently achieving high naturalness still remains a challenge in this task, primarily due to the difficulty in modeling dynamic information in breathy, glissando, and vibrato singing styles.
Deep Neural Network for Automatic Assessment of Dysphonia
The purpose of this work is to contribute to the understanding and improvement of deep neural networks in the field of vocal quality. A neural network that predicts the perceptual assessment of overall severity of dysphonia in GRBAS scale is obtained. The design focuses on amplitude perturbations, frequency perturbations, and noise. Results are compared with performance of human raters on the same data. Both the precision and the mean absolute error of the neural network are close to human intra-rater performance, exceeding inter-rater performance.
From Personas to Talks: Revisiting the Impact of Personas on LLM-Synthesized Emotional Support Conversations
The rapid advancement of Large Language Models (LLMs) has revolutionized the generation of emotional support conversations (ESC), offering scalable solutions with reduced costs and enhanced data privacy. This paper explores the role of personas in the creation of ESC by LLMs. Our research utilizes established psychological frameworks to measure and infuse persona traits into LLMs, which then generate dialogues in the emotional support scenario. We conduct extensive evaluations to understand the stability of persona traits in dialogues, examining shifts in traits post-generation and their impact on dialogue quality and strategy distribution. Experimental results reveal several notable findings: 1) LLMs can infer core persona traits, 2) subtle shifts in emotionality and extraversion occur, influencing the dialogue dynamics, and 3) the application of persona traits modifies the distribution of emotional support strategies, enhancing the relevance and empathetic quality of the responses. These findings highlight the potential of persona-driven LLMs in crafting more personalized, empathetic, and effective emotional support dialogues, which has significant implications for the future design of AI-driven emotional support systems.
Phonological Level wav2vec2-based Mispronunciation Detection and Diagnosis Method
The automatic identification and analysis of pronunciation errors, known as Mispronunciation Detection and Diagnosis (MDD) plays a crucial role in Computer Aided Pronunciation Learning (CAPL) tools such as Second-Language (L2) learning or speech therapy applications. Existing MDD methods relying on analysing phonemes can only detect categorical errors of phonemes that have an adequate amount of training data to be modelled. With the unpredictable nature of the pronunciation errors of non-native or disordered speakers and the scarcity of training datasets, it is unfeasible to model all types of mispronunciations. Moreover, phoneme-level MDD approaches have a limited ability to provide detailed diagnostic information about the error made. In this paper, we propose a low-level MDD approach based on the detection of speech attribute features. Speech attribute features break down phoneme production into elementary components that are directly related to the articulatory system leading to more formative feedback to the learner. We further propose a multi-label variant of the Connectionist Temporal Classification (CTC) approach to jointly model the non-mutually exclusive speech attributes using a single model. The pre-trained wav2vec2 model was employed as a core model for the speech attribute detector. The proposed method was applied to L2 speech corpora collected from English learners from different native languages. The proposed speech attribute MDD method was further compared to the traditional phoneme-level MDD and achieved a significantly lower False Acceptance Rate (FAR), False Rejection Rate (FRR), and Diagnostic Error Rate (DER) over all speech attributes compared to the phoneme-level equivalent.
Adversarial Approximate Inference for Speech to Electroglottograph Conversion
Speech produced by human vocal apparatus conveys substantial non-semantic information including the gender of the speaker, voice quality, affective state, abnormalities in the vocal apparatus etc. Such information is attributed to the properties of the voice source signal, which is usually estimated from the speech signal. However, most of the source estimation techniques depend heavily on the goodness of the model assumptions and are prone to noise. A popular alternative is to indirectly obtain the source information through the Electroglottographic (EGG) signal that measures the electrical admittance around the vocal folds using dedicated hardware. In this paper, we address the problem of estimating the EGG signal directly from the speech signal, devoid of any hardware. Sampling from the intractable conditional distribution of the EGG signal given the speech signal is accomplished through optimization of an evidence lower bound. This is constructed via minimization of the KL-divergence between the true and the approximated posteriors of a latent variable learned using a deep neural auto-encoder that serves an informative prior. We demonstrate the efficacy of the method at generating the EGG signal by conducting several experiments on datasets comprising multiple speakers, voice qualities, noise settings and speech pathologies. The proposed method is evaluated on many benchmark metrics and is found to agree with the gold standard while proving better than the state-of-the-art algorithms on a few tasks such as epoch extraction.
Vocalsound: A Dataset for Improving Human Vocal Sounds Recognition
Recognizing human non-speech vocalizations is an important task and has broad applications such as automatic sound transcription and health condition monitoring. However, existing datasets have a relatively small number of vocal sound samples or noisy labels. As a consequence, state-of-the-art audio event classification models may not perform well in detecting human vocal sounds. To support research on building robust and accurate vocal sound recognition, we have created a VocalSound dataset consisting of over 21,000 crowdsourced recordings of laughter, sighs, coughs, throat clearing, sneezes, and sniffs from 3,365 unique subjects. Experiments show that the vocal sound recognition performance of a model can be significantly improved by 41.9% by adding VocalSound dataset to an existing dataset as training material. In addition, different from previous datasets, the VocalSound dataset contains meta information such as speaker age, gender, native language, country, and health condition.
GOAT-SLM: A Spoken Language Model with Paralinguistic and Speaker Characteristic Awareness
Recent advances in end-to-end spoken language models (SLMs) have significantly improved the ability of AI systems to engage in natural spoken interactions. However, most existing models treat speech merely as a vehicle for linguistic content, often overlooking the rich paralinguistic and speaker characteristic cues embedded in human speech, such as dialect, age, emotion, and non-speech vocalizations. In this work, we introduce GOAT-SLM, a novel spoken language model with paralinguistic and speaker characteristic awareness, designed to extend spoken language modeling beyond text semantics. GOAT-SLM adopts a dual-modality head architecture that decouples linguistic modeling from acoustic realization, enabling robust language understanding while supporting expressive and adaptive speech generation. To enhance model efficiency and versatility, we propose a modular, staged training strategy that progressively aligns linguistic, paralinguistic, and speaker characteristic information using large-scale speech-text corpora. Experimental results on TELEVAL, a multi-dimensional evaluation benchmark, demonstrate that GOAT-SLM achieves well-balanced performance across both semantic and non-semantic tasks, and outperforms existing open-source models in handling emotion, dialectal variation, and age-sensitive interactions. This work highlights the importance of modeling beyond linguistic content and advances the development of more natural, adaptive, and socially aware spoken language systems.
Towards achieving robust universal neural vocoding
This paper explores the potential universality of neural vocoders. We train a WaveRNN-based vocoder on 74 speakers coming from 17 languages. This vocoder is shown to be capable of generating speech of consistently good quality (98% relative mean MUSHRA when compared to natural speech) regardless of whether the input spectrogram comes from a speaker or style seen during training or from an out-of-domain scenario when the recording conditions are studio-quality. When the recordings show significant changes in quality, or when moving towards non-speech vocalizations or singing, the vocoder still significantly outperforms speaker-dependent vocoders, but operates at a lower average relative MUSHRA of 75%. These results are shown to be consistent across languages, regardless of them being seen during training (e.g. English or Japanese) or unseen (e.g. Wolof, Swahili, Ahmaric).
Opencpop: A High-Quality Open Source Chinese Popular Song Corpus for Singing Voice Synthesis
This paper introduces Opencpop, a publicly available high-quality Mandarin singing corpus designed for singing voice synthesis (SVS). The corpus consists of 100 popular Mandarin songs performed by a female professional singer. Audio files are recorded with studio quality at a sampling rate of 44,100 Hz and the corresponding lyrics and musical scores are provided. All singing recordings have been phonetically annotated with phoneme boundaries and syllable (note) boundaries. To demonstrate the reliability of the released data and to provide a baseline for future research, we built baseline deep neural network-based SVS models and evaluated them with both objective metrics and subjective mean opinion score (MOS) measure. Experimental results show that the best SVS model trained on our database achieves 3.70 MOS, indicating the reliability of the provided corpus. Opencpop is released to the open-source community WeNet, and the corpus, as well as synthesized demos, can be found on the project homepage.
This Paper Had the Smartest Reviewers -- Flattery Detection Utilising an Audio-Textual Transformer-Based Approach
Flattery is an important aspect of human communication that facilitates social bonding, shapes perceptions, and influences behavior through strategic compliments and praise, leveraging the power of speech to build rapport effectively. Its automatic detection can thus enhance the naturalness of human-AI interactions. To meet this need, we present a novel audio textual dataset comprising 20 hours of speech and train machine learning models for automatic flattery detection. In particular, we employ pretrained AST, Wav2Vec2, and Whisper models for the speech modality, and Whisper TTS models combined with a RoBERTa text classifier for the textual modality. Subsequently, we build a multimodal classifier by combining text and audio representations. Evaluation on unseen test data demonstrates promising results, with Unweighted Average Recall scores reaching 82.46% in audio-only experiments, 85.97% in text-only experiments, and 87.16% using a multimodal approach.
CONTUNER: Singing Voice Beautifying with Pitch and Expressiveness Condition
Singing voice beautifying is a novel task that has application value in people's daily life, aiming to correct the pitch of the singing voice and improve the expressiveness without changing the original timbre and content. Existing methods rely on paired data or only concentrate on the correction of pitch. However, professional songs and amateur songs from the same person are hard to obtain, and singing voice beautifying doesn't only contain pitch correction but other aspects like emotion and rhythm. Since we propose a fast and high-fidelity singing voice beautifying system called ConTuner, a diffusion model combined with the modified condition to generate the beautified Mel-spectrogram, where the modified condition is composed of optimized pitch and expressiveness. For pitch correction, we establish a mapping relationship from MIDI, spectrum envelope to pitch. To make amateur singing more expressive, we propose the expressiveness enhancer in the latent space to convert amateur vocal tone to professional. ConTuner achieves a satisfactory beautification effect on both Mandarin and English songs. Ablation study demonstrates that the expressiveness enhancer and generator-based accelerate method in ConTuner are effective.
DiffVox: A Differentiable Model for Capturing and Analysing Professional Effects Distributions
This study introduces a novel and interpretable model, DiffVox, for matching vocal effects in music production. DiffVox, short for ``Differentiable Vocal Fx", integrates parametric equalisation, dynamic range control, delay, and reverb with efficient differentiable implementations to enable gradient-based optimisation for parameter estimation. Vocal presets are retrieved from two datasets, comprising 70 tracks from MedleyDB and 365 tracks from a private collection. Analysis of parameter correlations highlights strong relationships between effects and parameters, such as the high-pass and low-shelf filters often behaving together to shape the low end, and the delay time correlates with the intensity of the delayed signals. Principal component analysis reveals connections to McAdams' timbre dimensions, where the most crucial component modulates the perceived spaciousness while the secondary components influence spectral brightness. Statistical testing confirms the non-Gaussian nature of the parameter distribution, highlighting the complexity of the vocal effects space. These initial findings on the parameter distributions set the foundation for future research in vocal effects modelling and automatic mixing. Our source code and datasets are accessible at https://github.com/SonyResearch/diffvox.
