Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCalibration and Uncertainty for multiRater Volume Assessment in multiorgan Segmentation (CURVAS) challenge results
Deep learning (DL) has become the dominant approach for medical image segmentation, yet ensuring the reliability and clinical applicability of these models requires addressing key challenges such as annotation variability, calibration, and uncertainty estimation. This is why we created the Calibration and Uncertainty for multiRater Volume Assessment in multiorgan Segmentation (CURVAS), which highlights the critical role of multiple annotators in establishing a more comprehensive ground truth, emphasizing that segmentation is inherently subjective and that leveraging inter-annotator variability is essential for robust model evaluation. Seven teams participated in the challenge, submitting a variety of DL models evaluated using metrics such as Dice Similarity Coefficient (DSC), Expected Calibration Error (ECE), and Continuous Ranked Probability Score (CRPS). By incorporating consensus and dissensus ground truth, we assess how DL models handle uncertainty and whether their confidence estimates align with true segmentation performance. Our findings reinforce the importance of well-calibrated models, as better calibration is strongly correlated with the quality of the results. Furthermore, we demonstrate that segmentation models trained on diverse datasets and enriched with pre-trained knowledge exhibit greater robustness, particularly in cases deviating from standard anatomical structures. Notably, the best-performing models achieved high DSC and well-calibrated uncertainty estimates. This work underscores the need for multi-annotator ground truth, thorough calibration assessments, and uncertainty-aware evaluations to develop trustworthy and clinically reliable DL-based medical image segmentation models.
Universal Neural-Cracking-Machines: Self-Configurable Password Models from Auxiliary Data
We introduce the concept of "universal password model" -- a password model that, once pre-trained, can automatically adapt its guessing strategy based on the target system. To achieve this, the model does not need to access any plaintext passwords from the target credentials. Instead, it exploits users' auxiliary information, such as email addresses, as a proxy signal to predict the underlying password distribution. Specifically, the model uses deep learning to capture the correlation between the auxiliary data of a group of users (e.g., users of a web application) and their passwords. It then exploits those patterns to create a tailored password model for the target system at inference time. No further training steps, targeted data collection, or prior knowledge of the community's password distribution is required. Besides improving over current password strength estimation techniques and attacks, the model enables any end-user (e.g., system administrators) to autonomously generate tailored password models for their systems without the often unworkable requirements of collecting suitable training data and fitting the underlying machine learning model. Ultimately, our framework enables the democratization of well-calibrated password models to the community, addressing a major challenge in the deployment of password security solutions at scale.
NeoRL: Efficient Exploration for Nonepisodic RL
We study the problem of nonepisodic reinforcement learning (RL) for nonlinear dynamical systems, where the system dynamics are unknown and the RL agent has to learn from a single trajectory, i.e., without resets. We propose Nonepisodic Optimistic RL (NeoRL), an approach based on the principle of optimism in the face of uncertainty. NeoRL uses well-calibrated probabilistic models and plans optimistically w.r.t. the epistemic uncertainty about the unknown dynamics. Under continuity and bounded energy assumptions on the system, we provide a first-of-its-kind regret bound of O(Gamma_T T) for general nonlinear systems with Gaussian process dynamics. We compare NeoRL to other baselines on several deep RL environments and empirically demonstrate that NeoRL achieves the optimal average cost while incurring the least regret.
Calibrated Large Language Models for Binary Question Answering
Quantifying the uncertainty of predictions made by large language models (LLMs) in binary text classification tasks remains a challenge. Calibration, in the context of LLMs, refers to the alignment between the model's predicted probabilities and the actual correctness of its predictions. A well-calibrated model should produce probabilities that accurately reflect the likelihood of its predictions being correct. We propose a novel approach that utilizes the inductive Venn--Abers predictor (IVAP) to calibrate the probabilities associated with the output tokens corresponding to the binary labels. Our experiments on the BoolQ dataset using the Llama 2 model demonstrate that IVAP consistently outperforms the commonly used temperature scaling method for various label token choices, achieving well-calibrated probabilities while maintaining high predictive quality. Our findings contribute to the understanding of calibration techniques for LLMs and provide a practical solution for obtaining reliable uncertainty estimates in binary question answering tasks, enhancing the interpretability and trustworthiness of LLM predictions.
Just Ask for Calibration: Strategies for Eliciting Calibrated Confidence Scores from Language Models Fine-Tuned with Human Feedback
A trustworthy real-world prediction system should produce well-calibrated confidence scores; that is, its confidence in an answer should be indicative of the likelihood that the answer is correct, enabling deferral to an expert in cases of low-confidence predictions. Recent studies have shown that unsupervised pre-training produces large language models (LMs) whose conditional probabilities are remarkably well-calibrated. However, the most widely-used LMs are fine-tuned with reinforcement learning from human feedback (RLHF-LMs), and some studies have suggested that RLHF-LMs produce conditional probabilities that are very poorly calibrated. In light of this perceived weakness, we conduct a broad evaluation of methods for extracting confidence scores from RLHF-LMs. For RLHF-LMs such as ChatGPT, GPT-4, and Claude, we find that verbalized confidences emitted as output tokens are typically better-calibrated than the model's conditional probabilities on the TriviaQA, SciQ, and TruthfulQA benchmarks, often reducing the expected calibration error by a relative 50%.
Calibration and Correctness of Language Models for Code
Machine learning models are widely used, but can also often be wrong. Users would benefit from a reliable indication of whether a given output from a given model should be trusted, so a rational decision can be made whether to use the output or not. For example, outputs can be associated with a confidence measure; if this confidence measure is strongly associated with likelihood of correctness, then the model is said to be well-calibrated. A well-calibrated confidence measure can serve as a basis for rational, graduated decision-making on how much review and care is needed when using generated code. Calibration has so far been studied in mostly non-generative (e.g. classification) settings, especially in software engineering. However, generated code can quite often be wrong: Given generated code, developers must decide whether to use directly, use after varying intensity of careful review, or discard model-generated code. Thus, calibration is vital in generative settings. We make several contributions. We develop a framework for evaluating the calibration of code-generating models. We consider several tasks, correctness criteria, datasets, and approaches, and find that, by and large, generative code models we test are not well-calibrated out of the box. We then show how calibration can be improved using standard methods, such as Platt scaling. Since Platt scaling relies on the prior availability of correctness data, we evaluate the applicability and generalizability of Platt scaling in software engineering, discuss settings where it has good potential for practical use, and settings where it does not. Our contributions will lead to better-calibrated decision-making in the current use of code generated by language models, and offers a framework for future research to further improve calibration methods for generative models in software engineering.
Enhancing Trust in Large Language Models with Uncertainty-Aware Fine-Tuning
Large language models (LLMs) have revolutionized the field of natural language processing with their impressive reasoning and question-answering capabilities. However, these models are sometimes prone to generating credible-sounding but incorrect information, a phenomenon known as LLM hallucinations. Reliable uncertainty estimation in LLMs is essential for fostering trust in their generated responses and serves as a critical tool for the detection and prevention of erroneous or hallucinated outputs. To achieve reliable and well-calibrated uncertainty quantification in open-ended and free-form natural language generation, we propose an uncertainty-aware fine-tuning approach for LLMs. This approach enhances the model's ability to provide reliable uncertainty estimates without compromising accuracy, thereby guiding them to produce more trustworthy responses. We introduce a novel uncertainty-aware causal language modeling loss function, grounded in the principles of decision theory. Through rigorous evaluation on multiple free-form question-answering datasets and models, we demonstrate that our uncertainty-aware fine-tuning approach yields better calibrated uncertainty estimates in natural language generation tasks than fine-tuning with the standard causal language modeling loss. Furthermore, the experimental results show that the proposed method significantly improves the model's ability to detect hallucinations and identify out-of-domain prompts.
Language Models (Mostly) Know What They Know
We study whether language models can evaluate the validity of their own claims and predict which questions they will be able to answer correctly. We first show that larger models are well-calibrated on diverse multiple choice and true/false questions when they are provided in the right format. Thus we can approach self-evaluation on open-ended sampling tasks by asking models to first propose answers, and then to evaluate the probability "P(True)" that their answers are correct. We find encouraging performance, calibration, and scaling for P(True) on a diverse array of tasks. Performance at self-evaluation further improves when we allow models to consider many of their own samples before predicting the validity of one specific possibility. Next, we investigate whether models can be trained to predict "P(IK)", the probability that "I know" the answer to a question, without reference to any particular proposed answer. Models perform well at predicting P(IK) and partially generalize across tasks, though they struggle with calibration of P(IK) on new tasks. The predicted P(IK) probabilities also increase appropriately in the presence of relevant source materials in the context, and in the presence of hints towards the solution of mathematical word problems. We hope these observations lay the groundwork for training more honest models, and for investigating how honesty generalizes to cases where models are trained on objectives other than the imitation of human writing.
Calibration of Natural Language Understanding Models with Venn--ABERS Predictors
Transformers, currently the state-of-the-art in natural language understanding (NLU) tasks, are prone to generate uncalibrated predictions or extreme probabilities, making the process of taking different decisions based on their output relatively difficult. In this paper we propose to build several inductive Venn--ABERS predictors (IVAP), which are guaranteed to be well calibrated under minimal assumptions, based on a selection of pre-trained transformers. We test their performance over a set of diverse NLU tasks and show that they are capable of producing well-calibrated probabilistic predictions that are uniformly spread over the [0,1] interval -- all while retaining the original model's predictive accuracy.
Zero-shot Model-based Reinforcement Learning using Large Language Models
The emerging zero-shot capabilities of Large Language Models (LLMs) have led to their applications in areas extending well beyond natural language processing tasks. In reinforcement learning, while LLMs have been extensively used in text-based environments, their integration with continuous state spaces remains understudied. In this paper, we investigate how pre-trained LLMs can be leveraged to predict in context the dynamics of continuous Markov decision processes. We identify handling multivariate data and incorporating the control signal as key challenges that limit the potential of LLMs' deployment in this setup and propose Disentangled In-Context Learning (DICL) to address them. We present proof-of-concept applications in two reinforcement learning settings: model-based policy evaluation and data-augmented off-policy reinforcement learning, supported by theoretical analysis of the proposed methods. Our experiments further demonstrate that our approach produces well-calibrated uncertainty estimates. We release the code at https://github.com/abenechehab/dicl.
The Calibration Gap between Model and Human Confidence in Large Language Models
For large language models (LLMs) to be trusted by humans they need to be well-calibrated in the sense that they can accurately assess and communicate how likely it is that their predictions are correct. Recent work has focused on the quality of internal LLM confidence assessments, but the question remains of how well LLMs can communicate this internal model confidence to human users. This paper explores the disparity between external human confidence in an LLM's responses and the internal confidence of the model. Through experiments involving multiple-choice questions, we systematically examine human users' ability to discern the reliability of LLM outputs. Our study focuses on two key areas: (1) assessing users' perception of true LLM confidence and (2) investigating the impact of tailored explanations on this perception. The research highlights that default explanations from LLMs often lead to user overestimation of both the model's confidence and its' accuracy. By modifying the explanations to more accurately reflect the LLM's internal confidence, we observe a significant shift in user perception, aligning it more closely with the model's actual confidence levels. This adjustment in explanatory approach demonstrates potential for enhancing user trust and accuracy in assessing LLM outputs. The findings underscore the importance of transparent communication of confidence levels in LLMs, particularly in high-stakes applications where understanding the reliability of AI-generated information is essential.
EAGLE-2: Faster Inference of Language Models with Dynamic Draft Trees
Inference with modern Large Language Models (LLMs) is expensive and time-consuming, and speculative sampling has proven to be an effective solution. Most speculative sampling methods such as EAGLE use a static draft tree, implicitly assuming that the acceptance rate of draft tokens depends only on their position. Interestingly, we found that the acceptance rate of draft tokens is also context-dependent. In this paper, building upon EAGLE, we propose EAGLE-2, which introduces a new technique of context-aware dynamic draft tree into drafting modeling. This improvement leverages the fact that the draft model of EAGLE is well-calibrated: the confidence scores from the draft model approximate acceptance rates with small errors. We conducted extensive evaluations on three series of LLMs and six tasks, with EAGLE-2 achieving speedup ratios 3.05x-4.26x, which is 20%-40% faster than EAGLE-1. EAGLE-2 also ensures that the distribution of the generated text remains unchanged, making it a lossless acceleration algorithm.
Post-hoc Probabilistic Vision-Language Models
Vision-language models (VLMs), such as CLIP and SigLIP, have found remarkable success in classification, retrieval, and generative tasks. For this, VLMs deterministically map images and text descriptions to a joint latent space in which their similarity is assessed using the cosine similarity. However, a deterministic mapping of inputs fails to capture uncertainties over concepts arising from domain shifts when used in downstream tasks. In this work, we propose post-hoc uncertainty estimation in VLMs that does not require additional training. Our method leverages a Bayesian posterior approximation over the last layers in VLMs and analytically quantifies uncertainties over cosine similarities. We demonstrate its effectiveness for uncertainty quantification and support set selection in active learning. Compared to baselines, we obtain improved and well-calibrated predictive uncertainties, interpretable uncertainty estimates, and sample-efficient active learning. Our results show promise for safety-critical applications of large-scale models.
THOUGHTTERMINATOR: Benchmarking, Calibrating, and Mitigating Overthinking in Reasoning Models
Reasoning models have demonstrated impressive performance on difficult tasks that traditional language models struggle at. However, many are plagued with the problem of overthinking--generating large amounts of unnecessary tokens which don't improve accuracy on a question. We introduce approximate measures of problem-level difficulty and demonstrate that a clear relationship between problem difficulty and optimal token spend exists, and evaluate how well calibrated a variety of reasoning models are in terms of efficiently allocating the optimal token count. We find that in general, reasoning models are poorly calibrated, particularly on easy problems. To evaluate calibration on easy questions we introduce DUMB500, a dataset of extremely easy math, reasoning, code, and task problems, and jointly evaluate reasoning model on these simple examples and extremely difficult examples from existing frontier benchmarks on the same task domain. Finally, we introduce THOUGHTTERMINATOR, a training-free black box decoding technique that significantly improves reasoning model calibration.
Uncertainty-Aware Remaining Lifespan Prediction from Images
Predicting mortality-related outcomes from images offers the prospect of accessible, noninvasive, and scalable health screening. We present a method that leverages pretrained vision transformer foundation models to estimate remaining lifespan from facial and whole-body images, alongside robust uncertainty quantification. We show that predictive uncertainty varies systematically with the true remaining lifespan, and that this uncertainty can be effectively modeled by learning a Gaussian distribution for each sample. Our approach achieves state-of-the-art mean absolute error (MAE) of 7.48 years on an established Dataset, and further improves to 4.79 and 5.07 years MAE on two new, higher-quality datasets curated and published in this work. Importantly, our models provide well-calibrated uncertainty estimates, as demonstrated by a bucketed expected calibration error of 0.62 years. While not intended for clinical deployment, these results highlight the potential of extracting medically relevant signals from images. We make all code and datasets available to facilitate further research.
AstroMLab 1: Who Wins Astronomy Jeopardy!?
We present a comprehensive evaluation of proprietary and open-weights large language models using the first astronomy-specific benchmarking dataset. This dataset comprises 4,425 multiple-choice questions curated from the Annual Review of Astronomy and Astrophysics, covering a broad range of astrophysical topics. Our analysis examines model performance across various astronomical subfields and assesses response calibration, crucial for potential deployment in research environments. Claude-3.5-Sonnet outperforms competitors by up to 4.6 percentage points, achieving 85.0% accuracy. For proprietary models, we observed a universal reduction in cost every 3-to-12 months to achieve similar score in this particular astronomy benchmark. Open-source models have rapidly improved, with LLaMA-3-70b (80.6%) and Qwen-2-72b (77.7%) now competing with some of the best proprietary models. We identify performance variations across topics, with non-English-focused models generally struggling more in exoplanet-related fields, stellar astrophysics, and instrumentation related questions. These challenges likely stem from less abundant training data, limited historical context, and rapid recent developments in these areas. This pattern is observed across both open-weights and proprietary models, with regional dependencies evident, highlighting the impact of training data diversity on model performance in specialized scientific domains. Top-performing models demonstrate well-calibrated confidence, with correlations above 0.9 between confidence and correctness, though they tend to be slightly underconfident. The development for fast, low-cost inference of open-weights models presents new opportunities for affordable deployment in astronomy. The rapid progress observed suggests that LLM-driven research in astronomy may become feasible in the near future.
MICE for CATs: Model-Internal Confidence Estimation for Calibrating Agents with Tools
Tool-using agents that act in the world need to be both useful and safe. Well-calibrated model confidences can be used to weigh the risk versus reward of potential actions, but prior work shows that many models are poorly calibrated. Inspired by interpretability literature exploring the internals of models, we propose a novel class of model-internal confidence estimators (MICE) to better assess confidence when calling tools. MICE first decodes from each intermediate layer of the language model using logitLens and then computes similarity scores between each layer's generation and the final output. These features are fed into a learned probabilistic classifier to assess confidence in the decoded output. On the simulated trial and error (STE) tool-calling dataset using Llama3 models, we find that MICE beats or matches the baselines on smoothed expected calibration error. Using MICE confidences to determine whether to call a tool significantly improves over strong baselines on a new metric, expected tool-calling utility. Further experiments show that MICE is sample-efficient, can generalize zero-shot to unseen APIs, and results in higher tool-calling utility in scenarios with varying risk levels. Our code is open source, available at https://github.com/microsoft/mice_for_cats.
FIRST: Teach A Reliable Large Language Model Through Efficient Trustworthy Distillation
Large language models (LLMs) have become increasingly prevalent in our daily lives, leading to an expectation for LLMs to be trustworthy -- - both accurate and well-calibrated (the prediction confidence should align with its ground truth correctness likelihood). Nowadays, fine-tuning has become the most popular method for adapting a model to practical usage by significantly increasing accuracy on downstream tasks. Despite the great accuracy it achieves, we found fine-tuning is still far away from satisfactory trustworthiness due to "tuning-induced mis-calibration". In this paper, we delve deeply into why and how mis-calibration exists in fine-tuned models, and how distillation can alleviate the issue. Then we further propose a brand new method named Efficient Trustworthy Distillation (FIRST), which utilizes a small portion of teacher's knowledge to obtain a reliable language model in a cost-efficient way. Specifically, we identify the "concentrated knowledge" phenomenon during distillation, which can significantly reduce the computational burden. Then we apply a "trustworthy maximization" process to optimize the utilization of this small portion of concentrated knowledge before transferring it to the student. Experimental results demonstrate the effectiveness of our method, where better accuracy (+2.3%) and less mis-calibration (-10%) are achieved on average across both in-domain and out-of-domain scenarios, indicating better trustworthiness.
Annealing Self-Distillation Rectification Improves Adversarial Training
In standard adversarial training, models are optimized to fit one-hot labels within allowable adversarial perturbation budgets. However, the ignorance of underlying distribution shifts brought by perturbations causes the problem of robust overfitting. To address this issue and enhance adversarial robustness, we analyze the characteristics of robust models and identify that robust models tend to produce smoother and well-calibrated outputs. Based on the observation, we propose a simple yet effective method, Annealing Self-Distillation Rectification (ADR), which generates soft labels as a better guidance mechanism that accurately reflects the distribution shift under attack during adversarial training. By utilizing ADR, we can obtain rectified distributions that significantly improve model robustness without the need for pre-trained models or extensive extra computation. Moreover, our method facilitates seamless plug-and-play integration with other adversarial training techniques by replacing the hard labels in their objectives. We demonstrate the efficacy of ADR through extensive experiments and strong performances across datasets.
Vera: A General-Purpose Plausibility Estimation Model for Commonsense Statements
Despite the much discussed capabilities of today's language models, they are still prone to silly and unexpected commonsense failures. We consider a retrospective verification approach that reflects on the correctness of LM outputs, and introduce Vera, a general-purpose model that estimates the plausibility of declarative statements based on commonsense knowledge. Trained on ~7M commonsense statements created from 19 QA datasets and two large-scale knowledge bases, and with a combination of three training objectives, Vera is a versatile model that effectively separates correct from incorrect statements across diverse commonsense domains. When applied to solving commonsense problems in the verification format, Vera substantially outperforms existing models that can be repurposed for commonsense verification, and it further exhibits generalization capabilities to unseen tasks and provides well-calibrated outputs. We find that Vera excels at filtering LM-generated commonsense knowledge and is useful in detecting erroneous commonsense statements generated by models like ChatGPT in real-world settings.
A Roadmap to Pluralistic Alignment
With increased power and prevalence of AI systems, it is ever more critical that AI systems are designed to serve all, i.e., people with diverse values and perspectives. However, aligning models to serve pluralistic human values remains an open research question. In this piece, we propose a roadmap to pluralistic alignment, specifically using language models as a test bed. We identify and formalize three possible ways to define and operationalize pluralism in AI systems: 1) Overton pluralistic models that present a spectrum of reasonable responses; 2) Steerably pluralistic models that can steer to reflect certain perspectives; and 3) Distributionally pluralistic models that are well-calibrated to a given population in distribution. We also propose and formalize three possible classes of pluralistic benchmarks: 1) Multi-objective benchmarks, 2) Trade-off steerable benchmarks, which incentivize models to steer to arbitrary trade-offs, and 3) Jury-pluralistic benchmarks which explicitly model diverse human ratings. We use this framework to argue that current alignment techniques may be fundamentally limited for pluralistic AI; indeed, we highlight empirical evidence, both from our own experiments and from other work, that standard alignment procedures might reduce distributional pluralism in models, motivating the need for further research on pluralistic alignment.
PACE-LM: Prompting and Augmentation for Calibrated Confidence Estimation with GPT-4 in Cloud Incident Root Cause Analysis
Major cloud providers have employed advanced AI-based solutions like large language models to aid humans in identifying the root causes of cloud incidents. Despite the growing prevalence of AI-driven assistants in the root cause analysis process, their effectiveness in assisting on-call engineers is constrained by low accuracy due to the intrinsic difficulty of the task, a propensity for LLM-based approaches to hallucinate, and difficulties in distinguishing these well-disguised hallucinations. To address this challenge, we propose to perform confidence estimation for the predictions to help on-call engineers make decisions on whether to adopt the model prediction. Considering the black-box nature of many LLM-based root cause predictors, fine-tuning or temperature-scaling-based approaches are inapplicable. We therefore design an innovative confidence estimation framework based on prompting retrieval-augmented large language models (LLMs) that demand a minimal amount of information from the root cause predictor. This approach consists of two scoring phases: the LLM-based confidence estimator first evaluates its confidence in making judgments in the face of the current incident that reflects its ``grounded-ness" level in reference data, then rates the root cause prediction based on historical references. An optimization step combines these two scores for a final confidence assignment. We show that our method is able to produce calibrated confidence estimates for predicted root causes, validate the usefulness of retrieved historical data and the prompting strategy as well as the generalizability across different root cause prediction models. Our study takes an important move towards reliably and effectively embedding LLMs into cloud incident management systems.
Reinforce Data, Multiply Impact: Improved Model Accuracy and Robustness with Dataset Reinforcement
We propose Dataset Reinforcement, a strategy to improve a dataset once such that the accuracy of any model architecture trained on the reinforced dataset is improved at no additional training cost for users. We propose a Dataset Reinforcement strategy based on data augmentation and knowledge distillation. Our generic strategy is designed based on extensive analysis across CNN- and transformer-based models and performing large-scale study of distillation with state-of-the-art models with various data augmentations. We create a reinforced version of the ImageNet training dataset, called ImageNet+, as well as reinforced datasets CIFAR-100+, Flowers-102+, and Food-101+. Models trained with ImageNet+ are more accurate, robust, and calibrated, and transfer well to downstream tasks (e.g., segmentation and detection). As an example, the accuracy of ResNet-50 improves by 1.7% on the ImageNet validation set, 3.5% on ImageNetV2, and 10.0% on ImageNet-R. Expected Calibration Error (ECE) on the ImageNet validation set is also reduced by 9.9%. Using this backbone with Mask-RCNN for object detection on MS-COCO, the mean average precision improves by 0.8%. We reach similar gains for MobileNets, ViTs, and Swin-Transformers. For MobileNetV3 and Swin-Tiny we observe significant improvements on ImageNet-R/A/C of up to 10% improved robustness. Models pretrained on ImageNet+ and fine-tuned on CIFAR-100+, Flowers-102+, and Food-101+, reach up to 3.4% improved accuracy.
