- Universal speaker recognition encoders for different speech segments duration Creating universal speaker encoders which are robust for different acoustic and speech duration conditions is a big challenge today. According to our observations systems trained on short speech segments are optimal for short phrase speaker verification and systems trained on long segments are superior for long segments verification. A system trained simultaneously on pooled short and long speech segments does not give optimal verification results and usually degrades both for short and long segments. This paper addresses the problem of creating universal speaker encoders for different speech segments duration. We describe our simple recipe for training universal speaker encoder for any type of selected neural network architecture. According to our evaluation results of wav2vec-TDNN based systems obtained for NIST SRE and VoxCeleb1 benchmarks the proposed universal encoder provides speaker verification improvements in case of different enrollment and test speech segment duration. The key feature of the proposed encoder is that it has the same inference time as the selected neural network architecture. 3 authors · Oct 28, 2022
- CommonAccent: Exploring Large Acoustic Pretrained Models for Accent Classification Based on Common Voice Despite the recent advancements in Automatic Speech Recognition (ASR), the recognition of accented speech still remains a dominant problem. In order to create more inclusive ASR systems, research has shown that the integration of accent information, as part of a larger ASR framework, can lead to the mitigation of accented speech errors. We address multilingual accent classification through the ECAPA-TDNN and Wav2Vec 2.0/XLSR architectures which have been proven to perform well on a variety of speech-related downstream tasks. We introduce a simple-to-follow recipe aligned to the SpeechBrain toolkit for accent classification based on Common Voice 7.0 (English) and Common Voice 11.0 (Italian, German, and Spanish). Furthermore, we establish new state-of-the-art for English accent classification with as high as 95% accuracy. We also study the internal categorization of the Wav2Vev 2.0 embeddings through t-SNE, noting that there is a level of clustering based on phonological similarity. (Our recipe is open-source in the SpeechBrain toolkit, see: https://github.com/speechbrain/speechbrain/tree/develop/recipes) 4 authors · May 29, 2023
- WavThruVec: Latent speech representation as intermediate features for neural speech synthesis Recent advances in neural text-to-speech research have been dominated by two-stage pipelines utilizing low-level intermediate speech representation such as mel-spectrograms. However, such predetermined features are fundamentally limited, because they do not allow to exploit the full potential of a data-driven approach through learning hidden representations. For this reason, several end-to-end methods have been proposed. However, such models are harder to train and require a large number of high-quality recordings with transcriptions. Here, we propose WavThruVec - a two-stage architecture that resolves the bottleneck by using high-dimensional Wav2Vec 2.0 embeddings as intermediate speech representation. Since these hidden activations provide high-level linguistic features, they are more robust to noise. That allows us to utilize annotated speech datasets of a lower quality to train the first-stage module. At the same time, the second-stage component can be trained on large-scale untranscribed audio corpora, as Wav2Vec 2.0 embeddings are already time-aligned. This results in an increased generalization capability to out-of-vocabulary words, as well as to a better generalization to unseen speakers. We show that the proposed model not only matches the quality of state-of-the-art neural models, but also presents useful properties enabling tasks like voice conversion or zero-shot synthesis. 4 authors · Mar 31, 2022
- wav2vec: Unsupervised Pre-training for Speech Recognition We explore unsupervised pre-training for speech recognition by learning representations of raw audio. wav2vec is trained on large amounts of unlabeled audio data and the resulting representations are then used to improve acoustic model training. We pre-train a simple multi-layer convolutional neural network optimized via a noise contrastive binary classification task. Our experiments on WSJ reduce WER of a strong character-based log-mel filterbank baseline by up to 36% when only a few hours of transcribed data is available. Our approach achieves 2.43% WER on the nov92 test set. This outperforms Deep Speech 2, the best reported character-based system in the literature while using two orders of magnitude less labeled training data. 4 authors · Apr 11, 2019
- Unsupervised Speech Recognition Despite rapid progress in the recent past, current speech recognition systems still require labeled training data which limits this technology to a small fraction of the languages spoken around the globe. This paper describes wav2vec-U, short for wav2vec Unsupervised, a method to train speech recognition models without any labeled data. We leverage self-supervised speech representations to segment unlabeled audio and learn a mapping from these representations to phonemes via adversarial training. The right representations are key to the success of our method. Compared to the best previous unsupervised work, wav2vec-U reduces the phoneme error rate on the TIMIT benchmark from 26.1 to 11.3. On the larger English Librispeech benchmark, wav2vec-U achieves a word error rate of 5.9 on test-other, rivaling some of the best published systems trained on 960 hours of labeled data from only two years ago. We also experiment on nine other languages, including low-resource languages such as Kyrgyz, Swahili and Tatar. 4 authors · May 24, 2021
- On Scaling Contrastive Representations for Low-Resource Speech Recognition Recent advances in self-supervised learning through contrastive training have shown that it is possible to learn a competitive speech recognition system with as little as 10 minutes of labeled data. However, these systems are computationally expensive since they require pre-training followed by fine-tuning in a large parameter space. We explore the performance of such systems without fine-tuning by training a state-of-the-art speech recognizer on the fixed representations from the computationally demanding wav2vec 2.0 framework. We find performance to decrease without fine-tuning and, in the extreme low-resource setting, wav2vec 2.0 is inferior to its predecessor. In addition, we find that wav2vec 2.0 representations live in a low dimensional subspace and that decorrelating the features of the representations can stabilize training of the automatic speech recognizer. Finally, we propose a bidirectional extension to the original wav2vec framework that consistently improves performance. 5 authors · Feb 1, 2021
- vq-wav2vec: Self-Supervised Learning of Discrete Speech Representations We propose vq-wav2vec to learn discrete representations of audio segments through a wav2vec-style self-supervised context prediction task. The algorithm uses either a gumbel softmax or online k-means clustering to quantize the dense representations. Discretization enables the direct application of algorithms from the NLP community which require discrete inputs. Experiments show that BERT pre-training achieves a new state of the art on TIMIT phoneme classification and WSJ speech recognition. 3 authors · Oct 11, 2019
2 CCC-wav2vec 2.0: Clustering aided Cross Contrastive Self-supervised learning of speech representations While Self-Supervised Learning has helped reap the benefit of the scale from the available unlabeled data, the learning paradigms are continuously being bettered. We present a new pre-training strategy named ccc-wav2vec 2.0, which uses clustering and an augmentation-based cross-contrastive loss as its self-supervised objective. Through the clustering module, we scale down the influence of those negative examples that are highly similar to the positive. The Cross-Contrastive loss is computed between the encoder output of the original sample and the quantizer output of its augmentation and vice-versa, bringing robustness to the pre-training strategy. ccc-wav2vec 2.0 achieves up to 15.6% and 12.7% relative WER improvement over the baseline wav2vec 2.0 on the test-clean and test-other sets, respectively, of LibriSpeech, without the use of any language model. The proposed method also achieves up to 14.9% relative WER improvement over the baseline wav2vec 2.0 when fine-tuned on Switchboard data. We make all our codes publicly available on GitHub. 3 authors · Oct 5, 2022
7 wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. 4 authors · Jun 19, 2020 1
- Wav2Small: Distilling Wav2Vec2 to 72K parameters for Low-Resource Speech emotion recognition Speech Emotion Recognition (SER) needs high computational resources to overcome the challenge of substantial annotator disagreement. Today SER is shifting towards dimensional annotations of arousal, dominance, and valence (A/D/V). Universal metrics as the L2 distance prove unsuitable for evaluating A/D/V accuracy due to non converging consensus of annotator opinions. However, Concordance Correlation Coefficient (CCC) arose as an alternative metric for A/D/V where a model's output is evaluated to match a whole dataset's CCC rather than L2 distances of individual audios. Recent studies have shown that Wav2Vec2.0 / WavLM architectures outputing a float value for each A/D/V dimension achieve today's State-of-the-art (SOTA) CCC on A/D/V. The Wav2Vec2.0 / WavLM family has high computational footprint, but training tiny models using human annotations has been unsuccessful. In this paper we use a large Transformer SOTA A/D/V model as Teacher/Annotator to train 5 student models: 4 MobileNets and our proposed Wav2Small, using only the Teacher's A/D/V predictions instead of human annotations. We chose MobileNet-V4 / MobileNet-V3 as students, as MobileNet has been designed for fast execution times. We propose Wav2Small an architecture designed for minimal parameter number and RAM consumption. Wav2Small with an .onnx (quantized) of only 60KB is a potential solution for A/D/V on hearing aids, having only 72K parameters vs 3.12M parameters for MobileNet-V4-Small. The Teacher model we construct sets a new SOTA on the MSP Podcast Test-1 dataset with valence CCC=0.676. 7 authors · Aug 25, 2024
- Human-like Linguistic Biases in Neural Speech Models: Phonetic Categorization and Phonotactic Constraints in Wav2Vec2.0 What do deep neural speech models know about phonology? Existing work has examined the encoding of individual linguistic units such as phonemes in these models. Here we investigate interactions between units. Inspired by classic experiments on human speech perception, we study how Wav2Vec2 resolves phonotactic constraints. We synthesize sounds on an acoustic continuum between /l/ and /r/ and embed them in controlled contexts where only /l/, only /r/, or neither occur in English. Like humans, Wav2Vec2 models show a bias towards the phonotactically admissable category in processing such ambiguous sounds. Using simple measures to analyze model internals on the level of individual stimuli, we find that this bias emerges in early layers of the model's Transformer module. This effect is amplified by ASR finetuning but also present in fully self-supervised models. Our approach demonstrates how controlled stimulus designs can help localize specific linguistic knowledge in neural speech models. 2 authors · Jul 3, 2024
- Towards an Efficient Voice Identification Using Wav2Vec2.0 and HuBERT Based on the Quran Reciters Dataset Current authentication and trusted systems depend on classical and biometric methods to recognize or authorize users. Such methods include audio speech recognitions, eye, and finger signatures. Recent tools utilize deep learning and transformers to achieve better results. In this paper, we develop a deep learning constructed model for Arabic speakers identification by using Wav2Vec2.0 and HuBERT audio representation learning tools. The end-to-end Wav2Vec2.0 paradigm acquires contextualized speech representations learnings by randomly masking a set of feature vectors, and then applies a transformer neural network. We employ an MLP classifier that is able to differentiate between invariant labeled classes. We show several experimental results that safeguard the high accuracy of the proposed model. The experiments ensure that an arbitrary wave signal for a certain speaker can be identified with 98% and 97.1% accuracies in the cases of Wav2Vec2.0 and HuBERT, respectively. 2 authors · Nov 11, 2021
- Exploring Wav2vec 2.0 fine-tuning for improved speech emotion recognition While Wav2Vec 2.0 has been proposed for speech recognition (ASR), it can also be used for speech emotion recognition (SER); its performance can be significantly improved using different fine-tuning strategies. Two baseline methods, vanilla fine-tuning (V-FT) and task adaptive pretraining (TAPT) are first presented. We show that V-FT is able to outperform state-of-the-art models on the IEMOCAP dataset. TAPT, an existing NLP fine-tuning strategy, further improves the performance on SER. We also introduce a novel fine-tuning method termed P-TAPT, which modifies the TAPT objective to learn contextualized emotion representations. Experiments show that P-TAPT performs better than TAPT, especially under low-resource settings. Compared to prior works in this literature, our top-line system achieved a 7.4\% absolute improvement in unweighted accuracy (UA) over the state-of-the-art performance on IEMOCAP. Our code is publicly available. 2 authors · Oct 12, 2021
- Prediction of speech intelligibility with DNN-based performance measures This paper presents a speech intelligibility model based on automatic speech recognition (ASR), combining phoneme probabilities from deep neural networks (DNN) and a performance measure that estimates the word error rate from these probabilities. This model does not require the clean speech reference nor the word labels during testing as the ASR decoding step, which finds the most likely sequence of words given phoneme posterior probabilities, is omitted. The model is evaluated via the root-mean-squared error between the predicted and observed speech reception thresholds from eight normal-hearing listeners. The recognition task consists of identifying noisy words from a German matrix sentence test. The speech material was mixed with eight noise maskers covering different modulation types, from speech-shaped stationary noise to a single-talker masker. The prediction performance is compared to five established models and an ASR-model using word labels. Two combinations of features and networks were tested. Both include temporal information either at the feature level (amplitude modulation filterbanks and a feed-forward network) or captured by the architecture (mel-spectrograms and a time-delay deep neural network, TDNN). The TDNN model is on par with the DNN while reducing the number of parameters by a factor of 37; this optimization allows parallel streams on dedicated hearing aid hardware as a forward-pass can be computed within the 10ms of each frame. The proposed model performs almost as well as the label-based model and produces more accurate predictions than the baseline models. 5 authors · Mar 17, 2022
- Exploring Capabilities of Monolingual Audio Transformers using Large Datasets in Automatic Speech Recognition of Czech In this paper, we present our progress in pretraining Czech monolingual audio transformers from a large dataset containing more than 80 thousand hours of unlabeled speech, and subsequently fine-tuning the model on automatic speech recognition tasks using a combination of in-domain data and almost 6 thousand hours of out-of-domain transcribed speech. We are presenting a large palette of experiments with various fine-tuning setups evaluated on two public datasets (CommonVoice and VoxPopuli) and one extremely challenging dataset from the MALACH project. Our results show that monolingual Wav2Vec 2.0 models are robust ASR systems, which can take advantage of large labeled and unlabeled datasets and successfully compete with state-of-the-art LVCSR systems. Moreover, Wav2Vec models proved to be good zero-shot learners when no training data are available for the target ASR task. 4 authors · Jun 15, 2022
- EfficientTDNN: Efficient Architecture Search for Speaker Recognition Convolutional neural networks (CNNs), such as the time-delay neural network (TDNN), have shown their remarkable capability in learning speaker embedding. However, they meanwhile bring a huge computational cost in storage size, processing, and memory. Discovering the specialized CNN that meets a specific constraint requires a substantial effort of human experts. Compared with hand-designed approaches, neural architecture search (NAS) appears as a practical technique in automating the manual architecture design process and has attracted increasing interest in spoken language processing tasks such as speaker recognition. In this paper, we propose EfficientTDNN, an efficient architecture search framework consisting of a TDNN-based supernet and a TDNN-NAS algorithm. The proposed supernet introduces temporal convolution of different ranges of the receptive field and feature aggregation of various resolutions from different layers to TDNN. On top of it, the TDNN-NAS algorithm quickly searches for the desired TDNN architecture via weight-sharing subnets, which surprisingly reduces computation while handling the vast number of devices with various resources requirements. Experimental results on the VoxCeleb dataset show the proposed EfficientTDNN enables approximate 10^{13} architectures concerning depth, kernel, and width. Considering different computation constraints, it achieves a 2.20% equal error rate (EER) with 204M multiply-accumulate operations (MACs), 1.41% EER with 571M MACs as well as 0.94% EER with 1.45G MACs. Comprehensive investigations suggest that the trained supernet generalizes subnets not sampled during training and obtains a favorable trade-off between accuracy and efficiency. 6 authors · Mar 24, 2021
- Jointly Predicting Emotion, Age, and Country Using Pre-Trained Acoustic Embedding In this paper, we demonstrated the benefit of using pre-trained model to extract acoustic embedding to jointly predict (multitask learning) three tasks: emotion, age, and native country. The pre-trained model was trained with wav2vec 2.0 large robust model on the speech emotion corpus. The emotion and age tasks were regression problems, while country prediction was a classification task. A single harmonic mean from three metrics was used to evaluate the performance of multitask learning. The classifier was a linear network with two independent layers and shared layers, including the output layers. This study explores multitask learning on different acoustic features (including the acoustic embedding extracted from a model trained on an affective speech dataset), seed numbers, batch sizes, and normalizations for predicting paralinguistic information from speech. 3 authors · Jul 21, 2022
1 W2v-BERT: Combining Contrastive Learning and Masked Language Modeling for Self-Supervised Speech Pre-Training Motivated by the success of masked language modeling~(MLM) in pre-training natural language processing models, we propose w2v-BERT that explores MLM for self-supervised speech representation learning. w2v-BERT is a framework that combines contrastive learning and MLM, where the former trains the model to discretize input continuous speech signals into a finite set of discriminative speech tokens, and the latter trains the model to learn contextualized speech representations via solving a masked prediction task consuming the discretized tokens. In contrast to existing MLM-based speech pre-training frameworks such as HuBERT, which relies on an iterative re-clustering and re-training process, or vq-wav2vec, which concatenates two separately trained modules, w2v-BERT can be optimized in an end-to-end fashion by solving the two self-supervised tasks~(the contrastive task and MLM) simultaneously. Our experiments show that w2v-BERT achieves competitive results compared to current state-of-the-art pre-trained models on the LibriSpeech benchmarks when using the Libri-Light~60k corpus as the unsupervised data. In particular, when compared to published models such as conformer-based wav2vec~2.0 and HuBERT, our model shows~5\% to~10\% relative WER reduction on the test-clean and test-other subsets. When applied to the Google's Voice Search traffic dataset, w2v-BERT outperforms our internal conformer-based wav2vec~2.0 by more than~30\% relatively. 7 authors · Aug 7, 2021
- data2vec-aqc: Search for the right Teaching Assistant in the Teacher-Student training setup In this paper, we propose a new Self-Supervised Learning (SSL) algorithm called data2vec-aqc, for speech representation learning from unlabeled speech data. Our goal is to improve SSL for speech in domains where both unlabeled and labeled data are limited. Building on the recently introduced data2vec, we introduce additional modules to the data2vec framework that leverage the benefit of data augmentations, quantized representations, and clustering. The interaction between these modules helps solve the cross-contrastive loss as an additional self-supervised objective. data2vec-aqc achieves up to 14.1% and 20.9% relative WER improvement over the existing state-of-the-art data2vec system over the test-clean and test-other sets, respectively of LibriSpeech, without the use of any language model (LM). Our proposed model also achieves up to 17.8\% relative WER gains over the baseline data2vec when fine-tuned on a subset of the Switchboard dataset. Code: https://github.com/Speech-Lab-IITM/data2vec-aqc. 3 authors · Nov 2, 2022
- Sentence Embedder Guided Utterance Encoder (SEGUE) for Spoken Language Understanding The pre-trained speech encoder wav2vec 2.0 performs very well on various spoken language understanding (SLU) tasks. However, on many tasks, it trails behind text encoders with textual input. To improve the understanding capability of SLU encoders, various studies have used knowledge distillation to transfer knowledge from natural language understanding (NLU) encoders. We use a very simple method of distilling from a textual sentence embedder directly into wav2vec 2.0 as pre-training, utilizing paired audio-text datasets. We observed that this method is indeed capable of improving SLU task performance in fine-tuned settings, as well as full-data and few-shot transfer on a frozen encoder. However, the model performs worse on certain tasks highlighting the strengths and weaknesses of our approach. 3 authors · May 20, 2023
- SpeechNet: Weakly Supervised, End-to-End Speech Recognition at Industrial Scale End-to-end automatic speech recognition systems represent the state of the art, but they rely on thousands of hours of manually annotated speech for training, as well as heavyweight computation for inference. Of course, this impedes commercialization since most companies lack vast human and computational resources. In this paper, we explore training and deploying an ASR system in the label-scarce, compute-limited setting. To reduce human labor, we use a third-party ASR system as a weak supervision source, supplemented with labeling functions derived from implicit user feedback. To accelerate inference, we propose to route production-time queries across a pool of CUDA graphs of varying input lengths, the distribution of which best matches the traffic's. Compared to our third-party ASR, we achieve a relative improvement in word-error rate of 8% and a speedup of 600%. Our system, called SpeechNet, currently serves 12 million queries per day on our voice-enabled smart television. To our knowledge, this is the first time a large-scale, Wav2vec-based deployment has been described in the academic literature. 10 authors · Nov 21, 2022