Emotional Prosody Control for Speech Generation
Machine-generated speech is characterized by its limited or unnatural emotional variation. Current text to speech systems generates speech with either a flat emotion, emotion selected from a predefined set, average variation learned from prosody sequences in training data or transferred from a source style. We propose a text to speech(TTS) system, where a user can choose the emotion of generated speech from a continuous and meaningful emotion space (Arousal-Valence space). The proposed TTS system can generate speech from the text in any speaker's style, with fine control of emotion. We show that the system works on emotion unseen during training and can scale to previously unseen speakers given his/her speech sample. Our work expands the horizon of the state-of-the-art FastSpeech2 backbone to a multi-speaker setting and gives it much-coveted continuous (and interpretable) affective control, without any observable degradation in the quality of the synthesized speech.
Prosody-controllable spontaneous TTS with neural HMMs
Spontaneous speech has many affective and pragmatic functions that are interesting and challenging to model in TTS. However, the presence of reduced articulation, fillers, repetitions, and other disfluencies in spontaneous speech make the text and acoustics less aligned than in read speech, which is problematic for attention-based TTS. We propose a TTS architecture that can rapidly learn to speak from small and irregular datasets, while also reproducing the diversity of expressive phenomena present in spontaneous speech. Specifically, we add utterance-level prosody control to an existing neural HMM-based TTS system which is capable of stable, monotonic alignments for spontaneous speech. We objectively evaluate control accuracy and perform perceptual tests that demonstrate that prosody control does not degrade synthesis quality. To exemplify the power of combining prosody control and ecologically valid data for reproducing intricate spontaneous speech phenomena, we evaluate the system's capability of synthesizing two types of creaky voice. Audio samples are available at https://www.speech.kth.se/tts-demos/prosodic-hmm/
Zero-shot Voice Conversion with Diffusion Transformers
Zero-shot voice conversion aims to transform a source speech utterance to match the timbre of a reference speech from an unseen speaker. Traditional approaches struggle with timbre leakage, insufficient timbre representation, and mismatches between training and inference tasks. We propose Seed-VC, a novel framework that addresses these issues by introducing an external timbre shifter during training to perturb the source speech timbre, mitigating leakage and aligning training with inference. Additionally, we employ a diffusion transformer that leverages the entire reference speech context, capturing fine-grained timbre features through in-context learning. Experiments demonstrate that Seed-VC outperforms strong baselines like OpenVoice and CosyVoice, achieving higher speaker similarity and lower word error rates in zero-shot voice conversion tasks. We further extend our approach to zero-shot singing voice conversion by incorporating fundamental frequency (F0) conditioning, resulting in comparative performance to current state-of-the-art methods. Our findings highlight the effectiveness of Seed-VC in overcoming core challenges, paving the way for more accurate and versatile voice conversion systems.
SingVisio: Visual Analytics of Diffusion Model for Singing Voice Conversion
In this study, we present SingVisio, an interactive visual analysis system that aims to explain the diffusion model used in singing voice conversion. SingVisio provides a visual display of the generation process in diffusion models, showcasing the step-by-step denoising of the noisy spectrum and its transformation into a clean spectrum that captures the desired singer's timbre. The system also facilitates side-by-side comparisons of different conditions, such as source content, melody, and target timbre, highlighting the impact of these conditions on the diffusion generation process and resulting conversions. Through comprehensive evaluations, SingVisio demonstrates its effectiveness in terms of system design, functionality, explainability, and user-friendliness. It offers users of various backgrounds valuable learning experiences and insights into the diffusion model for singing voice conversion.
Do You Hear What I Mean? Quantifying the Instruction-Perception Gap in Instruction-Guided Expressive Text-To-Speech Systems
Instruction-guided text-to-speech (ITTS) enables users to control speech generation through natural language prompts, offering a more intuitive interface than traditional TTS. However, the alignment between user style instructions and listener perception remains largely unexplored. This work first presents a perceptual analysis of ITTS controllability across two expressive dimensions (adverbs of degree and graded emotion intensity) and collects human ratings on speaker age and word-level emphasis attributes. To comprehensively reveal the instruction-perception gap, we provide a data collection with large-scale human evaluations, named Expressive VOice Control (E-VOC) corpus. Furthermore, we reveal that (1) gpt-4o-mini-tts is the most reliable ITTS model with great alignment between instruction and generated utterances across acoustic dimensions. (2) The 5 analyzed ITTS systems tend to generate Adult voices even when the instructions ask to use child or Elderly voices. (3) Fine-grained control remains a major challenge, indicating that most ITTS systems have substantial room for improvement in interpreting slightly different attribute instructions.
An Approach for Classification of Dysfluent and Fluent Speech Using K-NN And SVM
This paper presents a new approach for classification of dysfluent and fluent speech using Mel-Frequency Cepstral Coefficient (MFCC). The speech is fluent when person's speech flows easily and smoothly. Sounds combine into syllable, syllables mix together into words and words link into sentences with little effort. When someone's speech is dysfluent, it is irregular and does not flow effortlessly. Therefore, a dysfluency is a break in the smooth, meaningful flow of speech. Stuttering is one such disorder in which the fluent flow of speech is disrupted by occurrences of dysfluencies such as repetitions, prolongations, interjections and so on. In this work we have considered three types of dysfluencies such as repetition, prolongation and interjection to characterize dysfluent speech. After obtaining dysfluent and fluent speech, the speech signals are analyzed in order to extract MFCC features. The k-Nearest Neighbor (k-NN) and Support Vector Machine (SVM) classifiers are used to classify the speech as dysfluent and fluent speech. The 80% of the data is used for training and 20% for testing. The average accuracy of 86.67% and 93.34% is obtained for dysfluent and fluent speech respectively.
Audiobox: Unified Audio Generation with Natural Language Prompts
Audio is an essential part of our life, but creating it often requires expertise and is time-consuming. Research communities have made great progress over the past year advancing the performance of large scale audio generative models for a single modality (speech, sound, or music) through adopting more powerful generative models and scaling data. However, these models lack controllability in several aspects: speech generation models cannot synthesize novel styles based on text description and are limited on domain coverage such as outdoor environments; sound generation models only provide coarse-grained control based on descriptions like "a person speaking" and would only generate mumbling human voices. This paper presents Audiobox, a unified model based on flow-matching that is capable of generating various audio modalities. We design description-based and example-based prompting to enhance controllability and unify speech and sound generation paradigms. We allow transcript, vocal, and other audio styles to be controlled independently when generating speech. To improve model generalization with limited labels, we adapt a self-supervised infilling objective to pre-train on large quantities of unlabeled audio. Audiobox sets new benchmarks on speech and sound generation (0.745 similarity on Librispeech for zero-shot TTS; 0.77 FAD on AudioCaps for text-to-sound) and unlocks new methods for generating audio with novel vocal and acoustic styles. We further integrate Bespoke Solvers, which speeds up generation by over 25 times compared to the default ODE solver for flow-matching, without loss of performance on several tasks. Our demo is available at https://audiobox.metademolab.com/
SAC: A Framework for Measuring and Inducing Personality Traits in LLMs with Dynamic Intensity Control
Large language models (LLMs) have gained significant traction across a wide range of fields in recent years. There is also a growing expectation for them to display human-like personalities during interactions. To meet this expectation, numerous studies have proposed methods for modelling LLM personalities through psychometric evaluations. However, most existing models face two major limitations: they rely on the Big Five (OCEAN) framework, which only provides coarse personality dimensions, and they lack mechanisms for controlling trait intensity. In this paper, we address this gap by extending the Machine Personality Inventory (MPI), which originally used the Big Five model, to incorporate the 16 Personality Factor (16PF) model, allowing expressive control over sixteen distinct traits. We also developed a structured framework known as Specific Attribute Control (SAC) for evaluating and dynamically inducing trait intensity in LLMs. Our method introduces adjective-based semantic anchoring to guide trait intensity expression and leverages behavioural questions across five intensity factors: Frequency, Depth, Threshold, Effort, and Willingness. Through experimentation, we find that modelling intensity as a continuous spectrum yields substantially more consistent and controllable personality expression compared to binary trait toggling. Moreover, we observe that changes in target trait intensity systematically influence closely related traits in psychologically coherent directions, suggesting that LLMs internalize multi-dimensional personality structures rather than treating traits in isolation. Our work opens new pathways for controlled and nuanced human-machine interactions in domains such as healthcare, education, and interviewing processes, bringing us one step closer to truly human-like social machines.
Feature Representations for Automatic Meerkat Vocalization Classification
Understanding evolution of vocal communication in social animals is an important research problem. In that context, beyond humans, there is an interest in analyzing vocalizations of other social animals such as, meerkats, marmosets, apes. While existing approaches address vocalizations of certain species, a reliable method tailored for meerkat calls is lacking. To that extent, this paper investigates feature representations for automatic meerkat vocalization analysis. Both traditional signal processing-based representations and data-driven representations facilitated by advances in deep learning are explored. Call type classification studies conducted on two data sets reveal that feature extraction methods developed for human speech processing can be effectively employed for automatic meerkat call analysis.
VStyle: A Benchmark for Voice Style Adaptation with Spoken Instructions
Spoken language models (SLMs) have emerged as a unified paradigm for speech understanding and generation, enabling natural human machine interaction. However, while most progress has focused on semantic accuracy and instruction following, the ability of SLMs to adapt their speaking style based on spoken instructions has received limited attention. We introduce Voice Style Adaptation (VSA), a new task that examines whether SLMs can modify their speaking style, such as timbre, prosody, or persona following natural language spoken commands. To study this task, we present VStyle, a bilingual (Chinese & English) benchmark covering four categories of speech generation: acoustic attributes, natural language instruction, role play, and implicit empathy. We also introduce the Large Audio Language Model as a Judge (LALM as a Judge) framework, which progressively evaluates outputs along textual faithfulness, style adherence, and naturalness, ensuring reproducible and objective assessment. Experiments on commercial systems and open source SLMs demonstrate that current models face clear limitations in controllable style adaptation, highlighting both the novelty and challenge of this task. By releasing VStyle and its evaluation toolkit, we aim to provide the community with a foundation for advancing human centered spoken interaction. The dataset and code are publicly available at https://junzhan2000.github.io/VStyle.github.io/{project's homepage}.
Voice Disorder Analysis: a Transformer-based Approach
Voice disorders are pathologies significantly affecting patient quality of life. However, non-invasive automated diagnosis of these pathologies is still under-explored, due to both a shortage of pathological voice data, and diversity of the recording types used for the diagnosis. This paper proposes a novel solution that adopts transformers directly working on raw voice signals and addresses data shortage through synthetic data generation and data augmentation. Further, we consider many recording types at the same time, such as sentence reading and sustained vowel emission, by employing a Mixture of Expert ensemble to align the predictions on different data types. The experimental results, obtained on both public and private datasets, show the effectiveness of our solution in the disorder detection and classification tasks and largely improve over existing approaches.