Refining Corpora from a Model Calibration Perspective for Chinese Spelling Correction
Chinese Spelling Correction (CSC) commonly lacks large-scale high-quality corpora, due to the labor-intensive labeling of spelling errors in real-life human writing or typing scenarios. Two data augmentation methods are widely adopted: (1) Random Replacement with the guidance of confusion sets and (2) OCR/ASR-based Generation that simulates character misusing. However, both methods inevitably introduce noisy data (e.g., false spelling errors), potentially leading to over-correction. By carefully analyzing the two types of corpora, we find that though the latter achieves more robust generalization performance, the former yields better-calibrated CSC models. We then provide a theoretical analysis of this empirical observation, based on which a corpus refining strategy is proposed. Specifically, OCR/ASR-based data samples are fed into a well-calibrated CSC model trained on random replacement-based corpora and then filtered based on prediction confidence. By learning a simple BERT-based model on the refined OCR/ASR-based corpus, we set up impressive state-of-the-art performance on three widely-used benchmarks, while significantly alleviating over-correction (e.g., lowering false positive predictions).
Multi-hypothesis 3D human pose estimation metrics favor miscalibrated distributions
Due to depth ambiguities and occlusions, lifting 2D poses to 3D is a highly ill-posed problem. Well-calibrated distributions of possible poses can make these ambiguities explicit and preserve the resulting uncertainty for downstream tasks. This study shows that previous attempts, which account for these ambiguities via multiple hypotheses generation, produce miscalibrated distributions. We identify that miscalibration can be attributed to the use of sample-based metrics such as minMPJPE. In a series of simulations, we show that minimizing minMPJPE, as commonly done, should converge to the correct mean prediction. However, it fails to correctly capture the uncertainty, thus resulting in a miscalibrated distribution. To mitigate this problem, we propose an accurate and well-calibrated model called Conditional Graph Normalizing Flow (cGNFs). Our model is structured such that a single cGNF can estimate both conditional and marginal densities within the same model - effectively solving a zero-shot density estimation problem. We evaluate cGNF on the Human~3.6M dataset and show that cGNF provides a well-calibrated distribution estimate while being close to state-of-the-art in terms of overall minMPJPE. Furthermore, cGNF outperforms previous methods on occluded joints while it remains well-calibrated.
Improving Spoken Language Identification with Map-Mix
The pre-trained multi-lingual XLSR model generalizes well for language identification after fine-tuning on unseen languages. However, the performance significantly degrades when the languages are not very distinct from each other, for example, in the case of dialects. Low resource dialect classification remains a challenging problem to solve. We present a new data augmentation method that leverages model training dynamics of individual data points to improve sampling for latent mixup. The method works well in low-resource settings where generalization is paramount. Our datamaps-based mixup technique, which we call Map-Mix improves weighted F1 scores by 2% compared to the random mixup baseline and results in a significantly well-calibrated model. The code for our method is open sourced on https://github.com/skit-ai/Map-Mix.
Teaching Models to Express Their Uncertainty in Words
We show that a GPT-3 model can learn to express uncertainty about its own answers in natural language -- without use of model logits. When given a question, the model generates both an answer and a level of confidence (e.g. "90% confidence" or "high confidence"). These levels map to probabilities that are well calibrated. The model also remains moderately calibrated under distribution shift, and is sensitive to uncertainty in its own answers, rather than imitating human examples. To our knowledge, this is the first time a model has been shown to express calibrated uncertainty about its own answers in natural language. For testing calibration, we introduce the CalibratedMath suite of tasks. We compare the calibration of uncertainty expressed in words ("verbalized probability") to uncertainty extracted from model logits. Both kinds of uncertainty are capable of generalizing calibration under distribution shift. We also provide evidence that GPT-3's ability to generalize calibration depends on pre-trained latent representations that correlate with epistemic uncertainty over its answers.
Beyond Binary Rewards: Training LMs to Reason About Their Uncertainty
When language models (LMs) are trained via reinforcement learning (RL) to generate natural language "reasoning chains", their performance improves on a variety of difficult question answering tasks. Today, almost all successful applications of RL for reasoning use binary reward functions that evaluate the correctness of LM outputs. Because such reward functions do not penalize guessing or low-confidence outputs, they often have the unintended side-effect of degrading calibration and increasing the rate at which LMs generate incorrect responses (or "hallucinate") in other problem domains. This paper describes RLCR (Reinforcement Learning with Calibration Rewards), an approach to training reasoning models that jointly improves accuracy and calibrated confidence estimation. During RLCR, LMs generate both predictions and numerical confidence estimates after reasoning. They are trained to optimize a reward function that augments a binary correctness score with a Brier score -- a scoring rule for confidence estimates that incentivizes calibrated prediction. We first prove that this reward function (or any analogous reward function that uses a bounded, proper scoring rule) yields models whose predictions are both accurate and well-calibrated. We next show that across diverse datasets, RLCR substantially improves calibration with no loss in accuracy, on both in-domain and out-of-domain evaluations -- outperforming both ordinary RL training and classifiers trained to assign post-hoc confidence scores. While ordinary RL hurts calibration, RLCR improves it. Finally, we demonstrate that verbalized confidence can be leveraged at test time to improve accuracy and calibration via confidence-weighted scaling methods. Our results show that explicitly optimizing for calibration can produce more generally reliable reasoning models.
Window detection in aerial texture images of the Berlin 3D CityGML Model
This article explores the usage of the state-of-art neural network Mask R-CNN to be used for window detection of texture files from the CityGML model of Berlin. As texture files are very irregular in terms of size, exposure settings and orientation, we use several parameter optimisation methods to improve the precision. Those textures are cropped from aerial photos, which implies that the angle of the facade, the exposure as well as contrast are calibrated towards the mean and not towards the single facade. The analysis of a single texture image with the human eye itself is challenging: A combination of window and facade estimation and perspective analysis is necessary in order to determine the facades and windows. We train and detect bounding boxes and masks from two data sets with image size 128 and 256. We explore various configuration optimisation methods and the relation of the Region Proposal Network, detected ROIs and the mask output. Our final results shows that the we can improve the average precision scores for both data set sizes, yet the initial AP score varies and leads to different resulting scores.
A Large-Scale Study of Probabilistic Calibration in Neural Network Regression
Accurate probabilistic predictions are essential for optimal decision making. While neural network miscalibration has been studied primarily in classification, we investigate this in the less-explored domain of regression. We conduct the largest empirical study to date to assess the probabilistic calibration of neural networks. We also analyze the performance of recalibration, conformal, and regularization methods to enhance probabilistic calibration. Additionally, we introduce novel differentiable recalibration and regularization methods, uncovering new insights into their effectiveness. Our findings reveal that regularization methods offer a favorable tradeoff between calibration and sharpness. Post-hoc methods exhibit superior probabilistic calibration, which we attribute to the finite-sample coverage guarantee of conformal prediction. Furthermore, we demonstrate that quantile recalibration can be considered as a specific case of conformal prediction. Our study is fully reproducible and implemented in a common code base for fair comparisons.
On Calibration of Modern Neural Networks
Confidence calibration -- the problem of predicting probability estimates representative of the true correctness likelihood -- is important for classification models in many applications. We discover that modern neural networks, unlike those from a decade ago, are poorly calibrated. Through extensive experiments, we observe that depth, width, weight decay, and Batch Normalization are important factors influencing calibration. We evaluate the performance of various post-processing calibration methods on state-of-the-art architectures with image and document classification datasets. Our analysis and experiments not only offer insights into neural network learning, but also provide a simple and straightforward recipe for practical settings: on most datasets, temperature scaling -- a single-parameter variant of Platt Scaling -- is surprisingly effective at calibrating predictions.
h-calibration: Rethinking Classifier Recalibration with Probabilistic Error-Bounded Objective
Deep neural networks have demonstrated remarkable performance across numerous learning tasks but often suffer from miscalibration, resulting in unreliable probability outputs. This has inspired many recent works on mitigating miscalibration, particularly through post-hoc recalibration methods that aim to obtain calibrated probabilities without sacrificing the classification performance of pre-trained models. In this study, we summarize and categorize previous works into three general strategies: intuitively designed methods, binning-based methods, and methods based on formulations of ideal calibration. Through theoretical and practical analysis, we highlight ten common limitations in previous approaches. To address these limitations, we propose a probabilistic learning framework for calibration called h-calibration, which theoretically constructs an equivalent learning formulation for canonical calibration with boundedness. On this basis, we design a simple yet effective post-hoc calibration algorithm. Our method not only overcomes the ten identified limitations but also achieves markedly better performance than traditional methods, as validated by extensive experiments. We further analyze, both theoretically and experimentally, the relationship and advantages of our learning objective compared to traditional proper scoring rule. In summary, our probabilistic framework derives an approximately equivalent differentiable objective for learning error-bounded calibrated probabilities, elucidating the correspondence and convergence properties of computational statistics with respect to theoretical bounds in canonical calibration. The theoretical effectiveness is verified on standard post-hoc calibration benchmarks by achieving state-of-the-art performance. This research offers valuable reference for learning reliable likelihood in related fields.
A Benchmark Study on Calibration
Deep neural networks are increasingly utilized in various machine learning tasks. However, as these models grow in complexity, they often face calibration issues, despite enhanced prediction accuracy. Many studies have endeavored to improve calibration performance through the use of specific loss functions, data preprocessing and training frameworks. Yet, investigations into calibration properties have been somewhat overlooked. Our study leverages the Neural Architecture Search (NAS) search space, offering an exhaustive model architecture space for thorough calibration properties exploration. We specifically create a model calibration dataset. This dataset evaluates 90 bin-based and 12 additional calibration measurements across 117,702 unique neural networks within the widely employed NATS-Bench search space. Our analysis aims to answer several longstanding questions in the field, using our proposed dataset: (i) Can model calibration be generalized across different datasets? (ii) Can robustness be used as a calibration measurement? (iii) How reliable are calibration metrics? (iv) Does a post-hoc calibration method affect all models uniformly? (v) How does calibration interact with accuracy? (vi) What is the impact of bin size on calibration measurement? (vii) Which architectural designs are beneficial for calibration? Additionally, our study bridges an existing gap by exploring calibration within NAS. By providing this dataset, we enable further research into NAS calibration. As far as we are aware, our research represents the first large-scale investigation into calibration properties and the premier study of calibration issues within NAS. The project page can be found at https://www.taolinwei.com/calibration-study
CRUDE: Calibrating Regression Uncertainty Distributions Empirically
Calibrated uncertainty estimates in machine learning are crucial to many fields such as autonomous vehicles, medicine, and weather and climate forecasting. While there is extensive literature on uncertainty calibration for classification, the classification findings do not always translate to regression. As a result, modern models for predicting uncertainty in regression settings typically produce uncalibrated and overconfident estimates. To address these gaps, we present a calibration method for regression settings that does not assume a particular uncertainty distribution over the error: Calibrating Regression Uncertainty Distributions Empirically (CRUDE). CRUDE makes the weaker assumption that error distributions have a constant arbitrary shape across the output space, shifted by predicted mean and scaled by predicted standard deviation. We detail a theoretical connection between CRUDE and conformal inference. Across an extensive set of regression tasks, CRUDE demonstrates consistently sharper, better calibrated, and more accurate uncertainty estimates than state-of-the-art techniques.
Multicalibration as Boosting for Regression
We study the connection between multicalibration and boosting for squared error regression. First we prove a useful characterization of multicalibration in terms of a ``swap regret'' like condition on squared error. Using this characterization, we give an exceedingly simple algorithm that can be analyzed both as a boosting algorithm for regression and as a multicalibration algorithm for a class H that makes use only of a standard squared error regression oracle for H. We give a weak learning assumption on H that ensures convergence to Bayes optimality without the need to make any realizability assumptions -- giving us an agnostic boosting algorithm for regression. We then show that our weak learning assumption on H is both necessary and sufficient for multicalibration with respect to H to imply Bayes optimality. We also show that if H satisfies our weak learning condition relative to another class C then multicalibration with respect to H implies multicalibration with respect to C. Finally we investigate the empirical performance of our algorithm experimentally using an open source implementation that we make available. Our code repository can be found at https://github.com/Declancharrison/Level-Set-Boosting.
Online Platt Scaling with Calibeating
We present an online post-hoc calibration method, called Online Platt Scaling (OPS), which combines the Platt scaling technique with online logistic regression. We demonstrate that OPS smoothly adapts between i.i.d. and non-i.i.d. settings with distribution drift. Further, in scenarios where the best Platt scaling model is itself miscalibrated, we enhance OPS by incorporating a recently developed technique called calibeating to make it more robust. Theoretically, our resulting OPS+calibeating method is guaranteed to be calibrated for adversarial outcome sequences. Empirically, it is effective on a range of synthetic and real-world datasets, with and without distribution drifts, achieving superior performance without hyperparameter tuning. Finally, we extend all OPS ideas to the beta scaling method.
On the Limitations of Temperature Scaling for Distributions with Overlaps
Despite the impressive generalization capabilities of deep neural networks, they have been repeatedly shown to be overconfident when they are wrong. Fixing this issue is known as model calibration, and has consequently received much attention in the form of modified training schemes and post-training calibration procedures such as temperature scaling. While temperature scaling is frequently used because of its simplicity, it is often outperformed by modified training schemes. In this work, we identify a specific bottleneck for the performance of temperature scaling. We show that for empirical risk minimizers for a general set of distributions in which the supports of classes have overlaps, the performance of temperature scaling degrades with the amount of overlap between classes, and asymptotically becomes no better than random when there are a large number of classes. On the other hand, we prove that optimizing a modified form of the empirical risk induced by the Mixup data augmentation technique can in fact lead to reasonably good calibration performance, showing that training-time calibration may be necessary in some situations. We also verify that our theoretical results reflect practice by showing that Mixup significantly outperforms empirical risk minimization (with respect to multiple calibration metrics) on image classification benchmarks with class overlaps introduced in the form of label noise.
On Calibrating Diffusion Probabilistic Models
Recently, diffusion probabilistic models (DPMs) have achieved promising results in diverse generative tasks. A typical DPM framework includes a forward process that gradually diffuses the data distribution and a reverse process that recovers the data distribution from time-dependent data scores. In this work, we observe that the stochastic reverse process of data scores is a martingale, from which concentration bounds and the optional stopping theorem for data scores can be derived. Then, we discover a simple way for calibrating an arbitrary pretrained DPM, with which the score matching loss can be reduced and the lower bounds of model likelihood can consequently be increased. We provide general calibration guidelines under various model parametrizations. Our calibration method is performed only once and the resulting models can be used repeatedly for sampling. We conduct experiments on multiple datasets to empirically validate our proposal. Our code is at https://github.com/thudzj/Calibrated-DPMs.
Optimizing Calibration by Gaining Aware of Prediction Correctness
Model calibration aims to align confidence with prediction correctness. The Cross-Entropy (CE) loss is widely used for calibrator training, which enforces the model to increase confidence on the ground truth class. However, we find the CE loss has intrinsic limitations. For example, for a narrow misclassification, a calibrator trained by the CE loss often produces high confidence on the wrongly predicted class (e.g., a test sample is wrongly classified and its softmax score on the ground truth class is around 0.4), which is undesirable. In this paper, we propose a new post-hoc calibration objective derived from the aim of calibration. Intuitively, the proposed objective function asks that the calibrator decrease model confidence on wrongly predicted samples and increase confidence on correctly predicted samples. Because a sample itself has insufficient ability to indicate correctness, we use its transformed versions (e.g., rotated, greyscaled and color-jittered) during calibrator training. Trained on an in-distribution validation set and tested with isolated, individual test samples, our method achieves competitive calibration performance on both in-distribution and out-of-distribution test sets compared with the state of the art. Further, our analysis points out the difference between our method and commonly used objectives such as CE loss and mean square error loss, where the latters sometimes deviates from the calibration aim.
Evaluating and Calibrating Uncertainty Prediction in Regression Tasks
Predicting not only the target but also an accurate measure of uncertainty is important for many machine learning applications and in particular safety-critical ones. In this work we study the calibration of uncertainty prediction for regression tasks which often arise in real-world systems. We show that the existing definition for calibration of a regression uncertainty [Kuleshov et al. 2018] has severe limitations in distinguishing informative from non-informative uncertainty predictions. We propose a new definition that escapes this caveat and an evaluation method using a simple histogram-based approach. Our method clusters examples with similar uncertainty prediction and compares the prediction with the empirical uncertainty on these examples. We also propose a simple, scaling-based calibration method that preforms as well as much more complex ones. We show results on both a synthetic, controlled problem and on the object detection bounding-box regression task using the COCO and KITTI datasets.
Smooth ECE: Principled Reliability Diagrams via Kernel Smoothing
Calibration measures and reliability diagrams are two fundamental tools for measuring and interpreting the calibration of probabilistic predictors. Calibration measures quantify the degree of miscalibration, and reliability diagrams visualize the structure of this miscalibration. However, the most common constructions of reliability diagrams and calibration measures -- binning and ECE -- both suffer from well-known flaws (e.g. discontinuity). We show that a simple modification fixes both constructions: first smooth the observations using an RBF kernel, then compute the Expected Calibration Error (ECE) of this smoothed function. We prove that with a careful choice of bandwidth, this method yields a calibration measure that is well-behaved in the sense of (B{\l}asiok, Gopalan, Hu, and Nakkiran 2023a) -- a consistent calibration measure. We call this measure the SmoothECE. Moreover, the reliability diagram obtained from this smoothed function visually encodes the SmoothECE, just as binned reliability diagrams encode the BinnedECE. We also provide a Python package with simple, hyperparameter-free methods for measuring and plotting calibration: `pip install relplot\`.
BabelCalib: A Universal Approach to Calibrating Central Cameras
Existing calibration methods occasionally fail for large field-of-view cameras due to the non-linearity of the underlying problem and the lack of good initial values for all parameters of the used camera model. This might occur because a simpler projection model is assumed in an initial step, or a poor initial guess for the internal parameters is pre-defined. A lot of the difficulties of general camera calibration lie in the use of a forward projection model. We side-step these challenges by first proposing a solver to calibrate the parameters in terms of a back-projection model and then regress the parameters for a target forward model. These steps are incorporated in a robust estimation framework to cope with outlying detections. Extensive experiments demonstrate that our approach is very reliable and returns the most accurate calibration parameters as measured on the downstream task of absolute pose estimation on test sets. The code is released at https://github.com/ylochman/babelcalib.
On Task Performance and Model Calibration with Supervised and Self-Ensembled In-Context Learning
Following the standard supervised fine-tuning (SFT) paradigm, in-context learning (ICL) has become an efficient approach propelled by the recent advancements in large language models (LLMs), yielding promising performance across various tasks in few-shot data setups. However, both paradigms are prone to suffer from the critical problem of overconfidence (i.e., miscalibration), especially in such limited data setups. In this work, we deliver an in-depth analysis of the behavior across different choices of learning methods from the perspective of both performance and calibration, as well as their interplay. Through extensive controlled experiments, we find that simultaneous gains for both task performance and calibration are difficult to achieve, and the problem of miscalibration exists across all learning methods in low-resource scenarios. To address this challenging trade-off between performance and calibration, we then investigate the potential of self-ensembling techniques applied at different modeling stages (e.g., variations of in-context examples or variations in prompts or different ensembling strategies). We justify the feasibility of self-ensembling on SFT in addition to ICL, to make the predictions more calibrated and have comparable or even better performance. Our work sheds light on which learning paradigm to choose and how to enhance both task performance and calibration of LLMs.
Data Feedback Loops: Model-driven Amplification of Dataset Biases
Datasets scraped from the internet have been critical to the successes of large-scale machine learning. Yet, this very success puts the utility of future internet-derived datasets at potential risk, as model outputs begin to replace human annotations as a source of supervision. In this work, we first formalize a system where interactions with one model are recorded as history and scraped as training data in the future. We then analyze its stability over time by tracking changes to a test-time bias statistic (e.g. gender bias of model predictions). We find that the degree of bias amplification is closely linked to whether the model's outputs behave like samples from the training distribution, a behavior which we characterize and define as consistent calibration. Experiments in three conditional prediction scenarios - image classification, visual role-labeling, and language generation - demonstrate that models that exhibit a sampling-like behavior are more calibrated and thus more stable. Based on this insight, we propose an intervention to help calibrate and stabilize unstable feedback systems. Code is available at https://github.com/rtaori/data_feedback.
On the Calibration of Probabilistic Classifier Sets
Multi-class classification methods that produce sets of probabilistic classifiers, such as ensemble learning methods, are able to model aleatoric and epistemic uncertainty. Aleatoric uncertainty is then typically quantified via the Bayes error, and epistemic uncertainty via the size of the set. In this paper, we extend the notion of calibration, which is commonly used to evaluate the validity of the aleatoric uncertainty representation of a single probabilistic classifier, to assess the validity of an epistemic uncertainty representation obtained by sets of probabilistic classifiers. Broadly speaking, we call a set of probabilistic classifiers calibrated if one can find a calibrated convex combination of these classifiers. To evaluate this notion of calibration, we propose a novel nonparametric calibration test that generalizes an existing test for single probabilistic classifiers to the case of sets of probabilistic classifiers. Making use of this test, we empirically show that ensembles of deep neural networks are often not well calibrated.
LoRA3D: Low-Rank Self-Calibration of 3D Geometric Foundation Models
Emerging 3D geometric foundation models, such as DUSt3R, offer a promising approach for in-the-wild 3D vision tasks. However, due to the high-dimensional nature of the problem space and scarcity of high-quality 3D data, these pre-trained models still struggle to generalize to many challenging circumstances, such as limited view overlap or low lighting. To address this, we propose LoRA3D, an efficient self-calibration pipeline to specialize the pre-trained models to target scenes using their own multi-view predictions. Taking sparse RGB images as input, we leverage robust optimization techniques to refine multi-view predictions and align them into a global coordinate frame. In particular, we incorporate prediction confidence into the geometric optimization process, automatically re-weighting the confidence to better reflect point estimation accuracy. We use the calibrated confidence to generate high-quality pseudo labels for the calibrating views and use low-rank adaptation (LoRA) to fine-tune the models on the pseudo-labeled data. Our method does not require any external priors or manual labels. It completes the self-calibration process on a single standard GPU within just 5 minutes. Each low-rank adapter requires only 18MB of storage. We evaluated our method on more than 160 scenes from the Replica, TUM and Waymo Open datasets, achieving up to 88% performance improvement on 3D reconstruction, multi-view pose estimation and novel-view rendering.
Calibrating Multimodal Learning
Multimodal machine learning has achieved remarkable progress in a wide range of scenarios. However, the reliability of multimodal learning remains largely unexplored. In this paper, through extensive empirical studies, we identify current multimodal classification methods suffer from unreliable predictive confidence that tend to rely on partial modalities when estimating confidence. Specifically, we find that the confidence estimated by current models could even increase when some modalities are corrupted. To address the issue, we introduce an intuitive principle for multimodal learning, i.e., the confidence should not increase when one modality is removed. Accordingly, we propose a novel regularization technique, i.e., Calibrating Multimodal Learning (CML) regularization, to calibrate the predictive confidence of previous methods. This technique could be flexibly equipped by existing models and improve the performance in terms of confidence calibration, classification accuracy, and model robustness.
When Noisy Labels Meet Long Tail Dilemmas: A Representation Calibration Method
Real-world large-scale datasets are both noisily labeled and class-imbalanced. The issues seriously hurt the generalization of trained models. It is hence significant to address the simultaneous incorrect labeling and class-imbalance, i.e., the problem of learning with noisy labels on long-tailed data. Previous works develop several methods for the problem. However, they always rely on strong assumptions that are invalid or hard to be checked in practice. In this paper, to handle the problem and address the limitations of prior works, we propose a representation calibration method RCAL. Specifically, RCAL works with the representations extracted by unsupervised contrastive learning. We assume that without incorrect labeling and class imbalance, the representations of instances in each class conform to a multivariate Gaussian distribution, which is much milder and easier to be checked. Based on the assumption, we recover underlying representation distributions from polluted ones resulting from mislabeled and class-imbalanced data. Additional data points are then sampled from the recovered distributions to help generalization. Moreover, during classifier training, representation learning takes advantage of representation robustness brought by contrastive learning, which further improves the classifier performance. We derive theoretical results to discuss the effectiveness of our representation calibration. Experiments on multiple benchmarks justify our claims and confirm the superiority of the proposed method.
What Makes Graph Neural Networks Miscalibrated?
Given the importance of getting calibrated predictions and reliable uncertainty estimations, various post-hoc calibration methods have been developed for neural networks on standard multi-class classification tasks. However, these methods are not well suited for calibrating graph neural networks (GNNs), which presents unique challenges such as accounting for the graph structure and the graph-induced correlations between the nodes. In this work, we conduct a systematic study on the calibration qualities of GNN node predictions. In particular, we identify five factors which influence the calibration of GNNs: general under-confident tendency, diversity of nodewise predictive distributions, distance to training nodes, relative confidence level, and neighborhood similarity. Furthermore, based on the insights from this study, we design a novel calibration method named Graph Attention Temperature Scaling (GATS), which is tailored for calibrating graph neural networks. GATS incorporates designs that address all the identified influential factors and produces nodewise temperature scaling using an attention-based architecture. GATS is accuracy-preserving, data-efficient, and expressive at the same time. Our experiments empirically verify the effectiveness of GATS, demonstrating that it can consistently achieve state-of-the-art calibration results on various graph datasets for different GNN backbones.