- Whisper Turns Stronger: Augmenting Wav2Vec 2.0 for Superior ASR in Low-Resource Languages Approaching Speech-to-Text and Automatic Speech Recognition problems in low-resource languages is notoriously challenging due to the scarcity of validated datasets and the diversity of dialects. Arabic, Russian, and Portuguese exemplify these difficulties, being low-resource languages due to the many dialects of these languages across different continents worldwide. Moreover, the variety of accents and pronunciations of such languages complicate ASR models' success. With the increasing popularity of Deep Learning and Transformers, acoustic models like the renowned Wav2Vec2 have achieved superior performance in the Speech Recognition field compared to state-of-the-art approaches. However, despite Wav2Vec2's improved efficiency over traditional methods, its performance significantly declines for under-represented languages, even though it requires significantly less labeled data. This paper introduces an end-to-end framework that enhances ASR systems fine-tuned on Wav2Vec2 through data augmentation techniques. To validate our framework's effectiveness, we conducted a detailed experimental evaluation using three datasets from Mozilla's Common Voice project in Arabic, Russian, and Portuguese. Additionally, the framework presented in this paper demonstrates robustness to different diacritics. Ultimately, our approach outperforms two previous baseline models, which are the pre-trained Wav2Vec2 and the well-known Whisper ASR model, resulting in an average relative improvement of 33.9\% in Word Error Rate and a 53.2\% relative improvement in Character Error Rate. 3 authors · Dec 31, 2024
- Layer-wise Analysis of a Self-supervised Speech Representation Model Recently proposed self-supervised learning approaches have been successful for pre-training speech representation models. The utility of these learned representations has been observed empirically, but not much has been studied about the type or extent of information encoded in the pre-trained representations themselves. Developing such insights can help understand the capabilities and limits of these models and enable the research community to more efficiently develop their usage for downstream applications. In this work, we begin to fill this gap by examining one recent and successful pre-trained model (wav2vec 2.0), via its intermediate representation vectors, using a suite of analysis tools. We use the metrics of canonical correlation, mutual information, and performance on simple downstream tasks with non-parametric probes, in order to (i) query for acoustic and linguistic information content, (ii) characterize the evolution of information across model layers, and (iii) understand how fine-tuning the model for automatic speech recognition (ASR) affects these observations. Our findings motivate modifying the fine-tuning protocol for ASR, which produces improved word error rates in a low-resource setting. 3 authors · Jul 9, 2021
- Efficient Self-supervised Learning with Contextualized Target Representations for Vision, Speech and Language Current self-supervised learning algorithms are often modality-specific and require large amounts of computational resources. To address these issues, we increase the training efficiency of data2vec, a learning objective that generalizes across several modalities. We do not encode masked tokens, use a fast convolutional decoder and amortize the effort to build teacher representations. data2vec 2.0 benefits from the rich contextualized target representations introduced in data2vec which enable a fast self-supervised learner. Experiments on ImageNet-1K image classification show that data2vec 2.0 matches the accuracy of Masked Autoencoders in 16.4x lower pre-training time, on Librispeech speech recognition it performs as well as wav2vec 2.0 in 10.6x less time, and on GLUE natural language understanding it matches a retrained RoBERTa model in half the time. Trading some speed for accuracy results in ImageNet-1K top-1 accuracy of 86.8\% with a ViT-L model trained for 150 epochs. 4 authors · Dec 14, 2022
- A Wav2vec2-Based Experimental Study on Self-Supervised Learning Methods to Improve Child Speech Recognition Despite recent advancements in deep learning technologies, Child Speech Recognition remains a challenging task. Current Automatic Speech Recognition (ASR) models require substantial amounts of annotated data for training, which is scarce. In this work, we explore using the ASR model, wav2vec2, with different pretraining and finetuning configurations for self-supervised learning (SSL) toward improving automatic child speech recognition. The pretrained wav2vec2 models were finetuned using different amounts of child speech training data, adult speech data, and a combination of both, to discover the optimum amount of data required to finetune the model for the task of child ASR. Our trained model achieves the best Word Error Rate (WER) of 7.42 on the MyST child speech dataset, 2.99 on the PFSTAR dataset and 12.47 on the CMU KIDS dataset as compared to any other previous methods. Our models outperformed the wav2vec2 BASE 960 on child speech which is considered a state-of-the-art ASR model on adult speech by just using 10 hours of child speech data in finetuning. The analysis of different types of training data and their effect on inference is also provided by using a combination of datasets in pretraining, finetuning and inference. 6 authors · Apr 6, 2022
- Common Phone: A Multilingual Dataset for Robust Acoustic Modelling Current state of the art acoustic models can easily comprise more than 100 million parameters. This growing complexity demands larger training datasets to maintain a decent generalization of the final decision function. An ideal dataset is not necessarily large in size, but large with respect to the amount of unique speakers, utilized hardware and varying recording conditions. This enables a machine learning model to explore as much of the domain-specific input space as possible during parameter estimation. This work introduces Common Phone, a gender-balanced, multilingual corpus recorded from more than 11.000 contributors via Mozilla's Common Voice project. It comprises around 116 hours of speech enriched with automatically generated phonetic segmentation. A Wav2Vec 2.0 acoustic model was trained with the Common Phone to perform phonetic symbol recognition and validate the quality of the generated phonetic annotation. The architecture achieved a PER of 18.1 % on the entire test set, computed with all 101 unique phonetic symbols, showing slight differences between the individual languages. We conclude that Common Phone provides sufficient variability and reliable phonetic annotation to help bridging the gap between research and application of acoustic models. 5 authors · Jan 15, 2022
- ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification Current speaker verification techniques rely on a neural network to extract speaker representations. The successful x-vector architecture is a Time Delay Neural Network (TDNN) that applies statistics pooling to project variable-length utterances into fixed-length speaker characterizing embeddings. In this paper, we propose multiple enhancements to this architecture based on recent trends in the related fields of face verification and computer vision. Firstly, the initial frame layers can be restructured into 1-dimensional Res2Net modules with impactful skip connections. Similarly to SE-ResNet, we introduce Squeeze-and-Excitation blocks in these modules to explicitly model channel interdependencies. The SE block expands the temporal context of the frame layer by rescaling the channels according to global properties of the recording. Secondly, neural networks are known to learn hierarchical features, with each layer operating on a different level of complexity. To leverage this complementary information, we aggregate and propagate features of different hierarchical levels. Finally, we improve the statistics pooling module with channel-dependent frame attention. This enables the network to focus on different subsets of frames during each of the channel's statistics estimation. The proposed ECAPA-TDNN architecture significantly outperforms state-of-the-art TDNN based systems on the VoxCeleb test sets and the 2019 VoxCeleb Speaker Recognition Challenge. 3 authors · May 14, 2020
- Pre-Training Transformer Decoder for End-to-End ASR Model with Unpaired Speech Data This paper studies a novel pre-training technique with unpaired speech data, Speech2C, for encoder-decoder based automatic speech recognition (ASR). Within a multi-task learning framework, we introduce two pre-training tasks for the encoder-decoder network using acoustic units, i.e., pseudo codes, derived from an offline clustering model. One is to predict the pseudo codes via masked language modeling in encoder output, like HuBERT model, while the other lets the decoder learn to reconstruct pseudo codes autoregressively instead of generating textual scripts. In this way, the decoder learns to reconstruct original speech information with codes before learning to generate correct text. Comprehensive experiments on the LibriSpeech corpus show that the proposed Speech2C can relatively reduce the word error rate (WER) by 19.2% over the method without decoder pre-training, and also outperforms significantly the state-of-the-art wav2vec 2.0 and HuBERT on fine-tuning subsets of 10h and 100h. We release our code and model at https://github.com/microsoft/SpeechT5/tree/main/Speech2C. 10 authors · Mar 31, 2022
- Adapting Multilingual Speech Representation Model for a New, Underresourced Language through Multilingual Fine-tuning and Continued Pretraining In recent years, neural models learned through self-supervised pretraining on large scale multilingual text or speech data have exhibited promising results for underresourced languages, especially when a relatively large amount of data from related language(s) is available. While the technology has a potential for facilitating tasks carried out in language documentation projects, such as speech transcription, pretraining a multilingual model from scratch for every new language would be highly impractical. We investigate the possibility for adapting an existing multilingual wav2vec 2.0 model for a new language, focusing on actual fieldwork data from a critically endangered tongue: Ainu. Specifically, we (i) examine the feasibility of leveraging data from similar languages also in fine-tuning; (ii) verify whether the model's performance can be improved by further pretraining on target language data. Our results show that continued pretraining is the most effective method to adapt a wav2vec 2.0 model for a new language and leads to considerable reduction in error rates. Furthermore, we find that if a model pretrained on a related speech variety or an unrelated language with similar phonological characteristics is available, multilingual fine-tuning using additional data from that language can have positive impact on speech recognition performance when there is very little labeled data in the target language. 4 authors · Jan 17, 2023
- Efficient Sequence Transduction by Jointly Predicting Tokens and Durations This paper introduces a novel Token-and-Duration Transducer (TDT) architecture for sequence-to-sequence tasks. TDT extends conventional RNN-Transducer architectures by jointly predicting both a token and its duration, i.e. the number of input frames covered by the emitted token. This is achieved by using a joint network with two outputs which are independently normalized to generate distributions over tokens and durations. During inference, TDT models can skip input frames guided by the predicted duration output, which makes them significantly faster than conventional Transducers which process the encoder output frame by frame. TDT models achieve both better accuracy and significantly faster inference than conventional Transducers on different sequence transduction tasks. TDT models for Speech Recognition achieve better accuracy and up to 2.82X faster inference than conventional Transducers. TDT models for Speech Translation achieve an absolute gain of over 1 BLEU on the MUST-C test compared with conventional Transducers, and its inference is 2.27X faster. In Speech Intent Classification and Slot Filling tasks, TDT models improve the intent accuracy by up to over 1% (absolute) over conventional Transducers, while running up to 1.28X faster. Our implementation of the TDT model will be open-sourced with the NeMo (https://github.com/NVIDIA/NeMo) toolkit. 6 authors · Apr 13, 2023
- CLSRIL-23: Cross Lingual Speech Representations for Indic Languages We present a CLSRIL-23, a self supervised learning based audio pre-trained model which learns cross lingual speech representations from raw audio across 23 Indic languages. It is built on top of wav2vec 2.0 which is solved by training a contrastive task over masked latent speech representations and jointly learns the quantization of latents shared across all languages. We compare the language wise loss during pretraining to compare effects of monolingual and multilingual pretraining. Performance on some downstream fine-tuning tasks for speech recognition is also compared and our experiments show that multilingual pretraining outperforms monolingual training, in terms of learning speech representations which encodes phonetic similarity of languages and also in terms of performance on down stream tasks. A decrease of 5% is observed in WER and 9.5% in CER when a multilingual pretrained model is used for finetuning in Hindi. All the code models are also open sourced. CLSRIL-23 is a model trained on 23 languages and almost 10,000 hours of audio data to facilitate research in speech recognition for Indic languages. We hope that new state of the art systems will be created using the self supervised approach, especially for low resources Indic languages. 7 authors · Jul 15, 2021
- Self-training and Pre-training are Complementary for Speech Recognition Self-training and unsupervised pre-training have emerged as effective approaches to improve speech recognition systems using unlabeled data. However, it is not clear whether they learn similar patterns or if they can be effectively combined. In this paper, we show that pseudo-labeling and pre-training with wav2vec 2.0 are complementary in a variety of labeled data setups. Using just 10 minutes of labeled data from Libri-light as well as 53k hours of unlabeled data from LibriVox achieves WERs of 3.0%/5.2% on the clean and other test sets of Librispeech - rivaling the best published systems trained on 960 hours of labeled data only a year ago. Training on all labeled data of Librispeech achieves WERs of 1.5%/3.1%. 8 authors · Oct 22, 2020
- Lip2Vec: Efficient and Robust Visual Speech Recognition via Latent-to-Latent Visual to Audio Representation Mapping Visual Speech Recognition (VSR) differs from the common perception tasks as it requires deeper reasoning over the video sequence, even by human experts. Despite the recent advances in VSR, current approaches rely on labeled data to fully train or finetune their models predicting the target speech. This hinders their ability to generalize well beyond the training set and leads to performance degeneration under out-of-distribution challenging scenarios. Unlike previous works that involve auxiliary losses or complex training procedures and architectures, we propose a simple approach, named Lip2Vec that is based on learning a prior model. Given a robust visual speech encoder, this network maps the encoded latent representations of the lip sequence to their corresponding latents from the audio pair, which are sufficiently invariant for effective text decoding. The generated audio representation is then decoded to text using an off-the-shelf Audio Speech Recognition (ASR) model. The proposed model compares favorably with fully-supervised learning methods on the LRS3 dataset achieving 26 WER. Unlike SoTA approaches, our model keeps a reasonable performance on the VoxCeleb test set. We believe that reprogramming the VSR as an ASR task narrows the performance gap between the two and paves the way for more flexible formulations of lip reading. 5 authors · Aug 11, 2023
- Do We Still Need Automatic Speech Recognition for Spoken Language Understanding? Spoken language understanding (SLU) tasks are usually solved by first transcribing an utterance with automatic speech recognition (ASR) and then feeding the output to a text-based model. Recent advances in self-supervised representation learning for speech data have focused on improving the ASR component. We investigate whether representation learning for speech has matured enough to replace ASR in SLU. We compare learned speech features from wav2vec 2.0, state-of-the-art ASR transcripts, and the ground truth text as input for a novel speech-based named entity recognition task, a cardiac arrest detection task on real-world emergency calls and two existing SLU benchmarks. We show that learned speech features are superior to ASR transcripts on three classification tasks. For machine translation, ASR transcripts are still the better choice. We highlight the intrinsic robustness of wav2vec 2.0 representations to out-of-vocabulary words as key to better performance. 7 authors · Nov 29, 2021
- Effectiveness of Mining Audio and Text Pairs from Public Data for Improving ASR Systems for Low-Resource Languages End-to-end (E2E) models have become the default choice for state-of-the-art speech recognition systems. Such models are trained on large amounts of labelled data, which are often not available for low-resource languages. Techniques such as self-supervised learning and transfer learning hold promise, but have not yet been effective in training accurate models. On the other hand, collecting labelled datasets on a diverse set of domains and speakers is very expensive. In this work, we demonstrate an inexpensive and effective alternative to these approaches by ``mining'' text and audio pairs for Indian languages from public sources, specifically from the public archives of All India Radio. As a key component, we adapt the Needleman-Wunsch algorithm to align sentences with corresponding audio segments given a long audio and a PDF of its transcript, while being robust to errors due to OCR, extraneous text, and non-transcribed speech. We thus create Shrutilipi, a dataset which contains over 6,400 hours of labelled audio across 12 Indian languages totalling to 4.95M sentences. On average, Shrutilipi results in a 2.3x increase over publicly available labelled data. We establish the quality of Shrutilipi with 21 human evaluators across the 12 languages. We also establish the diversity of Shrutilipi in terms of represented regions, speakers, and mentioned named entities. Significantly, we show that adding Shrutilipi to the training set of Wav2Vec models leads to an average decrease in WER of 5.8\% for 7 languages on the IndicSUPERB benchmark. For Hindi, which has the most benchmarks (7), the average WER falls from 18.8% to 13.5%. This improvement extends to efficient models: We show a 2.3% drop in WER for a Conformer model (10x smaller than Wav2Vec). Finally, we demonstrate the diversity of Shrutilipi by showing that the model trained with it is more robust to noisy input. 7 authors · Aug 26, 2022
- Cross-Domain Audio Deepfake Detection: Dataset and Analysis Audio deepfake detection (ADD) is essential for preventing the misuse of synthetic voices that may infringe on personal rights and privacy. Recent zero-shot text-to-speech (TTS) models pose higher risks as they can clone voices with a single utterance. However, the existing ADD datasets are outdated, leading to suboptimal generalization of detection models. In this paper, we construct a new cross-domain ADD dataset comprising over 300 hours of speech data that is generated by five advanced zero-shot TTS models. To simulate real-world scenarios, we employ diverse attack methods and audio prompts from different datasets. Experiments show that, through novel attack-augmented training, the Wav2Vec2-large and Whisper-medium models achieve equal error rates of 4.1\% and 6.5\% respectively. Additionally, we demonstrate our models' outstanding few-shot ADD ability by fine-tuning with just one minute of target-domain data. Nonetheless, neural codec compressors greatly affect the detection accuracy, necessitating further research. 6 authors · Apr 7, 2024
- Enhancing Child Vocalization Classification in Multi-Channel Child-Adult Conversations Through Wav2vec2 Children ASR Features Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that often emerges in early childhood. ASD assessment typically involves an observation protocol including note-taking and ratings of child's social behavior conducted by a trained clinician. A robust machine learning (ML) model that is capable of labeling adult and child audio has the potential to save significant time and labor in manual coding children's behaviors. This may assist clinicians capture events of interest, better communicate events with parents, and educate new clinicians. In this study, we leverage the self-supervised learning model, Wav2Vec 2.0 (W2V2), pretrained on 4300h of home recordings of children under 5 years old, to build a unified system that performs both speaker diarization (SD) and vocalization classification (VC) tasks. We apply this system to two-channel audio recordings of brief 3-5 minute clinician-child interactions using the Rapid-ABC corpus. We propose a novel technique by introducing auxiliary features extracted from W2V2-based automatic speech recognition (ASR) system for children under 4 years old to improve children's VC task. We test our proposed method of improving children's VC task on two corpora (Rapid-ABC and BabbleCor) and observe consistent improvements. Furthermore, we reach, or perhaps outperform, the state-of-the-art performance of BabbleCor. 3 authors · Sep 13, 2023
- Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes. 6 authors · Sep 14, 2021
- Exploring Self-Supervised Multi-view Contrastive Learning for Speech Emotion Recognition with Limited Annotations Recent advancements in Deep and Self-Supervised Learning (SSL) have led to substantial improvements in Speech Emotion Recognition (SER) performance, reaching unprecedented levels. However, obtaining sufficient amounts of accurately labeled data for training or fine-tuning the models remains a costly and challenging task. In this paper, we propose a multi-view SSL pre-training technique that can be applied to various representations of speech, including the ones generated by large speech models, to improve SER performance in scenarios where annotations are limited. Our experiments, based on wav2vec 2.0, spectral and paralinguistic features, demonstrate that the proposed framework boosts the SER performance, by up to 10% in Unweighted Average Recall, in settings with extremely sparse data annotations. 4 authors · Jun 12, 2024
- data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language While the general idea of self-supervised learning is identical across modalities, the actual algorithms and objectives differ widely because they were developed with a single modality in mind. To get us closer to general self-supervised learning, we present data2vec, a framework that uses the same learning method for either speech, NLP or computer vision. The core idea is to predict latent representations of the full input data based on a masked view of the input in a self-distillation setup using a standard Transformer architecture. Instead of predicting modality-specific targets such as words, visual tokens or units of human speech which are local in nature, data2vec predicts contextualized latent representations that contain information from the entire input. Experiments on the major benchmarks of speech recognition, image classification, and natural language understanding demonstrate a new state of the art or competitive performance to predominant approaches. 6 authors · Feb 7, 2022
1 voc2vec: A Foundation Model for Non-Verbal Vocalization Speech foundation models have demonstrated exceptional capabilities in speech-related tasks. Nevertheless, these models often struggle with non-verbal audio data, such as vocalizations, baby crying, etc., which are critical for various real-world applications. Audio foundation models well handle non-speech data but also fail to capture the nuanced features of non-verbal human sounds. In this work, we aim to overcome the above shortcoming and propose a novel foundation model, termed voc2vec, specifically designed for non-verbal human data leveraging exclusively open-source non-verbal audio datasets. We employ a collection of 10 datasets covering around 125 hours of non-verbal audio. Experimental results prove that voc2vec is effective in non-verbal vocalization classification, and it outperforms conventional speech and audio foundation models. Moreover, voc2vec consistently outperforms strong baselines, namely OpenSmile and emotion2vec, on six different benchmark datasets. To the best of the authors' knowledge, voc2vec is the first universal representation model for vocalization tasks. 4 authors · Feb 22