Objective Assessment of Social Skills Using Automated Language Analysis for Identification of Schizophrenia and Bipolar Disorder
Several studies have shown that speech and language features, automatically extracted from clinical interviews or spontaneous discourse, have diagnostic value for mental disorders such as schizophrenia and bipolar disorder. They typically make use of a large feature set to train a classifier for distinguishing between two groups of interest, i.e. a clinical and control group. However, a purely data-driven approach runs the risk of overfitting to a particular data set, especially when sample sizes are limited. Here, we first down-select the set of language features to a small subset that is related to a well-validated test of functional ability, the Social Skills Performance Assessment (SSPA). This helps establish the concurrent validity of the selected features. We use only these features to train a simple classifier to distinguish between groups of interest. Linear regression reveals that a subset of language features can effectively model the SSPA, with a correlation coefficient of 0.75. Furthermore, the same feature set can be used to build a strong binary classifier to distinguish between healthy controls and a clinical group (AUC = 0.96) and also between patients within the clinical group with schizophrenia and bipolar I disorder (AUC = 0.83).
AdaSpeech: Adaptive Text to Speech for Custom Voice
Custom voice, a specific text to speech (TTS) service in commercial speech platforms, aims to adapt a source TTS model to synthesize personal voice for a target speaker using few speech data. Custom voice presents two unique challenges for TTS adaptation: 1) to support diverse customers, the adaptation model needs to handle diverse acoustic conditions that could be very different from source speech data, and 2) to support a large number of customers, the adaptation parameters need to be small enough for each target speaker to reduce memory usage while maintaining high voice quality. In this work, we propose AdaSpeech, an adaptive TTS system for high-quality and efficient customization of new voices. We design several techniques in AdaSpeech to address the two challenges in custom voice: 1) To handle different acoustic conditions, we use two acoustic encoders to extract an utterance-level vector and a sequence of phoneme-level vectors from the target speech during training; in inference, we extract the utterance-level vector from a reference speech and use an acoustic predictor to predict the phoneme-level vectors. 2) To better trade off the adaptation parameters and voice quality, we introduce conditional layer normalization in the mel-spectrogram decoder of AdaSpeech, and fine-tune this part in addition to speaker embedding for adaptation. We pre-train the source TTS model on LibriTTS datasets and fine-tune it on VCTK and LJSpeech datasets (with different acoustic conditions from LibriTTS) with few adaptation data, e.g., 20 sentences, about 1 minute speech. Experiment results show that AdaSpeech achieves much better adaptation quality than baseline methods, with only about 5K specific parameters for each speaker, which demonstrates its effectiveness for custom voice. Audio samples are available at https://speechresearch.github.io/adaspeech/.
EnvSDD: Benchmarking Environmental Sound Deepfake Detection
Audio generation systems now create very realistic soundscapes that can enhance media production, but also pose potential risks. Several studies have examined deepfakes in speech or singing voice. However, environmental sounds have different characteristics, which may make methods for detecting speech and singing deepfakes less effective for real-world sounds. In addition, existing datasets for environmental sound deepfake detection are limited in scale and audio types. To address this gap, we introduce EnvSDD, the first large-scale curated dataset designed for this task, consisting of 45.25 hours of real and 316.74 hours of fake audio. The test set includes diverse conditions to evaluate the generalizability, such as unseen generation models and unseen datasets. We also propose an audio deepfake detection system, based on a pre-trained audio foundation model. Results on EnvSDD show that our proposed system outperforms the state-of-the-art systems from speech and singing domains.
AISHELL-3: A Multi-speaker Mandarin TTS Corpus and the Baselines
In this paper, we present AISHELL-3, a large-scale and high-fidelity multi-speaker Mandarin speech corpus which could be used to train multi-speaker Text-to-Speech (TTS) systems. The corpus contains roughly 85 hours of emotion-neutral recordings spoken by 218 native Chinese mandarin speakers. Their auxiliary attributes such as gender, age group and native accents are explicitly marked and provided in the corpus. Accordingly, transcripts in Chinese character-level and pinyin-level are provided along with the recordings. We present a baseline system that uses AISHELL-3 for multi-speaker Madarin speech synthesis. The multi-speaker speech synthesis system is an extension on Tacotron-2 where a speaker verification model and a corresponding loss regarding voice similarity are incorporated as the feedback constraint. We aim to use the presented corpus to build a robust synthesis model that is able to achieve zero-shot voice cloning. The system trained on this dataset also generalizes well on speakers that are never seen in the training process. Objective evaluation results from our experiments show that the proposed multi-speaker synthesis system achieves high voice similarity concerning both speaker embedding similarity and equal error rate measurement. The dataset, baseline system code and generated samples are available online.
Decoding the Ear: A Framework for Objectifying Expressiveness from Human Preference Through Efficient Alignment
Recent speech-to-speech (S2S) models generate intelligible speech but still lack natural expressiveness, largely due to the absence of a reliable evaluation metric. Existing approaches, such as subjective MOS ratings, low-level acoustic features, and emotion recognition are costly, limited, or incomplete. To address this, we present DeEAR (Decoding the Expressive Preference of eAR), a framework that converts human preference for speech expressiveness into an objective score. Grounded in phonetics and psychology, DeEAR evaluates speech across three dimensions: Emotion, Prosody, and Spontaneity, achieving strong alignment with human perception (Spearman's Rank Correlation Coefficient, SRCC = 0.86) using fewer than 500 annotated samples. Beyond reliable scoring, DeEAR enables fair benchmarking and targeted data curation. It not only distinguishes expressiveness gaps across S2S models but also selects 14K expressive utterances to form ExpressiveSpeech, which improves the expressive score (from 2.0 to 23.4 on a 100-point scale) of S2S models. Demos and codes are available at https://github.com/FreedomIntelligence/ExpressiveSpeech
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation
Most neural vocoders employ band-limited mel-spectrograms to generate waveforms. If full-band spectral features are used as the input, the vocoder can be provided with as much acoustic information as possible. However, in some models employing full-band mel-spectrograms, an over-smoothing problem occurs as part of which non-sharp spectrograms are generated. To address this problem, we propose UnivNet, a neural vocoder that synthesizes high-fidelity waveforms in real time. Inspired by works in the field of voice activity detection, we added a multi-resolution spectrogram discriminator that employs multiple linear spectrogram magnitudes computed using various parameter sets. Using full-band mel-spectrograms as input, we expect to generate high-resolution signals by adding a discriminator that employs spectrograms of multiple resolutions as the input. In an evaluation on a dataset containing information on hundreds of speakers, UnivNet obtained the best objective and subjective results among competing models for both seen and unseen speakers. These results, including the best subjective score for text-to-speech, demonstrate the potential for fast adaptation to new speakers without a need for training from scratch.
Marco-Voice Technical Report
This paper presents a multifunctional speech synthesis system that integrates voice cloning and emotion control speech synthesis within a unified framework. The goal of this work is to address longstanding challenges in achieving highly expressive, controllable, and natural speech generation that faithfully preserves speaker identity across diverse linguistic and emotional contexts. Our approach introduces an effective speaker-emotion disentanglement mechanism with in-batch contrastive learning, enabling independent manipulation of speaker identity and eemotional style, as well as rotational emotional embedding integration method for smooth emotion control. To support comprehensive training and evaluation, we construct CSEMOTIONS, a high-quality emotional speech dataset containing 10 hours of Mandarin speech from six professional speakers across seven emotional categories. Extensive experiments demonstrate that our system, Marco-Voice, achieves substantial improvements in both objective and subjective metrics. Comprehensive evaluations and analysis were conducted, results show that MarcoVoice delivers competitive performance in terms of speech clarity and emotional richness, representing a substantial advance in the field of expressive neural speech synthesis.
Singer Identification for Metaverse with Timbral and Middle-Level Perceptual Features
Metaverse is an interactive world that combines reality and virtuality, where participants can be virtual avatars. Anyone can hold a concert in a virtual concert hall, and users can quickly identify the real singer behind the virtual idol through the singer identification. Most singer identification methods are processed using the frame-level features. However, expect the singer's timbre, the music frame includes music information, such as melodiousness, rhythm, and tonal. It means the music information is noise for using frame-level features to identify the singers. In this paper, instead of only the frame-level features, we propose to use another two features that address this problem. Middle-level feature, which represents the music's melodiousness, rhythmic stability, and tonal stability, and is able to capture the perceptual features of music. The timbre feature, which is used in speaker identification, represents the singers' voice features. Furthermore, we propose a convolutional recurrent neural network (CRNN) to combine three features for singer identification. The model firstly fuses the frame-level feature and timbre feature and then combines middle-level features to the mix features. In experiments, the proposed method achieves comparable performance on an average F1 score of 0.81 on the benchmark dataset of Artist20, which significantly improves related works.
A Review of Automated Speech and Language Features for Assessment of Cognitive and Thought Disorders
It is widely accepted that information derived from analyzing speech (the acoustic signal) and language production (words and sentences) serves as a useful window into the health of an individual's cognitive ability. In fact, most neuropsychological testing batteries have a component related to speech and language where clinicians elicit speech from patients for subjective evaluation across a broad set of dimensions. With advances in speech signal processing and natural language processing, there has been recent interest in developing tools to detect more subtle changes in cognitive-linguistic function. This work relies on extracting a set of features from recorded and transcribed speech for objective assessments of speech and language, early diagnosis of neurological disease, and tracking of disease after diagnosis. With an emphasis on cognitive and thought disorders, in this paper we provide a review of existing speech and language features used in this domain, discuss their clinical application, and highlight their advantages and disadvantages. Broadly speaking, the review is split into two categories: language features based on natural language processing and speech features based on speech signal processing. Within each category, we consider features that aim to measure complementary dimensions of cognitive-linguistics, including language diversity, syntactic complexity, semantic coherence, and timing. We conclude the review with a proposal of new research directions to further advance the field.
NISQA: A Deep CNN-Self-Attention Model for Multidimensional Speech Quality Prediction with Crowdsourced Datasets
In this paper, we present an update to the NISQA speech quality prediction model that is focused on distortions that occur in communication networks. In contrast to the previous version, the model is trained end-to-end and the time-dependency modelling and time-pooling is achieved through a Self-Attention mechanism. Besides overall speech quality, the model also predicts the four speech quality dimensions Noisiness, Coloration, Discontinuity, and Loudness, and in this way gives more insight into the cause of a quality degradation. Furthermore, new datasets with over 13,000 speech files were created for training and validation of the model. The model was finally tested on a new, live-talking test dataset that contains recordings of real telephone calls. Overall, NISQA was trained and evaluated on 81 datasets from different sources and showed to provide reliable predictions also for unknown speech samples. The code, model weights, and datasets are open-sourced.