Beyond In-Domain Scenarios: Robust Density-Aware Calibration
Calibrating deep learning models to yield uncertainty-aware predictions is crucial as deep neural networks get increasingly deployed in safety-critical applications. While existing post-hoc calibration methods achieve impressive results on in-domain test datasets, they are limited by their inability to yield reliable uncertainty estimates in domain-shift and out-of-domain (OOD) scenarios. We aim to bridge this gap by proposing DAC, an accuracy-preserving as well as Density-Aware Calibration method based on k-nearest-neighbors (KNN). In contrast to existing post-hoc methods, we utilize hidden layers of classifiers as a source for uncertainty-related information and study their importance. We show that DAC is a generic method that can readily be combined with state-of-the-art post-hoc methods. DAC boosts the robustness of calibration performance in domain-shift and OOD, while maintaining excellent in-domain predictive uncertainty estimates. We demonstrate that DAC leads to consistently better calibration across a large number of model architectures, datasets, and metrics. Additionally, we show that DAC improves calibration substantially on recent large-scale neural networks pre-trained on vast amounts of data.
Causal isotonic calibration for heterogeneous treatment effects
We propose causal isotonic calibration, a novel nonparametric method for calibrating predictors of heterogeneous treatment effects. Furthermore, we introduce cross-calibration, a data-efficient variant of calibration that eliminates the need for hold-out calibration sets. Cross-calibration leverages cross-fitted predictors and generates a single calibrated predictor using all available data. Under weak conditions that do not assume monotonicity, we establish that both causal isotonic calibration and cross-calibration achieve fast doubly-robust calibration rates, as long as either the propensity score or outcome regression is estimated accurately in a suitable sense. The proposed causal isotonic calibrator can be wrapped around any black-box learning algorithm, providing robust and distribution-free calibration guarantees while preserving predictive performance.
MetaAug: Meta-Data Augmentation for Post-Training Quantization
Post-Training Quantization (PTQ) has received significant attention because it requires only a small set of calibration data to quantize a full-precision model, which is more practical in real-world applications in which full access to a large training set is not available. However, it often leads to overfitting on the small calibration dataset. Several methods have been proposed to address this issue, yet they still rely on only the calibration set for the quantization and they do not validate the quantized model due to the lack of a validation set. In this work, we propose a novel meta-learning based approach to enhance the performance of post-training quantization. Specifically, to mitigate the overfitting problem, instead of only training the quantized model using the original calibration set without any validation during the learning process as in previous PTQ works, in our approach, we both train and validate the quantized model using two different sets of images. In particular, we propose a meta-learning based approach to jointly optimize a transformation network and a quantized model through bi-level optimization. The transformation network modifies the original calibration data and the modified data will be used as the training set to learn the quantized model with the objective that the quantized model achieves a good performance on the original calibration data. Extensive experiments on the widely used ImageNet dataset with different neural network architectures demonstrate that our approach outperforms the state-of-the-art PTQ methods.
Self-Calibrating Gaussian Splatting for Large Field of View Reconstruction
In this paper, we present a self-calibrating framework that jointly optimizes camera parameters, lens distortion and 3D Gaussian representations, enabling accurate and efficient scene reconstruction. In particular, our technique enables high-quality scene reconstruction from Large field-of-view (FOV) imagery taken with wide-angle lenses, allowing the scene to be modeled from a smaller number of images. Our approach introduces a novel method for modeling complex lens distortions using a hybrid network that combines invertible residual networks with explicit grids. This design effectively regularizes the optimization process, achieving greater accuracy than conventional camera models. Additionally, we propose a cubemap-based resampling strategy to support large FOV images without sacrificing resolution or introducing distortion artifacts. Our method is compatible with the fast rasterization of Gaussian Splatting, adaptable to a wide variety of camera lens distortion, and demonstrates state-of-the-art performance on both synthetic and real-world datasets.
Towards Calibrated Robust Fine-Tuning of Vision-Language Models
Improving out-of-distribution (OOD) generalization during in-distribution (ID) adaptation is a primary goal of robust fine-tuning of zero-shot models beyond naive fine-tuning. However, despite decent OOD generalization performance from recent robust fine-tuning methods, confidence calibration for reliable model output has not been fully addressed. This work proposes a robust fine-tuning method that improves both OOD accuracy and confidence calibration simultaneously in vision language models. Firstly, we show that both OOD classification and OOD calibration errors have a shared upper bound consisting of two terms of ID data: 1) ID calibration error and 2) the smallest singular value of the ID input covariance matrix. Based on this insight, we design a novel framework that conducts fine-tuning with a constrained multimodal contrastive loss enforcing a larger smallest singular value, which is further guided by the self-distillation of a moving-averaged model to achieve calibrated prediction as well. Starting from empirical evidence supporting our theoretical statements, we provide extensive experimental results on ImageNet distribution shift benchmarks that demonstrate the effectiveness of our theorem and its practical implementation.
Set Learning for Accurate and Calibrated Models
Model overconfidence and poor calibration are common in machine learning and difficult to account for when applying standard empirical risk minimization. In this work, we propose a novel method to alleviate these problems that we call odd-k-out learning (OKO), which minimizes the cross-entropy error for sets rather than for single examples. This naturally allows the model to capture correlations across data examples and achieves both better accuracy and calibration, especially in limited training data and class-imbalanced regimes. Perhaps surprisingly, OKO often yields better calibration even when training with hard labels and dropping any additional calibration parameter tuning, such as temperature scaling. We demonstrate this in extensive experimental analyses and provide a mathematical theory to interpret our findings. We emphasize that OKO is a general framework that can be easily adapted to many settings and a trained model can be applied to single examples at inference time, without significant run-time overhead or architecture changes.
Galileo: Learning Global and Local Features in Pretrained Remote Sensing Models
From crop mapping to flood detection, machine learning in remote sensing has a wide range of societally beneficial applications. The commonalities between remote sensing data in these applications present an opportunity for pretrained machine learning models tailored to remote sensing to reduce the labeled data and effort required to solve individual tasks. However, such models must be: (i) flexible enough to ingest input data of varying sensor modalities and shapes (i.e., of varying spatial and temporal dimensions), and (ii) able to model Earth surface phenomena of varying scales and types. To solve this gap, we present Galileo, a family of pretrained remote sensing models designed to flexibly process multimodal remote sensing data. We also introduce a novel and highly effective self-supervised learning approach to learn both large- and small-scale features, a challenge not addressed by previous models. Our Galileo models obtain state-of-the-art results across diverse remote sensing tasks.
POINTS: Improving Your Vision-language Model with Affordable Strategies
In recent years, vision-language models have made significant strides, excelling in tasks like optical character recognition and geometric problem-solving. However, several critical issues remain: 1) Proprietary models often lack transparency about their architectures, while open-source models need more detailed ablations of their training strategies. 2) Pre-training data in open-source works is under-explored, with datasets added empirically, making the process cumbersome. 3) Fine-tuning often focuses on adding datasets, leading to diminishing returns. To address these issues, we propose the following contributions: 1) We trained a robust baseline model using the latest advancements in vision-language models, introducing effective improvements and conducting comprehensive ablation and validation for each technique. 2) Inspired by recent work on large language models, we filtered pre-training data using perplexity, selecting the lowest perplexity data for training. This approach allowed us to train on a curated 1M dataset, achieving competitive performance. 3) During visual instruction tuning, we used model soup on different datasets when adding more datasets yielded marginal improvements. These innovations resulted in a 9B parameter model that performs competitively with state-of-the-art models. Our strategies are efficient and lightweight, making them easily adoptable by the community.
Few-Shot Class-Incremental Learning by Sampling Multi-Phase Tasks
New classes arise frequently in our ever-changing world, e.g., emerging topics in social media and new types of products in e-commerce. A model should recognize new classes and meanwhile maintain discriminability over old classes. Under severe circumstances, only limited novel instances are available to incrementally update the model. The task of recognizing few-shot new classes without forgetting old classes is called few-shot class-incremental learning (FSCIL). In this work, we propose a new paradigm for FSCIL based on meta-learning by LearnIng Multi-phase Incremental Tasks (LIMIT), which synthesizes fake FSCIL tasks from the base dataset. The data format of fake tasks is consistent with the `real' incremental tasks, and we can build a generalizable feature space for the unseen tasks through meta-learning. Besides, LIMIT also constructs a calibration module based on transformer, which calibrates the old class classifiers and new class prototypes into the same scale and fills in the semantic gap. The calibration module also adaptively contextualizes the instance-specific embedding with a set-to-set function. LIMIT efficiently adapts to new classes and meanwhile resists forgetting over old classes. Experiments on three benchmark datasets (CIFAR100, miniImageNet, and CUB200) and large-scale dataset, i.e., ImageNet ILSVRC2012 validate that LIMIT achieves state-of-the-art performance.
On Calibration of Object Detectors: Pitfalls, Evaluation and Baselines
Reliable usage of object detectors require them to be calibrated -- a crucial problem that requires careful attention. Recent approaches towards this involve (1) designing new loss functions to obtain calibrated detectors by training them from scratch, and (2) post-hoc Temperature Scaling (TS) that learns to scale the likelihood of a trained detector to output calibrated predictions. These approaches are then evaluated based on a combination of Detection Expected Calibration Error (D-ECE) and Average Precision. In this work, via extensive analysis and insights, we highlight that these recent evaluation frameworks, evaluation metrics, and the use of TS have notable drawbacks leading to incorrect conclusions. As a step towards fixing these issues, we propose a principled evaluation framework to jointly measure calibration and accuracy of object detectors. We also tailor efficient and easy-to-use post-hoc calibration approaches such as Platt Scaling and Isotonic Regression specifically for object detection task. Contrary to the common notion, our experiments show that once designed and evaluated properly, post-hoc calibrators, which are extremely cheap to build and use, are much more powerful and effective than the recent train-time calibration methods. To illustrate, D-DETR with our post-hoc Isotonic Regression calibrator outperforms the recent train-time state-of-the-art calibration method Cal-DETR by more than 7 D-ECE on the COCO dataset. Additionally, we propose improved versions of the recently proposed Localization-aware ECE and show the efficacy of our method on these metrics as well. Code is available at: https://github.com/fiveai/detection_calibration.
Improving Post Training Neural Quantization: Layer-wise Calibration and Integer Programming
Lately, post-training quantization methods have gained considerable attention, as they are simple to use, and require only a small unlabeled calibration set. This small dataset cannot be used to fine-tune the model without significant over-fitting. Instead, these methods only use the calibration set to set the activations' dynamic ranges. However, such methods always resulted in significant accuracy degradation, when used below 8-bits (except on small datasets). Here we aim to break the 8-bit barrier. To this end, we minimize the quantization errors of each layer separately by optimizing its parameters over the calibration set. We empirically demonstrate that this approach is: (1) much less susceptible to over-fitting than the standard fine-tuning approaches, and can be used even on a very small calibration set; and (2) more powerful than previous methods, which only set the activations' dynamic ranges. Furthermore, we demonstrate how to optimally allocate the bit-widths for each layer, while constraining accuracy degradation or model compression by proposing a novel integer programming formulation. Finally, we suggest model global statistics tuning, to correct biases introduced during quantization. Together, these methods yield state-of-the-art results for both vision and text models. For instance, on ResNet50, we obtain less than 1\% accuracy degradation --- with 4-bit weights and activations in all layers, but the smallest two. We open-sourced our code.
Beyond Classification: Definition and Density-based Estimation of Calibration in Object Detection
Despite their impressive predictive performance in various computer vision tasks, deep neural networks (DNNs) tend to make overly confident predictions, which hinders their widespread use in safety-critical applications. While there have been recent attempts to calibrate DNNs, most of these efforts have primarily been focused on classification tasks, thus neglecting DNN-based object detectors. Although several recent works addressed calibration for object detection and proposed differentiable penalties, none of them are consistent estimators of established concepts in calibration. In this work, we tackle the challenge of defining and estimating calibration error specifically for this task. In particular, we adapt the definition of classification calibration error to handle the nuances associated with object detection, and predictions in structured output spaces more generally. Furthermore, we propose a consistent and differentiable estimator of the detection calibration error, utilizing kernel density estimation. Our experiments demonstrate the effectiveness of our estimator against competing train-time and post-hoc calibration methods, while maintaining similar detection performance.
Instant Uncertainty Calibration of NeRFs Using a Meta-Calibrator
Although Neural Radiance Fields (NeRFs) have markedly improved novel view synthesis, accurate uncertainty quantification in their image predictions remains an open problem. The prevailing methods for estimating uncertainty, including the state-of-the-art Density-aware NeRF Ensembles (DANE) [29], quantify uncertainty without calibration. This frequently leads to over- or under-confidence in image predictions, which can undermine their real-world applications. In this paper, we propose a method which, for the first time, achieves calibrated uncertainties for NeRFs. To accomplish this, we overcome a significant challenge in adapting existing calibration techniques to NeRFs: a need to hold out ground truth images from the target scene, reducing the number of images left to train the NeRF. This issue is particularly problematic in sparse-view settings, where we can operate with as few as three images. To address this, we introduce the concept of a meta-calibrator that performs uncertainty calibration for NeRFs with a single forward pass without the need for holding out any images from the target scene. Our meta-calibrator is a neural network that takes as input the NeRF images and uncalibrated uncertainty maps and outputs a scene-specific calibration curve that corrects the NeRF's uncalibrated uncertainties. We show that the meta-calibrator can generalize on unseen scenes and achieves well-calibrated and state-of-the-art uncertainty for NeRFs, significantly beating DANE and other approaches. This opens opportunities to improve applications that rely on accurate NeRF uncertainty estimates such as next-best view planning and potentially more trustworthy image reconstruction for medical diagnosis. The code is available at https://niki-amini-naieni.github.io/instantcalibration.github.io/.
Neural Clamping: Joint Input Perturbation and Temperature Scaling for Neural Network Calibration
Neural network calibration is an essential task in deep learning to ensure consistency between the confidence of model prediction and the true correctness likelihood. In this paper, we propose a new post-processing calibration method called Neural Clamping, which employs a simple joint input-output transformation on a pre-trained classifier via a learnable universal input perturbation and an output temperature scaling parameter. Moreover, we provide theoretical explanations on why Neural Clamping is provably better than temperature scaling. Evaluated on CIFAR-100 and ImageNet image recognition datasets and a variety of deep neural network models, our empirical results show that Neural Clamping significantly outperforms state-of-the-art post-processing calibration methods.
Distribution Free Prediction Sets for Node Classification
Graph Neural Networks (GNNs) are able to achieve high classification accuracy on many important real world datasets, but provide no rigorous notion of predictive uncertainty. Quantifying the confidence of GNN models is difficult due to the dependence between datapoints induced by the graph structure. We leverage recent advances in conformal prediction to construct prediction sets for node classification in inductive learning scenarios. We do this by taking an existing approach for conformal classification that relies on exchangeable data and modifying it by appropriately weighting the conformal scores to reflect the network structure. We show through experiments on standard benchmark datasets using popular GNN models that our approach provides tighter and better calibrated prediction sets than a naive application of conformal prediction.
Fractal Calibration for long-tailed object detection
Real-world datasets follow an imbalanced distribution, which poses significant challenges in rare-category object detection. Recent studies tackle this problem by developing re-weighting and re-sampling methods, that utilise the class frequencies of the dataset. However, these techniques focus solely on the frequency statistics and ignore the distribution of the classes in image space, missing important information. In contrast to them, we propose FRActal CALibration (FRACAL): a novel post-calibration method for long-tailed object detection. FRACAL devises a logit adjustment method that utilises the fractal dimension to estimate how uniformly classes are distributed in image space. During inference, it uses the fractal dimension to inversely downweight the probabilities of uniformly spaced class predictions achieving balance in two axes: between frequent and rare categories, and between uniformly spaced and sparsely spaced classes. FRACAL is a post-processing method and it does not require any training, also it can be combined with many off-the-shelf models such as one-stage sigmoid detectors and two-stage instance segmentation models. FRACAL boosts the rare class performance by up to 8.6% and surpasses all previous methods on LVIS dataset, while showing good generalisation to other datasets such as COCO, V3Det and OpenImages. We provide the code at https://github.com/kostas1515/FRACAL.
DR-Tune: Improving Fine-tuning of Pretrained Visual Models by Distribution Regularization with Semantic Calibration
The visual models pretrained on large-scale benchmarks encode general knowledge and prove effective in building more powerful representations for downstream tasks. Most existing approaches follow the fine-tuning paradigm, either by initializing or regularizing the downstream model based on the pretrained one. The former fails to retain the knowledge in the successive fine-tuning phase, thereby prone to be over-fitting, and the latter imposes strong constraints to the weights or feature maps of the downstream model without considering semantic drift, often incurring insufficient optimization. To deal with these issues, we propose a novel fine-tuning framework, namely distribution regularization with semantic calibration (DR-Tune). It employs distribution regularization by enforcing the downstream task head to decrease its classification error on the pretrained feature distribution, which prevents it from over-fitting while enabling sufficient training of downstream encoders. Furthermore, to alleviate the interference by semantic drift, we develop the semantic calibration (SC) module to align the global shape and class centers of the pretrained and downstream feature distributions. Extensive experiments on widely used image classification datasets show that DR-Tune consistently improves the performance when combing with various backbones under different pretraining strategies. Code is available at: https://github.com/weeknan/DR-Tune.
Volumetric Capture of Humans with a Single RGBD Camera via Semi-Parametric Learning
Volumetric (4D) performance capture is fundamental for AR/VR content generation. Whereas previous work in 4D performance capture has shown impressive results in studio settings, the technology is still far from being accessible to a typical consumer who, at best, might own a single RGBD sensor. Thus, in this work, we propose a method to synthesize free viewpoint renderings using a single RGBD camera. The key insight is to leverage previously seen "calibration" images of a given user to extrapolate what should be rendered in a novel viewpoint from the data available in the sensor. Given these past observations from multiple viewpoints, and the current RGBD image from a fixed view, we propose an end-to-end framework that fuses both these data sources to generate novel renderings of the performer. We demonstrate that the method can produce high fidelity images, and handle extreme changes in subject pose and camera viewpoints. We also show that the system generalizes to performers not seen in the training data. We run exhaustive experiments demonstrating the effectiveness of the proposed semi-parametric model (i.e. calibration images available to the neural network) compared to other state of the art machine learned solutions. Further, we compare the method with more traditional pipelines that employ multi-view capture. We show that our framework is able to achieve compelling results, with substantially less infrastructure than previously required.
Model Stock: All we need is just a few fine-tuned models
This paper introduces an efficient fine-tuning method for large pre-trained models, offering strong in-distribution (ID) and out-of-distribution (OOD) performance. Breaking away from traditional practices that need a multitude of fine-tuned models for averaging, our approach employs significantly fewer models to achieve final weights yet yield superior accuracy. Drawing from key insights in the weight space of fine-tuned weights, we uncover a strong link between the performance and proximity to the center of weight space. Based on this, we introduce a method that approximates a center-close weight using only two fine-tuned models, applicable during or after training. Our innovative layer-wise weight averaging technique surpasses state-of-the-art model methods such as Model Soup, utilizing only two fine-tuned models. This strategy can be aptly coined Model Stock, highlighting its reliance on selecting a minimal number of models to draw a more optimized-averaged model. We demonstrate the efficacy of Model Stock with fine-tuned models based upon pre-trained CLIP architectures, achieving remarkable performance on both ID and OOD tasks on the standard benchmarks, all while barely bringing extra computational demands. Our code and pre-trained models are available at https://github.com/naver-ai/model-stock.
Model Calibration in Dense Classification with Adaptive Label Perturbation
For safety-related applications, it is crucial to produce trustworthy deep neural networks whose prediction is associated with confidence that can represent the likelihood of correctness for subsequent decision-making. Existing dense binary classification models are prone to being over-confident. To improve model calibration, we propose Adaptive Stochastic Label Perturbation (ASLP) which learns a unique label perturbation level for each training image. ASLP employs our proposed Self-Calibrating Binary Cross Entropy (SC-BCE) loss, which unifies label perturbation processes including stochastic approaches (like DisturbLabel), and label smoothing, to correct calibration while maintaining classification rates. ASLP follows Maximum Entropy Inference of classic statistical mechanics to maximise prediction entropy with respect to missing information. It performs this while: (1) preserving classification accuracy on known data as a conservative solution, or (2) specifically improves model calibration degree by minimising the gap between the prediction accuracy and expected confidence of the target training label. Extensive results demonstrate that ASLP can significantly improve calibration degrees of dense binary classification models on both in-distribution and out-of-distribution data. The code is available on https://github.com/Carlisle-Liu/ASLP.
ConvNet vs Transformer, Supervised vs CLIP: Beyond ImageNet Accuracy
Modern computer vision offers a great variety of models to practitioners, and selecting a model from multiple options for specific applications can be challenging. Conventionally, competing model architectures and training protocols are compared by their classification accuracy on ImageNet. However, this single metric does not fully capture performance nuances critical for specialized tasks. In this work, we conduct an in-depth comparative analysis of model behaviors beyond ImageNet accuracy, for both ConvNet and Vision Transformer architectures, each across supervised and CLIP training paradigms. Although our selected models have similar ImageNet accuracies and compute requirements, we find that they differ in many other aspects: types of mistakes, output calibration, transferability, and feature invariance, among others. This diversity in model characteristics, not captured by traditional metrics, highlights the need for more nuanced analysis when choosing among different models. Our code is available at https://github.com/kirill-vish/Beyond-INet.
BayesCap: Bayesian Identity Cap for Calibrated Uncertainty in Frozen Neural Networks
High-quality calibrated uncertainty estimates are crucial for numerous real-world applications, especially for deep learning-based deployed ML systems. While Bayesian deep learning techniques allow uncertainty estimation, training them with large-scale datasets is an expensive process that does not always yield models competitive with non-Bayesian counterparts. Moreover, many of the high-performing deep learning models that are already trained and deployed are non-Bayesian in nature and do not provide uncertainty estimates. To address these issues, we propose BayesCap that learns a Bayesian identity mapping for the frozen model, allowing uncertainty estimation. BayesCap is a memory-efficient method that can be trained on a small fraction of the original dataset, enhancing pretrained non-Bayesian computer vision models by providing calibrated uncertainty estimates for the predictions without (i) hampering the performance of the model and (ii) the need for expensive retraining the model from scratch. The proposed method is agnostic to various architectures and tasks. We show the efficacy of our method on a wide variety of tasks with a diverse set of architectures, including image super-resolution, deblurring, inpainting, and crucial application such as medical image translation. Moreover, we apply the derived uncertainty estimates to detect out-of-distribution samples in critical scenarios like depth estimation in autonomous driving. Code is available at https://github.com/ExplainableML/BayesCap.
Accurate and Scalable Estimation of Epistemic Uncertainty for Graph Neural Networks
Safe deployment of graph neural networks (GNNs) under distribution shift requires models to provide accurate confidence indicators (CI). However, while it is well-known in computer vision that CI quality diminishes under distribution shift, this behavior remains understudied for GNNs. Hence, we begin with a case study on CI calibration under controlled structural and feature distribution shifts and demonstrate that increased expressivity or model size do not always lead to improved CI performance. Consequently, we instead advocate for the use of epistemic uncertainty quantification (UQ) methods to modulate CIs. To this end, we propose G-DeltaUQ, a new single model UQ method that extends the recently proposed stochastic centering framework to support structured data and partial stochasticity. Evaluated across covariate, concept, and graph size shifts, G-DeltaUQ not only outperforms several popular UQ methods in obtaining calibrated CIs, but also outperforms alternatives when CIs are used for generalization gap prediction or OOD detection. Overall, our work not only introduces a new, flexible GNN UQ method, but also provides novel insights into GNN CIs on safety-critical tasks.
ACLS: Adaptive and Conditional Label Smoothing for Network Calibration
We address the problem of network calibration adjusting miscalibrated confidences of deep neural networks. Many approaches to network calibration adopt a regularization-based method that exploits a regularization term to smooth the miscalibrated confidences. Although these approaches have shown the effectiveness on calibrating the networks, there is still a lack of understanding on the underlying principles of regularization in terms of network calibration. We present in this paper an in-depth analysis of existing regularization-based methods, providing a better understanding on how they affect to network calibration. Specifically, we have observed that 1) the regularization-based methods can be interpreted as variants of label smoothing, and 2) they do not always behave desirably. Based on the analysis, we introduce a novel loss function, dubbed ACLS, that unifies the merits of existing regularization methods, while avoiding the limitations. We show extensive experimental results for image classification and semantic segmentation on standard benchmarks, including CIFAR10, Tiny-ImageNet, ImageNet, and PASCAL VOC, demonstrating the effectiveness of our loss function.