- Dual-Signal Transformation LSTM Network for Real-Time Noise Suppression This paper introduces a dual-signal transformation LSTM network (DTLN) for real-time speech enhancement as part of the Deep Noise Suppression Challenge (DNS-Challenge). This approach combines a short-time Fourier transform (STFT) and a learned analysis and synthesis basis in a stacked-network approach with less than one million parameters. The model was trained on 500 h of noisy speech provided by the challenge organizers. The network is capable of real-time processing (one frame in, one frame out) and reaches competitive results. Combining these two types of signal transformations enables the DTLN to robustly extract information from magnitude spectra and incorporate phase information from the learned feature basis. The method shows state-of-the-art performance and outperforms the DNS-Challenge baseline by 0.24 points absolute in terms of the mean opinion score (MOS). 2 authors · May 15, 2020
- Wav2Vec-Aug: Improved self-supervised training with limited data Self-supervised learning (SSL) of speech representations has received much attention over the last few years but most work has focused on languages and domains with an abundance of unlabeled data. However, for many languages there is a shortage even in the unlabeled data which limits the effectiveness of SSL. In this work, we focus on the problem of applying SSL to domains with limited available data by leveraging data augmentation for Wav2Vec 2.0 pretraining. Further, we propose improvements to each component of the model which result in a combined relative word error rate (WER) improvement of up to 13% compared to Wav2Vec 2.0 on Librispeech test-clean / other. 3 authors · Jun 27, 2022
- Simple and Effective Zero-shot Cross-lingual Phoneme Recognition Recent progress in self-training, self-supervised pretraining and unsupervised learning enabled well performing speech recognition systems without any labeled data. However, in many cases there is labeled data available for related languages which is not utilized by these methods. This paper extends previous work on zero-shot cross-lingual transfer learning by fine-tuning a multilingually pretrained wav2vec 2.0 model to transcribe unseen languages. This is done by mapping phonemes of the training languages to the target language using articulatory features. Experiments show that this simple method significantly outperforms prior work which introduced task-specific architectures and used only part of a monolingually pretrained model. 3 authors · Sep 23, 2021
3 Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions This paper describes Tacotron 2, a neural network architecture for speech synthesis directly from text. The system is composed of a recurrent sequence-to-sequence feature prediction network that maps character embeddings to mel-scale spectrograms, followed by a modified WaveNet model acting as a vocoder to synthesize timedomain waveforms from those spectrograms. Our model achieves a mean opinion score (MOS) of 4.53 comparable to a MOS of 4.58 for professionally recorded speech. To validate our design choices, we present ablation studies of key components of our system and evaluate the impact of using mel spectrograms as the input to WaveNet instead of linguistic, duration, and F_0 features. We further demonstrate that using a compact acoustic intermediate representation enables significant simplification of the WaveNet architecture. 13 authors · Dec 15, 2017
- ESPnet-SPK: full pipeline speaker embedding toolkit with reproducible recipes, self-supervised front-ends, and off-the-shelf models This paper introduces ESPnet-SPK, a toolkit designed with several objectives for training speaker embedding extractors. First, we provide an open-source platform for researchers in the speaker recognition community to effortlessly build models. We provide several models, ranging from x-vector to recent SKA-TDNN. Through the modularized architecture design, variants can be developed easily. We also aspire to bridge developed models with other domains, facilitating the broad research community to effortlessly incorporate state-of-the-art embedding extractors. Pre-trained embedding extractors can be accessed in an off-the-shelf manner and we demonstrate the toolkit's versatility by showcasing its integration with two tasks. Another goal is to integrate with diverse self-supervised learning features. We release a reproducible recipe that achieves an equal error rate of 0.39% on the Vox1-O evaluation protocol using WavLM-Large with ECAPA-TDNN. 8 authors · Jan 30, 2024
- Neural Speech Synthesis with Transformer Network Although end-to-end neural text-to-speech (TTS) methods (such as Tacotron2) are proposed and achieve state-of-the-art performance, they still suffer from two problems: 1) low efficiency during training and inference; 2) hard to model long dependency using current recurrent neural networks (RNNs). Inspired by the success of Transformer network in neural machine translation (NMT), in this paper, we introduce and adapt the multi-head attention mechanism to replace the RNN structures and also the original attention mechanism in Tacotron2. With the help of multi-head self-attention, the hidden states in the encoder and decoder are constructed in parallel, which improves the training efficiency. Meanwhile, any two inputs at different times are connected directly by self-attention mechanism, which solves the long range dependency problem effectively. Using phoneme sequences as input, our Transformer TTS network generates mel spectrograms, followed by a WaveNet vocoder to output the final audio results. Experiments are conducted to test the efficiency and performance of our new network. For the efficiency, our Transformer TTS network can speed up the training about 4.25 times faster compared with Tacotron2. For the performance, rigorous human tests show that our proposed model achieves state-of-the-art performance (outperforms Tacotron2 with a gap of 0.048) and is very close to human quality (4.39 vs 4.44 in MOS). 6 authors · Sep 19, 2018
1 Task-Agnostic Structured Pruning of Speech Representation Models Self-supervised pre-trained models such as Wav2vec2, Hubert, and WavLM have been shown to significantly improve many speech tasks. However, their large memory and strong computational requirements hinder their industrial applicability. Structured pruning is a hardware-friendly model compression technique but usually results in a larger loss of accuracy. In this paper, we propose a fine-grained attention head pruning method to compensate for the performance degradation. In addition, we also introduce the straight through estimator into the L0 regularization to further accelerate the pruned model. Experiments on the SUPERB benchmark show that our model can achieve comparable performance to the dense model in multiple tasks and outperforms the Wav2vec 2.0 base model on average, with 72% fewer parameters and 2 times faster inference speed. 5 authors · Jun 2, 2023
2 Fewer-token Neural Speech Codec with Time-invariant Codes Language model based text-to-speech (TTS) models, like VALL-E, have gained attention for their outstanding in-context learning capability in zero-shot scenarios. Neural speech codec is a critical component of these models, which can convert speech into discrete token representations. However, excessive token sequences from the codec may negatively affect prediction accuracy and restrict the progression of Language model based TTS models. To address this issue, this paper proposes a novel neural speech codec with time-invariant codes named TiCodec. By encoding and quantizing time-invariant information into a separate code, TiCodec can reduce the amount of frame-level information that needs encoding, effectively decreasing the number of tokens as codes of speech. Furthermore, this paper introduces a time-invariant encoding consistency loss to enhance the consistency of time-invariant code within an utterance and force it to capture more global information, which can benefit the zero-shot TTS task. Experimental results demonstrate that TiCodec can not only enhance the quality of reconstruction speech with fewer tokens but also increase the similarity and naturalness, as well as reduce the word error rate of the synthesized speech by the TTS model. 7 authors · Sep 15, 2023
- Towards Robust Family-Infant Audio Analysis Based on Unsupervised Pretraining of Wav2vec 2.0 on Large-Scale Unlabeled Family Audio To perform automatic family audio analysis, past studies have collected recordings using phone, video, or audio-only recording devices like LENA, investigated supervised learning methods, and used or fine-tuned general-purpose embeddings learned from large pretrained models. In this study, we advance the audio component of a new infant wearable multi-modal device called LittleBeats (LB) by learning family audio representation via wav2vec 2.0 (W2V2) pertaining. We show given a limited number of labeled LB home recordings, W2V2 pretrained using 1k-hour of unlabeled home recordings outperforms oracle W2V2 pretrained on 52k-hour unlabeled audio in terms of parent/infant speaker diarization (SD) and vocalization classifications (VC) at home. Extra relevant external unlabeled and labeled data further benefit W2V2 pretraining and fine-tuning. With SpecAug and environmental speech corruptions, we obtain 12% relative gain on SD and moderate boost on VC. Code and model weights are available. 3 authors · May 21, 2023
- Efficient Adapter Transfer of Self-Supervised Speech Models for Automatic Speech Recognition Self-supervised learning (SSL) is a powerful tool that allows learning of underlying representations from unlabeled data. Transformer based models such as wav2vec 2.0 and HuBERT are leading the field in the speech domain. Generally these models are fine-tuned on a small amount of labeled data for a downstream task such as Automatic Speech Recognition (ASR). This involves re-training the majority of the model for each task. Adapters are small lightweight modules which are commonly used in Natural Language Processing (NLP) to adapt pre-trained models to new tasks. In this paper we propose applying adapters to wav2vec 2.0 to reduce the number of parameters required for downstream ASR tasks, and increase scalability of the model to multiple tasks or languages. Using adapters we can perform ASR while training fewer than 10% of parameters per task compared to full fine-tuning with little degradation of performance. Ablations show that applying adapters into just the top few layers of the pre-trained network gives similar performance to full transfer, supporting the theory that higher pre-trained layers encode more phonemic information, and further optimizing efficiency. 3 authors · Feb 7, 2022
1 One-Step Knowledge Distillation and Fine-Tuning in Using Large Pre-Trained Self-Supervised Learning Models for Speaker Verification The application of speech self-supervised learning (SSL) models has achieved remarkable performance in speaker verification (SV). However, there is a computational cost hurdle in employing them, which makes development and deployment difficult. Several studies have simply compressed SSL models through knowledge distillation (KD) without considering the target task. Consequently, these methods could not extract SV-tailored features. This paper suggests One-Step Knowledge Distillation and Fine-Tuning (OS-KDFT), which incorporates KD and fine-tuning (FT). We optimize a student model for SV during KD training to avert the distillation of inappropriate information for the SV. OS-KDFT could downsize Wav2Vec 2.0 based ECAPA-TDNN size by approximately 76.2%, and reduce the SSL model's inference time by 79% while presenting an EER of 0.98%. The proposed OS-KDFT is validated across VoxCeleb1 and VoxCeleb2 datasets and W2V2 and HuBERT SSL models. Experiments are available on our GitHub. 5 authors · May 27, 2023
- Transfer Learning of Transformer-based Speech Recognition Models from Czech to Slovak In this paper, we are comparing several methods of training the Slovak speech recognition models based on the Transformers architecture. Specifically, we are exploring the approach of transfer learning from the existing Czech pre-trained Wav2Vec 2.0 model into Slovak. We are demonstrating the benefits of the proposed approach on three Slovak datasets. Our Slovak models scored the best results when initializing the weights from the Czech model at the beginning of the pre-training phase. Our results show that the knowledge stored in the Cezch pre-trained model can be successfully reused to solve tasks in Slovak while outperforming even much larger public multilingual models. 3 authors · Jun 7, 2023
- TD3Net: A Temporal Densely Connected Multi-Dilated Convolutional Network for Lipreading The word-level lipreading approach typically employs a two-stage framework with separate frontend and backend architectures to model dynamic lip movements. Each component has been extensively studied, and in the backend architecture, temporal convolutional networks (TCNs) have been widely adopted in state-of-the-art methods. Recently, dense skip connections have been introduced in TCNs to mitigate the limited density of the receptive field, thereby improving the modeling of complex temporal representations. However, their performance remains constrained owing to potential information loss regarding the continuous nature of lip movements, caused by blind spots in the receptive field. To address this limitation, we propose TD3Net, a temporal densely connected multi-dilated convolutional network that combines dense skip connections and multi-dilated temporal convolutions as the backend architecture. TD3Net covers a wide and dense receptive field without blind spots by applying different dilation factors to skip-connected features. Experimental results on a word-level lipreading task using two large publicly available datasets, Lip Reading in the Wild (LRW) and LRW-1000, indicate that the proposed method achieves performance comparable to state-of-the-art methods. It achieved higher accuracy with fewer parameters and lower floating-point operations compared to existing TCN-based backend architectures. Moreover, visualization results suggest that our approach effectively utilizes diverse temporal features while preserving temporal continuity, presenting notable advantages in lipreading systems. The code is available at our GitHub repository: https://github.com/Leebh-kor/TD3Net-A-Temporal-Densely-Connected-Multi-dilated-Convolutional-Network-for-Lipreading 3 authors · Jun 19
- A comparative analysis between Conformer-Transducer, Whisper, and wav2vec2 for improving the child speech recognition Automatic Speech Recognition (ASR) systems have progressed significantly in their performance on adult speech data; however, transcribing child speech remains challenging due to the acoustic differences in the characteristics of child and adult voices. This work aims to explore the potential of adapting state-of-the-art Conformer-transducer models to child speech to improve child speech recognition performance. Furthermore, the results are compared with those of self-supervised wav2vec2 models and semi-supervised multi-domain Whisper models that were previously finetuned on the same data. We demonstrate that finetuning Conformer-transducer models on child speech yields significant improvements in ASR performance on child speech, compared to the non-finetuned models. We also show Whisper and wav2vec2 adaptation on different child speech datasets. Our detailed comparative analysis shows that wav2vec2 provides the most consistent performance improvements among the three methods studied. 3 authors · Nov 7, 2023
- TDASS: Target Domain Adaptation Speech Synthesis Framework for Multi-speaker Low-Resource TTS Recently, synthesizing personalized speech by text-to-speech (TTS) application is highly demanded. But the previous TTS models require a mass of target speaker speeches for training. It is a high-cost task, and hard to record lots of utterances from the target speaker. Data augmentation of the speeches is a solution but leads to the low-quality synthesis speech problem. Some multi-speaker TTS models are proposed to address the issue. But the quantity of utterances of each speaker imbalance leads to the voice similarity problem. We propose the Target Domain Adaptation Speech Synthesis Network (TDASS) to address these issues. Based on the backbone of the Tacotron2 model, which is the high-quality TTS model, TDASS introduces a self-interested classifier for reducing the non-target influence. Besides, a special gradient reversal layer with different operations for target and non-target is added to the classifier. We evaluate the model on a Chinese speech corpus, the experiments show the proposed method outperforms the baseline method in terms of voice quality and voice similarity. 4 authors · May 24, 2022
- Utilizing Neural Transducers for Two-Stage Text-to-Speech via Semantic Token Prediction We propose a novel text-to-speech (TTS) framework centered around a neural transducer. Our approach divides the whole TTS pipeline into semantic-level sequence-to-sequence (seq2seq) modeling and fine-grained acoustic modeling stages, utilizing discrete semantic tokens obtained from wav2vec2.0 embeddings. For a robust and efficient alignment modeling, we employ a neural transducer named token transducer for the semantic token prediction, benefiting from its hard monotonic alignment constraints. Subsequently, a non-autoregressive (NAR) speech generator efficiently synthesizes waveforms from these semantic tokens. Additionally, a reference speech controls temporal dynamics and acoustic conditions at each stage. This decoupled framework reduces the training complexity of TTS while allowing each stage to focus on semantic and acoustic modeling. Our experimental results on zero-shot adaptive TTS demonstrate that our model surpasses the baseline in terms of speech quality and speaker similarity, both objectively and subjectively. We also delve into the inference speed and prosody control capabilities of our approach, highlighting the potential of neural transducers in TTS frameworks. 6 authors · Jan 2, 2024
1 Vec-Tok Speech: speech vectorization and tokenization for neural speech generation Language models (LMs) have recently flourished in natural language processing and computer vision, generating high-fidelity texts or images in various tasks. In contrast, the current speech generative models are still struggling regarding speech quality and task generalization. This paper presents Vec-Tok Speech, an extensible framework that resembles multiple speech generation tasks, generating expressive and high-fidelity speech. Specifically, we propose a novel speech codec based on speech vectors and semantic tokens. Speech vectors contain acoustic details contributing to high-fidelity speech reconstruction, while semantic tokens focus on the linguistic content of speech, facilitating language modeling. Based on the proposed speech codec, Vec-Tok Speech leverages an LM to undertake the core of speech generation. Moreover, Byte-Pair Encoding (BPE) is introduced to reduce the token length and bit rate for lower exposure bias and longer context coverage, improving the performance of LMs. Vec-Tok Speech can be used for intra- and cross-lingual zero-shot voice conversion (VC), zero-shot speaking style transfer text-to-speech (TTS), speech-to-speech translation (S2ST), speech denoising, and speaker de-identification and anonymization. Experiments show that Vec-Tok Speech, built on 50k hours of speech, performs better than other SOTA models. Code will be available at https://github.com/BakerBunker/VecTok . 8 authors · Oct 11, 2023
- Efficiently Trainable Text-to-Speech System Based on Deep Convolutional Networks with Guided Attention This paper describes a novel text-to-speech (TTS) technique based on deep convolutional neural networks (CNN), without use of any recurrent units. Recurrent neural networks (RNN) have become a standard technique to model sequential data recently, and this technique has been used in some cutting-edge neural TTS techniques. However, training RNN components often requires a very powerful computer, or a very long time, typically several days or weeks. Recent other studies, on the other hand, have shown that CNN-based sequence synthesis can be much faster than RNN-based techniques, because of high parallelizability. The objective of this paper is to show that an alternative neural TTS based only on CNN alleviate these economic costs of training. In our experiment, the proposed Deep Convolutional TTS was sufficiently trained overnight (15 hours), using an ordinary gaming PC equipped with two GPUs, while the quality of the synthesized speech was almost acceptable. 3 authors · Oct 24, 2017
- Frustratingly Easy Data Augmentation for Low-Resource ASR This paper introduces three self-contained data augmentation methods for low-resource Automatic Speech Recognition (ASR). Our techniques first generate novel text--using gloss-based replacement, random replacement, or an LLM-based approach--and then apply Text-to-Speech (TTS) to produce synthetic audio. We apply these methods, which leverage only the original annotated data, to four languages with extremely limited resources (Vatlongos, Nashta, Shinekhen Buryat, and Kakabe). Fine-tuning a pretrained Wav2Vec2-XLSR-53 model on a combination of the original audio and generated synthetic data yields significant performance gains, including a 14.3% absolute WER reduction for Nashta. The methods prove effective across all four low-resource languages and also show utility for high-resource languages like English, demonstrating their broad applicability. 2 authors · Sep 18
- S2ST-Omni: An Efficient Multilingual Speech-to-Speech Translation Framework via Seamless Speech-Text Alignment and Progressive Fine-tuning Despite recent advances in multilingual speech-to-speech translation (S2ST), several critical challenges persist: 1) achieving high-quality translation remains a major hurdle, and 2) most existing methods heavily rely on large-scale parallel speech corpora, which are costly and difficult to obtain. To address these issues, we propose S2ST-Omni, an efficient and scalable framework for multilingual S2ST. Specifically, we decompose the S2ST task into speech-to-text translation (S2TT) and text-to-speech synthesis (TTS). For S2TT, we propose an effective speech language model that integrates the pretrained Whisper encoder for robust audio understanding and Qwen 3.0 for advanced text comprehension. A lightweight speech adapter is employed to bridge the modality gap between speech and text representations. To further facilitate the multimodal knowledge learning, a two-stage fine-tuning strategy is introduced. In the TTS stage, we adopt a streaming autoregressive generation approach to produce natural and fluent target speech. Experiments on the CVSS benchmark show that S2ST-Omni consistently outperforms existing state-of-the-art S2ST systems in translation quality, highlighting its effectiveness and superiority. 8 authors · Jun 11
- Voice2Series: Reprogramming Acoustic Models for Time Series Classification Learning to classify time series with limited data is a practical yet challenging problem. Current methods are primarily based on hand-designed feature extraction rules or domain-specific data augmentation. Motivated by the advances in deep speech processing models and the fact that voice data are univariate temporal signals, in this paper, we propose Voice2Series (V2S), a novel end-to-end approach that reprograms acoustic models for time series classification, through input transformation learning and output label mapping. Leveraging the representation learning power of a large-scale pre-trained speech processing model, on 30 different time series tasks we show that V2S performs competitive results on 19 time series classification tasks. We further provide a theoretical justification of V2S by proving its population risk is upper bounded by the source risk and a Wasserstein distance accounting for feature alignment via reprogramming. Our results offer new and effective means to time series classification. 3 authors · Jun 17, 2021