Dawn of the transformer era in speech emotion recognition: closing the valence gap
Recent advances in transformer-based architectures which are pre-trained in self-supervised manner have shown great promise in several machine learning tasks. In the audio domain, such architectures have also been successfully utilised in the field of speech emotion recognition (SER). However, existing works have not evaluated the influence of model size and pre-training data on downstream performance, and have shown limited attention to generalisation, robustness, fairness, and efficiency. The present contribution conducts a thorough analysis of these aspects on several pre-trained variants of wav2vec 2.0 and HuBERT that we fine-tuned on the dimensions arousal, dominance, and valence of MSP-Podcast, while additionally using IEMOCAP and MOSI to test cross-corpus generalisation. To the best of our knowledge, we obtain the top performance for valence prediction without use of explicit linguistic information, with a concordance correlation coefficient (CCC) of .638 on MSP-Podcast. Furthermore, our investigations reveal that transformer-based architectures are more robust to small perturbations compared to a CNN-based baseline and fair with respect to biological sex groups, but not towards individual speakers. Finally, we are the first to show that their extraordinary success on valence is based on implicit linguistic information learnt during fine-tuning of the transformer layers, which explains why they perform on-par with recent multimodal approaches that explicitly utilise textual information. Our findings collectively paint the following picture: transformer-based architectures constitute the new state-of-the-art in SER, but further advances are needed to mitigate remaining robustness and individual speaker issues. To make our findings reproducible, we release the best performing model to the community.
The T05 System for The VoiceMOS Challenge 2024: Transfer Learning from Deep Image Classifier to Naturalness MOS Prediction of High-Quality Synthetic Speech
We present our system (denoted as T05) for the VoiceMOS Challenge (VMC) 2024. Our system was designed for the VMC 2024 Track 1, which focused on the accurate prediction of naturalness mean opinion score (MOS) for high-quality synthetic speech. In addition to a pretrained self-supervised learning (SSL)-based speech feature extractor, our system incorporates a pretrained image feature extractor to capture the difference of synthetic speech observed in speech spectrograms. We first separately train two MOS predictors that use either of an SSL-based or spectrogram-based feature. Then, we fine-tune the two predictors for better MOS prediction using the fusion of two extracted features. In the VMC 2024 Track 1, our T05 system achieved first place in 7 out of 16 evaluation metrics and second place in the remaining 9 metrics, with a significant difference compared to those ranked third and below. We also report the results of our ablation study to investigate essential factors of our system.
InstructTTSEval: Benchmarking Complex Natural-Language Instruction Following in Text-to-Speech Systems
In modern speech synthesis, paralinguistic information--such as a speaker's vocal timbre, emotional state, and dynamic prosody--plays a critical role in conveying nuance beyond mere semantics. Traditional Text-to-Speech (TTS) systems rely on fixed style labels or inserting a speech prompt to control these cues, which severely limits flexibility. Recent attempts seek to employ natural-language instructions to modulate paralinguistic features, substantially improving the generalization of instruction-driven TTS models. Although many TTS systems now support customized synthesis via textual description, their actual ability to interpret and execute complex instructions remains largely unexplored. In addition, there is still a shortage of high-quality benchmarks and automated evaluation metrics specifically designed for instruction-based TTS, which hinders accurate assessment and iterative optimization of these models. To address these limitations, we introduce InstructTTSEval, a benchmark for measuring the capability of complex natural-language style control. We introduce three tasks, namely Acoustic-Parameter Specification, Descriptive-Style Directive, and Role-Play, including English and Chinese subsets, each with 1k test cases (6k in total) paired with reference audio. We leverage Gemini as an automatic judge to assess their instruction-following abilities. Our evaluation of accessible instruction-following TTS systems highlights substantial room for further improvement. We anticipate that InstructTTSEval will drive progress toward more powerful, flexible, and accurate instruction-following TTS.
Measuring Prosody Diversity in Zero-Shot TTS: A New Metric, Benchmark, and Exploration
Prosody diversity is essential for achieving naturalness and expressiveness in zero-shot text-to-speech (TTS). However, frequently used acoustic metrics capture only partial views of prosodic variation and correlate poorly with human perception, leaving the problem of reliably quantifying prosody diversity underexplored. To bridge this gap, we introduce ProsodyEval, a prosody diversity assessment dataset that provides Prosody Mean Opinion Score (PMOS) alongside conventional acoustic metrics. ProsodyEval comprises 1000 speech samples derived from 7 mainstream TTS systems, with 2000 human ratings. Building on this, we propose the Discretized Speech Weighted Edit Distance (DS-WED), a new objective diversity metric that quantifies prosodic variation via weighted edit distance over semantic tokens. Experiments on ProsodyEval show that DS-WED achieves substantially higher correlation with human judgments than existing acoustic metrics, while remaining highly robust in speech tokenization from HuBERT and WavLM. Leveraging DS-WED, we benchmark state-of-the-art open-source TTS systems on LibriSpeech test-clean and Seed-TTS test-en, and further explorations uncover several factors that influence prosody diversity, including generative modeling paradigms, duration control, and reinforcement learning. Moreover, we find that current large audio language models (LALMs) remain limited in capturing prosodic variations. Audio samples are available at https://prosodyeval.github.io.
Towards robust audio spoofing detection: a detailed comparison of traditional and learned features
Automatic speaker verification, like every other biometric system, is vulnerable to spoofing attacks. Using only a few minutes of recorded voice of a genuine client of a speaker verification system, attackers can develop a variety of spoofing attacks that might trick such systems. Detecting these attacks using the audio cues present in the recordings is an important challenge. Most existing spoofing detection systems depend on knowing the used spoofing technique. With this research, we aim at overcoming this limitation, by examining robust audio features, both traditional and those learned through an autoencoder, that are generalizable over different types of replay spoofing. Furthermore, we provide a detailed account of all the steps necessary in setting up state-of-the-art audio feature detection, pre-, and postprocessing, such that the (non-audio expert) machine learning researcher can implement such systems. Finally, we evaluate the performance of our robust replay speaker detection system with a wide variety and different combinations of both extracted and machine learned audio features on the `out in the wild' ASVspoof 2017 dataset. This dataset contains a variety of new spoofing configurations. Since our focus is on examining which features will ensure robustness, we base our system on a traditional Gaussian Mixture Model-Universal Background Model. We then systematically investigate the relative contribution of each feature set. The fused models, based on both the known audio features and the machine learned features respectively, have a comparable performance with an Equal Error Rate (EER) of 12. The final best performing model, which obtains an EER of 10.8, is a hybrid model that contains both known and machine learned features, thus revealing the importance of incorporating both types of features when developing a robust spoofing prediction model.
RMVPE: A Robust Model for Vocal Pitch Estimation in Polyphonic Music
Vocal pitch is an important high-level feature in music audio processing. However, extracting vocal pitch in polyphonic music is more challenging due to the presence of accompaniment. To eliminate the influence of the accompaniment, most previous methods adopt music source separation models to obtain clean vocals from polyphonic music before predicting vocal pitches. As a result, the performance of vocal pitch estimation is affected by the music source separation models. To address this issue and directly extract vocal pitches from polyphonic music, we propose a robust model named RMVPE. This model can extract effective hidden features and accurately predict vocal pitches from polyphonic music. The experimental results demonstrate the superiority of RMVPE in terms of raw pitch accuracy (RPA) and raw chroma accuracy (RCA). Additionally, experiments conducted with different types of noise show that RMVPE is robust across all signal-to-noise ratio (SNR) levels. The code of RMVPE is available at https://github.com/Dream-High/RMVPE.
Learning the Beauty in Songs: Neural Singing Voice Beautifier
We are interested in a novel task, singing voice beautifying (SVB). Given the singing voice of an amateur singer, SVB aims to improve the intonation and vocal tone of the voice, while keeping the content and vocal timbre. Current automatic pitch correction techniques are immature, and most of them are restricted to intonation but ignore the overall aesthetic quality. Hence, we introduce Neural Singing Voice Beautifier (NSVB), the first generative model to solve the SVB task, which adopts a conditional variational autoencoder as the backbone and learns the latent representations of vocal tone. In NSVB, we propose a novel time-warping approach for pitch correction: Shape-Aware Dynamic Time Warping (SADTW), which ameliorates the robustness of existing time-warping approaches, to synchronize the amateur recording with the template pitch curve. Furthermore, we propose a latent-mapping algorithm in the latent space to convert the amateur vocal tone to the professional one. To achieve this, we also propose a new dataset containing parallel singing recordings of both amateur and professional versions. Extensive experiments on both Chinese and English songs demonstrate the effectiveness of our methods in terms of both objective and subjective metrics. Audio samples are available at~https://neuralsvb.github.io. Codes: https://github.com/MoonInTheRiver/NeuralSVB.
On the Utility of Speech and Audio Foundation Models for Marmoset Call Analysis
Marmoset monkeys encode vital information in their calls and serve as a surrogate model for neuro-biologists to understand the evolutionary origins of human vocal communication. Traditionally analyzed with signal processing-based features, recent approaches have utilized self-supervised models pre-trained on human speech for feature extraction, capitalizing on their ability to learn a signal's intrinsic structure independently of its acoustic domain. However, the utility of such foundation models remains unclear for marmoset call analysis in terms of multi-class classification, bandwidth, and pre-training domain. This study assesses feature representations derived from speech and general audio domains, across pre-training bandwidths of 4, 8, and 16 kHz for marmoset call-type and caller classification tasks. Results show that models with higher bandwidth improve performance, and pre-training on speech or general audio yields comparable results, improving over a spectral baseline.
VoxVietnam: a Large-Scale Multi-Genre Dataset for Vietnamese Speaker Recognition
Recent research in speaker recognition aims to address vulnerabilities due to variations between enrolment and test utterances, particularly in the multi-genre phenomenon where the utterances are in different speech genres. Previous resources for Vietnamese speaker recognition are either limited in size or do not focus on genre diversity, leaving studies in multi-genre effects unexplored. This paper introduces VoxVietnam, the first multi-genre dataset for Vietnamese speaker recognition with over 187,000 utterances from 1,406 speakers and an automated pipeline to construct a dataset on a large scale from public sources. Our experiments show the challenges posed by the multi-genre phenomenon to models trained on a single-genre dataset, and demonstrate a significant increase in performance upon incorporating the VoxVietnam into the training process. Our experiments are conducted to study the challenges of the multi-genre phenomenon in speaker recognition and the performance gain when the proposed dataset is used for multi-genre training.