StableNormal: Reducing Diffusion Variance for Stable and Sharp Normal
This work addresses the challenge of high-quality surface normal estimation from monocular colored inputs (i.e., images and videos), a field which has recently been revolutionized by repurposing diffusion priors. However, previous attempts still struggle with stochastic inference, conflicting with the deterministic nature of the Image2Normal task, and costly ensembling step, which slows down the estimation process. Our method, StableNormal, mitigates the stochasticity of the diffusion process by reducing inference variance, thus producing "Stable-and-Sharp" normal estimates without any additional ensembling process. StableNormal works robustly under challenging imaging conditions, such as extreme lighting, blurring, and low quality. It is also robust against transparent and reflective surfaces, as well as cluttered scenes with numerous objects. Specifically, StableNormal employs a coarse-to-fine strategy, which starts with a one-step normal estimator (YOSO) to derive an initial normal guess, that is relatively coarse but reliable, then followed by a semantic-guided refinement process (SG-DRN) that refines the normals to recover geometric details. The effectiveness of StableNormal is demonstrated through competitive performance in standard datasets such as DIODE-indoor, iBims, ScannetV2 and NYUv2, and also in various downstream tasks, such as surface reconstruction and normal enhancement. These results evidence that StableNormal retains both the "stability" and "sharpness" for accurate normal estimation. StableNormal represents a baby attempt to repurpose diffusion priors for deterministic estimation. To democratize this, code and models have been publicly available in hf.co/Stable-X
Interpretable structural model error discovery from sparse assimilation increments using spectral bias-reduced neural networks: A quasi-geostrophic turbulence test case
Earth system models suffer from various structural and parametric errors in their representation of nonlinear, multi-scale processes, leading to uncertainties in their long-term projections. The effects of many of these errors (particularly those due to fast physics) can be quantified in short-term simulations, e.g., as differences between the predicted and observed states (analysis increments). With the increase in the availability of high-quality observations and simulations, learning nudging from these increments to correct model errors has become an active research area. However, most studies focus on using neural networks, which while powerful, are hard to interpret, are data-hungry, and poorly generalize out-of-distribution. Here, we show the capabilities of Model Error Discovery with Interpretability and Data Assimilation (MEDIDA), a general, data-efficient framework that uses sparsity-promoting equation-discovery techniques to learn model errors from analysis increments. Using two-layer quasi-geostrophic turbulence as the test case, MEDIDA is shown to successfully discover various linear and nonlinear structural/parametric errors when full observations are available. Discovery from spatially sparse observations is found to require highly accurate interpolation schemes. While NNs have shown success as interpolators in recent studies, here, they are found inadequate due to their inability to accurately represent small scales, a phenomenon known as spectral bias. We show that a general remedy, adding a random Fourier feature layer to the NN, resolves this issue enabling MEDIDA to successfully discover model errors from sparse observations. These promising results suggest that with further development, MEDIDA could be scaled up to models of the Earth system and real observations.
ASM: Adaptive Skinning Model for High-Quality 3D Face Modeling
The research fields of parametric face models and 3D face reconstruction have been extensively studied. However, a critical question remains unanswered: how to tailor the face model for specific reconstruction settings. We argue that reconstruction with multi-view uncalibrated images demands a new model with stronger capacity. Our study shifts attention from data-dependent 3D Morphable Models (3DMM) to an understudied human-designed skinning model. We propose Adaptive Skinning Model (ASM), which redefines the skinning model with more compact and fully tunable parameters. With extensive experiments, we demonstrate that ASM achieves significantly improved capacity than 3DMM, with the additional advantage of model size and easy implementation for new topology. We achieve state-of-the-art performance with ASM for multi-view reconstruction on the Florence MICC Coop benchmark. Our quantitative analysis demonstrates the importance of a high-capacity model for fully exploiting abundant information from multi-view input in reconstruction. Furthermore, our model with physical-semantic parameters can be directly utilized for real-world applications, such as in-game avatar creation. As a result, our work opens up new research directions for the parametric face models and facilitates future research on multi-view reconstruction.
LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks
Numerous crucial tasks in real-world decision-making rely on machine learning algorithms with calibrated uncertainty estimates. However, modern methods often yield overconfident and uncalibrated predictions. Various approaches involve training an ensemble of separate models to quantify the uncertainty related to the model itself, known as epistemic uncertainty. In an explicit implementation, the ensemble approach has high computational cost and high memory requirements. This particular challenge is evident in state-of-the-art neural networks such as transformers, where even a single network is already demanding in terms of compute and memory. Consequently, efforts are made to emulate the ensemble model without actually instantiating separate ensemble members, referred to as implicit ensembling. We introduce LoRA-Ensemble, a parameter-efficient deep ensemble method for self-attention networks, which is based on Low-Rank Adaptation (LoRA). Initially developed for efficient LLM fine-tuning, we extend LoRA to an implicit ensembling approach. By employing a single pre-trained self-attention network with weights shared across all members, we train member-specific low-rank matrices for the attention projections. Our method exhibits superior calibration compared to explicit ensembles and achieves similar or better accuracy across various prediction tasks and datasets.
Towards Calibrated Deep Clustering Network
Deep clustering has exhibited remarkable performance; however, the overconfidence problem, i.e., the estimated confidence for a sample belonging to a particular cluster greatly exceeds its actual prediction accuracy, has been overlooked in prior research. To tackle this critical issue, we pioneer the development of a calibrated deep clustering framework. Specifically, we propose a novel dual-head deep clustering pipeline that can effectively calibrate the estimated confidence and the actual accuracy. The calibration head adjusts the overconfident predictions of the clustering head using regularization methods, generating prediction confidence and pseudo-labels that match the model learning status. This calibration process also guides the clustering head in dynamically selecting reliable high-confidence samples for training. Additionally, we introduce an effective network initialization strategy that enhances both training speed and network robustness. Extensive experiments demonstrate the proposed calibrated deep clustering framework not only surpasses state-of-the-art deep clustering methods by approximately 10 times in terms of expected calibration error but also significantly outperforms them in terms of clustering accuracy.
u-μP: The Unit-Scaled Maximal Update Parametrization
The Maximal Update Parametrization (muP) aims to make the optimal hyperparameters (HPs) of a model independent of its size, allowing them to be swept using a cheap proxy model rather than the full-size target model. We present a new scheme, u-muP, which improves upon muP by combining it with Unit Scaling, a method for designing models that makes them easy to train in low-precision. The two techniques have a natural affinity: muP ensures that the scale of activations is independent of model size, and Unit Scaling ensures that activations, weights and gradients begin training with a scale of one. This synthesis opens the door to a simpler scheme, whose default values are near-optimal. This in turn facilitates a more efficient sweeping strategy, with u-muP models reaching a lower loss than comparable muP models and working out-of-the-box in FP8.
Stationary Representations: Optimally Approximating Compatibility and Implications for Improved Model Replacements
Learning compatible representations enables the interchangeable use of semantic features as models are updated over time. This is particularly relevant in search and retrieval systems where it is crucial to avoid reprocessing of the gallery images with the updated model. While recent research has shown promising empirical evidence, there is still a lack of comprehensive theoretical understanding about learning compatible representations. In this paper, we demonstrate that the stationary representations learned by the d-Simplex fixed classifier optimally approximate compatibility representation according to the two inequality constraints of its formal definition. This not only establishes a solid foundation for future works in this line of research but also presents implications that can be exploited in practical learning scenarios. An exemplary application is the now-standard practice of downloading and fine-tuning new pre-trained models. Specifically, we show the strengths and critical issues of stationary representations in the case in which a model undergoing sequential fine-tuning is asynchronously replaced by downloading a better-performing model pre-trained elsewhere. Such a representation enables seamless delivery of retrieval service (i.e., no reprocessing of gallery images) and offers improved performance without operational disruptions during model replacement. Code available at: https://github.com/miccunifi/iamcl2r.
MMGP: a Mesh Morphing Gaussian Process-based machine learning method for regression of physical problems under non-parameterized geometrical variability
When learning simulations for modeling physical phenomena in industrial designs, geometrical variabilities are of prime interest. While classical regression techniques prove effective for parameterized geometries, practical scenarios often involve the absence of shape parametrization during the inference stage, leaving us with only mesh discretizations as available data. Learning simulations from such mesh-based representations poses significant challenges, with recent advances relying heavily on deep graph neural networks to overcome the limitations of conventional machine learning approaches. Despite their promising results, graph neural networks exhibit certain drawbacks, including their dependency on extensive datasets and limitations in providing built-in predictive uncertainties or handling large meshes. In this work, we propose a machine learning method that do not rely on graph neural networks. Complex geometrical shapes and variations with fixed topology are dealt with using well-known mesh morphing onto a common support, combined with classical dimensionality reduction techniques and Gaussian processes. The proposed methodology can easily deal with large meshes without the need for explicit shape parameterization and provides crucial predictive uncertainties, which are essential for informed decision-making. In the considered numerical experiments, the proposed method is competitive with respect to existing graph neural networks, regarding training efficiency and accuracy of the predictions.
The Power of Few: Accelerating and Enhancing Data Reweighting with Coreset Selection
As machine learning tasks continue to evolve, the trend has been to gather larger datasets and train increasingly larger models. While this has led to advancements in accuracy, it has also escalated computational costs to unsustainable levels. Addressing this, our work aims to strike a delicate balance between computational efficiency and model accuracy, a persisting challenge in the field. We introduce a novel method that employs core subset selection for reweighting, effectively optimizing both computational time and model performance. By focusing on a strategically selected coreset, our approach offers a robust representation, as it efficiently minimizes the influence of outliers. The re-calibrated weights are then mapped back to and propagated across the entire dataset. Our experimental results substantiate the effectiveness of this approach, underscoring its potential as a scalable and precise solution for model training.
UMA: A Family of Universal Models for Atoms
The ability to quickly and accurately compute properties from atomic simulations is critical for advancing a large number of applications in chemistry and materials science including drug discovery, energy storage, and semiconductor manufacturing. To address this need, Meta FAIR presents a family of Universal Models for Atoms (UMA), designed to push the frontier of speed, accuracy, and generalization. UMA models are trained on half a billion unique 3D atomic structures (the largest training runs to date) by compiling data across multiple chemical domains, e.g. molecules, materials, and catalysts. We develop empirical scaling laws to help understand how to increase model capacity alongside dataset size to achieve the best accuracy. The UMA small and medium models utilize a novel architectural design we refer to as mixture of linear experts that enables increasing model capacity without sacrificing speed. For example, UMA-medium has 1.4B parameters but only ~50M active parameters per atomic structure. We evaluate UMA models on a diverse set of applications across multiple domains and find that, remarkably, a single model without any fine-tuning can perform similarly or better than specialized models. We are releasing the UMA code, weights, and associated data to accelerate computational workflows and enable the community to continue to build increasingly capable AI models.
Unsupervised Imaging Inverse Problems with Diffusion Distribution Matching
This work addresses image restoration tasks through the lens of inverse problems using unpaired datasets. In contrast to traditional approaches -- which typically assume full knowledge of the forward model or access to paired degraded and ground-truth images -- the proposed method operates under minimal assumptions and relies only on small, unpaired datasets. This makes it particularly well-suited for real-world scenarios, where the forward model is often unknown or misspecified, and collecting paired data is costly or infeasible. The method leverages conditional flow matching to model the distribution of degraded observations, while simultaneously learning the forward model via a distribution-matching loss that arises naturally from the framework. Empirically, it outperforms both single-image blind and unsupervised approaches on deblurring and non-uniform point spread function (PSF) calibration tasks. It also matches state-of-the-art performance on blind super-resolution. We also showcase the effectiveness of our method with a proof of concept for lens calibration: a real-world application traditionally requiring time-consuming experiments and specialized equipment. In contrast, our approach achieves this with minimal data acquisition effort.
GeoCalib: Learning Single-image Calibration with Geometric Optimization
From a single image, visual cues can help deduce intrinsic and extrinsic camera parameters like the focal length and the gravity direction. This single-image calibration can benefit various downstream applications like image editing and 3D mapping. Current approaches to this problem are based on either classical geometry with lines and vanishing points or on deep neural networks trained end-to-end. The learned approaches are more robust but struggle to generalize to new environments and are less accurate than their classical counterparts. We hypothesize that they lack the constraints that 3D geometry provides. In this work, we introduce GeoCalib, a deep neural network that leverages universal rules of 3D geometry through an optimization process. GeoCalib is trained end-to-end to estimate camera parameters and learns to find useful visual cues from the data. Experiments on various benchmarks show that GeoCalib is more robust and more accurate than existing classical and learned approaches. Its internal optimization estimates uncertainties, which help flag failure cases and benefit downstream applications like visual localization. The code and trained models are publicly available at https://github.com/cvg/GeoCalib.
Charting and Navigating Hugging Face's Model Atlas
As there are now millions of publicly available neural networks, searching and analyzing large model repositories becomes increasingly important. Navigating so many models requires an atlas, but as most models are poorly documented charting such an atlas is challenging. To explore the hidden potential of model repositories, we chart a preliminary atlas representing the documented fraction of Hugging Face. It provides stunning visualizations of the model landscape and evolution. We demonstrate several applications of this atlas including predicting model attributes (e.g., accuracy), and analyzing trends in computer vision models. However, as the current atlas remains incomplete, we propose a method for charting undocumented regions. Specifically, we identify high-confidence structural priors based on dominant real-world model training practices. Leveraging these priors, our approach enables accurate mapping of previously undocumented areas of the atlas. We publicly release our datasets, code, and interactive atlas.
Performance Modeling of Data Storage Systems using Generative Models
High-precision modeling of systems is one of the main areas of industrial data analysis. Models of systems, their digital twins, are used to predict their behavior under various conditions. We have developed several models of a storage system using machine learning-based generative models. The system consists of several components: hard disk drive (HDD) and solid-state drive (SSD) storage pools with different RAID schemes and cache. Each storage component is represented by a probabilistic model that describes the probability distribution of the component performance in terms of IOPS and latency, depending on their configuration and external data load parameters. The results of the experiments demonstrate the errors of 4-10 % for IOPS and 3-16 % for latency predictions depending on the components and models of the system. The predictions show up to 0.99 Pearson correlation with Little's law, which can be used for unsupervised reliability checks of the models. In addition, we present novel data sets that can be used for benchmarking regression algorithms, conditional generative models, and uncertainty estimation methods in machine learning.
Preparing Lessons for Progressive Training on Language Models
The rapid progress of Transformers in artificial intelligence has come at the cost of increased resource consumption and greenhouse gas emissions due to growing model sizes. Prior work suggests using pretrained small models to improve training efficiency, but this approach may not be suitable for new model structures. On the other hand, training from scratch can be slow, and progressively stacking layers often fails to achieve significant acceleration. To address these challenges, we propose a novel method called Apollo, which prepares lessons for expanding operations by learning high-layer functionality during training of low layers. Our approach involves low-value-prioritized sampling (LVPS) to train different depths and weight sharing to facilitate efficient expansion. We also introduce an interpolation method for stable model depth extension. Experiments demonstrate that Apollo achieves state-of-the-art acceleration ratios, even rivaling methods using pretrained models, making it a universal and efficient solution for training deep models while reducing time, financial, and environmental costs.
Optimized Conformal Selection: Powerful Selective Inference After Conformity Score Optimization
Model selection/optimization in conformal inference is challenging, since it may break the exchangeability between labeled and unlabeled data. We study this problem in the context of conformal selection, which uses conformal p-values to select ``interesting'' instances with large unobserved labels from a pool of unlabeled data, while controlling the FDR in finite sample. For validity, existing solutions require the model choice to be independent of the data used to construct the p-values and calibrate the selection set. However, when presented with many model choices and limited labeled data, it is desirable to (i) select the best model in a data-driven manner, and (ii) mitigate power loss due to sample splitting. This paper presents OptCS, a general framework that allows valid statistical testing (selection) after flexible data-driven model optimization. We introduce general conditions under which OptCS constructs valid conformal p-values despite substantial data reuse and handles complex p-value dependencies to maintain finite-sample FDR control via a novel multiple testing procedure. We instantiate this general recipe to propose three FDR-controlling procedures, each optimizing the models differently: (i) selecting the most powerful one among multiple pre-trained candidate models, (ii) using all data for model fitting without sample splitting, and (iii) combining full-sample model fitting and selection. We demonstrate the efficacy of our methods via simulation studies and real applications in drug discovery and alignment of large language models in radiology report generation.
Conformal Prediction with Missing Values
Conformal prediction is a theoretically grounded framework for constructing predictive intervals. We study conformal prediction with missing values in the covariates -- a setting that brings new challenges to uncertainty quantification. We first show that the marginal coverage guarantee of conformal prediction holds on imputed data for any missingness distribution and almost all imputation functions. However, we emphasize that the average coverage varies depending on the pattern of missing values: conformal methods tend to construct prediction intervals that under-cover the response conditionally to some missing patterns. This motivates our novel generalized conformalized quantile regression framework, missing data augmentation, which yields prediction intervals that are valid conditionally to the patterns of missing values, despite their exponential number. We then show that a universally consistent quantile regression algorithm trained on the imputed data is Bayes optimal for the pinball risk, thus achieving valid coverage conditionally to any given data point. Moreover, we examine the case of a linear model, which demonstrates the importance of our proposal in overcoming the heteroskedasticity induced by missing values. Using synthetic and data from critical care, we corroborate our theory and report improved performance of our methods.
PolyGen: An Autoregressive Generative Model of 3D Meshes
Polygon meshes are an efficient representation of 3D geometry, and are of central importance in computer graphics, robotics and games development. Existing learning-based approaches have avoided the challenges of working with 3D meshes, instead using alternative object representations that are more compatible with neural architectures and training approaches. We present an approach which models the mesh directly, predicting mesh vertices and faces sequentially using a Transformer-based architecture. Our model can condition on a range of inputs, including object classes, voxels, and images, and because the model is probabilistic it can produce samples that capture uncertainty in ambiguous scenarios. We show that the model is capable of producing high-quality, usable meshes, and establish log-likelihood benchmarks for the mesh-modelling task. We also evaluate the conditional models on surface reconstruction metrics against alternative methods, and demonstrate competitive performance despite not training directly on this task.
Mitigating the Bias of Large Language Model Evaluation
Recently, there has been a trend of evaluating the Large Language Model (LLM) quality in the flavor of LLM-as-a-Judge, namely leveraging another LLM to evaluate the current output quality. However, existing judges are proven to be biased, namely they would favor answers which present better superficial quality (such as verbosity, fluency) while ignoring the instruction following ability. In this work, we propose systematic research about the bias of LLM-as-a-Judge. Specifically, for closed-source judge models, we apply calibration to mitigate the significance of superficial quality, both on probability level and prompt level. For open-source judge models, we propose to mitigate the bias by contrastive training, with curated negative samples that deviate from instruction but present better superficial quality. We apply our methods on the bias evaluation benchmark, and experiment results show our methods mitigate the bias by a large margin while maintaining a satisfactory evaluation accuracy.
Research without Re-search: Maximal Update Parametrization Yields Accurate Loss Prediction across Scales
As language models scale up, it becomes increasingly expensive to verify research ideas because conclusions on small models do not trivially transfer to large ones. A possible solution is to establish a generic system that directly predicts some metrics for large models solely based on the results and hyperparameters from small models. Existing methods based on scaling laws require hyperparameter search on the largest models, which is impractical with limited resources. We address this issue by presenting our discoveries indicating that Maximal Update parametrization (Mup) enables accurate fitting of scaling laws for hyperparameters close to common loss basins, without any search. Thus, different models can be directly compared on large scales with loss prediction even before the training starts. We propose a new paradigm as a first step towards reliable academic research for any model scale without heavy computation. Code is publicly available at https://github.com/cofe-ai/Mu-scaling.
On the Foundations of Shortcut Learning
Deep-learning models can extract a rich assortment of features from data. Which features a model uses depends not only on predictivity-how reliably a feature indicates train-set labels-but also on availability-how easily the feature can be extracted, or leveraged, from inputs. The literature on shortcut learning has noted examples in which models privilege one feature over another, for example texture over shape and image backgrounds over foreground objects. Here, we test hypotheses about which input properties are more available to a model, and systematically study how predictivity and availability interact to shape models' feature use. We construct a minimal, explicit generative framework for synthesizing classification datasets with two latent features that vary in predictivity and in factors we hypothesize to relate to availability, and quantify a model's shortcut bias-its over-reliance on the shortcut (more available, less predictive) feature at the expense of the core (less available, more predictive) feature. We find that linear models are relatively unbiased, but introducing a single hidden layer with ReLU or Tanh units yields a bias. Our empirical findings are consistent with a theoretical account based on Neural Tangent Kernels. Finally, we study how models used in practice trade off predictivity and availability in naturalistic datasets, discovering availability manipulations which increase models' degree of shortcut bias. Taken together, these findings suggest that the propensity to learn shortcut features is a fundamental characteristic of deep nonlinear architectures warranting systematic study given its role in shaping how models solve tasks.
Neighbor-Aware Calibration of Segmentation Networks with Penalty-Based Constraints
Ensuring reliable confidence scores from deep neural networks is of paramount significance in critical decision-making systems, particularly in real-world domains such as healthcare. Recent literature on calibrating deep segmentation networks has resulted in substantial progress. Nevertheless, these approaches are strongly inspired by the advancements in classification tasks, and thus their uncertainty is usually modeled by leveraging the information of individual pixels, disregarding the local structure of the object of interest. Indeed, only the recent Spatially Varying Label Smoothing (SVLS) approach considers pixel spatial relationships across classes, by softening the pixel label assignments with a discrete spatial Gaussian kernel. In this work, we first present a constrained optimization perspective of SVLS and demonstrate that it enforces an implicit constraint on soft class proportions of surrounding pixels. Furthermore, our analysis shows that SVLS lacks a mechanism to balance the contribution of the constraint with the primary objective, potentially hindering the optimization process. Based on these observations, we propose NACL (Neighbor Aware CaLibration), a principled and simple solution based on equality constraints on the logit values, which enables to control explicitly both the enforced constraint and the weight of the penalty, offering more flexibility. Comprehensive experiments on a wide variety of well-known segmentation benchmarks demonstrate the superior calibration performance of the proposed approach, without affecting its discriminative power. Furthermore, ablation studies empirically show the model agnostic nature of our approach, which can be used to train a wide span of deep segmentation networks.
AUGCAL: Improving Sim2Real Adaptation by Uncertainty Calibration on Augmented Synthetic Images
Synthetic data (SIM) drawn from simulators have emerged as a popular alternative for training models where acquiring annotated real-world images is difficult. However, transferring models trained on synthetic images to real-world applications can be challenging due to appearance disparities. A commonly employed solution to counter this SIM2REAL gap is unsupervised domain adaptation, where models are trained using labeled SIM data and unlabeled REAL data. Mispredictions made by such SIM2REAL adapted models are often associated with miscalibration - stemming from overconfident predictions on real data. In this paper, we introduce AUGCAL, a simple training-time patch for unsupervised adaptation that improves SIM2REAL adapted models by - (1) reducing overall miscalibration, (2) reducing overconfidence in incorrect predictions and (3) improving confidence score reliability by better guiding misclassification detection - all while retaining or improving SIM2REAL performance. Given a base SIM2REAL adaptation algorithm, at training time, AUGCAL involves replacing vanilla SIM images with strongly augmented views (AUG intervention) and additionally optimizing for a training time calibration loss on augmented SIM predictions (CAL intervention). We motivate AUGCAL using a brief analytical justification of how to reduce miscalibration on unlabeled REAL data. Through our experiments, we empirically show the efficacy of AUGCAL across multiple adaptation methods, backbones, tasks and shifts.
Rethinking Data Distillation: Do Not Overlook Calibration
Neural networks trained on distilled data often produce over-confident output and require correction by calibration methods. Existing calibration methods such as temperature scaling and mixup work well for networks trained on original large-scale data. However, we find that these methods fail to calibrate networks trained on data distilled from large source datasets. In this paper, we show that distilled data lead to networks that are not calibratable due to (i) a more concentrated distribution of the maximum logits and (ii) the loss of information that is semantically meaningful but unrelated to classification tasks. To address this problem, we propose Masked Temperature Scaling (MTS) and Masked Distillation Training (MDT) which mitigate the limitations of distilled data and achieve better calibration results while maintaining the efficiency of dataset distillation.