- Wav2CLIP: Learning Robust Audio Representations From CLIP We propose Wav2CLIP, a robust audio representation learning method by distilling from Contrastive Language-Image Pre-training (CLIP). We systematically evaluate Wav2CLIP on a variety of audio tasks including classification, retrieval, and generation, and show that Wav2CLIP can outperform several publicly available pre-trained audio representation algorithms. Wav2CLIP projects audio into a shared embedding space with images and text, which enables multimodal applications such as zero-shot classification, and cross-modal retrieval. Furthermore, Wav2CLIP needs just ~10% of the data to achieve competitive performance on downstream tasks compared with fully supervised models, and is more efficient to pre-train than competing methods as it does not require learning a visual model in concert with an auditory model. Finally, we demonstrate image generation from Wav2CLIP as qualitative assessment of the shared embedding space. Our code and model weights are open sourced and made available for further applications. 4 authors · Oct 21, 2021
- Phonological Level wav2vec2-based Mispronunciation Detection and Diagnosis Method The automatic identification and analysis of pronunciation errors, known as Mispronunciation Detection and Diagnosis (MDD) plays a crucial role in Computer Aided Pronunciation Learning (CAPL) tools such as Second-Language (L2) learning or speech therapy applications. Existing MDD methods relying on analysing phonemes can only detect categorical errors of phonemes that have an adequate amount of training data to be modelled. With the unpredictable nature of the pronunciation errors of non-native or disordered speakers and the scarcity of training datasets, it is unfeasible to model all types of mispronunciations. Moreover, phoneme-level MDD approaches have a limited ability to provide detailed diagnostic information about the error made. In this paper, we propose a low-level MDD approach based on the detection of speech attribute features. Speech attribute features break down phoneme production into elementary components that are directly related to the articulatory system leading to more formative feedback to the learner. We further propose a multi-label variant of the Connectionist Temporal Classification (CTC) approach to jointly model the non-mutually exclusive speech attributes using a single model. The pre-trained wav2vec2 model was employed as a core model for the speech attribute detector. The proposed method was applied to L2 speech corpora collected from English learners from different native languages. The proposed speech attribute MDD method was further compared to the traditional phoneme-level MDD and achieved a significantly lower False Acceptance Rate (FAR), False Rejection Rate (FRR), and Diagnostic Error Rate (DER) over all speech attributes compared to the phoneme-level equivalent. 3 authors · Nov 12, 2023
1 Dilated Convolution with Learnable Spacings This thesis presents and evaluates the Dilated Convolution with Learnable Spacings (DCLS) method. Through various supervised learning experiments in the fields of computer vision, audio, and speech processing, the DCLS method proves to outperform both standard and advanced convolution techniques. The research is organized into several steps, starting with an analysis of the literature and existing convolution techniques that preceded the development of the DCLS method. We were particularly interested in the methods that are closely related to our own and that remain essential to capture the nuances and uniqueness of our approach. The cornerstone of our study is the introduction and application of the DCLS method to convolutional neural networks (CNNs), as well as to hybrid architectures that rely on both convolutional and visual attention approaches. DCLS is shown to be particularly effective in tasks such as classification, semantic segmentation, and object detection. Initially using bilinear interpolation, the study also explores other interpolation methods, finding that Gaussian interpolation slightly improves performance. The DCLS method is further applied to spiking neural networks (SNNs) to enable synaptic delay learning within a neural network that could eventually be transferred to so-called neuromorphic chips. The results show that the DCLS method stands out as a new state-of-the-art technique in SNN audio classification for certain benchmark tasks in this field. These tasks involve datasets with a high temporal component. In addition, we show that DCLS can significantly improve the accuracy of artificial neural networks for the multi-label audio classification task. We conclude with a discussion of the chosen experimental setup, its limitations, the limitations of our method, and our results. 1 authors · Aug 10, 2024
- Effectiveness of self-supervised pre-training for speech recognition We compare self-supervised representation learning algorithms which either explicitly quantize the audio data or learn representations without quantization. We find the former to be more accurate since it builds a good vocabulary of the data through vq-wav2vec [1] to enable learning of effective representations in subsequent BERT training. Different to previous work, we directly fine-tune the pre-trained BERT models on transcribed speech using a Connectionist Temporal Classification (CTC) loss instead of feeding the representations into a task-specific model. We also propose a BERT-style model learning directly from the continuous audio data and compare pre-training on raw audio to spectral features. Fine-tuning a BERT model on 10 hour of labeled Librispeech data with a vq-wav2vec vocabulary is almost as good as the best known reported system trained on 100 hours of labeled data on testclean, while achieving a 25% WER reduction on test-other. When using only 10 minutes of labeled data, WER is 25.2 on test-other and 16.3 on test-clean. This demonstrates that self-supervision can enable speech recognition systems trained on a near-zero amount of transcribed data. 3 authors · Nov 10, 2019
2 Dawn of the transformer era in speech emotion recognition: closing the valence gap Recent advances in transformer-based architectures which are pre-trained in self-supervised manner have shown great promise in several machine learning tasks. In the audio domain, such architectures have also been successfully utilised in the field of speech emotion recognition (SER). However, existing works have not evaluated the influence of model size and pre-training data on downstream performance, and have shown limited attention to generalisation, robustness, fairness, and efficiency. The present contribution conducts a thorough analysis of these aspects on several pre-trained variants of wav2vec 2.0 and HuBERT that we fine-tuned on the dimensions arousal, dominance, and valence of MSP-Podcast, while additionally using IEMOCAP and MOSI to test cross-corpus generalisation. To the best of our knowledge, we obtain the top performance for valence prediction without use of explicit linguistic information, with a concordance correlation coefficient (CCC) of .638 on MSP-Podcast. Furthermore, our investigations reveal that transformer-based architectures are more robust to small perturbations compared to a CNN-based baseline and fair with respect to biological sex groups, but not towards individual speakers. Finally, we are the first to show that their extraordinary success on valence is based on implicit linguistic information learnt during fine-tuning of the transformer layers, which explains why they perform on-par with recent multimodal approaches that explicitly utilise textual information. Our findings collectively paint the following picture: transformer-based architectures constitute the new state-of-the-art in SER, but further advances are needed to mitigate remaining robustness and individual speaker issues. To make our findings reproducible, we release the best performing model to the community. 7 authors · Mar 14, 2022
- QuartzNet: Deep Automatic Speech Recognition with 1D Time-Channel Separable Convolutions We propose a new end-to-end neural acoustic model for automatic speech recognition. The model is composed of multiple blocks with residual connections between them. Each block consists of one or more modules with 1D time-channel separable convolutional layers, batch normalization, and ReLU layers. It is trained with CTC loss. The proposed network achieves near state-of-the-art accuracy on LibriSpeech and Wall Street Journal, while having fewer parameters than all competing models. We also demonstrate that this model can be effectively fine-tuned on new datasets. 9 authors · Oct 22, 2019
1 How Does Pre-trained Wav2Vec 2.0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications Recent work on self-supervised pre-training focus on leveraging large-scale unlabeled speech data to build robust end-to-end (E2E) acoustic models (AM) that can be later fine-tuned on downstream tasks e.g., automatic speech recognition (ASR). Yet, few works investigated the impact on performance when the data properties substantially differ between the pre-training and fine-tuning phases, termed domain shift. We target this scenario by analyzing the robustness of Wav2Vec 2.0 and XLS-R models on downstream ASR for a completely unseen domain, air traffic control (ATC) communications. We benchmark these two models on several open-source and challenging ATC databases with signal-to-noise ratio between 5 and 20 dB. Relative word error rate (WER) reductions between 20% to 40% are obtained in comparison to hybrid-based ASR baselines by only fine-tuning E2E acoustic models with a smaller fraction of labeled data. We analyze WERs on the low-resource scenario and gender bias carried by one ATC dataset. 9 authors · Mar 31, 2022
- Automatic speaker verification spoofing and deepfake detection using wav2vec 2.0 and data augmentation The performance of spoofing countermeasure systems depends fundamentally upon the use of sufficiently representative training data. With this usually being limited, current solutions typically lack generalisation to attacks encountered in the wild. Strategies to improve reliability in the face of uncontrolled, unpredictable attacks are hence needed. We report in this paper our efforts to use self-supervised learning in the form of a wav2vec 2.0 front-end with fine tuning. Despite initial base representations being learned using only bona fide data and no spoofed data, we obtain the lowest equal error rates reported in the literature for both the ASVspoof 2021 Logical Access and Deepfake databases. When combined with data augmentation,these results correspond to an improvement of almost 90% relative to our baseline system. 6 authors · Feb 24, 2022
- Forward-Backward Decoding for Regularizing End-to-End TTS Neural end-to-end TTS can generate very high-quality synthesized speech, and even close to human recording within similar domain text. However, it performs unsatisfactory when scaling it to challenging test sets. One concern is that the encoder-decoder with attention-based network adopts autoregressive generative sequence model with the limitation of "exposure bias" To address this issue, we propose two novel methods, which learn to predict future by improving agreement between forward and backward decoding sequence. The first one is achieved by introducing divergence regularization terms into model training objective to reduce the mismatch between two directional models, namely L2R and R2L (which generates targets from left-to-right and right-to-left, respectively). While the second one operates on decoder-level and exploits the future information during decoding. In addition, we employ a joint training strategy to allow forward and backward decoding to improve each other in an interactive process. Experimental results show our proposed methods especially the second one (bidirectional decoder regularization), leads a significantly improvement on both robustness and overall naturalness, as outperforming baseline (the revised version of Tacotron2) with a MOS gap of 0.14 in a challenging test, and achieving close to human quality (4.42 vs. 4.49 in MOS) on general test. 7 authors · Jul 18, 2019
- SpeedySpeech: Efficient Neural Speech Synthesis While recent neural sequence-to-sequence models have greatly improved the quality of speech synthesis, there has not been a system capable of fast training, fast inference and high-quality audio synthesis at the same time. We propose a student-teacher network capable of high-quality faster-than-real-time spectrogram synthesis, with low requirements on computational resources and fast training time. We show that self-attention layers are not necessary for generation of high quality audio. We utilize simple convolutional blocks with residual connections in both student and teacher networks and use only a single attention layer in the teacher model. Coupled with a MelGAN vocoder, our model's voice quality was rated significantly higher than Tacotron 2. Our model can be efficiently trained on a single GPU and can run in real time even on a CPU. We provide both our source code and audio samples in our GitHub repository. 2 authors · Aug 9, 2020
- WavLM model ensemble for audio deepfake detection Audio deepfake detection has become a pivotal task over the last couple of years, as many recent speech synthesis and voice cloning systems generate highly realistic speech samples, thus enabling their use in malicious activities. In this paper we address the issue of audio deepfake detection as it was set in the ASVspoof5 challenge. First, we benchmark ten types of pretrained representations and show that the self-supervised representations stemming from the wav2vec2 and wavLM families perform best. Of the two, wavLM is better when restricting the pretraining data to LibriSpeech, as required by the challenge rules. To further improve performance, we finetune the wavLM model for the deepfake detection task. We extend the ASVspoof5 dataset with samples from other deepfake detection datasets and apply data augmentation. Our final challenge submission consists of a late fusion combination of four models and achieves an equal error rate of 6.56% and 17.08% on the two evaluation sets. 4 authors · Aug 14, 2024
- Towards Building ASR Systems for the Next Billion Users Recent methods in speech and language technology pretrain very LARGE models which are fine-tuned for specific tasks. However, the benefits of such LARGE models are often limited to a few resource rich languages of the world. In this work, we make multiple contributions towards building ASR systems for low resource languages from the Indian subcontinent. First, we curate 17,000 hours of raw speech data for 40 Indian languages from a wide variety of domains including education, news, technology, and finance. Second, using this raw speech data we pretrain several variants of wav2vec style models for 40 Indian languages. Third, we analyze the pretrained models to find key features: codebook vectors of similar sounding phonemes are shared across languages, representations across layers are discriminative of the language family, and attention heads often pay attention within small local windows. Fourth, we fine-tune this model for downstream ASR for 9 languages and obtain state-of-the-art results on 3 public datasets, including on very low-resource languages such as Sinhala and Nepali. Our work establishes that multilingual pretraining is an effective strategy for building ASR systems for the linguistically diverse speakers of the Indian subcontinent. Our code, data and models are available publicly at https://indicnlp.ai4bharat.org/indicwav2vec/ and we hope they will help advance research in ASR for Indic languages. 8 authors · Nov 6, 2021
- High Fidelity Speech Synthesis with Adversarial Networks Generative adversarial networks have seen rapid development in recent years and have led to remarkable improvements in generative modelling of images. However, their application in the audio domain has received limited attention, and autoregressive models, such as WaveNet, remain the state of the art in generative modelling of audio signals such as human speech. To address this paucity, we introduce GAN-TTS, a Generative Adversarial Network for Text-to-Speech. Our architecture is composed of a conditional feed-forward generator producing raw speech audio, and an ensemble of discriminators which operate on random windows of different sizes. The discriminators analyse the audio both in terms of general realism, as well as how well the audio corresponds to the utterance that should be pronounced. To measure the performance of GAN-TTS, we employ both subjective human evaluation (MOS - Mean Opinion Score), as well as novel quantitative metrics (Fr\'echet DeepSpeech Distance and Kernel DeepSpeech Distance), which we find to be well correlated with MOS. We show that GAN-TTS is capable of generating high-fidelity speech with naturalness comparable to the state-of-the-art models, and unlike autoregressive models, it is highly parallelisable thanks to an efficient feed-forward generator. Listen to GAN-TTS reading this abstract at https://storage.googleapis.com/deepmind-media/research/abstract.wav. 8 authors · Sep 25, 2019
- Large-Scale Self- and Semi-Supervised Learning for Speech Translation In this paper, we improve speech translation (ST) through effectively leveraging large quantities of unlabeled speech and text data in different and complementary ways. We explore both pretraining and self-training by using the large Libri-Light speech audio corpus and language modeling with CommonCrawl. Our experiments improve over the previous state of the art by 2.6 BLEU on average on all four considered CoVoST 2 language pairs via a simple recipe of combining wav2vec 2.0 pretraining, a single iteration of self-training and decoding with a language model. Different to existing work, our approach does not leverage any other supervision than ST data. Code and models will be publicly released. 6 authors · Apr 14, 2021
- End-to-End Speech Translation with Pre-trained Models and Adapters: UPC at IWSLT 2021 This paper describes the submission to the IWSLT 2021 offline speech translation task by the UPC Machine Translation group. The task consists of building a system capable of translating English audio recordings extracted from TED talks into German text. Submitted systems can be either cascade or end-to-end and use a custom or given segmentation. Our submission is an end-to-end speech translation system, which combines pre-trained models (Wav2Vec 2.0 and mBART) with coupling modules between the encoder and decoder, and uses an efficient fine-tuning technique, which trains only 20% of its total parameters. We show that adding an Adapter to the system and pre-training it, can increase the convergence speed and the final result, with which we achieve a BLEU score of 27.3 on the MuST-C test set. Our final model is an ensemble that obtains 28.22 BLEU score on the same set. Our submission also uses a custom segmentation algorithm that employs pre-trained Wav2Vec 2.0 for identifying periods of untranscribable text and can bring improvements of 2.5 to 3 BLEU score on the IWSLT 2019 test set, as compared to the result with the given segmentation. 5 authors · May 10, 2021
9 Efficient infusion of self-supervised representations in Automatic Speech Recognition Self-supervised learned (SSL) models such as Wav2vec and HuBERT yield state-of-the-art results on speech-related tasks. Given the effectiveness of such models, it is advantageous to use them in conventional ASR systems. While some approaches suggest incorporating these models as a trainable encoder or a learnable frontend, training such systems is extremely slow and requires a lot of computation cycles. In this work, we propose two simple approaches that use (1) framewise addition and (2) cross-attention mechanisms to efficiently incorporate the representations from the SSL model(s) into the ASR architecture, resulting in models that are comparable in size with standard encoder-decoder conformer systems while also avoiding the usage of SSL models during training. Our approach results in faster training and yields significant performance gains on the Librispeech and Tedlium datasets compared to baselines. We further provide detailed analysis and ablation studies that demonstrate the effectiveness of our approach. 3 authors · Apr 19, 2024
1 Learning to Speak Fluently in a Foreign Language: Multilingual Speech Synthesis and Cross-Language Voice Cloning We present a multispeaker, multilingual text-to-speech (TTS) synthesis model based on Tacotron that is able to produce high quality speech in multiple languages. Moreover, the model is able to transfer voices across languages, e.g. synthesize fluent Spanish speech using an English speaker's voice, without training on any bilingual or parallel examples. Such transfer works across distantly related languages, e.g. English and Mandarin. Critical to achieving this result are: 1. using a phonemic input representation to encourage sharing of model capacity across languages, and 2. incorporating an adversarial loss term to encourage the model to disentangle its representation of speaker identity (which is perfectly correlated with language in the training data) from the speech content. Further scaling up the model by training on multiple speakers of each language, and incorporating an autoencoding input to help stabilize attention during training, results in a model which can be used to consistently synthesize intelligible speech for training speakers in all languages seen during training, and in native or foreign accents. 9 authors · Jul 9, 2019
1 Towards Scalable AASIST: Refining Graph Attention for Speech Deepfake Detection Advances in voice conversion and text-to-speech synthesis have made automatic speaker verification (ASV) systems more susceptible to spoofing attacks. This work explores modest refinements to the AASIST anti-spoofing architecture. It incorporates a frozen Wav2Vec 2.0 encoder to retain self-supervised speech representations in limited-data settings, substitutes the original graph attention block with a standardized multi-head attention module using heterogeneous query projections, and replaces heuristic frame-segment fusion with a trainable, context-aware integration layer. When evaluated on the ASVspoof 5 corpus, the proposed system reaches a 7.6\% equal error rate (EER), improving on a re-implemented AASIST baseline under the same training conditions. Ablation experiments suggest that each architectural change contributes to the overall performance, indicating that targeted adjustments to established models may help strengthen speech deepfake detection in practical scenarios. The code is publicly available at https://github.com/KORALLLL/AASIST_SCALING. 4 authors · Jul 15
- Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis We describe a neural network-based system for text-to-speech (TTS) synthesis that is able to generate speech audio in the voice of many different speakers, including those unseen during training. Our system consists of three independently trained components: (1) a speaker encoder network, trained on a speaker verification task using an independent dataset of noisy speech from thousands of speakers without transcripts, to generate a fixed-dimensional embedding vector from seconds of reference speech from a target speaker; (2) a sequence-to-sequence synthesis network based on Tacotron 2, which generates a mel spectrogram from text, conditioned on the speaker embedding; (3) an auto-regressive WaveNet-based vocoder that converts the mel spectrogram into a sequence of time domain waveform samples. We demonstrate that the proposed model is able to transfer the knowledge of speaker variability learned by the discriminatively-trained speaker encoder to the new task, and is able to synthesize natural speech from speakers that were not seen during training. We quantify the importance of training the speaker encoder on a large and diverse speaker set in order to obtain the best generalization performance. Finally, we show that randomly sampled speaker embeddings can be used to synthesize speech in the voice of novel speakers dissimilar from those used in training, indicating that the model has learned a high quality speaker representation. 11 authors · Jun 12, 2018
1 What do self-supervised speech models know about Dutch? Analyzing advantages of language-specific pre-training How language-specific are speech representations learned by self-supervised models? Existing work has shown that a range of linguistic features can be successfully decoded from end-to-end models trained only on speech recordings. However, it's less clear to what extent pre-training on specific languages improves language-specific linguistic information. Here we test the encoding of Dutch phonetic and lexical information in internal representations of self-supervised Wav2Vec2 models. Pre-training exclusively on Dutch improves the representation of Dutch linguistic features as compared to pre-training on similar amounts of English or larger amounts of multilingual data. This language-specific advantage is well-detected by trained clustering or classification probes, and partially observable using zero-shot metrics. Furthermore, the language-specific benefit on linguistic feature encoding aligns with downstream performance on Automatic Speech Recognition. 6 authors · Jun 1 2