VoxSim: A perceptual voice similarity dataset
This paper introduces VoxSim, a dataset of perceptual voice similarity ratings. Recent efforts to automate the assessment of speech synthesis technologies have primarily focused on predicting mean opinion score of naturalness, leaving speaker voice similarity relatively unexplored due to a lack of extensive training data. To address this, we generate about 41k utterance pairs from the VoxCeleb dataset, a widely utilised speech dataset for speaker recognition, and collect nearly 70k speaker similarity scores through a listening test. VoxSim offers a valuable resource for the development and benchmarking of speaker similarity prediction models. We provide baseline results of speaker similarity prediction models on the VoxSim test set and further demonstrate that the model trained on our dataset generalises to the out-of-domain VCC2018 dataset.
voc2vec: A Foundation Model for Non-Verbal Vocalization
Speech foundation models have demonstrated exceptional capabilities in speech-related tasks. Nevertheless, these models often struggle with non-verbal audio data, such as vocalizations, baby crying, etc., which are critical for various real-world applications. Audio foundation models well handle non-speech data but also fail to capture the nuanced features of non-verbal human sounds. In this work, we aim to overcome the above shortcoming and propose a novel foundation model, termed voc2vec, specifically designed for non-verbal human data leveraging exclusively open-source non-verbal audio datasets. We employ a collection of 10 datasets covering around 125 hours of non-verbal audio. Experimental results prove that voc2vec is effective in non-verbal vocalization classification, and it outperforms conventional speech and audio foundation models. Moreover, voc2vec consistently outperforms strong baselines, namely OpenSmile and emotion2vec, on six different benchmark datasets. To the best of the authors' knowledge, voc2vec is the first universal representation model for vocalization tasks.
Visualization and Interpretation of Latent Spaces for Controlling Expressive Speech Synthesis through Audio Analysis
The field of Text-to-Speech has experienced huge improvements last years benefiting from deep learning techniques. Producing realistic speech becomes possible now. As a consequence, the research on the control of the expressiveness, allowing to generate speech in different styles or manners, has attracted increasing attention lately. Systems able to control style have been developed and show impressive results. However the control parameters often consist of latent variables and remain complex to interpret. In this paper, we analyze and compare different latent spaces and obtain an interpretation of their influence on expressive speech. This will enable the possibility to build controllable speech synthesis systems with an understandable behaviour.
WavChat: A Survey of Spoken Dialogue Models
Recent advancements in spoken dialogue models, exemplified by systems like GPT-4o, have captured significant attention in the speech domain. Compared to traditional three-tier cascaded spoken dialogue models that comprise speech recognition (ASR), large language models (LLMs), and text-to-speech (TTS), modern spoken dialogue models exhibit greater intelligence. These advanced spoken dialogue models not only comprehend audio, music, and other speech-related features, but also capture stylistic and timbral characteristics in speech. Moreover, they generate high-quality, multi-turn speech responses with low latency, enabling real-time interaction through simultaneous listening and speaking capability. Despite the progress in spoken dialogue systems, there is a lack of comprehensive surveys that systematically organize and analyze these systems and the underlying technologies. To address this, we have first compiled existing spoken dialogue systems in the chronological order and categorized them into the cascaded and end-to-end paradigms. We then provide an in-depth overview of the core technologies in spoken dialogue models, covering aspects such as speech representation, training paradigm, streaming, duplex, and interaction capabilities. Each section discusses the limitations of these technologies and outlines considerations for future research. Additionally, we present a thorough review of relevant datasets, evaluation metrics, and benchmarks from the perspectives of training and evaluating spoken dialogue systems. We hope this survey will contribute to advancing both academic research and industrial applications in the field of spoken dialogue systems. The related material is available at https://github.com/jishengpeng/WavChat.
Editing Personality for LLMs
This paper introduces an innovative task focused on editing the personality traits of Large Language Models (LLMs). This task seeks to adjust the models' responses to opinion-related questions on specified topics since an individual's personality often manifests in the form of their expressed opinions, thereby showcasing different personality traits. Specifically, we construct a new benchmark dataset PersonalityEdit to address this task. Drawing on the theory in Social Psychology, we isolate three representative traits, namely Neuroticism, Extraversion, and Agreeableness, as the foundation for our benchmark. We then gather data using GPT-4, generating responses that not only align with a specified topic but also embody the targeted personality trait. We conduct comprehensive experiments involving various baselines and discuss the representation of personality behavior in LLMs. Our intriguing findings uncover potential challenges of the proposed task, illustrating several remaining issues. We anticipate that our work can provide the NLP community with insights. Code and datasets will be released at https://github.com/zjunlp/EasyEdit.
Analysis of a Modern Voice Morphing Approach using Gaussian Mixture Models for Laryngectomees
This paper proposes a voice morphing system for people suffering from Laryngectomy, which is the surgical removal of all or part of the larynx or the voice box, particularly performed in cases of laryngeal cancer. A primitive method of achieving voice morphing is by extracting the source's vocal coefficients and then converting them into the target speaker's vocal parameters. In this paper, we deploy Gaussian Mixture Models (GMM) for mapping the coefficients from source to destination. However, the use of the traditional/conventional GMM-based mapping approach results in the problem of over-smoothening of the converted voice. Thus, we hereby propose a unique method to perform efficient voice morphing and conversion based on GMM,which overcomes the traditional-method effects of over-smoothening. It uses a technique of glottal waveform separation and prediction of excitations and hence the result shows that not only over-smoothening is eliminated but also the transformed vocal tract parameters match with the target. Moreover, the synthesized speech thus obtained is found to be of a sufficiently high quality. Thus, voice morphing based on a unique GMM approach has been proposed and also critically evaluated based on various subjective and objective evaluation parameters. Further, an application of voice morphing for Laryngectomees which deploys this unique approach has been recommended by this paper.
Hypernetworks for Personalizing ASR to Atypical Speech
Parameter-efficient fine-tuning (PEFT) for personalizing automatic speech recognition (ASR) has recently shown promise for adapting general population models to atypical speech. However, these approaches assume a priori knowledge of the atypical speech disorder being adapted for -- the diagnosis of which requires expert knowledge that is not always available. Even given this knowledge, data scarcity and high inter/intra-speaker variability further limit the effectiveness of traditional fine-tuning. To circumvent these challenges, we first identify the minimal set of model parameters required for ASR adaptation. Our analysis of each individual parameter's effect on adaptation performance allows us to reduce Word Error Rate (WER) by half while adapting 0.03% of all weights. Alleviating the need for cohort-specific models, we next propose the novel use of a meta-learned hypernetwork to generate highly individualized, utterance-level adaptations on-the-fly for a diverse set of atypical speech characteristics. Evaluating adaptation at the global, cohort and individual-level, we show that hypernetworks generalize better to out-of-distribution speakers, while maintaining an overall relative WER reduction of 75.2% using 0.1% of the full parameter budget.
What makes your model a low-empathy or warmth person: Exploring the Origins of Personality in LLMs
Large language models (LLMs) have demonstrated remarkable capabilities in generating human-like text and exhibiting personality traits similar to those in humans. However, the mechanisms by which LLMs encode and express traits such as agreeableness and impulsiveness remain poorly understood. Drawing on the theory of social determinism, we investigate how long-term background factors, such as family environment and cultural norms, interact with short-term pressures like external instructions, shaping and influencing LLMs' personality traits. By steering the output of LLMs through the utilization of interpretable features within the model, we explore how these background and pressure factors lead to changes in the model's traits without the need for further fine-tuning. Additionally, we suggest the potential impact of these factors on model safety from the perspective of personality.
Hierarchical Generative Modeling of Melodic Vocal Contours in Hindustani Classical Music
Hindustani music is a performance-driven oral tradition that exhibits the rendition of rich melodic patterns. In this paper, we focus on generative modeling of singers' vocal melodies extracted from audio recordings, as the voice is musically prominent within the tradition. Prior generative work in Hindustani music models melodies as coarse discrete symbols which fails to capture the rich expressive melodic intricacies of singing. Thus, we propose to use a finely quantized pitch contour, as an intermediate representation for hierarchical audio modeling. We propose GaMaDHaNi, a modular two-level hierarchy, consisting of a generative model on pitch contours, and a pitch contour to audio synthesis model. We compare our approach to non-hierarchical audio models and hierarchical models that use a self-supervised intermediate representation, through a listening test and qualitative analysis. We also evaluate audio model's ability to faithfully represent the pitch contour input using Pearson correlation coefficient. By using pitch contours as an intermediate representation, we show that our model may be better equipped to listen and respond to musicians in a human-AI collaborative setting by highlighting two potential interaction use cases (1) primed generation, and (2) coarse pitch conditioning.
Continuous Output Personality Detection Models via Mixed Strategy Training
The traditional personality models only yield binary results. This paper presents a novel approach for training personality detection models that produce continuous output values, using mixed strategies. By leveraging the PANDORA dataset, which includes extensive personality labeling of Reddit comments, we developed models that predict the Big Five personality traits with high accuracy. Our approach involves fine-tuning a RoBERTa-base model with various strategies such as Multi-Layer Perceptron (MLP) integration, and hyperparameter tuning. The results demonstrate that our models significantly outperform traditional binary classification methods, offering precise continuous outputs for personality traits, thus enhancing applications in AI, psychology, human resources, marketing and health care fields.
Learning Expressive Disentangled Speech Representations with Soft Speech Units and Adversarial Style Augmentation
Voice conversion is the task to transform voice characteristics of source speech while preserving content information. Nowadays, self-supervised representation learning models are increasingly utilized in content extraction. However, in these representations, a lot of hidden speaker information leads to timbre leakage while the prosodic information of hidden units lacks use. To address these issues, we propose a novel framework for expressive voice conversion called "SAVC" based on soft speech units from HuBert-soft. Taking soft speech units as input, we design an attribute encoder to extract content and prosody features respectively. Specifically, we first introduce statistic perturbation imposed by adversarial style augmentation to eliminate speaker information. Then the prosody is implicitly modeled on soft speech units with knowledge distillation. Experiment results show that the intelligibility and naturalness of converted speech outperform previous work.
PromptTTS 2: Describing and Generating Voices with Text Prompt
Speech conveys more information than just text, as the same word can be uttered in various voices to convey diverse information. Compared to traditional text-to-speech (TTS) methods relying on speech prompts (reference speech) for voice variability, using text prompts (descriptions) is more user-friendly since speech prompts can be hard to find or may not exist at all. TTS approaches based on the text prompt face two challenges: 1) the one-to-many problem, where not all details about voice variability can be described in the text prompt, and 2) the limited availability of text prompt datasets, where vendors and large cost of data labeling are required to write text prompt for speech. In this work, we introduce PromptTTS 2 to address these challenges with a variation network to provide variability information of voice not captured by text prompts, and a prompt generation pipeline to utilize the large language models (LLM) to compose high quality text prompts. Specifically, the variation network predicts the representation extracted from the reference speech (which contains full information about voice) based on the text prompt representation. For the prompt generation pipeline, it generates text prompts for speech with a speech understanding model to recognize voice attributes (e.g., gender, speed) from speech and a large language model to formulate text prompt based on the recognition results. Experiments on a large-scale (44K hours) speech dataset demonstrate that compared to the previous works, PromptTTS 2 generates voices more consistent with text prompts and supports the sampling of diverse voice variability, thereby offering users more choices on voice generation. Additionally, the prompt generation pipeline produces high-quality prompts, eliminating the large labeling cost. The demo page of PromptTTS 2 is available onlinehttps://speechresearch.github.io/prompttts2.