Asymptotically free sketched ridge ensembles: Risks, cross-validation, and tuning
We employ random matrix theory to establish consistency of generalized cross validation (GCV) for estimating prediction risks of sketched ridge regression ensembles, enabling efficient and consistent tuning of regularization and sketching parameters. Our results hold for a broad class of asymptotically free sketches under very mild data assumptions. For squared prediction risk, we provide a decomposition into an unsketched equivalent implicit ridge bias and a sketching-based variance, and prove that the risk can be globally optimized by only tuning sketch size in infinite ensembles. For general subquadratic prediction risk functionals, we extend GCV to construct consistent risk estimators, and thereby obtain distributional convergence of the GCV-corrected predictions in Wasserstein-2 metric. This in particular allows construction of prediction intervals with asymptotically correct coverage conditional on the training data. We also propose an "ensemble trick" whereby the risk for unsketched ridge regression can be efficiently estimated via GCV using small sketched ridge ensembles. We empirically validate our theoretical results using both synthetic and real large-scale datasets with practical sketches including CountSketch and subsampled randomized discrete cosine transforms.
Qwen-GUI-3B: A Lightweight Vision-Language Model for Cross-Resolution GUI Grounding
This paper introduces Qwen-GUI-3B, a lightweight Vision-Language Model (VLM) specifically designed for Graphical User Interface grounding tasks, achieving performance competitive with significantly larger models. Unlike large-scale VLMs (>7B parameters) that are computationally intensive and impractical for consumer-grade hardware, Qwen-GUI-3B delivers strong grounding accuracy while being fully trainable on a single GPU (RTX 4090). The model incorporates several key innovations: (i) combine cross-platform, multi-resolution dataset of 24K examples from diverse sources including mobile, desktop, and web GUI screenshots to effectively address data scarcity in high-resolution desktop environments; (ii) a two-stage fine-tuning strategy, where initial cross-platform training establishes robust GUI understanding, followed by specialized fine-tuning on high-resolution data to significantly enhance model adaptability; and (iii) data curation and redundancy reduction strategies, demonstrating that randomly sampling a smaller subset with reduced redundancy achieves performance comparable to larger datasets, emphasizing data diversity over sheer volume. Empirical evaluation on standard GUI grounding benchmarks-including ScreenSpot, ScreenSpot-v2, and the challenging ScreenSpot-Pro, highlights Qwen-GUI-3B's exceptional accuracy, achieving 84.9% on ScreenSpot and 86.4% on ScreenSpot-v2, surpassing prior models under 4B parameters. Ablation studies validate the critical role of balanced sampling and two-stage fine-tuning in enhancing robustness, particularly in high-resolution desktop scenarios. The Qwen-GUI-3B is available at: https://github.com/Han1018/Qwen-GUI-3B
Differentiable Blocks World: Qualitative 3D Decomposition by Rendering Primitives
Given a set of calibrated images of a scene, we present an approach that produces a simple, compact, and actionable 3D world representation by means of 3D primitives. While many approaches focus on recovering high-fidelity 3D scenes, we focus on parsing a scene into mid-level 3D representations made of a small set of textured primitives. Such representations are interpretable, easy to manipulate and suited for physics-based simulations. Moreover, unlike existing primitive decomposition methods that rely on 3D input data, our approach operates directly on images through differentiable rendering. Specifically, we model primitives as textured superquadric meshes and optimize their parameters from scratch with an image rendering loss. We highlight the importance of modeling transparency for each primitive, which is critical for optimization and also enables handling varying numbers of primitives. We show that the resulting textured primitives faithfully reconstruct the input images and accurately model the visible 3D points, while providing amodal shape completions of unseen object regions. We compare our approach to the state of the art on diverse scenes from DTU, and demonstrate its robustness on real-life captures from BlendedMVS and Nerfstudio. We also showcase how our results can be used to effortlessly edit a scene or perform physical simulations. Code and video results are available at https://www.tmonnier.com/DBW .
PELA: Learning Parameter-Efficient Models with Low-Rank Approximation
Applying a pre-trained large model to downstream tasks is prohibitive under resource-constrained conditions. Recent dominant approaches for addressing efficiency issues involve adding a few learnable parameters to the fixed backbone model. This strategy, however, leads to more challenges in loading large models for downstream fine-tuning with limited resources. In this paper, we propose a novel method for increasing the parameter efficiency of pre-trained models by introducing an intermediate pre-training stage. To this end, we first employ low-rank approximation to compress the original large model and then devise a feature distillation module and a weight perturbation regularization module. These modules are specifically designed to enhance the low-rank model. In particular, we update only the low-rank model while freezing the backbone parameters during pre-training. This allows for direct and efficient utilization of the low-rank model for downstream fine-tuning tasks. The proposed method achieves both efficiencies in terms of required parameters and computation time while maintaining comparable results with minimal modifications to the backbone architecture. Specifically, when applied to three vision-only and one vision-language Transformer models, our approach often demonstrates a merely sim0.6 point decrease in performance while reducing the original parameter size by 1/3 to 2/3.
Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
The conventional recipe for maximizing model accuracy is to (1) train multiple models with various hyperparameters and (2) pick the individual model which performs best on a held-out validation set, discarding the remainder. In this paper, we revisit the second step of this procedure in the context of fine-tuning large pre-trained models, where fine-tuned models often appear to lie in a single low error basin. We show that averaging the weights of multiple models fine-tuned with different hyperparameter configurations often improves accuracy and robustness. Unlike a conventional ensemble, we may average many models without incurring any additional inference or memory costs -- we call the results "model soups." When fine-tuning large pre-trained models such as CLIP, ALIGN, and a ViT-G pre-trained on JFT, our soup recipe provides significant improvements over the best model in a hyperparameter sweep on ImageNet. The resulting ViT-G model, which attains 90.94% top-1 accuracy on ImageNet, achieved a new state of the art. Furthermore, we show that the model soup approach extends to multiple image classification and natural language processing tasks, improves out-of-distribution performance, and improves zero-shot performance on new downstream tasks. Finally, we analytically relate the performance similarity of weight-averaging and logit-ensembling to flatness of the loss and confidence of the predictions, and validate this relation empirically. Code is available at https://github.com/mlfoundations/model-soups.
Representer Point Selection for Explaining Regularized High-dimensional Models
We introduce a novel class of sample-based explanations we term high-dimensional representers, that can be used to explain the predictions of a regularized high-dimensional model in terms of importance weights for each of the training samples. Our workhorse is a novel representer theorem for general regularized high-dimensional models, which decomposes the model prediction in terms of contributions from each of the training samples: with positive (negative) values corresponding to positive (negative) impact training samples to the model's prediction. We derive consequences for the canonical instances of ell_1 regularized sparse models, and nuclear norm regularized low-rank models. As a case study, we further investigate the application of low-rank models in the context of collaborative filtering, where we instantiate high-dimensional representers for specific popular classes of models. Finally, we study the empirical performance of our proposed methods on three real-world binary classification datasets and two recommender system datasets. We also showcase the utility of high-dimensional representers in explaining model recommendations.
Regularizing Towards Soft Equivariance Under Mixed Symmetries
Datasets often have their intrinsic symmetries, and particular deep-learning models called equivariant or invariant models have been developed to exploit these symmetries. However, if some or all of these symmetries are only approximate, which frequently happens in practice, these models may be suboptimal due to the architectural restrictions imposed on them. We tackle this issue of approximate symmetries in a setup where symmetries are mixed, i.e., they are symmetries of not single but multiple different types and the degree of approximation varies across these types. Instead of proposing a new architectural restriction as in most of the previous approaches, we present a regularizer-based method for building a model for a dataset with mixed approximate symmetries. The key component of our method is what we call equivariance regularizer for a given type of symmetries, which measures how much a model is equivariant with respect to the symmetries of the type. Our method is trained with these regularizers, one per each symmetry type, and the strength of the regularizers is automatically tuned during training, leading to the discovery of the approximation levels of some candidate symmetry types without explicit supervision. Using synthetic function approximation and motion forecasting tasks, we demonstrate that our method achieves better accuracy than prior approaches while discovering the approximate symmetry levels correctly.
Long Horizon Temperature Scaling
Temperature scaling is a popular technique for tuning the sharpness of a model distribution. It is used extensively for sampling likely generations and calibrating model uncertainty, and even features as a controllable parameter to many large language models in deployment. However, autoregressive models rely on myopic temperature scaling that greedily optimizes the next token. To address this, we propose Long Horizon Temperature Scaling (LHTS), a novel approach for sampling from temperature-scaled joint distributions. LHTS is compatible with all likelihood-based models, and optimizes for the long-horizon likelihood of samples. We derive a temperature-dependent LHTS objective, and show that fine-tuning a model on a range of temperatures produces a single model capable of generation with a controllable long-horizon temperature parameter. We experiment with LHTS on image diffusion models and character/language autoregressive models, demonstrating advantages over myopic temperature scaling in likelihood and sample quality, and showing improvements in accuracy on a multiple choice analogy task by 10%.
Asymmetry in Low-Rank Adapters of Foundation Models
Parameter-efficient fine-tuning optimizes large, pre-trained foundation models by updating a subset of parameters; in this class, Low-Rank Adaptation (LoRA) is particularly effective. Inspired by an effort to investigate the different roles of LoRA matrices during fine-tuning, this paper characterizes and leverages unexpected asymmetry in the importance of low-rank adapter matrices. Specifically, when updating the parameter matrices of a neural network by adding a product BA, we observe that the B and A matrices have distinct functions: A extracts features from the input, while B uses these features to create the desired output. Based on this observation, we demonstrate that fine-tuning B is inherently more effective than fine-tuning A, and that a random untrained A should perform nearly as well as a fine-tuned one. Using an information-theoretic lens, we also bound the generalization of low-rank adapters, showing that the parameter savings of exclusively training B improves the bound. We support our conclusions with experiments on RoBERTa, BART-Large, LLaMA-2, and ViTs.
Why Personalizing Deep Learning-Based Code Completion Tools Matters
Deep learning (DL)-based code completion tools have transformed software development by enabling advanced code generation. These tools leverage models trained on vast amounts of code from numerous repositories, capturing general coding patterns. However, the impact of fine-tuning these models for specific organizations or developers to boost their performance on such subjects remains unexplored. In this work, we fill this gap by presenting solid empirical evidence answering this question. More specifically, we consider 136 developers from two organizations (Apache and Spring), two model architectures (T5 and Code Llama), and three model sizes (60M, 750M, and 7B trainable parameters). T5 models (60M, 750M) were pre-trained and fine-tuned on over 2,000 open-source projects, excluding the subject organizations' data, and compared against versions fine-tuned on organization- and developer-specific datasets. For the Code Llama model (7B), we compared the performance of the already pre-trained model publicly available online with the same model fine-tuned via parameter-efficient fine-tuning on organization- and developer-specific datasets. Our results show that there is a boost in prediction capabilities provided by both an organization-specific and a developer-specific additional fine-tuning, with the former being particularly performant. Such a finding generalizes across (i) the two subject organizations (i.e., Apache and Spring) and (ii) models of completely different magnitude (from 60M to 7B trainable parameters). Finally, we show that DL models fine-tuned on an organization-specific dataset achieve the same completion performance of pre-trained code models used out of the box and being sim10times larger, with consequent savings in terms of deployment and inference cost (e.g., smaller GPUs needed).
CaesarNeRF: Calibrated Semantic Representation for Few-shot Generalizable Neural Rendering
Generalizability and few-shot learning are key challenges in Neural Radiance Fields (NeRF), often due to the lack of a holistic understanding in pixel-level rendering. We introduce CaesarNeRF, an end-to-end approach that leverages scene-level CAlibratEd SemAntic Representation along with pixel-level representations to advance few-shot, generalizable neural rendering, facilitating a holistic understanding without compromising high-quality details. CaesarNeRF explicitly models pose differences of reference views to combine scene-level semantic representations, providing a calibrated holistic understanding. This calibration process aligns various viewpoints with precise location and is further enhanced by sequential refinement to capture varying details. Extensive experiments on public datasets, including LLFF, Shiny, mip-NeRF 360, and MVImgNet, show that CaesarNeRF delivers state-of-the-art performance across varying numbers of reference views, proving effective even with a single reference image. The project page of this work can be found at https://haidongz-usc.github.io/project/caesarnerf.
Prithvi WxC: Foundation Model for Weather and Climate
Triggered by the realization that AI emulators can rival the performance of traditional numerical weather prediction models running on HPC systems, there is now an increasing number of large AI models that address use cases such as forecasting, downscaling, or nowcasting. While the parallel developments in the AI literature focus on foundation models -- models that can be effectively tuned to address multiple, different use cases -- the developments on the weather and climate side largely focus on single-use cases with particular emphasis on mid-range forecasting. We close this gap by introducing Prithvi WxC, a 2.3 billion parameter foundation model developed using 160 variables from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Prithvi WxC employs an encoder-decoder-based architecture, incorporating concepts from various recent transformer models to effectively capture both regional and global dependencies in the input data. The model has been designed to accommodate large token counts to model weather phenomena in different topologies at fine resolutions. Furthermore, it is trained with a mixed objective that combines the paradigms of masked reconstruction with forecasting. We test the model on a set of challenging downstream tasks namely: Autoregressive rollout forecasting, Downscaling, Gravity wave flux parameterization, and Extreme events estimation. The pretrained model with 2.3 billion parameters, along with the associated fine-tuning workflows, has been publicly released as an open-source contribution via Hugging Face.
PyMAF: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop
Regression-based methods have recently shown promising results in reconstructing human meshes from monocular images. By directly mapping raw pixels to model parameters, these methods can produce parametric models in a feed-forward manner via neural networks. However, minor deviation in parameters may lead to noticeable misalignment between the estimated meshes and image evidences. To address this issue, we propose a Pyramidal Mesh Alignment Feedback (PyMAF) loop to leverage a feature pyramid and rectify the predicted parameters explicitly based on the mesh-image alignment status in our deep regressor. In PyMAF, given the currently predicted parameters, mesh-aligned evidences will be extracted from finer-resolution features accordingly and fed back for parameter rectification. To reduce noise and enhance the reliability of these evidences, an auxiliary pixel-wise supervision is imposed on the feature encoder, which provides mesh-image correspondence guidance for our network to preserve the most related information in spatial features. The efficacy of our approach is validated on several benchmarks, including Human3.6M, 3DPW, LSP, and COCO, where experimental results show that our approach consistently improves the mesh-image alignment of the reconstruction. The project page with code and video results can be found at https://hongwenzhang.github.io/pymaf.
Prior and Posterior Networks: A Survey on Evidential Deep Learning Methods For Uncertainty Estimation
Popular approaches for quantifying predictive uncertainty in deep neural networks often involve distributions over weights or multiple models, for instance via Markov Chain sampling, ensembling, or Monte Carlo dropout. These techniques usually incur overhead by having to train multiple model instances or do not produce very diverse predictions. This comprehensive and extensive survey aims to familiarize the reader with an alternative class of models based on the concept of Evidential Deep Learning: For unfamiliar data, they aim to admit "what they don't know", and fall back onto a prior belief. Furthermore, they allow uncertainty estimation in a single model and forward pass by parameterizing distributions over distributions. This survey recapitulates existing works, focusing on the implementation in a classification setting, before surveying the application of the same paradigm to regression. We also reflect on the strengths and weaknesses compared to other existing methods and provide the most fundamental derivations using a unified notation to aid future research.
Quantizing Large Language Models for Code Generation: A Differentiated Replication
Large Language Models (LLMs) have shown an impressive capability in code generation and, specifically, to automatically implement requirements described in natural language. The LLM effectiveness generally increases with its size: The higher the number of LLM's trainable parameters the better its ability to implement code. However, when it comes to deploying LLM-based code generators, larger LLMs pose significant challenges related to their memory (and, consequently, carbon) footprint. A previous work by Wei et al. proposed to leverage quantization techniques to reduce the memory footprint of LLM-based code generators without substantially degrading their effectiveness. In short, they studied LLMs featuring up to 16B parameters, quantizing their precision from floating point 32 bits down to int 8 bits and showing their limited impact on code generation performance. Given the fast pace at which LLM capabilities and quantization techniques are evolving, in this work we present a differentiated replication of the work by Wei et al. in which we consider (i) on the one side, more recent and larger code-related LLMs, of up to 34B parameters; (ii) the latest advancements in model quantization techniques, which allow pushing the compression to the extreme quantization level of 2 bits per model parameter and; (iii) different types of calibration datasets to guide the quantization process, including code-specific ones. Our empirical evaluation reveals that the new frontier for LLM quantization is 4-bit precision, resulting in an average memory footprint reduction of 70% compared to the original model without observing any significant decrease in performance. Additionally, when the quantization becomes even more extreme (3 and 2 bits), a code-specific calibration dataset helps to limit the loss of performance.
Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts
While score-based generative models are the model of choice across diverse domains, there are limited tools available for controlling inference-time behavior in a principled manner, e.g. for composing multiple pretrained models. Existing classifier-free guidance methods use a simple heuristic to mix conditional and unconditional scores to approximately sample from conditional distributions. However, such methods do not approximate the intermediate distributions, necessitating additional 'corrector' steps. In this work, we provide an efficient and principled method for sampling from a sequence of annealed, geometric-averaged, or product distributions derived from pretrained score-based models. We derive a weighted simulation scheme which we call Feynman-Kac Correctors (FKCs) based on the celebrated Feynman-Kac formula by carefully accounting for terms in the appropriate partial differential equations (PDEs). To simulate these PDEs, we propose Sequential Monte Carlo (SMC) resampling algorithms that leverage inference-time scaling to improve sampling quality. We empirically demonstrate the utility of our methods by proposing amortized sampling via inference-time temperature annealing, improving multi-objective molecule generation using pretrained models, and improving classifier-free guidance for text-to-image generation. Our code is available at https://github.com/martaskrt/fkc-diffusion.
On the Practicality of Deterministic Epistemic Uncertainty
A set of novel approaches for estimating epistemic uncertainty in deep neural networks with a single forward pass has recently emerged as a valid alternative to Bayesian Neural Networks. On the premise of informative representations, these deterministic uncertainty methods (DUMs) achieve strong performance on detecting out-of-distribution (OOD) data while adding negligible computational costs at inference time. However, it remains unclear whether DUMs are well calibrated and can seamlessly scale to real-world applications - both prerequisites for their practical deployment. To this end, we first provide a taxonomy of DUMs, and evaluate their calibration under continuous distributional shifts. Then, we extend them to semantic segmentation. We find that, while DUMs scale to realistic vision tasks and perform well on OOD detection, the practicality of current methods is undermined by poor calibration under distributional shifts.
The Case for Co-Designing Model Architectures with Hardware
While GPUs are responsible for training the vast majority of state-of-the-art deep learning models, the implications of their architecture are often overlooked when designing new deep learning (DL) models. As a consequence, modifying a DL model to be more amenable to the target hardware can significantly improve the runtime performance of DL training and inference. In this paper, we provide a set of guidelines for users to maximize the runtime performance of their transformer models. These guidelines have been created by carefully considering the impact of various model hyperparameters controlling model shape on the efficiency of the underlying computation kernels executed on the GPU. We find the throughput of models with efficient model shapes is up to 39\% higher while preserving accuracy compared to models with a similar number of parameters but with unoptimized shapes.
Is the Number of Trainable Parameters All That Actually Matters?
Recent work has identified simple empirical scaling laws for language models, linking compute budget, dataset size, model size, and autoregressive modeling loss. The validity of these simple power laws across orders of magnitude in model scale provides compelling evidence that larger models are also more capable models. However, scaling up models under the constraints of hardware and infrastructure is no easy feat, and rapidly becomes a hard and expensive engineering problem. We investigate ways to tentatively cheat scaling laws, and train larger models for cheaper. We emulate an increase in effective parameters, using efficient approximations: either by doping the models with frozen random parameters, or by using fast structured transforms in place of dense linear layers. We find that the scaling relationship between test loss and compute depends only on the actual number of trainable parameters; scaling laws cannot be deceived by spurious parameters.
HiFace: High-Fidelity 3D Face Reconstruction by Learning Static and Dynamic Details
3D Morphable Models (3DMMs) demonstrate great potential for reconstructing faithful and animatable 3D facial surfaces from a single image. The facial surface is influenced by the coarse shape, as well as the static detail (e,g., person-specific appearance) and dynamic detail (e.g., expression-driven wrinkles). Previous work struggles to decouple the static and dynamic details through image-level supervision, leading to reconstructions that are not realistic. In this paper, we aim at high-fidelity 3D face reconstruction and propose HiFace to explicitly model the static and dynamic details. Specifically, the static detail is modeled as the linear combination of a displacement basis, while the dynamic detail is modeled as the linear interpolation of two displacement maps with polarized expressions. We exploit several loss functions to jointly learn the coarse shape and fine details with both synthetic and real-world datasets, which enable HiFace to reconstruct high-fidelity 3D shapes with animatable details. Extensive quantitative and qualitative experiments demonstrate that HiFace presents state-of-the-art reconstruction quality and faithfully recovers both the static and dynamic details. Our project page can be found at https://project-hiface.github.io.
SHS-Net: Learning Signed Hyper Surfaces for Oriented Normal Estimation of Point Clouds
We propose a novel method called SHS-Net for oriented normal estimation of point clouds by learning signed hyper surfaces, which can accurately predict normals with global consistent orientation from various point clouds. Almost all existing methods estimate oriented normals through a two-stage pipeline, i.e., unoriented normal estimation and normal orientation, and each step is implemented by a separate algorithm. However, previous methods are sensitive to parameter settings, resulting in poor results from point clouds with noise, density variations and complex geometries. In this work, we introduce signed hyper surfaces (SHS), which are parameterized by multi-layer perceptron (MLP) layers, to learn to estimate oriented normals from point clouds in an end-to-end manner. The signed hyper surfaces are implicitly learned in a high-dimensional feature space where the local and global information is aggregated. Specifically, we introduce a patch encoding module and a shape encoding module to encode a 3D point cloud into a local latent code and a global latent code, respectively. Then, an attention-weighted normal prediction module is proposed as a decoder, which takes the local and global latent codes as input to predict oriented normals. Experimental results show that our SHS-Net outperforms the state-of-the-art methods in both unoriented and oriented normal estimation on the widely used benchmarks. The code, data and pretrained models are publicly available.
LRM: Large Reconstruction Model for Single Image to 3D
We propose the first Large Reconstruction Model (LRM) that predicts the 3D model of an object from a single input image within just 5 seconds. In contrast to many previous methods that are trained on small-scale datasets such as ShapeNet in a category-specific fashion, LRM adopts a highly scalable transformer-based architecture with 500 million learnable parameters to directly predict a neural radiance field (NeRF) from the input image. We train our model in an end-to-end manner on massive multi-view data containing around 1 million objects, including both synthetic renderings from Objaverse and real captures from MVImgNet. This combination of a high-capacity model and large-scale training data empowers our model to be highly generalizable and produce high-quality 3D reconstructions from various testing inputs including real-world in-the-wild captures and images from generative models. Video demos and interactable 3D meshes can be found on this website: https://yiconghong.me/LRM/.
OpenDelta: A Plug-and-play Library for Parameter-efficient Adaptation of Pre-trained Models
The scale of large pre-trained models (PTMs) poses significant challenges in adapting to downstream tasks due to the high optimization overhead and storage costs associated with full-parameter fine-tuning. To address this, many studies explore parameter-efficient tuning methods, also framed as "delta tuning", which updates only a small subset of parameters, known as "delta modules", while keeping the backbone model's parameters fixed. However, the practicality and flexibility of delta tuning have been limited due to existing implementations that directly modify the code of the backbone PTMs and hard-code specific delta tuning methods for each PTM. In this paper, we present OpenDelta, an open-source library that overcomes these limitations by providing a plug-and-play implementation of various delta tuning methods. Our novel techniques eliminate the need to modify the backbone PTMs' code, making OpenDelta compatible with different, even novel PTMs. OpenDelta is designed to be simple, modular, and extensible, providing a comprehensive platform for researchers and practitioners to adapt large PTMs efficiently.
BD-KD: Balancing the Divergences for Online Knowledge Distillation
Knowledge distillation (KD) has gained a lot of attention in the field of model compression for edge devices thanks to its effectiveness in compressing large powerful networks into smaller lower-capacity models. Online distillation, in which both the teacher and the student are learning collaboratively, has also gained much interest due to its ability to improve on the performance of the networks involved. The Kullback-Leibler (KL) divergence ensures the proper knowledge transfer between the teacher and student. However, most online KD techniques present some bottlenecks under the network capacity gap. By cooperatively and simultaneously training, the models the KL distance becomes incapable of properly minimizing the teacher's and student's distributions. Alongside accuracy, critical edge device applications are in need of well-calibrated compact networks. Confidence calibration provides a sensible way of getting trustworthy predictions. We propose BD-KD: Balancing of Divergences for online Knowledge Distillation. We show that adaptively balancing between the reverse and forward divergences shifts the focus of the training strategy to the compact student network without limiting the teacher network's learning process. We demonstrate that, by performing this balancing design at the level of the student distillation loss, we improve upon both performance accuracy and calibration of the compact student network. We conducted extensive experiments using a variety of network architectures and show improvements on multiple datasets including CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet. We illustrate the effectiveness of our approach through comprehensive comparisons and ablations with current state-of-the-art online and offline KD techniques.