- CPT-Boosted Wav2vec2.0: Towards Noise Robust Speech Recognition for Classroom Environments Creating Automatic Speech Recognition (ASR) systems that are robust and resilient to classroom conditions is paramount to the development of AI tools to aid teachers and students. In this work, we study the efficacy of continued pretraining (CPT) in adapting Wav2vec2.0 to the classroom domain. We show that CPT is a powerful tool in that regard and reduces the Word Error Rate (WER) of Wav2vec2.0-based models by upwards of 10%. More specifically, CPT improves the model's robustness to different noises, microphones and classroom conditions. 5 authors · Sep 13, 2024
1 TODM: Train Once Deploy Many Efficient Supernet-Based RNN-T Compression For On-device ASR Models Automatic Speech Recognition (ASR) models need to be optimized for specific hardware before they can be deployed on devices. This can be done by tuning the model's hyperparameters or exploring variations in its architecture. Re-training and re-validating models after making these changes can be a resource-intensive task. This paper presents TODM (Train Once Deploy Many), a new approach to efficiently train many sizes of hardware-friendly on-device ASR models with comparable GPU-hours to that of a single training job. TODM leverages insights from prior work on Supernet, where Recurrent Neural Network Transducer (RNN-T) models share weights within a Supernet. It reduces layer sizes and widths of the Supernet to obtain subnetworks, making them smaller models suitable for all hardware types. We introduce a novel combination of three techniques to improve the outcomes of the TODM Supernet: adaptive dropouts, an in-place Alpha-divergence knowledge distillation, and the use of ScaledAdam optimizer. We validate our approach by comparing Supernet-trained versus individually tuned Multi-Head State Space Model (MH-SSM) RNN-T using LibriSpeech. Results demonstrate that our TODM Supernet either matches or surpasses the performance of manually tuned models by up to a relative of 3% better in word error rate (WER), while efficiently keeping the cost of training many models at a small constant. 14 authors · Sep 5, 2023
- emotion2vec: Self-Supervised Pre-Training for Speech Emotion Representation We propose emotion2vec, a universal speech emotion representation model. emotion2vec is pre-trained on open-source unlabeled emotion data through self-supervised online distillation, combining utterance-level loss and frame-level loss during pre-training. emotion2vec outperforms state-of-the-art pre-trained universal models and emotion specialist models by only training linear layers for the speech emotion recognition task on the mainstream IEMOCAP dataset. In addition, emotion2vec shows consistent improvements among 10 different languages of speech emotion recognition datasets. emotion2vec also shows excellent results on other emotion tasks, such as song emotion recognition, emotion prediction in conversation, and sentiment analysis. Comparison experiments, ablation experiments, and visualization comprehensively demonstrate the universal capability of the proposed emotion2vec. To the best of our knowledge, emotion2vec is the first universal representation model in various emotion-related tasks, filling a gap in the field. 7 authors · Dec 23, 2023
- CAM++: A Fast and Efficient Network for Speaker Verification Using Context-Aware Masking Time delay neural network (TDNN) has been proven to be efficient for speaker verification. One of its successful variants, ECAPA-TDNN, achieved state-of-the-art performance at the cost of much higher computational complexity and slower inference speed. This makes it inadequate for scenarios with demanding inference rate and limited computational resources. We are thus interested in finding an architecture that can achieve the performance of ECAPA-TDNN and the efficiency of vanilla TDNN. In this paper, we propose an efficient network based on context-aware masking, namely CAM++, which uses densely connected time delay neural network (D-TDNN) as backbone and adopts a novel multi-granularity pooling to capture contextual information at different levels. Extensive experiments on two public benchmarks, VoxCeleb and CN-Celeb, demonstrate that the proposed architecture outperforms other mainstream speaker verification systems with lower computational cost and faster inference speed. 5 authors · Mar 1, 2023
- An enhanced Conv-TasNet model for speech separation using a speaker distance-based loss function This work addresses the problem of speech separation in the Spanish Language using pre-trained deep learning models. As with many speech processing tasks, large databases in other languages different from English are scarce. Therefore this work explores different training strategies using the Conv-TasNet model as a benchmark. A scale-invariant signal distortion ratio (SI-SDR) metric value of 9.9 dB was achieved for the best training strategy. Then, experimentally, we identified an inverse relationship between the speakers' similarity and the model's performance, so an improved ConvTasNet architecture was proposed. The enhanced Conv-TasNet model uses pre-trained speech embeddings to add a between-speakers cosine similarity term in the cost function, yielding an SI-SDR of 10.6 dB. Lastly, final experiments regarding real-time deployment show some drawbacks in the speakers' channel synchronization due to the need to process small speech segments where only one of the speakers appears. 2 authors · May 26, 2022
- Unified Speech-Text Pre-training for Speech Translation and Recognition We describe a method to jointly pre-train speech and text in an encoder-decoder modeling framework for speech translation and recognition. The proposed method incorporates four self-supervised and supervised subtasks for cross modality learning. A self-supervised speech subtask leverages unlabelled speech data, and a (self-)supervised text to text subtask makes use of abundant text training data. Two auxiliary supervised speech tasks are included to unify speech and text modeling space. Our contribution lies in integrating linguistic information from the text corpus into the speech pre-training. Detailed analysis reveals learning interference among subtasks. Two pre-training configurations for speech translation and recognition, respectively, are presented to alleviate subtask interference. Our experiments show the proposed method can effectively fuse speech and text information into one model. It achieves between 1.7 and 2.3 BLEU improvement above the state of the art on the MuST-C speech translation dataset and comparable WERs to wav2vec 2.0 on the Librispeech speech recognition task. 11 authors · Apr 11, 2022
51 WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling Language models have been effectively applied to modeling natural signals, such as images, video, speech, and audio. A crucial component of these models is the codec tokenizer, which compresses high-dimensional natural signals into lower-dimensional discrete tokens. In this paper, we introduce WavTokenizer, which offers several advantages over previous SOTA acoustic codec models in the audio domain: 1)extreme compression. By compressing the layers of quantizers and the temporal dimension of the discrete codec, one-second audio of 24kHz sampling rate requires only a single quantizer with 40 or 75 tokens. 2)improved subjective quality. Despite the reduced number of tokens, WavTokenizer achieves state-of-the-art reconstruction quality with outstanding UTMOS scores and inherently contains richer semantic information. Specifically, we achieve these results by designing a broader VQ space, extended contextual windows, and improved attention networks, as well as introducing a powerful multi-scale discriminator and an inverse Fourier transform structure. We conducted extensive reconstruction experiments in the domains of speech, audio, and music. WavTokenizer exhibited strong performance across various objective and subjective metrics compared to state-of-the-art models. We also tested semantic information, VQ utilization, and adaptability to generative models. Comprehensive ablation studies confirm the necessity of each module in WavTokenizer. The related code, demos, and pre-trained models are available at https://github.com/jishengpeng/WavTokenizer. 16 authors · Aug 29, 2024 4
- A Large Dataset of Spontaneous Speech with the Accent Spoken in São Paulo for Automatic Speech Recognition Evaluation We present a freely available spontaneous speech corpus for the Brazilian Portuguese language and report preliminary automatic speech recognition (ASR) results, using both the Wav2Vec2-XLSR-53 and Distil-Whisper models fine-tuned and trained on our corpus. The NURC-SP Audio Corpus comprises 401 different speakers (204 females, 197 males) with a total of 239.30 hours of transcribed audio recordings. To the best of our knowledge, this is the first large Paulistano accented spontaneous speech corpus dedicated to the ASR task in Portuguese. We first present the design and development procedures of the NURC-SP Audio Corpus, and then describe four ASR experiments in detail. The experiments demonstrated promising results for the applicability of the corpus for ASR. Specifically, we fine-tuned two versions of Wav2Vec2-XLSR-53 model, trained a Distil-Whisper model using our dataset with labels determined by Whisper Large-V3 model, and fine-tuned this Distil-Whisper model with our corpus. Our best results were the Distil-Whisper fine-tuned over NURC-SP Audio Corpus with a WER of 24.22% followed by a fine-tuned versions of Wav2Vec2-XLSR-53 model with a WER of 33.73%, that is almost 10% point worse than Distil-Whisper's. To enable experiment reproducibility, we share the NURC-SP Audio Corpus dataset, pre-trained models, and training recipes in Hugging-Face and Github repositories. 4 authors · Sep 10, 2024
- Generative Spoken Language Modeling from Raw Audio We introduce Generative Spoken Language Modeling, the task of learning the acoustic and linguistic characteristics of a language from raw audio (no text, no labels), and a set of metrics to automatically evaluate the learned representations at acoustic and linguistic levels for both encoding and generation. We set up baseline systems consisting of a discrete speech encoder (returning pseudo-text units), a generative language model (trained on pseudo-text), and a speech decoder (generating a waveform from pseudo-text) all trained without supervision and validate the proposed metrics with human evaluation. Across 3 speech encoders (CPC, wav2vec 2.0, HuBERT), we find that the number of discrete units (50, 100, or 200) matters in a task-dependent and encoder-dependent way, and that some combinations approach text-based systems. 11 authors · Feb 1, 2021
- Balancing Speech Understanding and Generation Using Continual Pre-training for Codec-based Speech LLM Recent efforts have extended textual LLMs to the speech domain. Yet, a key challenge remains, which is balancing speech understanding and generation while avoiding catastrophic forgetting when integrating acoustically rich codec-based representations into models originally trained on text. In this work, we propose a novel approach that leverages continual pre-training (CPT) on a pre-trained textual LLM to create a codec-based speech language model. This strategy mitigates the modality gap between text and speech, preserving the linguistic reasoning of the original model while enabling high-fidelity speech synthesis. We validate our approach with extensive experiments across multiple tasks, including automatic speech recognition, text-to-speech, speech-to-text translation, and speech-to-speech translation (S2ST), demonstrating that our model achieves superior TTS performance and, notably, the first end-to-end S2ST system based on neural codecs. 7 authors · Feb 24
1 Unsupervised Cross-lingual Representation Learning for Speech Recognition This paper presents XLSR which learns cross-lingual speech representations by pretraining a single model from the raw waveform of speech in multiple languages. We build on wav2vec 2.0 which is trained by solving a contrastive task over masked latent speech representations and jointly learns a quantization of the latents shared across languages. The resulting model is fine-tuned on labeled data and experiments show that cross-lingual pretraining significantly outperforms monolingual pretraining. On the CommonVoice benchmark, XLSR shows a relative phoneme error rate reduction of 72% compared to the best known results. On BABEL, our approach improves word error rate by 16% relative compared to a comparable system. Our approach enables a single multilingual speech recognition model which is competitive to strong individual models. Analysis shows that the latent discrete speech representations are shared across languages with increased sharing for related languages. We hope to catalyze research in low-resource speech understanding by releasing XLSR-53, a large model pretrained in 53 languages. 5 authors · Jun 24, 2020
- FreeV: Free Lunch For Vocoders Through Pseudo Inversed Mel Filter Vocoders reconstruct speech waveforms from acoustic features and play a pivotal role in modern TTS systems. Frequent-domain GAN vocoders like Vocos and APNet2 have recently seen rapid advancements, outperforming time-domain models in inference speed while achieving comparable audio quality. However, these frequency-domain vocoders suffer from large parameter sizes, thus introducing extra memory burden. Inspired by PriorGrad and SpecGrad, we employ pseudo-inverse to estimate the amplitude spectrum as the initialization roughly. This simple initialization significantly mitigates the parameter demand for vocoder. Based on APNet2 and our streamlined Amplitude prediction branch, we propose our FreeV, compared with its counterpart APNet2, our FreeV achieves 1.8 times inference speed improvement with nearly half parameters. Meanwhile, our FreeV outperforms APNet2 in resynthesis quality, marking a step forward in pursuing real-time, high-fidelity speech synthesis. Code and checkpoints is available at: https://github.com/BakerBunker/FreeV 6 authors · Jun 12, 2024
1 Massive End-to-end Models for Short Search Queries In this work, we investigate two popular end-to-end automatic speech recognition (ASR) models, namely Connectionist Temporal Classification (CTC) and RNN-Transducer (RNN-T), for offline recognition of voice search queries, with up to 2B model parameters. The encoders of our models use the neural architecture of Google's universal speech model (USM), with additional funnel pooling layers to significantly reduce the frame rate and speed up training and inference. We perform extensive studies on vocabulary size, time reduction strategy, and its generalization performance on long-form test sets. Despite the speculation that, as the model size increases, CTC can be as good as RNN-T which builds label dependency into the prediction, we observe that a 900M RNN-T clearly outperforms a 1.8B CTC and is more tolerant to severe time reduction, although the WER gap can be largely removed by LM shallow fusion. 14 authors · Sep 22, 2023
- Ask2Mask: Guided Data Selection for Masked Speech Modeling Masked speech modeling (MSM) methods such as wav2vec2 or w2v-BERT learn representations over speech frames which are randomly masked within an utterance. While these methods improve performance of Automatic Speech Recognition (ASR) systems, they have one major limitation. They treat all unsupervised speech samples with equal weight, which hinders learning as not all samples have relevant information to learn meaningful representations. In this work, we address this limitation. We propose ask2mask (ATM), a novel approach to focus on specific samples during MSM pre-training. ATM employs an external ASR model or scorer to weight unsupervised input samples in two different ways: 1) A fine-grained data selection is performed by masking over the highly confident input frames as chosen by the scorer. This allows the model to learn meaningful representations. 2) ATM is further extended to focus at utterance-level by weighting the final MSM loss with the utterance-level confidence score. We conduct fine-tuning experiments on two well-benchmarked corpora: LibriSpeech (matching the pre-training data) and Commonvoice, TED-LIUM, AMI and CHiME-6 (not matching the pre-training data). The results substantiate the efficacy of ATM on significantly improving the recognition performance under mismatched conditions (up to 11.6\% relative over published results and upto 4.46\% relative over our internal baseline) while still yielding modest improvements under matched conditions. 5 authors · Feb 24, 2022
- Towards Robust Neural Vocoding for Speech Generation: A Survey Recently, neural vocoders have been widely used in speech synthesis tasks, including text-to-speech and voice conversion. However, when encountering data distribution mismatch between training and inference, neural vocoders trained on real data often degrade in voice quality for unseen scenarios. In this paper, we train four common neural vocoders, including WaveNet, WaveRNN, FFTNet, Parallel WaveGAN alternately on five different datasets. To study the robustness of neural vocoders, we evaluate the models using acoustic features from seen/unseen speakers, seen/unseen languages, a text-to-speech model, and a voice conversion model. We found out that the speaker variety is much more important for achieving a universal vocoder than the language. Through our experiments, we show that WaveNet and WaveRNN are more suitable for text-to-speech models, while Parallel WaveGAN is more suitable for voice conversion applications. Great amount of subjective MOS results in naturalness for all vocoders are presented for future studies. 4 authors · Dec 5, 2019
14 PromptTTS 2: Describing and Generating Voices with Text Prompt Speech conveys more information than just text, as the same word can be uttered in various voices to convey diverse information. Compared to traditional text-to-speech (TTS) methods relying on speech prompts (reference speech) for voice variability, using text prompts (descriptions) is more user-friendly since speech prompts can be hard to find or may not exist at all. TTS approaches based on the text prompt face two challenges: 1) the one-to-many problem, where not all details about voice variability can be described in the text prompt, and 2) the limited availability of text prompt datasets, where vendors and large cost of data labeling are required to write text prompt for speech. In this work, we introduce PromptTTS 2 to address these challenges with a variation network to provide variability information of voice not captured by text prompts, and a prompt generation pipeline to utilize the large language models (LLM) to compose high quality text prompts. Specifically, the variation network predicts the representation extracted from the reference speech (which contains full information about voice) based on the text prompt representation. For the prompt generation pipeline, it generates text prompts for speech with a speech understanding model to recognize voice attributes (e.g., gender, speed) from speech and a large language model to formulate text prompt based on the recognition results. Experiments on a large-scale (44K hours) speech dataset demonstrate that compared to the previous works, PromptTTS 2 generates voices more consistent with text prompts and supports the sampling of diverse voice variability, thereby offering users more choices on voice generation. Additionally, the prompt generation pipeline produces high-quality prompts, eliminating the large labeling cost. The demo page of PromptTTS 2 is available onlinehttps://speechresearch.github.io/prompttts2. 15 authors · Sep 5, 2023 2
- Adaptability of ASR Models on Low-Resource Language: A Comparative Study of Whisper and Wav2Vec-BERT on Bangla In recent years, neural models trained on large multilingual text and speech datasets have shown great potential for supporting low-resource languages. This study investigates the performances of two state-of-the-art Automatic Speech Recognition (ASR) models, OpenAI's Whisper (Small & Large-V2) and Facebook's Wav2Vec-BERT on Bangla, a low-resource language. We have conducted experiments using two publicly available datasets: Mozilla Common Voice-17 and OpenSLR to evaluate model performances. Through systematic fine-tuning and hyperparameter optimization, including learning rate, epochs, and model checkpoint selection, we have compared the models based on Word Error Rate (WER), Character Error Rate (CER), Training Time, and Computational Efficiency. The Wav2Vec-BERT model outperformed Whisper across all key evaluation metrics, demonstrated superior performance while requiring fewer computational resources, and offered valuable insights to develop robust speech recognition systems in low-resource linguistic settings. 3 authors · Jul 2
1 Can We Achieve High-quality Direct Speech-to-Speech Translation without Parallel Speech Data? Recently proposed two-pass direct speech-to-speech translation (S2ST) models decompose the task into speech-to-text translation (S2TT) and text-to-speech (TTS) within an end-to-end model, yielding promising results. However, the training of these models still relies on parallel speech data, which is extremely challenging to collect. In contrast, S2TT and TTS have accumulated a large amount of data and pretrained models, which have not been fully utilized in the development of S2ST models. Inspired by this, in this paper, we first introduce a composite S2ST model named ComSpeech, which can seamlessly integrate any pretrained S2TT and TTS models into a direct S2ST model. Furthermore, to eliminate the reliance on parallel speech data, we propose a novel training method ComSpeech-ZS that solely utilizes S2TT and TTS data. It aligns representations in the latent space through contrastive learning, enabling the speech synthesis capability learned from the TTS data to generalize to S2ST in a zero-shot manner. Experimental results on the CVSS dataset show that when the parallel speech data is available, ComSpeech surpasses previous two-pass models like UnitY and Translatotron 2 in both translation quality and decoding speed. When there is no parallel speech data, ComSpeech-ZS lags behind \name by only 0.7 ASR-BLEU and outperforms the cascaded models. 5 authors · Jun 11, 2024
- A context-aware knowledge transferring strategy for CTC-based ASR Non-autoregressive automatic speech recognition (ASR) modeling has received increasing attention recently because of its fast decoding speed and superior performance. Among representatives, methods based on the connectionist temporal classification (CTC) are still a dominating stream. However, the theoretically inherent flaw, the assumption of independence between tokens, creates a performance barrier for the school of works. To mitigate the challenge, we propose a context-aware knowledge transferring strategy, consisting of a knowledge transferring module and a context-aware training strategy, for CTC-based ASR. The former is designed to distill linguistic information from a pre-trained language model, and the latter is framed to modulate the limitations caused by the conditional independence assumption. As a result, a knowledge-injected context-aware CTC-based ASR built upon the wav2vec2.0 is presented in this paper. A series of experiments on the AISHELL-1 and AISHELL-2 datasets demonstrate the effectiveness of the proposed method. 2 authors · Oct 12, 2022