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism
Singing voice synthesis (SVS) systems are built to synthesize high-quality and expressive singing voice, in which the acoustic model generates the acoustic features (e.g., mel-spectrogram) given a music score. Previous singing acoustic models adopt a simple loss (e.g., L1 and L2) or generative adversarial network (GAN) to reconstruct the acoustic features, while they suffer from over-smoothing and unstable training issues respectively, which hinder the naturalness of synthesized singing. In this work, we propose DiffSinger, an acoustic model for SVS based on the diffusion probabilistic model. DiffSinger is a parameterized Markov chain that iteratively converts the noise into mel-spectrogram conditioned on the music score. By implicitly optimizing variational bound, DiffSinger can be stably trained and generate realistic outputs. To further improve the voice quality and speed up inference, we introduce a shallow diffusion mechanism to make better use of the prior knowledge learned by the simple loss. Specifically, DiffSinger starts generation at a shallow step smaller than the total number of diffusion steps, according to the intersection of the diffusion trajectories of the ground-truth mel-spectrogram and the one predicted by a simple mel-spectrogram decoder. Besides, we propose boundary prediction methods to locate the intersection and determine the shallow step adaptively. The evaluations conducted on a Chinese singing dataset demonstrate that DiffSinger outperforms state-of-the-art SVS work. Extensional experiments also prove the generalization of our methods on text-to-speech task (DiffSpeech). Audio samples: https://diffsinger.github.io. Codes: https://github.com/MoonInTheRiver/DiffSinger. The old title of this work: "Diffsinger: Diffusion acoustic model for singing voice synthesis".
SingVERSE: A Diverse, Real-World Benchmark for Singing Voice Enhancement
This paper presents a benchmark for singing voice enhancement. The development of singing voice enhancement is limited by the lack of realistic evaluation data. To address this gap, this paper introduces SingVERSE, the first real-world benchmark for singing voice enhancement, covering diverse acoustic scenarios and providing paired, studio-quality clean references. Leveraging SingVERSE, we conduct a comprehensive evaluation of state-of-the-art models and uncover a consistent trade-off between perceptual quality and intelligibility. Finally, we show that training on in-domain singing data substantially improves enhancement performance without degrading speech capabilities, establishing a simple yet effective path forward. This work offers the community a foundational benchmark together with critical insights to guide future advances in this underexplored domain. Demopage: https://singverse.github.io
TSST: A Benchmark and Evaluation Models for Text Speech-Style Transfer
Text style is highly abstract, as it encompasses various aspects of a speaker's characteristics, habits, logical thinking, and the content they express. However, previous text-style transfer tasks have primarily focused on data-driven approaches, lacking in-depth analysis and research from the perspectives of linguistics and cognitive science. In this paper, we introduce a novel task called Text Speech-Style Transfer (TSST). The main objective is to further explore topics related to human cognition, such as personality and emotion, based on the capabilities of existing LLMs. Considering the objective of our task and the distinctive characteristics of oral speech in real-life scenarios, we trained multi-dimension (i.e. filler words, vividness, interactivity, emotionality) evaluation models for the TSST and validated their correlation with human assessments. We thoroughly analyze the performance of several large language models (LLMs) and identify areas where further improvement is needed. Moreover, driven by our evaluation models, we have released a new corpus that improves the capabilities of LLMs in generating text with speech-style characteristics. In summary, we present the TSST task, a new benchmark for style transfer and emphasizing human-oriented evaluation, exploring and advancing the performance of current LLMs.
Emilia: A Large-Scale, Extensive, Multilingual, and Diverse Dataset for Speech Generation
Recent advancements in speech generation have been driven by the large-scale training datasets. However, current models fall short of capturing the spontaneity and variability inherent in real-world human speech, due to their reliance on audiobook datasets limited to formal read-aloud speech styles. To bridge this gap, we introduce Emilia-Pipe, an open-source preprocessing pipeline to extract high-quality training data from valuable yet underexplored in-the-wild data that capture spontaneous human speech in real-world contexts. By leveraging Emilia-Pipe, we construct Emilia, the first multilingual speech generation dataset derived from in-the-wild speech data. This dataset comprises over 101k hours of speech across six languages: English, Chinese, German, French, Japanese, and Korean. Besides, we expand Emilia to Emilia-Large, a dataset exceeding 216k hours, making it the largest open-source speech generation dataset available. Extensive experiments demonstrate that Emilia significantly outperforms traditional audiobook datasets in generating spontaneous and human-like speech, showcasing superior performance in capturing diverse speaker timbre and speaking styles of real-world human speech. Furthermore, this work underscores the importance of scaling dataset size to advance speech generation research and validates the effectiveness of Emilia for both multilingual and crosslingual speech generation.
DiffAR: Denoising Diffusion Autoregressive Model for Raw Speech Waveform Generation
Diffusion models have recently been shown to be relevant for high-quality speech generation. Most work has been focused on generating spectrograms, and as such, they further require a subsequent model to convert the spectrogram to a waveform (i.e., a vocoder). This work proposes a diffusion probabilistic end-to-end model for generating a raw speech waveform. The proposed model is autoregressive, generating overlapping frames sequentially, where each frame is conditioned on a portion of the previously generated one. Hence, our model can effectively synthesize an unlimited speech duration while preserving high-fidelity synthesis and temporal coherence. We implemented the proposed model for unconditional and conditional speech generation, where the latter can be driven by an input sequence of phonemes, amplitudes, and pitch values. Working on the waveform directly has some empirical advantages. Specifically, it allows the creation of local acoustic behaviors, like vocal fry, which makes the overall waveform sounds more natural. Furthermore, the proposed diffusion model is stochastic and not deterministic; therefore, each inference generates a slightly different waveform variation, enabling abundance of valid realizations. Experiments show that the proposed model generates speech with superior quality compared with other state-of-the-art neural speech generation systems.
nicolay-r at SemEval-2024 Task 3: Using Flan-T5 for Reasoning Emotion Cause in Conversations with Chain-of-Thought on Emotion States
Emotion expression is one of the essential traits of conversations. It may be self-related or caused by another speaker. The variety of reasons may serve as a source of the further emotion causes: conversation history, speaker's emotional state, etc. Inspired by the most recent advances in Chain-of-Thought, in this work, we exploit the existing three-hop reasoning approach (THOR) to perform large language model instruction-tuning for answering: emotion states (THOR-state), and emotion caused by one speaker to the other (THOR-cause). We equip THOR-cause with the reasoning revision (rr) for devising a reasoning path in fine-tuning. In particular, we rely on the annotated speaker emotion states to revise reasoning path. Our final submission, based on Flan-T5-base (250M) and the rule-based span correction technique, preliminary tuned with THOR-state and fine-tuned with THOR-cause-rr on competition training data, results in 3rd and 4th places (F1-proportional) and 5th place (F1-strict) among 15 participating teams. Our THOR implementation fork is publicly available: https://github.com/nicolay-r/THOR-ECAC
Acoustic To Articulatory Speech Inversion Using Multi-Resolution Spectro-Temporal Representations Of Speech Signals
Multi-resolution spectro-temporal features of a speech signal represent how the brain perceives sounds by tuning cortical cells to different spectral and temporal modulations. These features produce a higher dimensional representation of the speech signals. The purpose of this paper is to evaluate how well the auditory cortex representation of speech signals contribute to estimate articulatory features of those corresponding signals. Since obtaining articulatory features from acoustic features of speech signals has been a challenging topic of interest for different speech communities, we investigate the possibility of using this multi-resolution representation of speech signals as acoustic features. We used U. of Wisconsin X-ray Microbeam (XRMB) database of clean speech signals to train a feed-forward deep neural network (DNN) to estimate articulatory trajectories of six tract variables. The optimal set of multi-resolution spectro-temporal features to train the model were chosen using appropriate scale and rate vector parameters to obtain the best performing model. Experiments achieved a correlation of 0.675 with ground-truth tract variables. We compared the performance of this speech inversion system with prior experiments conducted using Mel Frequency Cepstral Coefficients (MFCCs).
DiffStyleTTS: Diffusion-based Hierarchical Prosody Modeling for Text-to-Speech with Diverse and Controllable Styles
Human speech exhibits rich and flexible prosodic variations. To address the one-to-many mapping problem from text to prosody in a reasonable and flexible manner, we propose DiffStyleTTS, a multi-speaker acoustic model based on a conditional diffusion module and an improved classifier-free guidance, which hierarchically models speech prosodic features, and controls different prosodic styles to guide prosody prediction. Experiments show that our method outperforms all baselines in naturalness and achieves superior synthesis speed compared to three diffusion-based baselines. Additionally, by adjusting the guiding scale, DiffStyleTTS effectively controls the guidance intensity of the synthetic prosody.
Pushing on Personality Detection from Verbal Behavior: A Transformer Meets Text Contours of Psycholinguistic Features
Research at the intersection of personality psychology, computer science, and linguistics has recently focused increasingly on modeling and predicting personality from language use. We report two major improvements in predicting personality traits from text data: (1) to our knowledge, the most comprehensive set of theory-based psycholinguistic features and (2) hybrid models that integrate a pre-trained Transformer Language Model BERT and Bidirectional Long Short-Term Memory (BLSTM) networks trained on within-text distributions ('text contours') of psycholinguistic features. We experiment with BLSTM models (with and without Attention) and with two techniques for applying pre-trained language representations from the transformer model - 'feature-based' and 'fine-tuning'. We evaluate the performance of the models we built on two benchmark datasets that target the two dominant theoretical models of personality: the Big Five Essay dataset and the MBTI Kaggle dataset. Our results are encouraging as our models outperform existing work on the same datasets. More specifically, our models achieve improvement in classification accuracy by 2.9% on the Essay dataset and 8.28% on the Kaggle MBTI dataset. In addition, we perform ablation experiments to quantify the impact of different categories of psycholinguistic features in the respective personality prediction models.