SatVision-TOA: A Geospatial Foundation Model for Coarse-Resolution All-Sky Remote Sensing Imagery
Foundation models have the potential to transform the landscape of remote sensing (RS) data analysis by enabling large computer vision models to be pre-trained on vast amounts of remote sensing data. These models can then be fine-tuned with small amounts of labeled training and applied to a variety of applications. Most existing foundation models are designed for high spatial resolution, cloud-free satellite imagery or photos, limiting their applicability in scenarios that require frequent temporal monitoring or broad spectral profiles. As a result, foundation models trained solely on cloud-free images have limited utility for applications that involve atmospheric variables or require atmospheric corrections. We introduce SatVision-TOA, a novel foundation model pre-trained on 14-band MODIS L1B Top-Of-Atmosphere (TOA) radiance imagery, addressing the need for models pre-trained to handle moderate- and coarse-resolution all-sky remote sensing data. The SatVision-TOA model is pre-trained using a Masked-Image-Modeling (MIM) framework and the SwinV2 architecture, and learns detailed contextual representations through self-supervised learning without the need for labels. It is a 3 billion parameter model that is trained on 100 million images. To our knowledge this is the largest foundation model trained solely on satellite RS imagery. Results show that SatVision-TOA achieves superior performance over baseline methods on downstream tasks such as 3D cloud retrieval. Notably, the model achieves a mean intersection over union (mIOU) of 0.46, a substantial improvement over the baseline mIOU of 0.22. Additionally, the rate of false negative results in the fine-tuning task were reduced by over 50% compared to the baseline. Our work advances pre-trained vision modeling for multispectral RS by learning from a variety of atmospheric and aerosol conditions to improve cloud and land surface monitoring.
Model Ratatouille: Recycling Diverse Models for Out-of-Distribution Generalization
Foundation models are redefining how AI systems are built. Practitioners now follow a standard procedure to build their machine learning solutions: from a pre-trained foundation model, they fine-tune the weights on the target task of interest. So, the Internet is swarmed by a handful of foundation models fine-tuned on many diverse tasks: these individual fine-tunings exist in isolation without benefiting from each other. In our opinion, this is a missed opportunity, as these specialized models contain rich and diverse features. In this paper, we thus propose model ratatouille, a new strategy to recycle the multiple fine-tunings of the same foundation model on diverse auxiliary tasks. Specifically, we repurpose these auxiliary weights as initializations for multiple parallel fine-tunings on the target task; then, we average all fine-tuned weights to obtain the final model. This recycling strategy aims at maximizing the diversity in weights by leveraging the diversity in auxiliary tasks. Empirically, it improves the state of the art on the reference DomainBed benchmark for out-of-distribution generalization. Looking forward, this work contributes to the emerging paradigm of updatable machine learning where, akin to open-source software development, the community collaborates to reliably update machine learning models.
SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation
In recent years, the development of diffusion models has led to significant progress in image and video generation tasks, with pre-trained models like the Stable Diffusion series playing a crucial role. Inspired by model pruning which lightens large pre-trained models by removing unimportant parameters, we propose a novel model fine-tuning method to make full use of these ineffective parameters and enable the pre-trained model with new task-specified capabilities. In this work, we first investigate the importance of parameters in pre-trained diffusion models, and discover that the smallest 10% to 20% of parameters by absolute values do not contribute to the generation process. Based on this observation, we propose a method termed SaRA that re-utilizes these temporarily ineffective parameters, equating to optimizing a sparse weight matrix to learn the task-specific knowledge. To mitigate overfitting, we propose a nuclear-norm-based low-rank sparse training scheme for efficient fine-tuning. Furthermore, we design a new progressive parameter adjustment strategy to make full use of the re-trained/finetuned parameters. Finally, we propose a novel unstructural backpropagation strategy, which significantly reduces memory costs during fine-tuning. Our method enhances the generative capabilities of pre-trained models in downstream applications and outperforms traditional fine-tuning methods like LoRA in maintaining model's generalization ability. We validate our approach through fine-tuning experiments on SD models, demonstrating significant improvements. SaRA also offers a practical advantage that requires only a single line of code modification for efficient implementation and is seamlessly compatible with existing methods.
Rethinking Inductive Biases for Surface Normal Estimation
Despite the growing demand for accurate surface normal estimation models, existing methods use general-purpose dense prediction models, adopting the same inductive biases as other tasks. In this paper, we discuss the inductive biases needed for surface normal estimation and propose to (1) utilize the per-pixel ray direction and (2) encode the relationship between neighboring surface normals by learning their relative rotation. The proposed method can generate crisp - yet, piecewise smooth - predictions for challenging in-the-wild images of arbitrary resolution and aspect ratio. Compared to a recent ViT-based state-of-the-art model, our method shows a stronger generalization ability, despite being trained on an orders of magnitude smaller dataset. The code is available at https://github.com/baegwangbin/DSINE.
Geometry-Aware Adaptation for Pretrained Models
Machine learning models -- including prominent zero-shot models -- are often trained on datasets whose labels are only a small proportion of a larger label space. Such spaces are commonly equipped with a metric that relates the labels via distances between them. We propose a simple approach to exploit this information to adapt the trained model to reliably predict new classes -- or, in the case of zero-shot prediction, to improve its performance -- without any additional training. Our technique is a drop-in replacement of the standard prediction rule, swapping argmax with the Fr\'echet mean. We provide a comprehensive theoretical analysis for this approach, studying (i) learning-theoretic results trading off label space diameter, sample complexity, and model dimension, (ii) characterizations of the full range of scenarios in which it is possible to predict any unobserved class, and (iii) an optimal active learning-like next class selection procedure to obtain optimal training classes for when it is not possible to predict the entire range of unobserved classes. Empirically, using easily-available external metrics, our proposed approach, Loki, gains up to 29.7% relative improvement over SimCLR on ImageNet and scales to hundreds of thousands of classes. When no such metric is available, Loki can use self-derived metrics from class embeddings and obtains a 10.5% improvement on pretrained zero-shot models such as CLIP.
Improved Techniques for Training Consistency Models
Consistency models are a nascent family of generative models that can sample high quality data in one step without the need for adversarial training. Current consistency models achieve optimal sample quality by distilling from pre-trained diffusion models and employing learned metrics such as LPIPS. However, distillation limits the quality of consistency models to that of the pre-trained diffusion model, and LPIPS causes undesirable bias in evaluation. To tackle these challenges, we present improved techniques for consistency training, where consistency models learn directly from data without distillation. We delve into the theory behind consistency training and identify a previously overlooked flaw, which we address by eliminating Exponential Moving Average from the teacher consistency model. To replace learned metrics like LPIPS, we adopt Pseudo-Huber losses from robust statistics. Additionally, we introduce a lognormal noise schedule for the consistency training objective, and propose to double total discretization steps every set number of training iterations. Combined with better hyperparameter tuning, these modifications enable consistency models to achieve FID scores of 2.51 and 3.25 on CIFAR-10 and ImageNet 64times 64 respectively in a single sampling step. These scores mark a 3.5times and 4times improvement compared to prior consistency training approaches. Through two-step sampling, we further reduce FID scores to 2.24 and 2.77 on these two datasets, surpassing those obtained via distillation in both one-step and two-step settings, while narrowing the gap between consistency models and other state-of-the-art generative models.
Parameter Efficient Merging for Multimodal Large Language Models with Complementary Parameter Adaptation
Fine-tuning pre-trained models with custom data leads to numerous expert models on specific tasks. Merging models into one universal model to empower multi-task ability refraining from data leakage has gained popularity. With the expansion in data and model size, parameter efficient tuning becomes the common practice for obtaining task-specific models efficiently. However, we observe that existing methods designed for full fine-tuning merging fail under efficient tuning. To address the issues, we analyze from low-rank decomposition and reveal that maintaining direction and compensating for gap between singular values are crucial for efficient model merging. Consequently, we propose CoPA-Merging, a training-free parameter efficient merging method with complementary parameter adaptation. Specifically, we (1) prune parameters and construct scaling coefficients from inter-parameter relation to compensate for performance drop from task interference and (2) perform cross-task normalization to enhance unseen task generalization. We establish a benchmark consisting of diverse multimodal tasks, on which we conduct experiments to certificate the outstanding performance and generalizability of our method. Additional study and extensive analyses further showcase the effectiveness.
Scaling Exponents Across Parameterizations and Optimizers
Robust and effective scaling of models from small to large width typically requires the precise adjustment of many algorithmic and architectural details, such as parameterization and optimizer choices. In this work, we propose a new perspective on parameterization by investigating a key assumption in prior work about the alignment between parameters and data and derive new theoretical results under weaker assumptions and a broader set of optimizers. Our extensive empirical investigation includes tens of thousands of models trained with all combinations of three optimizers, four parameterizations, several alignment assumptions, more than a dozen learning rates, and fourteen model sizes up to 26.8B parameters. We find that the best learning rate scaling prescription would often have been excluded by the assumptions in prior work. Our results show that all parameterizations, not just maximal update parameterization (muP), can achieve hyperparameter transfer; moreover, our novel per-layer learning rate prescription for standard parameterization outperforms muP. Finally, we demonstrate that an overlooked aspect of parameterization, the epsilon parameter in Adam, must be scaled correctly to avoid gradient underflow and propose Adam-atan2, a new numerically stable, scale-invariant version of Adam that eliminates the epsilon hyperparameter entirely.
No Fear of Heterogeneity: Classifier Calibration for Federated Learning with Non-IID Data
A central challenge in training classification models in the real-world federated system is learning with non-IID data. To cope with this, most of the existing works involve enforcing regularization in local optimization or improving the model aggregation scheme at the server. Other works also share public datasets or synthesized samples to supplement the training of under-represented classes or introduce a certain level of personalization. Though effective, they lack a deep understanding of how the data heterogeneity affects each layer of a deep classification model. In this paper, we bridge this gap by performing an experimental analysis of the representations learned by different layers. Our observations are surprising: (1) there exists a greater bias in the classifier than other layers, and (2) the classification performance can be significantly improved by post-calibrating the classifier after federated training. Motivated by the above findings, we propose a novel and simple algorithm called Classifier Calibration with Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated gaussian mixture model. Experimental results demonstrate that CCVR achieves state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10. We hope that our simple yet effective method can shed some light on the future research of federated learning with non-IID data.
Uncertainty quantification for improving radiomic-based models in radiation pneumonitis prediction
Background and Objective: Radiation pneumonitis (RP) is a side effect of thoracic radiation therapy. Recently, Machine learning (ML) models enhanced with radiomic and dosiomic features provide better predictions by incorporating spatial information beyond DVHs. However, to improve the clinical decision process, we propose to use uncertainty quantification (UQ) to improve the confidence in model prediction. This study evaluates the impact of post hoc UQ methods on the discriminative performance and calibration of ML models for RP prediction. Methods: This study evaluated four ML models: logistic regression (LR), support vector machines (SVM), extreme gradient boosting (XGB), and random forest (RF), using radiomic, dosiomic, and dosimetric features to predict RP. We applied UQ methods, including Patt scaling, isotonic regression, Venn-ABERS predictor, and Conformal Prediction, to quantify uncertainty. Model performance was assessed through Area Under the Receiver Operating Characteristic curve (AUROC), Area Under the Precision-Recall Curve (AUPRC), and Adaptive Calibration Error (ACE) using Leave-One-Out Cross-Validation (LOO-CV). Results: UQ methods enhanced predictive performance, particularly for high-certainty predictions, while also improving calibration. Radiomic and dosiomic features increased model accuracy but introduced calibration challenges, especially for non-linear models like XGB and RF. Performance gains from UQ methods were most noticeable at higher certainty thresholds. Conclusion: Integrating UQ into ML models with radiomic and dosiomic features improves both predictive accuracy and calibration, supporting more reliable clinical decision-making. The findings emphasize the value of UQ methods in enhancing applicability of predictive models for RP in healthcare settings.
Parameter Competition Balancing for Model Merging
While fine-tuning pretrained models has become common practice, these models often underperform outside their specific domains. Recently developed model merging techniques enable the direct integration of multiple models, each fine-tuned for distinct tasks, into a single model. This strategy promotes multitasking capabilities without requiring retraining on the original datasets. However, existing methods fall short in addressing potential conflicts and complex correlations between tasks, especially in parameter-level adjustments, posing a challenge in effectively balancing parameter competition across various tasks. This paper introduces an innovative technique named PCB-Merging (Parameter Competition Balancing), a lightweight and training-free technique that adjusts the coefficients of each parameter for effective model merging. PCB-Merging employs intra-balancing to gauge parameter significance within individual tasks and inter-balancing to assess parameter similarities across different tasks. Parameters with low importance scores are dropped, and the remaining ones are rescaled to form the final merged model. We assessed our approach in diverse merging scenarios, including cross-task, cross-domain, and cross-training configurations, as well as out-of-domain generalization. The experimental results reveal that our approach achieves substantial performance enhancements across multiple modalities, domains, model sizes, number of tasks, fine-tuning forms, and large language models, outperforming existing model merging methods. The code is publicly available at: https://github.com/duguodong7/pcb-merging.
SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models
Large pre-trained models (LPMs), such as large language models, have become ubiquitous and are employed in many applications. These models are often adapted to a desired domain or downstream task through a fine-tuning stage. This paper proposes SQFT, an end-to-end solution for low-precision sparse parameter-efficient fine-tuning of LPMs, allowing for effective model manipulation in resource-constrained environments. Additionally, an innovative strategy enables the merging of sparse weights with low-rank adapters without losing sparsity and accuracy, overcoming the limitations of previous approaches. SQFT also addresses the challenge of having quantized weights and adapters with different numerical precisions, enabling merging in the desired numerical format without sacrificing accuracy. Multiple adaptation scenarios, models, and comprehensive sparsity levels demonstrate the effectiveness of SQFT. Models and code are available at https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning.
Camera Calibration through Geometric Constraints from Rotation and Projection Matrices
The process of camera calibration involves estimating the intrinsic and extrinsic parameters, which are essential for accurately performing tasks such as 3D reconstruction, object tracking and augmented reality. In this work, we propose a novel constraints-based loss for measuring the intrinsic (focal length: (f_x, f_y) and principal point: (p_x, p_y)) and extrinsic (baseline: (b), disparity: (d), translation: (t_x, t_y, t_z), and rotation specifically pitch: (theta_p)) camera parameters. Our novel constraints are based on geometric properties inherent in the camera model, including the anatomy of the projection matrix (vanishing points, image of world origin, axis planes) and the orthonormality of the rotation matrix. Thus we proposed a novel Unsupervised Geometric Constraint Loss (UGCL) via a multitask learning framework. Our methodology is a hybrid approach that employs the learning power of a neural network to estimate the desired parameters along with the underlying mathematical properties inherent in the camera projection matrix. This distinctive approach not only enhances the interpretability of the model but also facilitates a more informed learning process. Additionally, we introduce a new CVGL Camera Calibration dataset, featuring over 900 configurations of camera parameters, incorporating 63,600 image pairs that closely mirror real-world conditions. By training and testing on both synthetic and real-world datasets, our proposed approach demonstrates improvements across all parameters when compared to the state-of-the-art (SOTA) benchmarks. The code and the updated dataset can be found here: https://github.com/CVLABLUMS/CVGL-Camera-Calibration
Conformal Language Modeling
We propose a novel approach to conformal prediction for generative language models (LMs). Standard conformal prediction produces prediction sets -- in place of single predictions -- that have rigorous, statistical performance guarantees. LM responses are typically sampled from the model's predicted distribution over the large, combinatorial output space of natural language. Translating this process to conformal prediction, we calibrate a stopping rule for sampling different outputs from the LM that get added to a growing set of candidates until we are confident that the output set is sufficient. Since some samples may be low-quality, we also simultaneously calibrate and apply a rejection rule for removing candidates from the output set to reduce noise. Similar to conformal prediction, we prove that the sampled set returned by our procedure contains at least one acceptable answer with high probability, while still being empirically precise (i.e., small) on average. Furthermore, within this set of candidate responses, we show that we can also accurately identify subsets of individual components -- such as phrases or sentences -- that are each independently correct (e.g., that are not "hallucinations"), again with statistical guarantees. We demonstrate the promise of our approach on multiple tasks in open-domain question answering, text summarization, and radiology report generation using different LM variants.
Molmo and PixMo: Open Weights and Open Data for State-of-the-Art Multimodal Models
Today's most advanced multimodal models remain proprietary. The strongest open-weight models rely heavily on synthetic data from proprietary VLMs to achieve good performance, effectively distilling these closed models into open ones. As a result, the community is still missing foundational knowledge about how to build performant VLMs from scratch. We present Molmo, a new family of VLMs that are state-of-the-art in their class of openness. Our key innovation is a novel, highly detailed image caption dataset collected entirely from human annotators using speech-based descriptions. To enable a wide array of user interactions, we also introduce a diverse dataset mixture for fine-tuning that includes in-the-wild Q&A and innovative 2D pointing data. The success of our approach relies on careful choices for the model architecture details, a well-tuned training pipeline, and, most critically, the quality of our newly collected datasets, all of which will be released. The best-in-class 72B model within the Molmo family not only outperforms others in the class of open weight and data models but also compares favorably against proprietary systems like GPT-4o, Claude 3.5, and Gemini 1.5 on both academic benchmarks and human evaluation. We will be releasing all of our model weights, captioning and fine-tuning data, and source code in the near future. Select model weights, inference code, and demo are available at https://molmo.allenai.org.
Stitchable Neural Networks
The public model zoo containing enormous powerful pretrained model families (e.g., ResNet/DeiT) has reached an unprecedented scope than ever, which significantly contributes to the success of deep learning. As each model family consists of pretrained models with diverse scales (e.g., DeiT-Ti/S/B), it naturally arises a fundamental question of how to efficiently assemble these readily available models in a family for dynamic accuracy-efficiency trade-offs at runtime. To this end, we present Stitchable Neural Networks (SN-Net), a novel scalable and efficient framework for model deployment. It cheaply produces numerous networks with different complexity and performance trade-offs given a family of pretrained neural networks, which we call anchors. Specifically, SN-Net splits the anchors across the blocks/layers and then stitches them together with simple stitching layers to map the activations from one anchor to another. With only a few epochs of training, SN-Net effectively interpolates between the performance of anchors with varying scales. At runtime, SN-Net can instantly adapt to dynamic resource constraints by switching the stitching positions. Extensive experiments on ImageNet classification demonstrate that SN-Net can obtain on-par or even better performance than many individually trained networks while supporting diverse deployment scenarios. For example, by stitching Swin Transformers, we challenge hundreds of models in Timm model zoo with a single network. We believe this new elastic model framework can serve as a strong baseline for further research in wider communities.
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset
We present FaceVerse, a fine-grained 3D Neural Face Model, which is built from hybrid East Asian face datasets containing 60K fused RGB-D images and 2K high-fidelity 3D head scan models. A novel coarse-to-fine structure is proposed to take better advantage of our hybrid dataset. In the coarse module, we generate a base parametric model from large-scale RGB-D images, which is able to predict accurate rough 3D face models in different genders, ages, etc. Then in the fine module, a conditional StyleGAN architecture trained with high-fidelity scan models is introduced to enrich elaborate facial geometric and texture details. Note that different from previous methods, our base and detailed modules are both changeable, which enables an innovative application of adjusting both the basic attributes and the facial details of 3D face models. Furthermore, we propose a single-image fitting framework based on differentiable rendering. Rich experiments show that our method outperforms the state-of-the-art methods.
Momentum-based Weight Interpolation of Strong Zero-Shot Models for Continual Learning
Large pre-trained, zero-shot capable models have shown considerable success both for standard transfer and adaptation tasks, with particular robustness towards distribution shifts. In addition, subsequent fine-tuning can considerably improve performance on a selected downstream task. However, through naive fine-tuning, these zero-shot models lose their generalizability and robustness towards distribution shifts. This is a particular problem for tasks such as Continual Learning (CL), where continuous adaptation has to be performed as new task distributions are introduced sequentially. In this work, we showcase that where fine-tuning falls short to adapt such zero-shot capable models, simple momentum-based weight interpolation can provide consistent improvements for CL tasks in both memory-free and memory-based settings. In particular, we find improvements of over +4% on standard CL benchmarks, while reducing the error to the upper limit of jointly training on all tasks at once in parts by more than half, allowing the continual learner to inch closer to the joint training limits.
Surface Normal Clustering for Implicit Representation of Manhattan Scenes
Novel view synthesis and 3D modeling using implicit neural field representation are shown to be very effective for calibrated multi-view cameras. Such representations are known to benefit from additional geometric and semantic supervision. Most existing methods that exploit additional supervision require dense pixel-wise labels or localized scene priors. These methods cannot benefit from high-level vague scene priors provided in terms of scenes' descriptions. In this work, we aim to leverage the geometric prior of Manhattan scenes to improve the implicit neural radiance field representations. More precisely, we assume that only the knowledge of the indoor scene (under investigation) being Manhattan is known -- with no additional information whatsoever -- with an unknown Manhattan coordinate frame. Such high-level prior is used to self-supervise the surface normals derived explicitly in the implicit neural fields. Our modeling allows us to cluster the derived normals and exploit their orthogonality constraints for self-supervision. Our exhaustive experiments on datasets of diverse indoor scenes demonstrate the significant benefit of the proposed method over the established baselines. The source code will be available at https://github.com/nikola3794/normal-clustering-nerf.
Beyond the Pixel: a Photometrically Calibrated HDR Dataset for Luminance and Color Prediction
Light plays an important role in human well-being. However, most computer vision tasks treat pixels without considering their relationship to physical luminance. To address this shortcoming, we introduce the Laval Photometric Indoor HDR Dataset, the first large-scale photometrically calibrated dataset of high dynamic range 360{\deg} panoramas. Our key contribution is the calibration of an existing, uncalibrated HDR Dataset. We do so by accurately capturing RAW bracketed exposures simultaneously with a professional photometric measurement device (chroma meter) for multiple scenes across a variety of lighting conditions. Using the resulting measurements, we establish the calibration coefficients to be applied to the HDR images. The resulting dataset is a rich representation of indoor scenes which displays a wide range of illuminance and color, and varied types of light sources. We exploit the dataset to introduce three novel tasks, where: per-pixel luminance, per-pixel color and planar illuminance can be predicted from a single input image. Finally, we also capture another smaller photometric dataset with a commercial 360{\deg} camera, to experiment on generalization across cameras. We are optimistic that the release of our datasets and associated code will spark interest in physically accurate light estimation within the community. Dataset and code are available at https://lvsn.github.io/beyondthepixel/.
Using Explanations to Guide Models
Deep neural networks are highly performant, but might base their decision on spurious or background features that co-occur with certain classes, which can hurt generalization. To mitigate this issue, the usage of 'model guidance' has gained popularity recently: for this, models are guided to be "right for the right reasons" by regularizing the models' explanations to highlight the right features. Experimental validation of these approaches has thus far however been limited to relatively simple and / or synthetic datasets. To gain a better understanding of which model-guiding approaches actually transfer to more challenging real-world datasets, in this work we conduct an in-depth evaluation across various loss functions, attribution methods, models, and 'guidance depths' on the PASCAL VOC 2007 and MS COCO 2014 datasets, and show that model guidance can sometimes even improve model performance. In this context, we further propose a novel energy loss, show its effectiveness in directing the model to focus on object features. We also show that these gains can be achieved even with a small fraction (e.g. 1%) of bounding box annotations, highlighting the cost effectiveness of this approach. Lastly, we show that this approach can also improve generalization under distribution shifts. Code will be made available.
3D-PreMise: Can Large Language Models Generate 3D Shapes with Sharp Features and Parametric Control?
Recent advancements in implicit 3D representations and generative models have markedly propelled the field of 3D object generation forward. However, it remains a significant challenge to accurately model geometries with defined sharp features under parametric controls, which is crucial in fields like industrial design and manufacturing. To bridge this gap, we introduce a framework that employs Large Language Models (LLMs) to generate text-driven 3D shapes, manipulating 3D software via program synthesis. We present 3D-PreMise, a dataset specifically tailored for 3D parametric modeling of industrial shapes, designed to explore state-of-the-art LLMs within our proposed pipeline. Our work reveals effective generation strategies and delves into the self-correction capabilities of LLMs using a visual interface. Our work highlights both the potential and limitations of LLMs in 3D parametric modeling for industrial applications.