1 MSTRE-Net: Multistreaming Acoustic Modeling for Automatic Lyrics Transcription This paper makes several contributions to automatic lyrics transcription (ALT) research. Our main contribution is a novel variant of the Multistreaming Time-Delay Neural Network (MTDNN) architecture, called MSTRE-Net, which processes the temporal information using multiple streams in parallel with varying resolutions keeping the network more compact, and thus with a faster inference and an improved recognition rate than having identical TDNN streams. In addition, two novel preprocessing steps prior to training the acoustic model are proposed. First, we suggest using recordings from both monophonic and polyphonic domains during training the acoustic model. Second, we tag monophonic and polyphonic recordings with distinct labels for discriminating non-vocal silence and music instances during alignment. Moreover, we present a new test set with a considerably larger size and a higher musical variability compared to the existing datasets used in ALT literature, while maintaining the gender balance of the singers. Our best performing model sets the state-of-the-art in lyrics transcription by a large margin. For reproducibility, we publicly share the identifiers to retrieve the data used in this paper. 3 authors · Aug 5, 2021
- Efficient Neural Audio Synthesis Sequential models achieve state-of-the-art results in audio, visual and textual domains with respect to both estimating the data distribution and generating high-quality samples. Efficient sampling for this class of models has however remained an elusive problem. With a focus on text-to-speech synthesis, we describe a set of general techniques for reducing sampling time while maintaining high output quality. We first describe a single-layer recurrent neural network, the WaveRNN, with a dual softmax layer that matches the quality of the state-of-the-art WaveNet model. The compact form of the network makes it possible to generate 24kHz 16-bit audio 4x faster than real time on a GPU. Second, we apply a weight pruning technique to reduce the number of weights in the WaveRNN. We find that, for a constant number of parameters, large sparse networks perform better than small dense networks and this relationship holds for sparsity levels beyond 96%. The small number of weights in a Sparse WaveRNN makes it possible to sample high-fidelity audio on a mobile CPU in real time. Finally, we propose a new generation scheme based on subscaling that folds a long sequence into a batch of shorter sequences and allows one to generate multiple samples at once. The Subscale WaveRNN produces 16 samples per step without loss of quality and offers an orthogonal method for increasing sampling efficiency. 10 authors · Feb 23, 2018
- Music Source Separation in the Waveform Domain Source separation for music is the task of isolating contributions, or stems, from different instruments recorded individually and arranged together to form a song. Such components include voice, bass, drums and any other accompaniments.Contrarily to many audio synthesis tasks where the best performances are achieved by models that directly generate the waveform, the state-of-the-art in source separation for music is to compute masks on the magnitude spectrum. In this paper, we compare two waveform domain architectures. We first adapt Conv-Tasnet, initially developed for speech source separation,to the task of music source separation. While Conv-Tasnet beats many existing spectrogram-domain methods, it suffersfrom significant artifacts, as shown by human evaluations. We propose instead Demucs, a novel waveform-to-waveform model,with a U-Net structure and bidirectional LSTM.Experiments on the MusDB dataset show that, with proper data augmentation, Demucs beats allexisting state-of-the-art architectures, including Conv-Tasnet, with 6.3 SDR on average, (and up to 6.8 with 150 extra training songs, even surpassing the IRM oracle for the bass source).Using recent development in model quantization, Demucs can be compressed down to 120MBwithout any loss of accuracy.We also provide human evaluations, showing that Demucs benefit from a large advantagein terms of the naturalness of the audio. However, it suffers from some bleeding,especially between the vocals and other source. 4 authors · Nov 27, 2019
- TGAVC: Improving Autoencoder Voice Conversion with Text-Guided and Adversarial Training Non-parallel many-to-many voice conversion remains an interesting but challenging speech processing task. Recently, AutoVC, a conditional autoencoder based method, achieved excellent conversion results by disentangling the speaker identity and the speech content using information-constraining bottlenecks. However, due to the pure autoencoder training method, it is difficult to evaluate the separation effect of content and speaker identity. In this paper, a novel voice conversion framework, named boldsymbol Text boldsymbol Guided boldsymbol AutoVC(TGAVC), is proposed to more effectively separate content and timbre from speech, where an expected content embedding produced based on the text transcriptions is designed to guide the extraction of voice content. In addition, the adversarial training is applied to eliminate the speaker identity information in the estimated content embedding extracted from speech. Under the guidance of the expected content embedding and the adversarial training, the content encoder is trained to extract speaker-independent content embedding from speech. Experiments on AIShell-3 dataset show that the proposed model outperforms AutoVC in terms of naturalness and similarity of converted speech. 7 authors · Aug 8, 2022
- MSR-NV: Neural Vocoder Using Multiple Sampling Rates The development of neural vocoders (NVs) has resulted in the high-quality and fast generation of waveforms. However, conventional NVs target a single sampling rate and require re-training when applied to different sampling rates. A suitable sampling rate varies from application to application due to the trade-off between speech quality and generation speed. In this study, we propose a method to handle multiple sampling rates in a single NV, called the MSR-NV. By generating waveforms step-by-step starting from a low sampling rate, MSR-NV can efficiently learn the characteristics of each frequency band and synthesize high-quality speech at multiple sampling rates. It can be regarded as an extension of the previously proposed NVs, and in this study, we extend the structure of Parallel WaveGAN (PWG). Experimental evaluation results demonstrate that the proposed method achieves remarkably higher subjective quality than the original PWG trained separately at 16, 24, and 48 kHz, without increasing the inference time. We also show that MSR-NV can leverage speech with lower sampling rates to further improve the quality of the synthetic speech. 2 authors · Sep 28, 2021
1 AV2Wav: Diffusion-Based Re-synthesis from Continuous Self-supervised Features for Audio-Visual Speech Enhancement Speech enhancement systems are typically trained using pairs of clean and noisy speech. In audio-visual speech enhancement (AVSE), there is not as much ground-truth clean data available; most audio-visual datasets are collected in real-world environments with background noise and reverberation, hampering the development of AVSE. In this work, we introduce AV2Wav, a resynthesis-based audio-visual speech enhancement approach that can generate clean speech despite the challenges of real-world training data. We obtain a subset of nearly clean speech from an audio-visual corpus using a neural quality estimator, and then train a diffusion model on this subset to generate waveforms conditioned on continuous speech representations from AV-HuBERT with noise-robust training. We use continuous rather than discrete representations to retain prosody and speaker information. With this vocoding task alone, the model can perform speech enhancement better than a masking-based baseline. We further fine-tune the diffusion model on clean/noisy utterance pairs to improve the performance. Our approach outperforms a masking-based baseline in terms of both automatic metrics and a human listening test and is close in quality to the target speech in the listening test. Audio samples can be found at https://home.ttic.edu/~jcchou/demo/avse/avse_demo.html. 3 authors · Sep 14, 2023
- RWKVTTS: Yet another TTS based on RWKV-7 Human-AI interaction thrives on intuitive and efficient interfaces, among which voice stands out as a particularly natural and accessible modality. Recent advancements in transformer-based text-to-speech (TTS) systems, such as Fish-Speech, CosyVoice, and MegaTTS 3, have delivered remarkable improvements in quality and realism, driving a significant evolution in the TTS domain. In this paper, we introduce RWKV-7 peng2025rwkv, a cutting-edge RNN-based architecture tailored for TTS applications. Unlike traditional transformer models, RWKV-7 leverages the strengths of recurrent neural networks to achieve greater computational efficiency and scalability, while maintaining high-quality output. Our comprehensive benchmarks demonstrate that RWKV-7 outperforms transformer-based models across multiple key metrics, including synthesis speed, naturalness of speech, and resource efficiency. Furthermore, we explore its adaptability to diverse linguistic contexts and low-resource environments, showcasing its potential to democratize TTS technology. These findings position RWKV-7 as a powerful and innovative alternative, paving the way for more accessible and versatile voice synthesis solutions in real-world applications.Our code and weights are https://github.com/yynil/RWKVTTS, https://huggingface.co/spaces/RWKV-Red-Team 2 authors · Apr 4
8 Attention Is Not Always the Answer: Optimizing Voice Activity Detection with Simple Feature Fusion Voice Activity Detection (VAD) plays a key role in speech processing, often utilizing hand-crafted or neural features. This study examines the effectiveness of Mel-Frequency Cepstral Coefficients (MFCCs) and pre-trained model (PTM) features, including wav2vec 2.0, HuBERT, WavLM, UniSpeech, MMS, and Whisper. We propose FusionVAD, a unified framework that combines both feature types using three fusion strategies: concatenation, addition, and cross-attention (CA). Experimental results reveal that simple fusion techniques, particularly addition, outperform CA in both accuracy and efficiency. Fusion-based models consistently surpass single-feature models, highlighting the complementary nature of MFCCs and PTM features. Notably, our best-performing fusion model exceeds the state-of-the-art Pyannote across multiple datasets, achieving an absolute average improvement of 2.04%. These results confirm that simple feature fusion enhances VAD robustness while maintaining computational efficiency. 3 authors · Jun 2
- Conv-TasNet: Surpassing Ideal Time-Frequency Magnitude Masking for Speech Separation Single-channel, speaker-independent speech separation methods have recently seen great progress. However, the accuracy, latency, and computational cost of such methods remain insufficient. The majority of the previous methods have formulated the separation problem through the time-frequency representation of the mixed signal, which has several drawbacks, including the decoupling of the phase and magnitude of the signal, the suboptimality of time-frequency representation for speech separation, and the long latency in calculating the spectrograms. To address these shortcomings, we propose a fully-convolutional time-domain audio separation network (Conv-TasNet), a deep learning framework for end-to-end time-domain speech separation. Conv-TasNet uses a linear encoder to generate a representation of the speech waveform optimized for separating individual speakers. Speaker separation is achieved by applying a set of weighting functions (masks) to the encoder output. The modified encoder representations are then inverted back to the waveforms using a linear decoder. The masks are found using a temporal convolutional network (TCN) consisting of stacked 1-D dilated convolutional blocks, which allows the network to model the long-term dependencies of the speech signal while maintaining a small model size. The proposed Conv-TasNet system significantly outperforms previous time-frequency masking methods in separating two- and three-speaker mixtures. Additionally, Conv-TasNet surpasses several ideal time-frequency magnitude masks in two-speaker speech separation as evaluated by both objective distortion measures and subjective quality assessment by human listeners. Finally, Conv-TasNet has a significantly smaller model size and a shorter minimum latency, making it a suitable solution for both offline and real-time speech separation applications. 2 authors · Sep 19, 2018
- Transformer Transducer: A Streamable Speech Recognition Model with Transformer Encoders and RNN-T Loss In this paper we present an end-to-end speech recognition model with Transformer encoders that can be used in a streaming speech recognition system. Transformer computation blocks based on self-attention are used to encode both audio and label sequences independently. The activations from both audio and label encoders are combined with a feed-forward layer to compute a probability distribution over the label space for every combination of acoustic frame position and label history. This is similar to the Recurrent Neural Network Transducer (RNN-T) model, which uses RNNs for information encoding instead of Transformer encoders. The model is trained with the RNN-T loss well-suited to streaming decoding. We present results on the LibriSpeech dataset showing that limiting the left context for self-attention in the Transformer layers makes decoding computationally tractable for streaming, with only a slight degradation in accuracy. We also show that the full attention version of our model beats the-state-of-the art accuracy on the LibriSpeech benchmarks. Our results also show that we can bridge the gap between full attention and limited attention versions of our model by attending to a limited number of future frames. 7 authors · Feb 6, 2020
- Blank-regularized CTC for Frame Skipping in Neural Transducer Neural Transducer and connectionist temporal classification (CTC) are popular end-to-end automatic speech recognition systems. Due to their frame-synchronous design, blank symbols are introduced to address the length mismatch between acoustic frames and output tokens, which might bring redundant computation. Previous studies managed to accelerate the training and inference of neural Transducers by discarding frames based on the blank symbols predicted by a co-trained CTC. However, there is no guarantee that the co-trained CTC can maximize the ratio of blank symbols. This paper proposes two novel regularization methods to explicitly encourage more blanks by constraining the self-loop of non-blank symbols in the CTC. It is interesting to find that the frame reduction ratio of the neural Transducer can approach the theoretical boundary. Experiments on LibriSpeech corpus show that our proposed method accelerates the inference of neural Transducer by 4 times without sacrificing performance. Our work is open-sourced and publicly available https://github.com/k2-fsa/icefall. 9 authors · May 19, 2023
- DASpeech: Directed Acyclic Transformer for Fast and High-quality Speech-to-Speech Translation Direct speech-to-speech translation (S2ST) translates speech from one language into another using a single model. However, due to the presence of linguistic and acoustic diversity, the target speech follows a complex multimodal distribution, posing challenges to achieving both high-quality translations and fast decoding speeds for S2ST models. In this paper, we propose DASpeech, a non-autoregressive direct S2ST model which realizes both fast and high-quality S2ST. To better capture the complex distribution of the target speech, DASpeech adopts the two-pass architecture to decompose the generation process into two steps, where a linguistic decoder first generates the target text, and an acoustic decoder then generates the target speech based on the hidden states of the linguistic decoder. Specifically, we use the decoder of DA-Transformer as the linguistic decoder, and use FastSpeech 2 as the acoustic decoder. DA-Transformer models translations with a directed acyclic graph (DAG). To consider all potential paths in the DAG during training, we calculate the expected hidden states for each target token via dynamic programming, and feed them into the acoustic decoder to predict the target mel-spectrogram. During inference, we select the most probable path and take hidden states on that path as input to the acoustic decoder. Experiments on the CVSS Fr-En benchmark demonstrate that DASpeech can achieve comparable or even better performance than the state-of-the-art S2ST model Translatotron 2, while preserving up to 18.53x speedup compared to the autoregressive baseline. Compared with the previous non-autoregressive S2ST model, DASpeech does not rely on knowledge distillation and iterative decoding, achieving significant improvements in both translation quality and decoding speed. Furthermore, DASpeech shows the ability to preserve the speaker's voice of the source speech during translation. 3 authors · Oct 11, 2023
- DistilHuBERT: Speech Representation Learning by Layer-wise Distillation of Hidden-unit BERT Self-supervised speech representation learning methods like wav2vec 2.0 and Hidden-unit BERT (HuBERT) leverage unlabeled speech data for pre-training and offer good representations for numerous speech processing tasks. Despite the success of these methods, they require large memory and high pre-training costs, making them inaccessible for researchers in academia and small companies. Therefore, this paper introduces DistilHuBERT, a novel multi-task learning framework to distill hidden representations from a HuBERT model directly. This method reduces HuBERT's size by 75% and 73% faster while retaining most performance in ten different tasks. Moreover, DistilHuBERT required little training time and data, opening the possibilities of pre-training personal and on-device SSL models for speech. 3 authors · Oct 5, 2021
- ViT-TTS: Visual Text-to-Speech with Scalable Diffusion Transformer Text-to-speech(TTS) has undergone remarkable improvements in performance, particularly with the advent of Denoising Diffusion Probabilistic Models (DDPMs). However, the perceived quality of audio depends not solely on its content, pitch, rhythm, and energy, but also on the physical environment. In this work, we propose ViT-TTS, the first visual TTS model with scalable diffusion transformers. ViT-TTS complement the phoneme sequence with the visual information to generate high-perceived audio, opening up new avenues for practical applications of AR and VR to allow a more immersive and realistic audio experience. To mitigate the data scarcity in learning visual acoustic information, we 1) introduce a self-supervised learning framework to enhance both the visual-text encoder and denoiser decoder; 2) leverage the diffusion transformer scalable in terms of parameters and capacity to learn visual scene information. Experimental results demonstrate that ViT-TTS achieves new state-of-the-art results, outperforming cascaded systems and other baselines regardless of the visibility of the scene. With low-resource data (1h, 2h, 5h), ViT-TTS achieves comparative results with rich-resource baselines.~Audio samples are available at \url{https://ViT-TTS.github.io/.} 8 authors · May 22, 2023
- AVROBUSTBENCH: Benchmarking the Robustness of Audio-Visual Recognition Models at Test-Time While recent audio-visual models have demonstrated impressive performance, their robustness to distributional shifts at test-time remains not fully understood. Existing robustness benchmarks mainly focus on single modalities, making them insufficient for thoroughly assessing the robustness of audio-visual models. Motivated by real-world scenarios where shifts can occur simultaneously in both audio and visual modalities, we introduce AVROBUSTBENCH, a comprehensive benchmark designed to evaluate the test-time robustness of audio-visual recognition models. AVROBUSTBENCH comprises four audio-visual benchmark datasets, AUDIOSET-2C, VGGSOUND-2C, KINETICS-2C, and EPICKITCHENS-2C, each incorporating 75 bimodal audio-visual corruptions that are co-occurring and correlated. Through extensive evaluations, we observe that state-of-the-art supervised and self-supervised audio-visual models exhibit declining robustness as corruption severity increases. Furthermore, online test-time adaptation (TTA) methods, on VGGSOUND-2C and KINETICS-2C, offer minimal improvements in performance under bimodal corruptions. We further propose AV2C, a simple TTA approach enabling on-the-fly cross-modal fusion by penalizing high-entropy samples, which achieves improvements on VGGSOUND-2C. We hope that AVROBUSTBENCH will steer the development of more effective and robust audio-visual TTA approaches. Our code is available https://github.com/sarthaxxxxx/AV-C-Robustness-Benchmark{here}. 7 authors · May 30
- MAP-Music2Vec: A Simple and Effective Baseline for Self-Supervised Music Audio Representation Learning The deep learning community has witnessed an exponentially growing interest in self-supervised learning (SSL). However, it still remains unexplored how to build a framework for learning useful representations of raw music waveforms in a self-supervised manner. In this work, we design Music2Vec, a framework exploring different SSL algorithmic components and tricks for music audio recordings. Our model achieves comparable results to the state-of-the-art (SOTA) music SSL model Jukebox, despite being significantly smaller with less than 2% of parameters of the latter. The model will be released on Huggingface(Please refer to: https://huggingface.co/m-a-p/music2vec-v1) 14 authors · Dec 5, 2022
- Speech-based Age and Gender Prediction with Transformers We report on the curation of several publicly available datasets for age and gender prediction. Furthermore, we present experiments to predict age and gender with models based on a pre-trained wav2vec 2.0. Depending on the dataset, we achieve an MAE between 7.1 years and 10.8 years for age, and at least 91.1% ACC for gender (female, male, child). Compared to a modelling approach built on handcrafted features, our proposed system shows an improvement of 9% UAR for age and 4% UAR for gender. To make our findings reproducible, we release the best performing model to the community as well as the sample lists of the data splits. 5 authors · Jun 29, 2023
- L1-aware Multilingual Mispronunciation Detection Framework The phonological discrepancies between a speaker's native (L1) and the non-native language (L2) serves as a major factor for mispronunciation. This paper introduces a novel multilingual MDD architecture, L1-MultiMDD, enriched with L1-aware speech representation. An end-to-end speech encoder is trained on the input signal and its corresponding reference phoneme sequence. First, an attention mechanism is deployed to align the input audio with the reference phoneme sequence. Afterwards, the L1-L2-speech embedding are extracted from an auxiliary model, pretrained in a multi-task setup identifying L1 and L2 language, and are infused with the primary network. Finally, the L1-MultiMDD is then optimized for a unified multilingual phoneme recognition task using connectionist temporal classification (CTC) loss for the target languages: English, Arabic, and Mandarin. Our experiments demonstrate the effectiveness of the proposed L1-MultiMDD framework on both seen -- L2-ARTIC, LATIC, and AraVoiceL2v2; and unseen -- EpaDB and Speechocean762 datasets. The consistent gains in PER, and false rejection rate (FRR) across all target languages confirm our approach's robustness, efficacy, and generalizability. 3 authors · Sep 14, 2023
- FragmentVC: Any-to-Any Voice Conversion by End-to-End Extracting and Fusing Fine-Grained Voice Fragments With Attention Any-to-any voice conversion aims to convert the voice from and to any speakers even unseen during training, which is much more challenging compared to one-to-one or many-to-many tasks, but much more attractive in real-world scenarios. In this paper we proposed FragmentVC, in which the latent phonetic structure of the utterance from the source speaker is obtained from Wav2Vec 2.0, while the spectral features of the utterance(s) from the target speaker are obtained from log mel-spectrograms. By aligning the hidden structures of the two different feature spaces with a two-stage training process, FragmentVC is able to extract fine-grained voice fragments from the target speaker utterance(s) and fuse them into the desired utterance, all based on the attention mechanism of Transformer as verified with analysis on attention maps, and is accomplished end-to-end. This approach is trained with reconstruction loss only without any disentanglement considerations between content and speaker information and doesn't require parallel data. Objective evaluation based on speaker verification and subjective evaluation with MOS both showed that this approach outperformed SOTA approaches, such as AdaIN-VC and AutoVC. 5 authors · Oct 27, 2020