EMOVA: Empowering Language Models to See, Hear and Speak with Vivid Emotions
GPT-4o, an omni-modal model that enables vocal conversations with diverse emotions and tones, marks a milestone for omni-modal foundation models. However, empowering Large Language Models to perceive and generate images, texts, and speeches end-to-end with publicly available data remains challenging in the open-source community. Existing vision-language models rely on external tools for the speech processing, while speech-language models still suffer from limited or even without vision-understanding abilities. To address this gap, we propose EMOVA (EMotionally Omni-present Voice Assistant), to enable Large Language Models with end-to-end speech capabilities while maintaining the leading vision-language performance. With a semantic-acoustic disentangled speech tokenizer, we notice surprisingly that omni-modal alignment can further enhance vision-language and speech abilities compared with the corresponding bi-modal aligned counterparts. Moreover, a lightweight style module is proposed for flexible speech style controls (e.g., emotions and pitches). For the first time, EMOVA achieves state-of-the-art performance on both the vision-language and speech benchmarks, and meanwhile, supporting omni-modal spoken dialogue with vivid emotions.
SUSing: SU-net for Singing Voice Synthesis
Singing voice synthesis is a generative task that involves multi-dimensional control of the singing model, including lyrics, pitch, and duration, and includes the timbre of the singer and singing skills such as vibrato. In this paper, we proposed SU-net for singing voice synthesis named SUSing. Synthesizing singing voice is treated as a translation task between lyrics and music score and spectrum. The lyrics and music score information is encoded into a two-dimensional feature representation through the convolution layer. The two-dimensional feature and its frequency spectrum are mapped to the target spectrum in an autoregressive manner through a SU-net network. Within the SU-net the stripe pooling method is used to replace the alternate global pooling method to learn the vertical frequency relationship in the spectrum and the changes of frequency in the time domain. The experimental results on the public dataset Kiritan show that the proposed method can synthesize more natural singing voices.
MiniMax-Speech: Intrinsic Zero-Shot Text-to-Speech with a Learnable Speaker Encoder
We introduce MiniMax-Speech, an autoregressive Transformer-based Text-to-Speech (TTS) model that generates high-quality speech. A key innovation is our learnable speaker encoder, which extracts timbre features from a reference audio without requiring its transcription. This enables MiniMax-Speech to produce highly expressive speech with timbre consistent with the reference in a zero-shot manner, while also supporting one-shot voice cloning with exceptionally high similarity to the reference voice. In addition, the overall quality of the synthesized audio is enhanced through the proposed Flow-VAE. Our model supports 32 languages and demonstrates excellent performance across multiple objective and subjective evaluations metrics. Notably, it achieves state-of-the-art (SOTA) results on objective voice cloning metrics (Word Error Rate and Speaker Similarity) and has secured the top position on the public TTS Arena leaderboard. Another key strength of MiniMax-Speech, granted by the robust and disentangled representations from the speaker encoder, is its extensibility without modifying the base model, enabling various applications such as: arbitrary voice emotion control via LoRA; text to voice (T2V) by synthesizing timbre features directly from text description; and professional voice cloning (PVC) by fine-tuning timbre features with additional data. We encourage readers to visit https://minimax-ai.github.io/tts_tech_report for more examples.
SSL-TTS: Leveraging Self-Supervised Embeddings and kNN Retrieval for Zero-Shot Multi-speaker TTS
While recent zero-shot multispeaker text-to-speech (TTS) models achieve impressive results, they typically rely on extensive transcribed speech datasets from numerous speakers and intricate training pipelines. Meanwhile, self-supervised learning (SSL) speech features have emerged as effective intermediate representations for TTS. It was also observed that SSL features from different speakers that are linearly close share phonetic information while maintaining individual speaker identity, which enables straight-forward and robust voice cloning. In this study, we introduce SSL-TTS, a lightweight and efficient zero-shot TTS framework trained on transcribed speech from a single speaker. SSL-TTS leverages SSL features and retrieval methods for simple and robust zero-shot multi-speaker synthesis. Objective and subjective evaluations show that our approach achieves performance comparable to state-of-the-art models that require significantly larger training datasets. The low training data requirements mean that SSL-TTS is well suited for the development of multi-speaker TTS systems for low-resource domains and languages. We also introduce an interpolation parameter which enables fine control over the output speech by blending voices. Demo samples are available at https://idiap.github.io/ssl-tts
Global Rhythm Style Transfer Without Text Transcriptions
Prosody plays an important role in characterizing the style of a speaker or an emotion, but most non-parallel voice or emotion style transfer algorithms do not convert any prosody information. Two major components of prosody are pitch and rhythm. Disentangling the prosody information, particularly the rhythm component, from the speech is challenging because it involves breaking the synchrony between the input speech and the disentangled speech representation. As a result, most existing prosody style transfer algorithms would need to rely on some form of text transcriptions to identify the content information, which confines their application to high-resource languages only. Recently, SpeechSplit has made sizeable progress towards unsupervised prosody style transfer, but it is unable to extract high-level global prosody style in an unsupervised manner. In this paper, we propose AutoPST, which can disentangle global prosody style from speech without relying on any text transcriptions. AutoPST is an Autoencoder-based Prosody Style Transfer framework with a thorough rhythm removal module guided by the self-expressive representation learning. Experiments on different style transfer tasks show that AutoPST can effectively convert prosody that correctly reflects the styles of the target domains.
IndexTTS2: A Breakthrough in Emotionally Expressive and Duration-Controlled Auto-Regressive Zero-Shot Text-to-Speech
Existing autoregressive large-scale text-to-speech (TTS) models have advantages in speech naturalness, but their token-by-token generation mechanism makes it difficult to precisely control the duration of synthesized speech. This becomes a significant limitation in applications requiring strict audio-visual synchronization, such as video dubbing. This paper introduces IndexTTS2, which proposes a novel, general, and autoregressive model-friendly method for speech duration control. The method supports two generation modes: one explicitly specifies the number of generated tokens to precisely control speech duration; the other freely generates speech in an autoregressive manner without specifying the number of tokens, while faithfully reproducing the prosodic features of the input prompt. Furthermore, IndexTTS2 achieves disentanglement between emotional expression and speaker identity, enabling independent control over timbre and emotion. In the zero-shot setting, the model can accurately reconstruct the target timbre (from the timbre prompt) while perfectly reproducing the specified emotional tone (from the style prompt). To enhance speech clarity in highly emotional expressions, we incorporate GPT latent representations and design a novel three-stage training paradigm to improve the stability of the generated speech. Additionally, to lower the barrier for emotional control, we designed a soft instruction mechanism based on text descriptions by fine-tuning Qwen3, effectively guiding the generation of speech with the desired emotional orientation. Finally, experimental results on multiple datasets show that IndexTTS2 outperforms state-of-the-art zero-shot TTS models in terms of word error rate, speaker similarity, and emotional fidelity. Audio samples are available at: https://index-tts.github.io/index-tts2.github.io/
Voice Cloning for Dysarthric Speech Synthesis: Addressing Data Scarcity in Speech-Language Pathology
This study explores voice cloning to generate synthetic speech replicating the unique patterns of individuals with dysarthria. Using the TORGO dataset, we address data scarcity and privacy challenges in speech-language pathology. Our contributions include demonstrating that voice cloning preserves dysarthric speech characteristics, analyzing differences between real and synthetic data, and discussing implications for diagnostics, rehabilitation, and communication. We cloned voices from dysarthric and control speakers using a commercial platform, ensuring gender-matched synthetic voices. A licensed speech-language pathologist (SLP) evaluated a subset for dysarthria, speaker gender, and synthetic indicators. The SLP correctly identified dysarthria in all cases and speaker gender in 95% but misclassified 30% of synthetic samples as real, indicating high realism. Our results suggest synthetic speech effectively captures disordered characteristics and that voice cloning has advanced to produce high-quality data resembling real speech, even to trained professionals. This has critical implications for healthcare, where synthetic data can mitigate data scarcity, protect privacy, and enhance AI-driven diagnostics. By enabling the creation of diverse, high-quality speech datasets, voice cloning can improve generalizable models, personalize therapy, and advance assistive technologies for dysarthria. We publicly release our synthetic dataset to foster further research and collaboration, aiming to develop robust models that improve patient outcomes in speech-language pathology.
Towards a Universal Method for Meaningful Signal Detection
It is known that human speech and certain animal vocalizations can convey meaningful content because we can decipher the content that a given utterance does convey. This paper explores an alternative approach to determining whether a signal is meaningful, one that analyzes only the signal itself and is independent of what the conveyed meaning might be. We devise a method that takes a waveform as input and outputs a score indicating its degree of `meaningfulness`. We cluster contiguous portions of the input to minimize the total description length, and then take the length of the code of the assigned cluster labels as meaningfulness score. We evaluate our method empirically, against several baselines, and show that it is the only one to give a high score to human speech in various languages and with various speakers, a moderate score to animal vocalizations from birds and orcas, and a low score to ambient noise from various sources.
Natural language guidance of high-fidelity text-to-speech with synthetic annotations
Text-to-speech models trained on large-scale datasets have demonstrated impressive in-context learning capabilities and naturalness. However, control of speaker identity and style in these models typically requires conditioning on reference speech recordings, limiting creative applications. Alternatively, natural language prompting of speaker identity and style has demonstrated promising results and provides an intuitive method of control. However, reliance on human-labeled descriptions prevents scaling to large datasets. Our work bridges the gap between these two approaches. We propose a scalable method for labeling various aspects of speaker identity, style, and recording conditions. We then apply this method to a 45k hour dataset, which we use to train a speech language model. Furthermore, we propose simple methods for increasing audio fidelity, significantly outperforming recent work despite relying entirely on found data. Our results demonstrate high-fidelity speech generation in a diverse range of accents, prosodic styles, channel conditions, and acoustic conditions, all accomplished with a single model and intuitive natural language conditioning. Audio samples can be heard at https://text-description-to-speech.com/.
MNV-17: A High-Quality Performative Mandarin Dataset for Nonverbal Vocalization Recognition in Speech
Mainstream Automatic Speech Recognition (ASR) systems excel at transcribing lexical content, but largely fail to recognize nonverbal vocalizations (NVs) embedded in speech, such as sighs, laughs, and coughs. This capability is important for a comprehensive understanding of human communication, as NVs convey crucial emotional and intentional cues. Progress in NV-aware ASR has been hindered by the lack of high-quality, well-annotated datasets. To address this gap, we introduce MNV-17, a 7.55-hour performative Mandarin speech dataset. Unlike most existing corpora that rely on model-based detection, MNV-17's performative nature ensures high-fidelity, clearly articulated NV instances. To the best of our knowledge, MNV-17 provides the most extensive set of nonverbal vocalization categories, comprising 17 distinct and well-balanced classes of common NVs. We benchmarked MNV-17 on four mainstream ASR architectures, evaluating their joint performance on semantic transcription and NV classification. The dataset and the pretrained model checkpoints will be made publicly available to facilitate future research in expressive ASR.