Topological structure of complex predictions
Complex prediction models such as deep learning are the output from fitting machine learning, neural networks, or AI models to a set of training data. These are now standard tools in science. A key challenge with the current generation of models is that they are highly parameterized, which makes describing and interpreting the prediction strategies difficult. We use topological data analysis to transform these complex prediction models into pictures representing a topological view. The result is a map of the predictions that enables inspection. The methods scale up to large datasets across different domains and enable us to detect labeling errors in training data, understand generalization in image classification, and inspect predictions of likely pathogenic mutations in the BRCA1 gene.
Depthwise Hyperparameter Transfer in Residual Networks: Dynamics and Scaling Limit
The cost of hyperparameter tuning in deep learning has been rising with model sizes, prompting practitioners to find new tuning methods using a proxy of smaller networks. One such proposal uses muP parameterized networks, where the optimal hyperparameters for small width networks transfer to networks with arbitrarily large width. However, in this scheme, hyperparameters do not transfer across depths. As a remedy, we study residual networks with a residual branch scale of 1/text{depth} in combination with the muP parameterization. We provide experiments demonstrating that residual architectures including convolutional ResNets and Vision Transformers trained with this parameterization exhibit transfer of optimal hyperparameters across width and depth on CIFAR-10 and ImageNet. Furthermore, our empirical findings are supported and motivated by theory. Using recent developments in the dynamical mean field theory (DMFT) description of neural network learning dynamics, we show that this parameterization of ResNets admits a well-defined feature learning joint infinite-width and infinite-depth limit and show convergence of finite-size network dynamics towards this limit.
LoRA ensembles for large language model fine-tuning
Finetuned LLMs often exhibit poor uncertainty quantification, manifesting as overconfidence, poor calibration, and unreliable prediction results on test data or out-of-distribution samples. One approach commonly used in vision for alleviating this issue is a deep ensemble, which constructs an ensemble by training the same model multiple times using different random initializations. However, there is a huge challenge to ensembling LLMs: the most effective LLMs are very, very large. Keeping a single LLM in memory is already challenging enough: keeping an ensemble of e.g. 5 LLMs in memory is impossible in many settings. To address these issues, we propose an ensemble approach using Low-Rank Adapters (LoRA), a parameter-efficient fine-tuning technique. Critically, these low-rank adapters represent a very small number of parameters, orders of magnitude less than the underlying pre-trained model. Thus, it is possible to construct large ensembles of LoRA adapters with almost the same computational overhead as using the original model. We find that LoRA ensembles, applied on its own or on top of pre-existing regularization techniques, gives consistent improvements in predictive accuracy and uncertainty quantification.
PFGM++: Unlocking the Potential of Physics-Inspired Generative Models
We introduce a new family of physics-inspired generative models termed PFGM++ that unifies diffusion models and Poisson Flow Generative Models (PFGM). These models realize generative trajectories for N dimensional data by embedding paths in N{+}D dimensional space while still controlling the progression with a simple scalar norm of the D additional variables. The new models reduce to PFGM when D{=}1 and to diffusion models when D{to}infty. The flexibility of choosing D allows us to trade off robustness against rigidity as increasing D results in more concentrated coupling between the data and the additional variable norms. We dispense with the biased large batch field targets used in PFGM and instead provide an unbiased perturbation-based objective similar to diffusion models. To explore different choices of D, we provide a direct alignment method for transferring well-tuned hyperparameters from diffusion models (D{to} infty) to any finite D values. Our experiments show that models with finite D can be superior to previous state-of-the-art diffusion models on CIFAR-10/FFHQ 64{times}64 datasets, with FID scores of 1.91/2.43 when D{=}2048/128. In class-conditional setting, D{=}2048 yields current state-of-the-art FID of 1.74 on CIFAR-10. In addition, we demonstrate that models with smaller D exhibit improved robustness against modeling errors. Code is available at https://github.com/Newbeeer/pfgmpp
DataDecide: How to Predict Best Pretraining Data with Small Experiments
Because large language models are expensive to pretrain on different datasets, using smaller-scale experiments to decide on data is crucial for reducing costs. Which benchmarks and methods of making decisions from observed performance at small scale most accurately predict the datasets that yield the best large models? To empower open exploration of this question, we release models, data, and evaluations in DataDecide -- the most extensive open suite of models over differences in data and scale. We conduct controlled pretraining experiments across 25 corpora with differing sources, deduplication, and filtering up to 100B tokens, model sizes up to 1B parameters, and 3 random seeds. We find that the ranking of models at a single, small size (e.g., 150M parameters) is a strong baseline for predicting best models at our larger target scale (1B) (~80% of com parisons correct). No scaling law methods among 8 baselines exceed the compute-decision frontier of single-scale predictions, but DataDecide can measure improvement in future scaling laws. We also identify that using continuous likelihood metrics as proxies in small experiments makes benchmarks including MMLU, ARC, HellaSwag, MBPP, and HumanEval >80% predictable at the target 1B scale with just 0.01% of the compute.
AdaPTS: Adapting Univariate Foundation Models to Probabilistic Multivariate Time Series Forecasting
Pre-trained foundation models (FMs) have shown exceptional performance in univariate time series forecasting tasks. However, several practical challenges persist, including managing intricate dependencies among features and quantifying uncertainty in predictions. This study aims to tackle these critical limitations by introducing adapters; feature-space transformations that facilitate the effective use of pre-trained univariate time series FMs for multivariate tasks. Adapters operate by projecting multivariate inputs into a suitable latent space and applying the FM independently to each dimension. Inspired by the literature on representation learning and partially stochastic Bayesian neural networks, we present a range of adapters and optimization/inference strategies. Experiments conducted on both synthetic and real-world datasets confirm the efficacy of adapters, demonstrating substantial enhancements in forecasting accuracy and uncertainty quantification compared to baseline methods. Our framework, AdaPTS, positions adapters as a modular, scalable, and effective solution for leveraging time series FMs in multivariate contexts, thereby promoting their wider adoption in real-world applications. We release the code at https://github.com/abenechehab/AdaPTS.
Weight Conditioning for Smooth Optimization of Neural Networks
In this article, we introduce a novel normalization technique for neural network weight matrices, which we term weight conditioning. This approach aims to narrow the gap between the smallest and largest singular values of the weight matrices, resulting in better-conditioned matrices. The inspiration for this technique partially derives from numerical linear algebra, where well-conditioned matrices are known to facilitate stronger convergence results for iterative solvers. We provide a theoretical foundation demonstrating that our normalization technique smoothens the loss landscape, thereby enhancing convergence of stochastic gradient descent algorithms. Empirically, we validate our normalization across various neural network architectures, including Convolutional Neural Networks (CNNs), Vision Transformers (ViT), Neural Radiance Fields (NeRF), and 3D shape modeling. Our findings indicate that our normalization method is not only competitive but also outperforms existing weight normalization techniques from the literature.
2 OLMo 2 Furious
We present OLMo 2, the next generation of our fully open language models. OLMo 2 includes dense autoregressive models with improved architecture and training recipe, pretraining data mixtures, and instruction tuning recipes. Our modified model architecture and training recipe achieve both better training stability and improved per-token efficiency. Our updated pretraining data mixture introduces a new, specialized data mix called Dolmino Mix 1124, which significantly improves model capabilities across many downstream task benchmarks when introduced via late-stage curriculum training (i.e. specialized data during the annealing phase of pretraining). Finally, we incorporate best practices from T\"ulu 3 to develop OLMo 2-Instruct, focusing on permissive data and extending our final-stage reinforcement learning with verifiable rewards (RLVR). Our OLMo 2 base models sit at the Pareto frontier of performance to compute, often matching or outperforming open-weight only models like Llama 3.1 and Qwen 2.5 while using fewer FLOPs and with fully transparent training data, code, and recipe. Our fully open OLMo 2-Instruct models are competitive with or surpassing open-weight only models of comparable size, including Qwen 2.5, Llama 3.1 and Gemma 2. We release all OLMo 2 artifacts openly -- models at 7B and 13B scales, both pretrained and post-trained, including their full training data, training code and recipes, training logs and thousands of intermediate checkpoints. The final instruction model is available on the Ai2 Playground as a free research demo.
Transfer Learning for Emulating Ocean Climate Variability across CO_2 forcing
With the success of machine learning (ML) applied to climate reaching further every day, emulators have begun to show promise not only for weather but for multi-year time scales in the atmosphere. Similar work for the ocean remains nascent, with state-of-the-art limited to models running for shorter time scales or only for regions of the globe. In this work, we demonstrate high-skill global emulation for surface ocean fields over 5-8 years of model rollout, accurately representing modes of variability for two different ML architectures (ConvNext and Transformers). In addition, we address the outstanding question of generalization, an essential consideration if the end-use of emulation is to model warming scenarios outside of the model training data. We show that 1) generalization is not an intrinsic feature of a data-driven emulator, 2) fine-tuning the emulator on only small amounts of additional data from a distribution similar to the test set can enable the emulator to perform well in a warmed climate, and 3) the forced emulators are robust to noise in the forcing.
Robust Weight Signatures: Gaining Robustness as Easy as Patching Weights?
Given a robust model trained to be resilient to one or multiple types of distribution shifts (e.g., natural image corruptions), how is that "robustness" encoded in the model weights, and how easily can it be disentangled and/or "zero-shot" transferred to some other models? This paper empirically suggests a surprisingly simple answer: linearly - by straightforward model weight arithmetic! We start by drawing several key observations: (1)assuming that we train the same model architecture on both a clean dataset and its corrupted version, resultant weights mostly differ in shallow layers; (2)the weight difference after projection, which we call "Robust Weight Signature" (RWS), appears to be discriminative and indicative of different corruption types; (3)for the same corruption type, the RWSs obtained by one model architecture are highly consistent and transferable across different datasets. We propose a minimalistic model robustness "patching" framework that carries a model trained on clean data together with its pre-extracted RWSs. In this way, injecting certain robustness to the model is reduced to directly adding the corresponding RWS to its weight. We verify our proposed framework to be remarkably (1)lightweight. since RWSs concentrate on the shallowest few layers and we further show they can be painlessly quantized, storing an RWS is up to 13 x more compact than storing the full weight copy; (2)in-situ adjustable. RWSs can be appended as needed and later taken off to restore the intact clean model. We further demonstrate one can linearly re-scale the RWS to control the patched robustness strength; (3)composable. Multiple RWSs can be added simultaneously to patch more comprehensive robustness at once; and (4)transferable. Even when the clean model backbone is continually adapted or updated, RWSs remain as effective patches due to their outstanding cross-dataset transferability.
MUSCLE: A Model Update Strategy for Compatible LLM Evolution
Large Language Models (LLMs) are frequently updated due to data or architecture changes to improve their performance. When updating models, developers often focus on increasing overall performance metrics with less emphasis on being compatible with previous model versions. However, users often build a mental model of the functionality and capabilities of a particular machine learning model they are interacting with. They have to adapt their mental model with every update -- a draining task that can lead to user dissatisfaction. In practice, fine-tuned downstream task adapters rely on pretrained LLM base models. When these base models are updated, these user-facing downstream task models experience instance regression or negative flips -- previously correct instances are now predicted incorrectly. This happens even when the downstream task training procedures remain identical. Our work aims to provide seamless model updates to a user in two ways. First, we provide evaluation metrics for a notion of compatibility to prior model versions, specifically for generative tasks but also applicable for discriminative tasks. We observe regression and inconsistencies between different model versions on a diverse set of tasks and model updates. Second, we propose a training strategy to minimize the number of inconsistencies in model updates, involving training of a compatibility model that can enhance task fine-tuned language models. We reduce negative flips -- instances where a prior model version was correct, but a new model incorrect -- by up to 40% from Llama 1 to Llama 2.
When Do We Not Need Larger Vision Models?
Scaling up the size of vision models has been the de facto standard to obtain more powerful visual representations. In this work, we discuss the point beyond which larger vision models are not necessary. First, we demonstrate the power of Scaling on Scales (S^2), whereby a pre-trained and frozen smaller vision model (e.g., ViT-B or ViT-L), run over multiple image scales, can outperform larger models (e.g., ViT-H or ViT-G) on classification, segmentation, depth estimation, Multimodal LLM (MLLM) benchmarks, and robotic manipulation. Notably, S^2 achieves state-of-the-art performance in detailed understanding of MLLM on the V* benchmark, surpassing models such as GPT-4V. We examine the conditions under which S^2 is a preferred scaling approach compared to scaling on model size. While larger models have the advantage of better generalization on hard examples, we show that features of larger vision models can be well approximated by those of multi-scale smaller models. This suggests most, if not all, of the representations learned by current large pre-trained models can also be obtained from multi-scale smaller models. Our results show that a multi-scale smaller model has comparable learning capacity to a larger model, and pre-training smaller models with S^2 can match or even exceed the advantage of larger models. We release a Python package that can apply S^2 on any vision model with one line of code: https://github.com/bfshi/scaling_on_scales.
Galaxy Zoo: Probabilistic Morphology through Bayesian CNNs and Active Learning
We use Bayesian convolutional neural networks and a novel generative model of Galaxy Zoo volunteer responses to infer posteriors for the visual morphology of galaxies. Bayesian CNN can learn from galaxy images with uncertain labels and then, for previously unlabelled galaxies, predict the probability of each possible label. Our posteriors are well-calibrated (e.g. for predicting bars, we achieve coverage errors of 11.8% within a vote fraction deviation of 0.2) and hence are reliable for practical use. Further, using our posteriors, we apply the active learning strategy BALD to request volunteer responses for the subset of galaxies which, if labelled, would be most informative for training our network. We show that training our Bayesian CNNs using active learning requires up to 35-60% fewer labelled galaxies, depending on the morphological feature being classified. By combining human and machine intelligence, Galaxy Zoo will be able to classify surveys of any conceivable scale on a timescale of weeks, providing massive and detailed morphology catalogues to support research into galaxy evolution.
ZeroShape: Regression-based Zero-shot Shape Reconstruction
We study the problem of single-image zero-shot 3D shape reconstruction. Recent works learn zero-shot shape reconstruction through generative modeling of 3D assets, but these models are computationally expensive at train and inference time. In contrast, the traditional approach to this problem is regression-based, where deterministic models are trained to directly regress the object shape. Such regression methods possess much higher computational efficiency than generative methods. This raises a natural question: is generative modeling necessary for high performance, or conversely, are regression-based approaches still competitive? To answer this, we design a strong regression-based model, called ZeroShape, based on the converging findings in this field and a novel insight. We also curate a large real-world evaluation benchmark, with objects from three different real-world 3D datasets. This evaluation benchmark is more diverse and an order of magnitude larger than what prior works use to quantitatively evaluate their models, aiming at reducing the evaluation variance in our field. We show that ZeroShape not only achieves superior performance over state-of-the-art methods, but also demonstrates significantly higher computational and data efficiency.
Foundation Models for Generalist Geospatial Artificial Intelligence
Significant progress in the development of highly adaptable and reusable Artificial Intelligence (AI) models is expected to have a significant impact on Earth science and remote sensing. Foundation models are pre-trained on large unlabeled datasets through self-supervision, and then fine-tuned for various downstream tasks with small labeled datasets. This paper introduces a first-of-a-kind framework for the efficient pre-training and fine-tuning of foundational models on extensive geospatial data. We have utilized this framework to create Prithvi, a transformer-based geospatial foundational model pre-trained on more than 1TB of multispectral satellite imagery from the Harmonized Landsat-Sentinel 2 (HLS) dataset. Our study demonstrates the efficacy of our framework in successfully fine-tuning Prithvi to a range of Earth observation tasks that have not been tackled by previous work on foundation models involving multi-temporal cloud gap imputation, flood mapping, wildfire scar segmentation, and multi-temporal crop segmentation. Our experiments show that the pre-trained model accelerates the fine-tuning process compared to leveraging randomly initialized weights. In addition, pre-trained Prithvi compares well against the state-of-the-art, e.g., outperforming a conditional GAN model in multi-temporal cloud imputation by up to 5pp (or 5.7%) in the structural similarity index. Finally, due to the limited availability of labeled data in the field of Earth observation, we gradually reduce the quantity of available labeled data for refining the model to evaluate data efficiency and demonstrate that data can be decreased significantly without affecting the model's accuracy. The pre-trained 100 million parameter model and corresponding fine-tuning workflows have been released publicly as open source contributions to the global Earth sciences community through Hugging Face.
Fine-tuning large language models for domain adaptation: Exploration of training strategies, scaling, model merging and synergistic capabilities
The advancement of Large Language Models (LLMs) for domain applications in fields such as materials science and engineering depends on the development of fine-tuning strategies that adapt models for specialized, technical capabilities. In this work, we explore the effects of Continued Pretraining (CPT), Supervised Fine-Tuning (SFT), and various preference-based optimization approaches, including Direct Preference Optimization (DPO) and Odds Ratio Preference Optimization (ORPO), on fine-tuned LLM performance. Our analysis shows how these strategies influence model outcomes and reveals that the merging of multiple fine-tuned models can lead to the emergence of capabilities that surpass the individual contributions of the parent models. We find that model merging leads to new functionalities that neither parent model could achieve alone, leading to improved performance in domain-specific assessments. Experiments with different model architectures are presented, including Llama 3.1 8B and Mistral 7B models, where similar behaviors are observed. Exploring whether the results hold also for much smaller models, we use a tiny LLM with 1.7 billion parameters and show that very small LLMs do not necessarily feature emergent capabilities under model merging, suggesting that model scaling may be a key component. In open-ended yet consistent chat conversations between a human and AI models, our assessment reveals detailed insights into how different model variants perform and show that the smallest model achieves a high intelligence score across key criteria including reasoning depth, creativity, clarity, and quantitative precision. Other experiments include the development of image generation prompts based on disparate biological material design concepts, to create new microstructures, architectural concepts, and urban design based on biological materials-inspired construction principles.
Recollection from Pensieve: Novel View Synthesis via Learning from Uncalibrated Videos
Currently almost all state-of-the-art novel view synthesis and reconstruction models rely on calibrated cameras or additional geometric priors for training. These prerequisites significantly limit their applicability to massive uncalibrated data. To alleviate this requirement and unlock the potential for self-supervised training on large-scale uncalibrated videos, we propose a novel two-stage strategy to train a view synthesis model from only raw video frames or multi-view images, without providing camera parameters or other priors. In the first stage, we learn to reconstruct the scene implicitly in a latent space without relying on any explicit 3D representation. Specifically, we predict per-frame latent camera and scene context features, and employ a view synthesis model as a proxy for explicit rendering. This pretraining stage substantially reduces the optimization complexity and encourages the network to learn the underlying 3D consistency in a self-supervised manner. The learned latent camera and implicit scene representation have a large gap compared with the real 3D world. To reduce this gap, we introduce the second stage training by explicitly predicting 3D Gaussian primitives. We additionally apply explicit Gaussian Splatting rendering loss and depth projection loss to align the learned latent representations with physically grounded 3D geometry. In this way, Stage 1 provides a strong initialization and Stage 2 enforces 3D consistency - the two stages are complementary and mutually beneficial. Extensive experiments demonstrate the effectiveness of our approach, achieving high-quality novel view synthesis and accurate camera pose estimation, compared to methods that employ supervision with calibration, pose, or depth information. The code is available at https://github.com/Dwawayu/Pensieve.
Evidential Turing Processes
A probabilistic classifier with reliable predictive uncertainties i) fits successfully to the target domain data, ii) provides calibrated class probabilities in difficult regions of the target domain (e.g.\ class overlap), and iii) accurately identifies queries coming out of the target domain and rejects them. We introduce an original combination of Evidential Deep Learning, Neural Processes, and Neural Turing Machines capable of providing all three essential properties mentioned above for total uncertainty quantification. We observe our method on five classification tasks to be the only one that can excel all three aspects of total calibration with a single standalone predictor. Our unified solution delivers an implementation-friendly and compute efficient recipe for safety clearance and provides intellectual economy to an investigation of algorithmic roots of epistemic awareness in deep neural nets.
Few-Shot Class-Incremental Learning via Training-Free Prototype Calibration
Real-world scenarios are usually accompanied by continuously appearing classes with scare labeled samples, which require the machine learning model to incrementally learn new classes and maintain the knowledge of base classes. In this Few-Shot Class-Incremental Learning (FSCIL) scenario, existing methods either introduce extra learnable components or rely on a frozen feature extractor to mitigate catastrophic forgetting and overfitting problems. However, we find a tendency for existing methods to misclassify the samples of new classes into base classes, which leads to the poor performance of new classes. In other words, the strong discriminability of base classes distracts the classification of new classes. To figure out this intriguing phenomenon, we observe that although the feature extractor is only trained on base classes, it can surprisingly represent the semantic similarity between the base and unseen new classes. Building upon these analyses, we propose a simple yet effective Training-frEE calibratioN (TEEN) strategy to enhance the discriminability of new classes by fusing the new prototypes (i.e., mean features of a class) with weighted base prototypes. In addition to standard benchmarks in FSCIL, TEEN demonstrates remarkable performance and consistent improvements over baseline methods in the few-shot learning scenario. Code is available at: https://github.com/wangkiw/TEEN
Generative Image Inpainting with Contextual Attention
Recent deep learning based approaches have shown promising results for the challenging task of inpainting large missing regions in an image. These methods can generate visually plausible image structures and textures, but often create distorted structures or blurry textures inconsistent with surrounding areas. This is mainly due to ineffectiveness of convolutional neural networks in explicitly borrowing or copying information from distant spatial locations. On the other hand, traditional texture and patch synthesis approaches are particularly suitable when it needs to borrow textures from the surrounding regions. Motivated by these observations, we propose a new deep generative model-based approach which can not only synthesize novel image structures but also explicitly utilize surrounding image features as references during network training to make better predictions. The model is a feed-forward, fully convolutional neural network which can process images with multiple holes at arbitrary locations and with variable sizes during the test time. Experiments on multiple datasets including faces (CelebA, CelebA-HQ), textures (DTD) and natural images (ImageNet, Places2) demonstrate that our proposed approach generates higher-quality inpainting results than existing ones. Code, demo and models are available at: https://github.com/JiahuiYu/generative_inpainting.
Perspective Fields for Single Image Camera Calibration
Geometric camera calibration is often required for applications that understand the perspective of the image. We propose perspective fields as a representation that models the local perspective properties of an image. Perspective Fields contain per-pixel information about the camera view, parameterized as an up vector and a latitude value. This representation has a number of advantages as it makes minimal assumptions about the camera model and is invariant or equivariant to common image editing operations like cropping, warping, and rotation. It is also more interpretable and aligned with human perception. We train a neural network to predict Perspective Fields and the predicted Perspective Fields can be converted to calibration parameters easily. We demonstrate the robustness of our approach under various scenarios compared with camera calibration-based methods and show example applications in image compositing.
GS-LRM: Large Reconstruction Model for 3D Gaussian Splatting
We propose GS-LRM, a scalable large reconstruction model that can predict high-quality 3D Gaussian primitives from 2-4 posed sparse images in 0.23 seconds on single A100 GPU. Our model features a very simple transformer-based architecture; we patchify input posed images, pass the concatenated multi-view image tokens through a sequence of transformer blocks, and decode final per-pixel Gaussian parameters directly from these tokens for differentiable rendering. In contrast to previous LRMs that can only reconstruct objects, by predicting per-pixel Gaussians, GS-LRM naturally handles scenes with large variations in scale and complexity. We show that our model can work on both object and scene captures by training it on Objaverse and RealEstate10K respectively. In both scenarios, the models outperform state-of-the-art baselines by a wide margin. We also demonstrate applications of our model in downstream 3D generation tasks. Our project webpage is available at: https://sai-bi.github.io/project/gs-lrm/ .
Stochastic Backpropagation and Approximate Inference in Deep Generative Models
We marry ideas from deep neural networks and approximate Bayesian inference to derive a generalised class of deep, directed generative models, endowed with a new algorithm for scalable inference and learning. Our algorithm introduces a recognition model to represent approximate posterior distributions, and that acts as a stochastic encoder of the data. We develop stochastic back-propagation -- rules for back-propagation through stochastic variables -- and use this to develop an algorithm that allows for joint optimisation of the parameters of both the generative and recognition model. We demonstrate on several real-world data sets that the model generates realistic samples, provides accurate imputations of missing data and is a useful tool for high-dimensional data visualisation.