- Enhancing Speech-to-Speech Translation with Multiple TTS Targets It has been known that direct speech-to-speech translation (S2ST) models usually suffer from the data scarcity issue because of the limited existing parallel materials for both source and target speech. Therefore to train a direct S2ST system, previous works usually utilize text-to-speech (TTS) systems to generate samples in the target language by augmenting the data from speech-to-text translation (S2TT). However, there is a limited investigation into how the synthesized target speech would affect the S2ST models. In this work, we analyze the effect of changing synthesized target speech for direct S2ST models. We find that simply combining the target speech from different TTS systems can potentially improve the S2ST performances. Following that, we also propose a multi-task framework that jointly optimizes the S2ST system with multiple targets from different TTS systems. Extensive experiments demonstrate that our proposed framework achieves consistent improvements (2.8 BLEU) over the baselines on the Fisher Spanish-English dataset. 7 authors · Apr 10, 2023
- Scaling strategies for on-device low-complexity source separation with Conv-Tasnet Recently, several very effective neural approaches for single-channel speech separation have been presented in the literature. However, due to the size and complexity of these models, their use on low-resource devices, e.g. for hearing aids, and earphones, is still a challenge and established solutions are not available yet. Although approaches based on either pruning or compressing neural models have been proposed, the design of a model architecture suitable for a certain application domain often requires heuristic procedures not easily portable to different low-resource platforms. Given the modular nature of the well-known Conv-Tasnet speech separation architecture, in this paper we consider three parameters that directly control the overall size of the model, namely: the number of residual blocks, the number of repetitions of the separation blocks and the number of channels in the depth-wise convolutions, and experimentally evaluate how they affect the speech separation performance. In particular, experiments carried out on the Libri2Mix show that the number of dilated 1D-Conv blocks is the most critical parameter and that the usage of extra-dilation in the residual blocks allows reducing the performance drop. 4 authors · Mar 6, 2023
1 End to end Hindi to English speech conversion using Bark, mBART and a finetuned XLSR Wav2Vec2 Speech has long been a barrier to effective communication and connection, persisting as a challenge in our increasingly interconnected world. This research paper introduces a transformative solution to this persistent obstacle an end-to-end speech conversion framework tailored for Hindi-to-English translation, culminating in the synthesis of English audio. By integrating cutting-edge technologies such as XLSR Wav2Vec2 for automatic speech recognition (ASR), mBART for neural machine translation (NMT), and a Text-to-Speech (TTS) synthesis component, this framework offers a unified and seamless approach to cross-lingual communication. We delve into the intricate details of each component, elucidating their individual contributions and exploring the synergies that enable a fluid transition from spoken Hindi to synthesized English audio. 5 authors · Jan 10, 2024
19 VALL-E 2: Neural Codec Language Models are Human Parity Zero-Shot Text to Speech Synthesizers This paper introduces VALL-E 2, the latest advancement in neural codec language models that marks a milestone in zero-shot text-to-speech synthesis (TTS), achieving human parity for the first time. Based on its predecessor, VALL-E, the new iteration introduces two significant enhancements: Repetition Aware Sampling refines the original nucleus sampling process by accounting for token repetition in the decoding history. It not only stabilizes the decoding but also circumvents the infinite loop issue. Grouped Code Modeling organizes codec codes into groups to effectively shorten the sequence length, which not only boosts inference speed but also addresses the challenges of long sequence modeling. Our experiments on the LibriSpeech and VCTK datasets show that VALL-E 2 surpasses previous systems in speech robustness, naturalness, and speaker similarity. It is the first of its kind to reach human parity on these benchmarks. Moreover, VALL-E 2 consistently synthesizes high-quality speech, even for sentences that are traditionally challenging due to their complexity or repetitive phrases. The advantages of this work could contribute to valuable endeavors, such as generating speech for individuals with aphasia or people with amyotrophic lateral sclerosis. Demos of VALL-E 2 will be posted to https://aka.ms/valle2. 9 authors · Jun 8, 2024
- FloWaveNet : A Generative Flow for Raw Audio Most modern text-to-speech architectures use a WaveNet vocoder for synthesizing high-fidelity waveform audio, but there have been limitations, such as high inference time, in its practical application due to its ancestral sampling scheme. The recently suggested Parallel WaveNet and ClariNet have achieved real-time audio synthesis capability by incorporating inverse autoregressive flow for parallel sampling. However, these approaches require a two-stage training pipeline with a well-trained teacher network and can only produce natural sound by using probability distillation along with auxiliary loss terms. We propose FloWaveNet, a flow-based generative model for raw audio synthesis. FloWaveNet requires only a single-stage training procedure and a single maximum likelihood loss, without any additional auxiliary terms, and it is inherently parallel due to the characteristics of generative flow. The model can efficiently sample raw audio in real-time, with clarity comparable to previous two-stage parallel models. The code and samples for all models, including our FloWaveNet, are publicly available. 5 authors · Nov 5, 2018
- WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis This paper introduces WaveGrad 2, a non-autoregressive generative model for text-to-speech synthesis. WaveGrad 2 is trained to estimate the gradient of the log conditional density of the waveform given a phoneme sequence. The model takes an input phoneme sequence, and through an iterative refinement process, generates an audio waveform. This contrasts to the original WaveGrad vocoder which conditions on mel-spectrogram features, generated by a separate model. The iterative refinement process starts from Gaussian noise, and through a series of refinement steps (e.g., 50 steps), progressively recovers the audio sequence. WaveGrad 2 offers a natural way to trade-off between inference speed and sample quality, through adjusting the number of refinement steps. Experiments show that the model can generate high fidelity audio, approaching the performance of a state-of-the-art neural TTS system. We also report various ablation studies over different model configurations. Audio samples are available at https://wavegrad.github.io/v2. 7 authors · Jun 17, 2021
1 Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers We introduce a language modeling approach for text to speech synthesis (TTS). Specifically, we train a neural codec language model (called Vall-E) using discrete codes derived from an off-the-shelf neural audio codec model, and regard TTS as a conditional language modeling task rather than continuous signal regression as in previous work. During the pre-training stage, we scale up the TTS training data to 60K hours of English speech which is hundreds of times larger than existing systems. Vall-E emerges in-context learning capabilities and can be used to synthesize high-quality personalized speech with only a 3-second enrolled recording of an unseen speaker as an acoustic prompt. Experiment results show that Vall-E significantly outperforms the state-of-the-art zero-shot TTS system in terms of speech naturalness and speaker similarity. In addition, we find Vall-E could preserve the speaker's emotion and acoustic environment of the acoustic prompt in synthesis. See https://aka.ms/valle for demos of our work. 13 authors · Jan 5, 2023
9 FoleyGen: Visually-Guided Audio Generation Recent advancements in audio generation have been spurred by the evolution of large-scale deep learning models and expansive datasets. However, the task of video-to-audio (V2A) generation continues to be a challenge, principally because of the intricate relationship between the high-dimensional visual and auditory data, and the challenges associated with temporal synchronization. In this study, we introduce FoleyGen, an open-domain V2A generation system built on a language modeling paradigm. FoleyGen leverages an off-the-shelf neural audio codec for bidirectional conversion between waveforms and discrete tokens. The generation of audio tokens is facilitated by a single Transformer model, which is conditioned on visual features extracted from a visual encoder. A prevalent problem in V2A generation is the misalignment of generated audio with the visible actions in the video. To address this, we explore three novel visual attention mechanisms. We further undertake an exhaustive evaluation of multiple visual encoders, each pretrained on either single-modal or multi-modal tasks. The experimental results on VGGSound dataset show that our proposed FoleyGen outperforms previous systems across all objective metrics and human evaluations. 7 authors · Sep 19, 2023 1
- MambAttention: Mamba with Multi-Head Attention for Generalizable Single-Channel Speech Enhancement With the advent of new sequence models like Mamba and xLSTM, several studies have shown that these models match or outperform state-of-the-art models in single-channel speech enhancement, automatic speech recognition, and self-supervised audio representation learning. However, prior research has demonstrated that sequence models like LSTM and Mamba tend to overfit to the training set. To address this issue, previous works have shown that adding self-attention to LSTMs substantially improves generalization performance for single-channel speech enhancement. Nevertheless, neither the concept of hybrid Mamba and time-frequency attention models nor their generalization performance have been explored for speech enhancement. In this paper, we propose a novel hybrid architecture, MambAttention, which combines Mamba and shared time- and frequency-multi-head attention modules for generalizable single-channel speech enhancement. To train our model, we introduce VoiceBank+Demand Extended (VB-DemandEx), a dataset inspired by VoiceBank+Demand but with more challenging noise types and lower signal-to-noise ratios. Trained on VB-DemandEx, our proposed MambAttention model significantly outperforms existing state-of-the-art LSTM-, xLSTM-, Mamba-, and Conformer-based systems of similar complexity across all reported metrics on two out-of-domain datasets: DNS 2020 and EARS-WHAM_v2, while matching their performance on the in-domain dataset VB-DemandEx. Ablation studies highlight the role of weight sharing between the time- and frequency-multi-head attention modules for generalization performance. Finally, we explore integrating the shared time- and frequency-multi-head attention modules with LSTM and xLSTM, which yields a notable performance improvement on the out-of-domain datasets. However, our MambAttention model remains superior on both out-of-domain datasets across all reported evaluation metrics. 4 authors · Jul 1
- A Study of Gender Impact in Self-supervised Models for Speech-to-Text Systems Self-supervised models for speech processing emerged recently as popular foundation blocks in speech processing pipelines. These models are pre-trained on unlabeled audio data and then used in speech processing downstream tasks such as automatic speech recognition (ASR) or speech translation (ST). Since these models are now used in research and industrial systems alike, it becomes necessary to understand the impact caused by some features such as gender distribution within pre-training data. Using French as our investigation language, we train and compare gender-specific wav2vec 2.0 models against models containing different degrees of gender balance in their pre-training data. The comparison is performed by applying these models to two speech-to-text downstream tasks: ASR and ST. Results show the type of downstream integration matters. We observe lower overall performance using gender-specific pre-training before fine-tuning an end-to-end ASR system. However, when self-supervised models are used as feature extractors, the overall ASR and ST results follow more complex patterns in which the balanced pre-trained model does not necessarily lead to the best results. Lastly, our crude 'fairness' metric, the relative performance difference measured between female and male test sets, does not display a strong variation from balanced to gender-specific pre-trained wav2vec 2.0 models. 4 authors · Apr 4, 2022
- Neural HMMs are all you need (for high-quality attention-free TTS) Neural sequence-to-sequence TTS has achieved significantly better output quality than statistical speech synthesis using HMMs. However, neural TTS is generally not probabilistic and uses non-monotonic attention. Attention failures increase training time and can make synthesis babble incoherently. This paper describes how the old and new paradigms can be combined to obtain the advantages of both worlds, by replacing attention in neural TTS with an autoregressive left-right no-skip hidden Markov model defined by a neural network. Based on this proposal, we modify Tacotron 2 to obtain an HMM-based neural TTS model with monotonic alignment, trained to maximise the full sequence likelihood without approximation. We also describe how to combine ideas from classical and contemporary TTS for best results. The resulting example system is smaller and simpler than Tacotron 2, and learns to speak with fewer iterations and less data, whilst achieving comparable naturalness prior to the post-net. Our approach also allows easy control over speaking rate. 4 authors · Aug 30, 2021
- Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram We propose Parallel WaveGAN, a distillation-free, fast, and small-footprint waveform generation method using a generative adversarial network. In the proposed method, a non-autoregressive WaveNet is trained by jointly optimizing multi-resolution spectrogram and adversarial loss functions, which can effectively capture the time-frequency distribution of the realistic speech waveform. As our method does not require density distillation used in the conventional teacher-student framework, the entire model can be easily trained. Furthermore, our model is able to generate high-fidelity speech even with its compact architecture. In particular, the proposed Parallel WaveGAN has only 1.44 M parameters and can generate 24 kHz speech waveform 28.68 times faster than real-time on a single GPU environment. Perceptual listening test results verify that our proposed method achieves 4.16 mean opinion score within a Transformer-based text-to-speech framework, which is comparative to the best distillation-based Parallel WaveNet system. 3 authors · Oct 24, 2019
1 WaveFit: An Iterative and Non-autoregressive Neural Vocoder based on Fixed-Point Iteration Denoising diffusion probabilistic models (DDPMs) and generative adversarial networks (GANs) are popular generative models for neural vocoders. The DDPMs and GANs can be characterized by the iterative denoising framework and adversarial training, respectively. This study proposes a fast and high-quality neural vocoder called WaveFit, which integrates the essence of GANs into a DDPM-like iterative framework based on fixed-point iteration. WaveFit iteratively denoises an input signal, and trains a deep neural network (DNN) for minimizing an adversarial loss calculated from intermediate outputs at all iterations. Subjective (side-by-side) listening tests showed no statistically significant differences in naturalness between human natural speech and those synthesized by WaveFit with five iterations. Furthermore, the inference speed of WaveFit was more than 240 times faster than WaveRNN. Audio demos are available at google.github.io/df-conformer/wavefit/. 4 authors · Oct 3, 2022
- hvEEGNet: exploiting hierarchical VAEs on EEG data for neuroscience applications With the recent success of artificial intelligence in neuroscience, a number of deep learning (DL) models were proposed for classification, anomaly detection, and pattern recognition tasks in electroencephalography (EEG). EEG is a multi-channel time-series that provides information about the individual brain activity for diagnostics, neuro-rehabilitation, and other applications (including emotions recognition). Two main issues challenge the existing DL-based modeling methods for EEG: the high variability between subjects and the low signal-to-noise ratio making it difficult to ensure a good quality in the EEG data. In this paper, we propose two variational autoencoder models, namely vEEGNet-ver3 and hvEEGNet, to target the problem of high-fidelity EEG reconstruction. We properly designed their architectures using the blocks of the well-known EEGNet as the encoder, and proposed a loss function based on dynamic time warping. We tested the models on the public Dataset 2a - BCI Competition IV, where EEG was collected from 9 subjects and 22 channels. hvEEGNet was found to reconstruct the EEG data with very high-fidelity, outperforming most previous solutions (including our vEEGNet-ver3 ). Furthermore, this was consistent across all subjects. Interestingly, hvEEGNet made it possible to discover that this popular dataset includes a number of corrupted EEG recordings that might have influenced previous literature results. We also investigated the training behaviour of our models and related it with the quality and the size of the input EEG dataset, aiming at opening a new research debate on this relationship. In the future, hvEEGNet could be used as anomaly (e.g., artefact) detector in large EEG datasets to support the domain experts, but also the latent representations it provides could be used in other classification problems and EEG data generation. 4 authors · Nov 20, 2023
- NaturalSpeech: End-to-End Text to Speech Synthesis with Human-Level Quality Text to speech (TTS) has made rapid progress in both academia and industry in recent years. Some questions naturally arise that whether a TTS system can achieve human-level quality, how to define/judge that quality and how to achieve it. In this paper, we answer these questions by first defining the human-level quality based on the statistical significance of subjective measure and introducing appropriate guidelines to judge it, and then developing a TTS system called NaturalSpeech that achieves human-level quality on a benchmark dataset. Specifically, we leverage a variational autoencoder (VAE) for end-to-end text to waveform generation, with several key modules to enhance the capacity of the prior from text and reduce the complexity of the posterior from speech, including phoneme pre-training, differentiable duration modeling, bidirectional prior/posterior modeling, and a memory mechanism in VAE. Experiment evaluations on popular LJSpeech dataset show that our proposed NaturalSpeech achieves -0.01 CMOS (comparative mean opinion score) to human recordings at the sentence level, with Wilcoxon signed rank test at p-level p >> 0.05, which demonstrates no statistically significant difference from human recordings for the first time on this dataset. 14 authors · May 9, 2022
- Diff-Foley: Synchronized Video-to-Audio Synthesis with Latent Diffusion Models The Video-to-Audio (V2A) model has recently gained attention for its practical application in generating audio directly from silent videos, particularly in video/film production. However, previous methods in V2A have limited generation quality in terms of temporal synchronization and audio-visual relevance. We present Diff-Foley, a synchronized Video-to-Audio synthesis method with a latent diffusion model (LDM) that generates high-quality audio with improved synchronization and audio-visual relevance. We adopt contrastive audio-visual pretraining (CAVP) to learn more temporally and semantically aligned features, then train an LDM with CAVP-aligned visual features on spectrogram latent space. The CAVP-aligned features enable LDM to capture the subtler audio-visual correlation via a cross-attention module. We further significantly improve sample quality with `double guidance'. Diff-Foley achieves state-of-the-art V2A performance on current large scale V2A dataset. Furthermore, we demonstrate Diff-Foley practical applicability and generalization capabilities via downstream finetuning. Project Page: see https://diff-foley.github.io/ 4 authors · Jun 29, 2023 1
166 Qwen2.5-Omni Technical Report In this report, we present Qwen2.5-Omni, an end-to-end multimodal model designed to perceive diverse modalities, including text, images, audio, and video, while simultaneously generating text and natural speech responses in a streaming manner. To enable the streaming of multimodal information inputs, both audio and visual encoders utilize a block-wise processing approach. To synchronize the timestamps of video inputs with audio, we organize the audio and video sequentially in an interleaved manner and propose a novel position embedding approach, named TMRoPE(Time-aligned Multimodal RoPE). To concurrently generate text and speech while avoiding interference between the two modalities, we propose Thinker-Talker architecture. In this framework, Thinker functions as a large language model tasked with text generation, while Talker is a dual-track autoregressive model that directly utilizes the hidden representations from the Thinker to produce audio tokens as output. Both the Thinker and Talker models are designed to be trained and inferred in an end-to-end manner. For decoding audio tokens in a streaming manner, we introduce a sliding-window DiT that restricts the receptive field, aiming to reduce the initial package delay. Qwen2.5-Omni is comparable with the similarly sized Qwen2.5-VL and outperforms Qwen2-Audio. Furthermore, Qwen2.5-Omni achieves state-of-the-art performance on multimodal benchmarks like Omni-Bench. Notably, Qwen2.5-Omni's performance in end-to-end speech instruction following is comparable to its capabilities with text inputs, as evidenced by benchmarks such as MMLU and GSM8K. As for speech generation, Qwen2.5-Omni's streaming Talker outperforms most existing streaming and non-streaming alternatives in robustness and naturalness. 14 authors · Mar 26 4
- VALL-T: Decoder-Only Generative Transducer for Robust and Decoding-Controllable Text-to-Speech Recent TTS models with decoder-only Transformer architecture, such as SPEAR-TTS and VALL-E, achieve impressive naturalness and demonstrate the ability for zero-shot adaptation given a speech prompt. However, such decoder-only TTS models lack monotonic alignment constraints, sometimes leading to hallucination issues such as mispronunciation, word skipping and repeating. To address this limitation, we propose VALL-T, a generative Transducer model that introduces shifting relative position embeddings for input phoneme sequence, explicitly indicating the monotonic generation process while maintaining the architecture of decoder-only Transformer. Consequently, VALL-T retains the capability of prompt-based zero-shot adaptation and demonstrates better robustness against hallucinations with a relative reduction of 28.3% in the word error rate. Furthermore, the controllability of alignment in VALL-T during decoding facilitates the use of untranscribed speech prompts, even in unknown languages. It also enables the synthesis of lengthy speech by utilizing an aligned context window. 9 authors · Jan 25, 2024
- Benchmarking Generative Latent Variable Models for Speech Stochastic latent variable models (LVMs) achieve state-of-the-art performance on natural image generation but are still inferior to deterministic models on speech. In this paper, we develop a speech benchmark of popular temporal LVMs and compare them against state-of-the-art deterministic models. We report the likelihood, which is a much used metric in the image domain, but rarely, or incomparably, reported for speech models. To assess the quality of the learned representations, we also compare their usefulness for phoneme recognition. Finally, we adapt the Clockwork VAE, a state-of-the-art temporal LVM for video generation, to the speech domain. Despite being autoregressive only in latent space, we find that the Clockwork VAE can outperform previous LVMs and reduce the gap to deterministic models by using a hierarchy of latent variables. 5 authors · Feb 22, 2022