MulliVC: Multi-lingual Voice Conversion With Cycle Consistency
Voice conversion aims to modify the source speaker's voice to resemble the target speaker while preserving the original speech content. Despite notable advancements in voice conversion these days, multi-lingual voice conversion (including both monolingual and cross-lingual scenarios) has yet to be extensively studied. It faces two main challenges: 1) the considerable variability in prosody and articulation habits across languages; and 2) the rarity of paired multi-lingual datasets from the same speaker. In this paper, we propose MulliVC, a novel voice conversion system that only converts timbre and keeps original content and source language prosody without multi-lingual paired data. Specifically, each training step of MulliVC contains three substeps: In step one the model is trained with monolingual speech data; then, steps two and three take inspiration from back translation, construct a cyclical process to disentangle the timbre and other information (content, prosody, and other language-related information) in the absence of multi-lingual data from the same speaker. Both objective and subjective results indicate that MulliVC significantly surpasses other methods in both monolingual and cross-lingual contexts, demonstrating the system's efficacy and the viability of the three-step approach with cycle consistency. Audio samples can be found on our demo page (mullivc.github.io).
CPED: A Large-Scale Chinese Personalized and Emotional Dialogue Dataset for Conversational AI
Human language expression is based on the subjective construal of the situation instead of the objective truth conditions, which means that speakers' personalities and emotions after cognitive processing have an important influence on conversation. However, most existing datasets for conversational AI ignore human personalities and emotions, or only consider part of them. It's difficult for dialogue systems to understand speakers' personalities and emotions although large-scale pre-training language models have been widely used. In order to consider both personalities and emotions in the process of conversation generation, we propose CPED, a large-scale Chinese personalized and emotional dialogue dataset, which consists of multi-source knowledge related to empathy and personal characteristic. These knowledge covers gender, Big Five personality traits, 13 emotions, 19 dialogue acts and 10 scenes. CPED contains more than 12K dialogues of 392 speakers from 40 TV shows. We release the textual dataset with audio features and video features according to the copyright claims, privacy issues, terms of service of video platforms. We provide detailed description of the CPED construction process and introduce three tasks for conversational AI, including personality recognition, emotion recognition in conversations as well as personalized and emotional conversation generation. Finally, we provide baseline systems for these tasks and consider the function of speakers' personalities and emotions on conversation. Our motivation is to propose a dataset to be widely adopted by the NLP community as a new open benchmark for conversational AI research. The full dataset is available at https://github.com/scutcyr/CPED.
Towards General-Purpose Text-Instruction-Guided Voice Conversion
This paper introduces a novel voice conversion (VC) model, guided by text instructions such as "articulate slowly with a deep tone" or "speak in a cheerful boyish voice". Unlike traditional methods that rely on reference utterances to determine the attributes of the converted speech, our model adds versatility and specificity to voice conversion. The proposed VC model is a neural codec language model which processes a sequence of discrete codes, resulting in the code sequence of converted speech. It utilizes text instructions as style prompts to modify the prosody and emotional information of the given speech. In contrast to previous approaches, which often rely on employing separate encoders like prosody and content encoders to handle different aspects of the source speech, our model handles various information of speech in an end-to-end manner. Experiments have demonstrated the impressive capabilities of our model in comprehending instructions and delivering reasonable results.
Psychoacoustic Challenges Of Speech Enhancement On VoIP Platforms
Within the ambit of VoIP (Voice over Internet Protocol) telecommunications, the complexities introduced by acoustic transformations merit rigorous analysis. This research, rooted in the exploration of proprietary sender-side denoising effects, meticulously evaluates platforms such as Google Meets and Zoom. The study draws upon the Deep Noise Suppression (DNS) 2020 dataset, ensuring a structured examination tailored to various denoising settings and receiver interfaces. A methodological novelty is introduced via Blinder-Oaxaca decomposition, traditionally an econometric tool, repurposed herein to analyze acoustic-phonetic perturbations within VoIP systems. To further ground the implications of these transformations, psychoacoustic metrics, specifically PESQ and STOI, were used to explain of perceptual quality and intelligibility. Cumulatively, the insights garnered underscore the intricate landscape of VoIP-influenced acoustic dynamics. In addition to the primary findings, a multitude of metrics are reported, extending the research purview. Moreover, out-of-domain benchmarking for both time and time-frequency domain speech enhancement models is included, thereby enhancing the depth and applicability of this inquiry.
Investigating Safety Vulnerabilities of Large Audio-Language Models Under Speaker Emotional Variations
Large audio-language models (LALMs) extend text-based LLMs with auditory understanding, offering new opportunities for multimodal applications. While their perception, reasoning, and task performance have been widely studied, their safety alignment under paralinguistic variation remains underexplored. This work systematically investigates the role of speaker emotion. We construct a dataset of malicious speech instructions expressed across multiple emotions and intensities, and evaluate several state-of-the-art LALMs. Our results reveal substantial safety inconsistencies: different emotions elicit varying levels of unsafe responses, and the effect of intensity is non-monotonic, with medium expressions often posing the greatest risk. These findings highlight an overlooked vulnerability in LALMs and call for alignment strategies explicitly designed to ensure robustness under emotional variation, a prerequisite for trustworthy deployment in real-world settings.
NaturalSpeech 3: Zero-Shot Speech Synthesis with Factorized Codec and Diffusion Models
While recent large-scale text-to-speech (TTS) models have achieved significant progress, they still fall short in speech quality, similarity, and prosody. Considering speech intricately encompasses various attributes (e.g., content, prosody, timbre, and acoustic details) that pose significant challenges for generation, a natural idea is to factorize speech into individual subspaces representing different attributes and generate them individually. Motivated by it, we propose NaturalSpeech 3, a TTS system with novel factorized diffusion models to generate natural speech in a zero-shot way. Specifically, 1) we design a neural codec with factorized vector quantization (FVQ) to disentangle speech waveform into subspaces of content, prosody, timbre, and acoustic details; 2) we propose a factorized diffusion model to generate attributes in each subspace following its corresponding prompt. With this factorization design, NaturalSpeech 3 can effectively and efficiently model the intricate speech with disentangled subspaces in a divide-and-conquer way. Experiments show that NaturalSpeech 3 outperforms the state-of-the-art TTS systems on quality, similarity, prosody, and intelligibility. Furthermore, we achieve better performance by scaling to 1B parameters and 200K hours of training data.
Zero-Shot vs. Few-Shot Multi-Speaker TTS Using Pre-trained Czech SpeechT5 Model
In this paper, we experimented with the SpeechT5 model pre-trained on large-scale datasets. We pre-trained the foundation model from scratch and fine-tuned it on a large-scale robust multi-speaker text-to-speech (TTS) task. We tested the model capabilities in a zero- and few-shot scenario. Based on two listening tests, we evaluated the synthetic audio quality and the similarity of how synthetic voices resemble real voices. Our results showed that the SpeechT5 model can generate a synthetic voice for any speaker using only one minute of the target speaker's data. We successfully demonstrated the high quality and similarity of our synthetic voices on publicly known Czech politicians and celebrities.
FastPitch: Parallel Text-to-speech with Pitch Prediction
We present FastPitch, a fully-parallel text-to-speech model based on FastSpeech, conditioned on fundamental frequency contours. The model predicts pitch contours during inference. By altering these predictions, the generated speech can be more expressive, better match the semantic of the utterance, and in the end more engaging to the listener. Uniformly increasing or decreasing pitch with FastPitch generates speech that resembles the voluntary modulation of voice. Conditioning on frequency contours improves the overall quality of synthesized speech, making it comparable to state-of-the-art. It does not introduce an overhead, and FastPitch retains the favorable, fully-parallel Transformer architecture, with over 900x real-time factor for mel-spectrogram synthesis of a typical utterance.
The order in speech disorder: a scoping review of state of the art machine learning methods for clinical speech classification
Background:Speech patterns have emerged as potential diagnostic markers for conditions with varying etiologies. Machine learning (ML) presents an opportunity to harness these patterns for accurate disease diagnosis. Objective: This review synthesized findings from studies exploring ML's capability in leveraging speech for the diagnosis of neurological, laryngeal and mental disorders. Methods: A systematic examination of 564 articles was conducted with 91 articles included in the study, which encompassed a wide spectrum of conditions, ranging from voice pathologies to mental and neurological disorders. Methods for speech classifications were assessed based on the relevant studies and scored between 0-10 based on the reported diagnostic accuracy of their ML models. Results: High diagnostic accuracies were consistently observed for laryngeal disorders, dysarthria, and changes related to speech in Parkinsons disease. These findings indicate the robust potential of speech as a diagnostic tool. Disorders like depression, schizophrenia, mild cognitive impairment and Alzheimers dementia also demonstrated high accuracies, albeit with some variability across studies. Meanwhile, disorders like OCD and autism highlighted the need for more extensive research to ascertain the relationship between speech patterns and the respective conditions. Conclusion: ML models utilizing speech patterns demonstrate promising potential in diagnosing a range of mental, laryngeal, and neurological disorders. However, the efficacy varies across conditions, and further research is needed. The integration of these models into clinical practice could potentially revolutionize the evaluation and diagnosis of a number of different medical conditions.
TCSinger 2: Customizable Multilingual Zero-shot Singing Voice Synthesis
Customizable multilingual zero-shot singing voice synthesis (SVS) has various potential applications in music composition and short video dubbing. However, existing SVS models overly depend on phoneme and note boundary annotations, limiting their robustness in zero-shot scenarios and producing poor transitions between phonemes and notes. Moreover, they also lack effective multi-level style control via diverse prompts. To overcome these challenges, we introduce TCSinger 2, a multi-task multilingual zero-shot SVS model with style transfer and style control based on various prompts. TCSinger 2 mainly includes three key modules: 1) Blurred Boundary Content (BBC) Encoder, predicts duration, extends content embedding, and applies masking to the boundaries to enable smooth transitions. 2) Custom Audio Encoder, uses contrastive learning to extract aligned representations from singing, speech, and textual prompts. 3) Flow-based Custom Transformer, leverages Cus-MOE, with F0 supervision, enhancing both the synthesis quality and style modeling of the generated singing voice. Experimental results show that TCSinger 2 outperforms baseline models in both subjective and objective metrics across multiple related tasks. Singing voice samples are available at https://aaronz345.github.io/TCSinger2Demo/.
Emotion Recognition from Speech
In this work, we conduct an extensive comparison of various approaches to speech based emotion recognition systems. The analyses were carried out on audio recordings from Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS). After pre-processing the raw audio files, features such as Log-Mel Spectrogram, Mel-Frequency Cepstral Coefficients (MFCCs), pitch and energy were considered. The significance of these features for emotion classification was compared by applying methods such as Long Short Term Memory (LSTM), Convolutional Neural Networks (CNNs), Hidden Markov Models (HMMs) and Deep Neural Networks (DNNs). On the 14-class (2 genders x 7 emotions) classification task, an accuracy of 68% was achieved with a 4-layer 2 dimensional CNN using the Log-Mel Spectrogram features. We also observe that, in emotion recognition, the choice of audio features impacts the results much more than the model complexity.