10 Zero-shot Cross-lingual Voice Transfer for TTS In this paper, we introduce a zero-shot Voice Transfer (VT) module that can be seamlessly integrated into a multi-lingual Text-to-speech (TTS) system to transfer an individual's voice across languages. Our proposed VT module comprises a speaker-encoder that processes reference speech, a bottleneck layer, and residual adapters, connected to preexisting TTS layers. We compare the performance of various configurations of these components and report Mean Opinion Score (MOS) and Speaker Similarity across languages. Using a single English reference speech per speaker, we achieve an average voice transfer similarity score of 73% across nine target languages. Vocal characteristics contribute significantly to the construction and perception of individual identity. The loss of one's voice, due to physical or neurological conditions, can lead to a profound sense of loss, impacting one's core identity. As a case study, we demonstrate that our approach can not only transfer typical speech but also restore the voices of individuals with dysarthria, even when only atypical speech samples are available - a valuable utility for those who have never had typical speech or banked their voice. Cross-lingual typical audio samples, plus videos demonstrating voice restoration for dysarthric speakers are available here (google.github.io/tacotron/publications/zero_shot_voice_transfer). 7 authors · Sep 20, 2024 2
1 WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing Self-supervised learning (SSL) achieves great success in speech recognition, while limited exploration has been attempted for other speech processing tasks. As speech signal contains multi-faceted information including speaker identity, paralinguistics, spoken content, etc., learning universal representations for all speech tasks is challenging. To tackle the problem, we propose a new pre-trained model, WavLM, to solve full-stack downstream speech tasks. WavLM jointly learns masked speech prediction and denoising in pre-training. By this means, WavLM does not only keep the speech content modeling capability by the masked speech prediction, but also improves the potential to non-ASR tasks by the speech denoising. In addition, WavLM employs gated relative position bias for the Transformer structure to better capture the sequence ordering of input speech. We also scale up the training dataset from 60k hours to 94k hours. WavLM Large achieves state-of-the-art performance on the SUPERB benchmark, and brings significant improvements for various speech processing tasks on their representative benchmarks. The code and pre-trained models are available at https://aka.ms/wavlm. 19 authors · Oct 26, 2021
- SAR: Self-Supervised Anti-Distortion Representation for End-To-End Speech Model In recent Text-to-Speech (TTS) systems, a neural vocoder often generates speech samples by solely conditioning on acoustic features predicted from an acoustic model. However, there are always distortions existing in the predicted acoustic features, compared to those of the groundtruth, especially in the common case of poor acoustic modeling due to low-quality training data. To overcome such limits, we propose a Self-supervised learning framework to learn an Anti-distortion acoustic Representation (SAR) to replace human-crafted acoustic features by introducing distortion prior to an auto-encoder pre-training process. The learned acoustic representation from the proposed framework is proved anti-distortion compared to the most commonly used mel-spectrogram through both objective and subjective evaluation. 6 authors · Apr 23, 2023
- ESPnet2-TTS: Extending the Edge of TTS Research This paper describes ESPnet2-TTS, an end-to-end text-to-speech (E2E-TTS) toolkit. ESPnet2-TTS extends our earlier version, ESPnet-TTS, by adding many new features, including: on-the-fly flexible pre-processing, joint training with neural vocoders, and state-of-the-art TTS models with extensions like full-band E2E text-to-waveform modeling, which simplify the training pipeline and further enhance TTS performance. The unified design of our recipes enables users to quickly reproduce state-of-the-art E2E-TTS results. We also provide many pre-trained models in a unified Python interface for inference, offering a quick means for users to generate baseline samples and build demos. Experimental evaluations with English and Japanese corpora demonstrate that our provided models synthesize utterances comparable to ground-truth ones, achieving state-of-the-art TTS performance. The toolkit is available online at https://github.com/espnet/espnet. 10 authors · Oct 14, 2021
- Enhancing Audio-Language Models through Self-Supervised Post-Training with Text-Audio Pairs Research on multi-modal contrastive learning strategies for audio and text has rapidly gained interest. Contrastively trained Audio-Language Models (ALMs), such as CLAP, which establish a unified representation across audio and language modalities, have enhanced the efficacy in various subsequent tasks by providing good text aligned audio encoders and vice versa. These improvements are evident in areas like zero-shot audio classification and audio retrieval, among others. However, the ability of these models to understand natural language and temporal relations is still a largely unexplored and open field for research. In this paper, we propose to equip the multi-modal ALMs with temporal understanding without loosing their inherent prior capabilities of audio-language tasks with a temporal instillation method TeminAL. We implement a two-stage training scheme TeminAL A & B, where the model first learns to differentiate between multiple sounds in TeminAL A, followed by a phase that instills a sense of time, thereby enhancing its temporal understanding in TeminAL B. This approach results in an average performance gain of 5.28% in temporal understanding on the ESC-50 dataset, while the model remains competitive in zero-shot retrieval and classification tasks on the AudioCap/Clotho datasets. We also note the lack of proper evaluation techniques for contrastive ALMs and propose a strategy for evaluating ALMs in zero-shot settings. The general-purpose zero-shot model evaluation strategy ZSTE, is used to evaluate various prior models. ZSTE demonstrates a general strategy to evaluate all ZS contrastive models. The model trained with TeminAL successfully outperforms current models on most downstream tasks. 4 authors · Aug 17, 2024
- WaveNet: A Generative Model for Raw Audio This paper introduces WaveNet, a deep neural network for generating raw audio waveforms. The model is fully probabilistic and autoregressive, with the predictive distribution for each audio sample conditioned on all previous ones; nonetheless we show that it can be efficiently trained on data with tens of thousands of samples per second of audio. When applied to text-to-speech, it yields state-of-the-art performance, with human listeners rating it as significantly more natural sounding than the best parametric and concatenative systems for both English and Mandarin. A single WaveNet can capture the characteristics of many different speakers with equal fidelity, and can switch between them by conditioning on the speaker identity. When trained to model music, we find that it generates novel and often highly realistic musical fragments. We also show that it can be employed as a discriminative model, returning promising results for phoneme recognition. 9 authors · Sep 12, 2016
- Vec-Tok-VC+: Residual-enhanced Robust Zero-shot Voice Conversion with Progressive Constraints in a Dual-mode Training Strategy Zero-shot voice conversion (VC) aims to transform source speech into arbitrary unseen target voice while keeping the linguistic content unchanged. Recent VC methods have made significant progress, but semantic losses in the decoupling process as well as training-inference mismatch still hinder conversion performance. In this paper, we propose Vec-Tok-VC+, a novel prompt-based zero-shot VC model improved from Vec-Tok Codec, achieving voice conversion given only a 3s target speaker prompt. We design a residual-enhanced K-Means decoupler to enhance the semantic content extraction with a two-layer clustering process. Besides, we employ teacher-guided refinement to simulate the conversion process to eliminate the training-inference mismatch, forming a dual-mode training strategy. Furthermore, we design a multi-codebook progressive loss function to constrain the layer-wise output of the model from coarse to fine to improve speaker similarity and content accuracy. Objective and subjective evaluations demonstrate that Vec-Tok-VC+ outperforms the strong baselines in naturalness, intelligibility, and speaker similarity. 8 authors · Jun 14, 2024
- Audio Time-Scale Modification with Temporal Compressing Networks We propose a novel approach for time-scale modification of audio signals. Unlike traditional methods that rely on the framing technique or the short-time Fourier transform to preserve the frequency during temporal stretching, our neural network model encodes the raw audio into a high-level latent representation, dubbed Neuralgram, where each vector represents 1024 audio sample points. Due to a sufficient compression ratio, we are able to apply arbitrary spatial interpolation of the Neuralgram to perform temporal stretching. Finally, a learned neural decoder synthesizes the time-scaled audio samples based on the stretched Neuralgram representation. Both the encoder and decoder are trained with latent regression losses and adversarial losses in order to obtain high-fidelity audio samples. Despite its simplicity, our method has comparable performance compared to the existing baselines and opens a new possibility in research into modern time-scale modification. Audio samples can be found at https://tsmnet-mmasia23.github.io 3 authors · Oct 31, 2022
- Sequencer: Deep LSTM for Image Classification In recent computer vision research, the advent of the Vision Transformer (ViT) has rapidly revolutionized various architectural design efforts: ViT achieved state-of-the-art image classification performance using self-attention found in natural language processing, and MLP-Mixer achieved competitive performance using simple multi-layer perceptrons. In contrast, several studies have also suggested that carefully redesigned convolutional neural networks (CNNs) can achieve advanced performance comparable to ViT without resorting to these new ideas. Against this background, there is growing interest in what inductive bias is suitable for computer vision. Here we propose Sequencer, a novel and competitive architecture alternative to ViT that provides a new perspective on these issues. Unlike ViTs, Sequencer models long-range dependencies using LSTMs rather than self-attention layers. We also propose a two-dimensional version of Sequencer module, where an LSTM is decomposed into vertical and horizontal LSTMs to enhance performance. Despite its simplicity, several experiments demonstrate that Sequencer performs impressively well: Sequencer2D-L, with 54M parameters, realizes 84.6% top-1 accuracy on only ImageNet-1K. Not only that, we show that it has good transferability and the robust resolution adaptability on double resolution-band. 2 authors · May 4, 2022
1 Syllable based DNN-HMM Cantonese Speech to Text System This paper reports our work on building up a Cantonese Speech-to-Text (STT) system with a syllable based acoustic model. This is a part of an effort in building a STT system to aid dyslexic students who have cognitive deficiency in writing skills but have no problem expressing their ideas through speech. For Cantonese speech recognition, the basic unit of acoustic models can either be the conventional Initial-Final (IF) syllables, or the Onset-Nucleus-Coda (ONC) syllables where finals are further split into nucleus and coda to reflect the intra-syllable variations in Cantonese. By using the Kaldi toolkit, our system is trained using the stochastic gradient descent optimization model with the aid of GPUs for the hybrid Deep Neural Network and Hidden Markov Model (DNN-HMM) with and without I-vector based speaker adaptive training technique. The input features of the same Gaussian Mixture Model with speaker adaptive training (GMM-SAT) to DNN are used in all cases. Experiments show that the ONC-based syllable acoustic modeling with I-vector based DNN-HMM achieves the best performance with the word error rate (WER) of 9.66% and the real time factor (RTF) of 1.38812. 9 authors · Feb 13, 2024
- An Empirical Analysis on the Vulnerabilities of End-to-End Speech Segregation Models End-to-end learning models have demonstrated a remarkable capability in performing speech segregation. Despite their wide-scope of real-world applications, little is known about the mechanisms they employ to group and consequently segregate individual speakers. Knowing that harmonicity is a critical cue for these networks to group sources, in this work, we perform a thorough investigation on ConvTasnet and DPT-Net to analyze how they perform a harmonic analysis of the input mixture. We perform ablation studies where we apply low-pass, high-pass, and band-stop filters of varying pass-bands to empirically analyze the harmonics most critical for segregation. We also investigate how these networks decide which output channel to assign to an estimated source by introducing discontinuities in synthetic mixtures. We find that end-to-end networks are highly unstable, and perform poorly when confronted with deformations which are imperceptible to humans. Replacing the encoder in these networks with a spectrogram leads to lower overall performance, but much higher stability. This work helps us to understand what information these network rely on for speech segregation, and exposes two sources of generalization-errors. It also pinpoints the encoder as the part of the network responsible for these errors, allowing for a redesign with expert knowledge or transfer learning. 4 authors · Jun 19, 2022
4 HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the state-of-the-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER reduction on the more challenging dev-other and test-other evaluation subsets. 6 authors · Jun 14, 2021
- Speech Representation Analysis based on Inter- and Intra-Model Similarities Self-supervised models have revolutionized speech processing, achieving new levels of performance in a wide variety of tasks with limited resources. However, the inner workings of these models are still opaque. In this paper, we aim to analyze the encoded contextual representation of these foundation models based on their inter- and intra-model similarity, independent of any external annotation and task-specific constraint. We examine different SSL models varying their training paradigm -- Contrastive (Wav2Vec2.0) and Predictive models (HuBERT); and model sizes (base and large). We explore these models on different levels of localization/distributivity of information including (i) individual neurons; (ii) layer representation; (iii) attention weights and (iv) compare the representations with their finetuned counterparts.Our results highlight that these models converge to similar representation subspaces but not to similar neuron-localized concepts\footnote{A concept represents a coherent fragment of knowledge, such as ``a class containing certain objects as elements, where the objects have certain properties. We made the code publicly available for facilitating further research, we publicly released our code. 3 authors · Jun 23, 2024
- Self-supervised Neural Factor Analysis for Disentangling Utterance-level Speech Representations Self-supervised learning (SSL) speech models such as wav2vec and HuBERT have demonstrated state-of-the-art performance on automatic speech recognition (ASR) and proved to be extremely useful in low label-resource settings. However, the success of SSL models has yet to transfer to utterance-level tasks such as speaker, emotion, and language recognition, which still require supervised fine-tuning of the SSL models to obtain good performance. We argue that the problem is caused by the lack of disentangled representations and an utterance-level learning objective for these tasks. Inspired by how HuBERT uses clustering to discover hidden acoustic units, we formulate a factor analysis (FA) model that uses the discovered hidden acoustic units to align the SSL features. The underlying utterance-level representations are disentangled from the content of speech using probabilistic inference on the aligned features. Furthermore, the variational lower bound derived from the FA model provides an utterance-level objective, allowing error gradients to be backpropagated to the Transformer layers to learn highly discriminative acoustic units. When used in conjunction with HuBERT's masked prediction training, our models outperform the current best model, WavLM, on all utterance-level non-semantic tasks on the SUPERB benchmark with only 20% of labeled data. 4 authors · May 14, 2023
2 Dynamic-SUPERB Phase-2: A Collaboratively Expanding Benchmark for Measuring the Capabilities of Spoken Language Models with 180 Tasks Multimodal foundation models, such as Gemini and ChatGPT, have revolutionized human-machine interactions by seamlessly integrating various forms of data. Developing a universal spoken language model that comprehends a wide range of natural language instructions is critical for bridging communication gaps and facilitating more intuitive interactions. However, the absence of a comprehensive evaluation benchmark poses a significant challenge. We present Dynamic-SUPERB Phase-2, an open and evolving benchmark for the comprehensive evaluation of instruction-based universal speech models. Building upon the first generation, this second version incorporates 125 new tasks contributed collaboratively by the global research community, expanding the benchmark to a total of 180 tasks, making it the largest benchmark for speech and audio evaluation. While the first generation of Dynamic-SUPERB was limited to classification tasks, Dynamic-SUPERB Phase-2 broadens its evaluation capabilities by introducing a wide array of novel and diverse tasks, including regression and sequence generation, across speech, music, and environmental audio. Evaluation results indicate that none of the models performed well universally. SALMONN-13B excelled in English ASR, while WavLLM demonstrated high accuracy in emotion recognition, but current models still require further innovations to handle a broader range of tasks. We will soon open-source all task data and the evaluation pipeline. 78 authors · Nov 8, 2024
- MossFormer2: Combining Transformer and RNN-Free Recurrent Network for Enhanced Time-Domain Monaural Speech Separation Our previously proposed MossFormer has achieved promising performance in monaural speech separation. However, it predominantly adopts a self-attention-based MossFormer module, which tends to emphasize longer-range, coarser-scale dependencies, with a deficiency in effectively modelling finer-scale recurrent patterns. In this paper, we introduce a novel hybrid model that provides the capabilities to model both long-range, coarse-scale dependencies and fine-scale recurrent patterns by integrating a recurrent module into the MossFormer framework. Instead of applying the recurrent neural networks (RNNs) that use traditional recurrent connections, we present a recurrent module based on a feedforward sequential memory network (FSMN), which is considered "RNN-free" recurrent network due to the ability to capture recurrent patterns without using recurrent connections. Our recurrent module mainly comprises an enhanced dilated FSMN block by using gated convolutional units (GCU) and dense connections. In addition, a bottleneck layer and an output layer are also added for controlling information flow. The recurrent module relies on linear projections and convolutions for seamless, parallel processing of the entire sequence. The integrated MossFormer2 hybrid model demonstrates remarkable enhancements over MossFormer and surpasses other state-of-the-art methods in WSJ0-2/3mix, Libri2Mix, and WHAM!/WHAMR! benchmarks. 10 authors · Dec 18, 2023
- Direct speech-to-speech translation with discrete units We present a direct speech-to-speech translation (S2ST) model that translates speech from one language to speech in another language without relying on intermediate text generation. We tackle the problem by first applying a self-supervised discrete speech encoder on the target speech and then training a sequence-to-sequence speech-to-unit translation (S2UT) model to predict the discrete representations of the target speech. When target text transcripts are available, we design a joint speech and text training framework that enables the model to generate dual modality output (speech and text) simultaneously in the same inference pass. Experiments on the Fisher Spanish-English dataset show that the proposed framework yields improvement of 6.7 BLEU compared with a baseline direct S2ST model that predicts spectrogram features. When trained without any text transcripts, our model performance is comparable to models that predict spectrograms and are trained with text supervision, showing the potential of our system for translation between unwritten languages. Audio samples are available at https://facebookresearch.github.io/speech_translation/direct_s2st_units/index.html . 12 authors · Jul 12, 2021
1 NVSpeech: An Integrated and Scalable Pipeline for Human-Like Speech Modeling with Paralinguistic Vocalizations Paralinguistic vocalizations-including non-verbal sounds like laughter and breathing, as well as lexicalized interjections such as "uhm" and "oh"-are integral to natural spoken communication. Despite their importance in conveying affect, intent, and interactional cues, such cues remain largely overlooked in conventional automatic speech recognition (ASR) and text-to-speech (TTS) systems. We present NVSpeech, an integrated and scalable pipeline that bridges the recognition and synthesis of paralinguistic vocalizations, encompassing dataset construction, ASR modeling, and controllable TTS. (1) We introduce a manually annotated dataset of 48,430 human-spoken utterances with 18 word-level paralinguistic categories. (2) We develop the paralinguistic-aware ASR model, which treats paralinguistic cues as inline decodable tokens (e.g., "You're so funny [Laughter]"), enabling joint lexical and non-verbal transcription. This model is then used to automatically annotate a large corpus, the first large-scale Chinese dataset of 174,179 utterances (573 hours) with word-level alignment and paralingustic cues. (3) We finetune zero-shot TTS models on both human- and auto-labeled data to enable explicit control over paralinguistic vocalizations, allowing context-aware insertion at arbitrary token positions for human-like speech synthesis. By unifying the recognition and generation of paralinguistic vocalizations, NVSpeech offers the first open, large-scale, word-level annotated pipeline for expressive speech modeling in Mandarin, integrating recognition and synthesis in a scalable and controllable manner. Dataset and audio demos are available at https://nvspeech170k.github.io/. 8 authors · Aug 6 2
- Efficient neural networks for real-time modeling of analog dynamic range compression Deep learning approaches have demonstrated success in modeling analog audio effects. Nevertheless, challenges remain in modeling more complex effects that involve time-varying nonlinear elements, such as dynamic range compressors. Existing neural network approaches for modeling compression either ignore the device parameters, do not attain sufficient accuracy, or otherwise require large noncausal models prohibiting real-time operation. In this work, we propose a modification to temporal convolutional networks (TCNs) enabling greater efficiency without sacrificing performance. By utilizing very sparse convolutional kernels through rapidly growing dilations, our model attains a significant receptive field using fewer layers, reducing computation. Through a detailed evaluation we demonstrate our efficient and causal approach achieves state-of-the-art performance in modeling the analog LA-2A, is capable of real-time operation on CPU, and only requires 10 minutes of training data. 2 authors · Feb 11, 2021