Generative Zoo
The model-based estimation of 3D animal pose and shape from images enables computational modeling of animal behavior. Training models for this purpose requires large amounts of labeled image data with precise pose and shape annotations. However, capturing such data requires the use of multi-view or marker-based motion-capture systems, which are impractical to adapt to wild animals in situ and impossible to scale across a comprehensive set of animal species. Some have attempted to address the challenge of procuring training data by pseudo-labeling individual real-world images through manual 2D annotation, followed by 3D-parameter optimization to those labels. While this approach may produce silhouette-aligned samples, the obtained pose and shape parameters are often implausible due to the ill-posed nature of the monocular fitting problem. Sidestepping real-world ambiguity, others have designed complex synthetic-data-generation pipelines leveraging video-game engines and collections of artist-designed 3D assets. Such engines yield perfect ground-truth annotations but are often lacking in visual realism and require considerable manual effort to adapt to new species or environments. Motivated by these shortcomings, we propose an alternative approach to synthetic-data generation: rendering with a conditional image-generation model. We introduce a pipeline that samples a diverse set of poses and shapes for a variety of mammalian quadrupeds and generates realistic images with corresponding ground-truth pose and shape parameters. To demonstrate the scalability of our approach, we introduce GenZoo, a synthetic dataset containing one million images of distinct subjects. We train a 3D pose and shape regressor on GenZoo, which achieves state-of-the-art performance on a real-world animal pose and shape estimation benchmark, despite being trained solely on synthetic data. https://genzoo.is.tue.mpg.de
LiveXiv -- A Multi-Modal Live Benchmark Based on Arxiv Papers Content
The large-scale training of multi-modal models on data scraped from the web has shown outstanding utility in infusing these models with the required world knowledge to perform effectively on multiple downstream tasks. However, one downside of scraping data from the web can be the potential sacrifice of the benchmarks on which the abilities of these models are often evaluated. To safeguard against test data contamination and to truly test the abilities of these foundation models we propose LiveXiv: A scalable evolving live benchmark based on scientific ArXiv papers. LiveXiv accesses domain-specific manuscripts at any given timestamp and proposes to automatically generate visual question-answer pairs (VQA). This is done without any human-in-the-loop, using the multi-modal content in the manuscripts, like graphs, charts, and tables. Moreover, we introduce an efficient evaluation approach that estimates the performance of all models on the evolving benchmark using evaluations of only a subset of models. This significantly reduces the overall evaluation cost. We benchmark multiple open and proprietary Large Multi-modal Models (LMMs) on the first version of our benchmark, showing its challenging nature and exposing the models true abilities, avoiding contamination. Lastly, in our commitment to high quality, we have collected and evaluated a manually verified subset. By comparing its overall results to our automatic annotations, we have found that the performance variance is indeed minimal (<2.5%). Our dataset is available online on HuggingFace, and our code will be available here.
Alchemist: Parametric Control of Material Properties with Diffusion Models
We propose a method to control material attributes of objects like roughness, metallic, albedo, and transparency in real images. Our method capitalizes on the generative prior of text-to-image models known for photorealism, employing a scalar value and instructions to alter low-level material properties. Addressing the lack of datasets with controlled material attributes, we generated an object-centric synthetic dataset with physically-based materials. Fine-tuning a modified pre-trained text-to-image model on this synthetic dataset enables us to edit material properties in real-world images while preserving all other attributes. We show the potential application of our model to material edited NeRFs.
Learning Versatile 3D Shape Generation with Improved AR Models
Auto-Regressive (AR) models have achieved impressive results in 2D image generation by modeling joint distributions in the grid space. While this approach has been extended to the 3D domain for powerful shape generation, it still has two limitations: expensive computations on volumetric grids and ambiguous auto-regressive order along grid dimensions. To overcome these limitations, we propose the Improved Auto-regressive Model (ImAM) for 3D shape generation, which applies discrete representation learning based on a latent vector instead of volumetric grids. Our approach not only reduces computational costs but also preserves essential geometric details by learning the joint distribution in a more tractable order. Moreover, thanks to the simplicity of our model architecture, we can naturally extend it from unconditional to conditional generation by concatenating various conditioning inputs, such as point clouds, categories, images, and texts. Extensive experiments demonstrate that ImAM can synthesize diverse and faithful shapes of multiple categories, achieving state-of-the-art performance.
The Effect of Person-Specific Biometrics in Improving Generic Stress Predictive Models
Because stress is subjective and is expressed differently from one person to another, generic stress prediction models (i.e., models that predict the stress of any person) perform crudely. Only person-specific ones (i.e., models that predict the stress of a preordained person) yield reliable predictions, but they are not adaptable and costly to deploy in real-world environments. For illustration, in an office environment, a stress monitoring system that uses person-specific models would require collecting new data and training a new model for every employee. Moreover, once deployed, the models would deteriorate and need expensive periodic upgrades because stress is dynamic and depends on unforeseeable factors. We propose a simple, yet practical and cost effective calibration technique that derives an accurate and personalized stress prediction model from physiological samples collected from a large population. We validate our approach on two stress datasets. The results show that our technique performs much better than a generic model. For instance, a generic model achieved only a 42.5% accuracy. However, with only 100 calibration samples, we raised its accuracy to 95.2% We also propose a blueprint for a stress monitoring system based on our strategy, and we debate its merits and limitation. Finally, we made public our source code and the relevant datasets to allow other researchers to replicate our findings.
Plug-In Inversion: Model-Agnostic Inversion for Vision with Data Augmentations
Existing techniques for model inversion typically rely on hard-to-tune regularizers, such as total variation or feature regularization, which must be individually calibrated for each network in order to produce adequate images. In this work, we introduce Plug-In Inversion, which relies on a simple set of augmentations and does not require excessive hyper-parameter tuning. Under our proposed augmentation-based scheme, the same set of augmentation hyper-parameters can be used for inverting a wide range of image classification models, regardless of input dimensions or the architecture. We illustrate the practicality of our approach by inverting Vision Transformers (ViTs) and Multi-Layer Perceptrons (MLPs) trained on the ImageNet dataset, tasks which to the best of our knowledge have not been successfully accomplished by any previous works.
Pushing Auto-regressive Models for 3D Shape Generation at Capacity and Scalability
Auto-regressive models have achieved impressive results in 2D image generation by modeling joint distributions in grid space. In this paper, we extend auto-regressive models to 3D domains, and seek a stronger ability of 3D shape generation by improving auto-regressive models at capacity and scalability simultaneously. Firstly, we leverage an ensemble of publicly available 3D datasets to facilitate the training of large-scale models. It consists of a comprehensive collection of approximately 900,000 objects, with multiple properties of meshes, points, voxels, rendered images, and text captions. This diverse labeled dataset, termed Objaverse-Mix, empowers our model to learn from a wide range of object variations. However, directly applying 3D auto-regression encounters critical challenges of high computational demands on volumetric grids and ambiguous auto-regressive order along grid dimensions, resulting in inferior quality of 3D shapes. To this end, we then present a novel framework Argus3D in terms of capacity. Concretely, our approach introduces discrete representation learning based on a latent vector instead of volumetric grids, which not only reduces computational costs but also preserves essential geometric details by learning the joint distributions in a more tractable order. The capacity of conditional generation can thus be realized by simply concatenating various conditioning inputs to the latent vector, such as point clouds, categories, images, and texts. In addition, thanks to the simplicity of our model architecture, we naturally scale up our approach to a larger model with an impressive 3.6 billion parameters, further enhancing the quality of versatile 3D generation. Extensive experiments on four generation tasks demonstrate that Argus3D can synthesize diverse and faithful shapes across multiple categories, achieving remarkable performance.
Transferable Post-training via Inverse Value Learning
As post-training processes utilize increasingly large datasets and base models continue to grow in size, the computational demands and implementation challenges of existing algorithms are escalating significantly. In this paper, we propose modeling the changes at the logits level during post-training using a separate neural network (i.e., the value network). After training this network on a small base model using demonstrations, this network can be seamlessly integrated with other pre-trained models during inference, enables them to achieve similar capability enhancements. We systematically investigate the best practices for this paradigm in terms of pre-training weights and connection schemes. We demonstrate that the resulting value network has broad transferability across pre-trained models of different parameter sizes within the same family, models undergoing continuous pre-training within the same family, and models with different vocabularies across families. In certain cases, it can achieve performance comparable to full-parameter fine-tuning. Furthermore, we explore methods to enhance the transferability of the value model and prevent overfitting to the base model used during training.
Reprogramming under constraints: Revisiting efficient and reliable transferability of lottery tickets
In the era of foundation models with huge pre-training budgets, the downstream tasks have been shifted to the narrative of efficient and fast adaptation. For classification-based tasks in the domain of computer vision, the two most efficient approaches have been linear probing (LP) and visual prompting/reprogramming (VP); the former aims to learn a classifier in the form of a linear head on the features extracted by the pre-trained model, while the latter maps the input data to the domain of the source data on which the model was originally pre-trained on. Although extensive studies have demonstrated the differences between LP and VP in terms of downstream performance, we explore the capabilities of the two aforementioned methods via the sparsity axis: (a) Data sparsity: the impact of few-shot adaptation and (b) Model sparsity: the impact of lottery tickets (LT). We demonstrate that LT are not universal reprogrammers, i.e., for certain target datasets, reprogramming an LT yields significantly lower performance than the reprogrammed dense model although their corresponding upstream performance is similar. Further, we demonstrate that the calibration of dense models is always superior to that of their lottery ticket counterparts under both LP and VP regimes. Our empirical study opens a new avenue of research into VP for sparse models and encourages further understanding of the performance beyond the accuracy achieved by VP under constraints of sparsity. Code and logs can be accessed at https://github.com/landskape-ai/Reprogram_LT.
DMM: Building a Versatile Image Generation Model via Distillation-Based Model Merging
The success of text-to-image (T2I) generation models has spurred a proliferation of numerous model checkpoints fine-tuned from the same base model on various specialized datasets. This overwhelming specialized model production introduces new challenges for high parameter redundancy and huge storage cost, thereby necessitating the development of effective methods to consolidate and unify the capabilities of diverse powerful models into a single one. A common practice in model merging adopts static linear interpolation in the parameter space to achieve the goal of style mixing. However, it neglects the features of T2I generation task that numerous distinct models cover sundry styles which may lead to incompatibility and confusion in the merged model. To address this issue, we introduce a style-promptable image generation pipeline which can accurately generate arbitrary-style images under the control of style vectors. Based on this design, we propose the score distillation based model merging paradigm (DMM), compressing multiple models into a single versatile T2I model. Moreover, we rethink and reformulate the model merging task in the context of T2I generation, by presenting new merging goals and evaluation protocols. Our experiments demonstrate that DMM can compactly reorganize the knowledge from multiple teacher models and achieve controllable arbitrary-style generation.
COLEP: Certifiably Robust Learning-Reasoning Conformal Prediction via Probabilistic Circuits
Conformal prediction has shown spurring performance in constructing statistically rigorous prediction sets for arbitrary black-box machine learning models, assuming the data is exchangeable. However, even small adversarial perturbations during the inference can violate the exchangeability assumption, challenge the coverage guarantees, and result in a subsequent decline in empirical coverage. In this work, we propose a certifiably robust learning-reasoning conformal prediction framework (COLEP) via probabilistic circuits, which comprise a data-driven learning component that trains statistical models to learn different semantic concepts, and a reasoning component that encodes knowledge and characterizes the relationships among the trained models for logic reasoning. To achieve exact and efficient reasoning, we employ probabilistic circuits (PCs) within the reasoning component. Theoretically, we provide end-to-end certification of prediction coverage for COLEP in the presence of bounded adversarial perturbations. We also provide certified coverage considering the finite size of the calibration set. Furthermore, we prove that COLEP achieves higher prediction coverage and accuracy over a single model as long as the utilities of knowledge models are non-trivial. Empirically, we show the validity and tightness of our certified coverage, demonstrating the robust conformal prediction of COLEP on various datasets, including GTSRB, CIFAR10, and AwA2. We show that COLEP achieves up to 12% improvement in certified coverage on GTSRB, 9% on CIFAR-10, and 14% on AwA2.
MARVIS: Modality Adaptive Reasoning over VISualizations
Scientific applications of machine learning often rely on small, specialized models tuned to particular domains. Such models often achieve excellent performance, but lack flexibility. Foundation models offer versatility, but typically underperform specialized approaches, especially on non-traditional modalities and long-tail domains. We propose MARVIS (Modality Adaptive Reasoning over VISualizations), a training-free method that enables even small vision-language models to predict any data modality with high accuracy. MARVIS transforms latent embedding spaces into visual representations and then leverages the spatial and fine-grained reasoning skills of VLMs to successfully interpret and utilize them. MARVIS achieves competitive performance on vision, audio, biological, and tabular domains using a single 3B parameter model, achieving results that beat Gemini by 16\% on average and approach specialized methods, without exposing personally identifiable information (P.I.I.) or requiring any domain-specific training. We open source our code and datasets at https://github.com/penfever/marvis
Flexible Model Aggregation for Quantile Regression
Quantile regression is a fundamental problem in statistical learning motivated by a need to quantify uncertainty in predictions, or to model a diverse population without being overly reductive. For instance, epidemiological forecasts, cost estimates, and revenue predictions all benefit from being able to quantify the range of possible values accurately. As such, many models have been developed for this problem over many years of research in statistics, machine learning, and related fields. Rather than proposing yet another (new) algorithm for quantile regression we adopt a meta viewpoint: we investigate methods for aggregating any number of conditional quantile models, in order to improve accuracy and robustness. We consider weighted ensembles where weights may vary over not only individual models, but also over quantile levels, and feature values. All of the models we consider in this paper can be fit using modern deep learning toolkits, and hence are widely accessible (from an implementation point of view) and scalable. To improve the accuracy of the predicted quantiles (or equivalently, prediction intervals), we develop tools for ensuring that quantiles remain monotonically ordered, and apply conformal calibration methods. These can be used without any modification of the original library of base models. We also review some basic theory surrounding quantile aggregation and related scoring rules, and contribute a few new results to this literature (for example, the fact that post sorting or post isotonic regression can only improve the weighted interval score). Finally, we provide an extensive suite of empirical comparisons across 34 data sets from two different benchmark repositories.
Optimizing Hyperparameters with Conformal Quantile Regression
Many state-of-the-art hyperparameter optimization (HPO) algorithms rely on model-based optimizers that learn surrogate models of the target function to guide the search. Gaussian processes are the de facto surrogate model due to their ability to capture uncertainty but they make strong assumptions about the observation noise, which might not be warranted in practice. In this work, we propose to leverage conformalized quantile regression which makes minimal assumptions about the observation noise and, as a result, models the target function in a more realistic and robust fashion which translates to quicker HPO convergence on empirical benchmarks. To apply our method in a multi-fidelity setting, we propose a simple, yet effective, technique that aggregates observed results across different resource levels and outperforms conventional methods across many empirical tasks.
BEDLAM: A Synthetic Dataset of Bodies Exhibiting Detailed Lifelike Animated Motion
We show, for the first time, that neural networks trained only on synthetic data achieve state-of-the-art accuracy on the problem of 3D human pose and shape (HPS) estimation from real images. Previous synthetic datasets have been small, unrealistic, or lacked realistic clothing. Achieving sufficient realism is non-trivial and we show how to do this for full bodies in motion. Specifically, our BEDLAM dataset contains monocular RGB videos with ground-truth 3D bodies in SMPL-X format. It includes a diversity of body shapes, motions, skin tones, hair, and clothing. The clothing is realistically simulated on the moving bodies using commercial clothing physics simulation. We render varying numbers of people in realistic scenes with varied lighting and camera motions. We then train various HPS regressors using BEDLAM and achieve state-of-the-art accuracy on real-image benchmarks despite training with synthetic data. We use BEDLAM to gain insights into what model design choices are important for accuracy. With good synthetic training data, we find that a basic method like HMR approaches the accuracy of the current SOTA method (CLIFF). BEDLAM is useful for a variety of tasks and all images, ground truth bodies, 3D clothing, support code, and more are available for research purposes. Additionally, we provide detailed information about our synthetic data generation pipeline, enabling others to generate their own datasets. See the project page: https://bedlam.is.tue.mpg.de/.
Datamodels: Predicting Predictions from Training Data
We present a conceptual framework, datamodeling, for analyzing the behavior of a model class in terms of the training data. For any fixed "target" example x, training set S, and learning algorithm, a datamodel is a parameterized function 2^S to R that for any subset of S' subset S -- using only information about which examples of S are contained in S' -- predicts the outcome of training a model on S' and evaluating on x. Despite the potential complexity of the underlying process being approximated (e.g., end-to-end training and evaluation of deep neural networks), we show that even simple linear datamodels can successfully predict model outputs. We then demonstrate that datamodels give rise to a variety of applications, such as: accurately predicting the effect of dataset counterfactuals; identifying brittle predictions; finding semantically similar examples; quantifying train-test leakage; and embedding data into a well-behaved and feature-rich representation space. Data for this paper (including pre-computed datamodels as well as raw predictions from four million trained deep neural networks) is available at https://github.com/MadryLab/datamodels-data .
OpenBezoar: Small, Cost-Effective and Open Models Trained on Mixes of Instruction Data
Instruction fine-tuning pretrained LLMs for diverse downstream tasks has demonstrated remarkable success and has captured the interest of both academics and practitioners. To ensure such fine-tuned LLMs align with human preferences, techniques such as RLHF and DPO have emerged. At the same time, there is increasing interest in smaller parameter counts for models. In this work, using OpenLLaMA 3Bv2 as a base model, we describe the recipe used to fine-tune the OpenBezoar family of models. In this recipe: We first generate synthetic instruction fine-tuning data using an open and commercially non-restrictive instruction fine-tuned variant of the Falcon-40B model under three schemes based on: LaMini-LM, WizardLM/Evol-Instruct (with databricks-dolly-15k as a seed dataset) and Orca (with the Flan Collection as a seed dataset), then filter these generations using GPT-4 as a human proxy. We then perform cost-effective QLoRA-based supervised fine-tuning sequentially with each scheme. The resulting checkpoint is further fine-tuned with a subset of the HH-RLHF dataset to minimize distribution shift prior to using the DPO loss to obtain the final checkpoint. Evaluation is done with the LM Eval Harness tasks/metrics as well as on MT-Bench using the "LLM-as-a-judge" framework with Claude 2.1, with the finding that the final checkpoint, "OpenBezoar-HH-RLHF-DPO", demonstrates superior performance over many models at the 3B parameter scale, even outperforming the top model in one of the categories on the Huggingface Open LLM Leaderboard. We release "OpenBezoar-SFT", "OpenBezoar-HH-RLHF-SFT", "OpenBezoar-HH-RLHF-DPO" checkpoints, alongside our generated datasets on HuggingFace at https://huggingface.co/collections/SurgeGlobal/open-bezoar-6620a24923e12127e9e2b9cc and our codebase at https://bitbucket.org/paladinanalytics/workspace/projects/OP.
BlackVIP: Black-Box Visual Prompting for Robust Transfer Learning
With the surge of large-scale pre-trained models (PTMs), fine-tuning these models to numerous downstream tasks becomes a crucial problem. Consequently, parameter efficient transfer learning (PETL) of large models has grasped huge attention. While recent PETL methods showcase impressive performance, they rely on optimistic assumptions: 1) the entire parameter set of a PTM is available, and 2) a sufficiently large memory capacity for the fine-tuning is equipped. However, in most real-world applications, PTMs are served as a black-box API or proprietary software without explicit parameter accessibility. Besides, it is hard to meet a large memory requirement for modern PTMs. In this work, we propose black-box visual prompting (BlackVIP), which efficiently adapts the PTMs without knowledge about model architectures and parameters. BlackVIP has two components; 1) Coordinator and 2) simultaneous perturbation stochastic approximation with gradient correction (SPSA-GC). The Coordinator designs input-dependent image-shaped visual prompts, which improves few-shot adaptation and robustness on distribution/location shift. SPSA-GC efficiently estimates the gradient of a target model to update Coordinator. Extensive experiments on 16 datasets demonstrate that BlackVIP enables robust adaptation to diverse domains without accessing PTMs' parameters, with minimal memory requirements. Code: https://github.com/changdaeoh/BlackVIP
Conformalized Selective Regression
Should prediction models always deliver a prediction? In the pursuit of maximum predictive performance, critical considerations of reliability and fairness are often overshadowed, particularly when it comes to the role of uncertainty. Selective regression, also known as the "reject option," allows models to abstain from predictions in cases of considerable uncertainty. Initially proposed seven decades ago, approaches to selective regression have mostly focused on distribution-based proxies for measuring uncertainty, particularly conditional variance. However, this focus neglects the significant influence of model-specific biases on a model's performance. In this paper, we propose a novel approach to selective regression by leveraging conformal prediction, which provides grounded confidence measures for individual predictions based on model-specific biases. In addition, we propose a standardized evaluation framework to allow proper comparison of selective regression approaches. Via an extensive experimental approach, we demonstrate how our proposed approach, conformalized selective regression, demonstrates an advantage over multiple state-of-the-art baselines.
HyperspectralViTs: General Hyperspectral Models for On-board Remote Sensing
On-board processing of hyperspectral data with machine learning models would enable unprecedented amount of autonomy for a wide range of tasks, for example methane detection or mineral identification. This can enable early warning system and could allow new capabilities such as automated scheduling across constellations of satellites. Classical methods suffer from high false positive rates and previous deep learning models exhibit prohibitive computational requirements. We propose fast and accurate machine learning architectures which support end-to-end training with data of high spectral dimension without relying on hand-crafted products or spectral band compression preprocessing. We evaluate our models on two tasks related to hyperspectral data processing. With our proposed general architectures, we improve the F1 score of the previous methane detection state-of-the-art models by 27% on a newly created synthetic dataset and by 13% on the previously released large benchmark dataset. We also demonstrate that training models on the synthetic dataset improves performance of models finetuned on the dataset of real events by 6.9% in F1 score in contrast with training from scratch. On a newly created dataset for mineral identification, our models provide 3.5% improvement in the F1 score in contrast to the default versions of the models. With our proposed models we improve the inference speed by 85% in contrast to previous classical and deep learning approaches by removing the dependency on classically computed features. With our architecture, one capture from the EMIT sensor can be processed within 30 seconds on realistic proxy of the ION-SCV 004 satellite.
Self-Ensembling Gaussian Splatting for Few-Shot Novel View Synthesis
3D Gaussian Splatting (3DGS) has demonstrated remarkable effectiveness in novel view synthesis (NVS). However, 3DGS tends to overfit when trained with sparse views, limiting its generalization to novel viewpoints. In this paper, we address this overfitting issue by introducing Self-Ensembling Gaussian Splatting (SE-GS). We achieve self-ensembling by incorporating an uncertainty-aware perturbation strategy during training. A Delta-model and a Sigma-model are jointly trained on the available images. The Delta-model is dynamically perturbed based on rendering uncertainty across training steps, generating diverse perturbed models with negligible computational overhead. Discrepancies between the Sigma-model and these perturbed models are minimized throughout training, forming a robust ensemble of 3DGS models. This ensemble, represented by the Sigma-model, is then used to generate novel-view images during inference. Experimental results on the LLFF, Mip-NeRF360, DTU, and MVImgNet datasets demonstrate that our approach enhances NVS quality under few-shot training conditions, outperforming existing state-of-the-art methods. The code is released at: https://sailor-z.github.io/projects/SEGS.html.
Increasing Model Capacity for Free: A Simple Strategy for Parameter Efficient Fine-tuning
Fine-tuning large pre-trained foundation models, such as the 175B GPT-3, has attracted more attention for downstream tasks recently. While parameter-efficient fine-tuning methods have been proposed and proven effective without retraining all model parameters, their performance is limited by the capacity of incremental modules, especially under constrained parameter budgets. \\ To overcome this challenge, we propose CapaBoost, a simple yet effective strategy that enhances model capacity by leveraging low-rank updates through parallel weight modules in target layers. By applying static random masks to the shared weight matrix, CapaBoost constructs a diverse set of weight matrices, effectively increasing the rank of incremental weights without adding parameters. Notably, our approach can be seamlessly integrated into various existing parameter-efficient fine-tuning methods. We extensively validate the efficacy of CapaBoost through experiments on diverse downstream tasks, including natural language understanding, question answering, and image classification. Our results demonstrate significant improvements over baselines, without incurring additional computation or storage costs. Our code is available at https://github.com/LINs-lab/CapaBoost.
MedM-VL: What Makes a Good Medical LVLM?
Medical image analysis is a fundamental component. As deep learning progresses, the focus has shifted from single-task applications, such as classification and segmentation, to more complex multimodal tasks, including medical visual question answering and report generation. Traditional shallow and task-specific models are increasingly limited in addressing the complexity and scalability required in clinical practice. The emergence of large language models (LLMs) has driven the development of medical Large Vision-Language Models (LVLMs), offering a unified solution for diverse vision-language tasks. In this study, we investigate various architectural designs for medical LVLMs based on the widely adopted LLaVA framework, which follows an encoder-connector-LLM paradigm. We construct two distinct models targeting 2D and 3D modalities, respectively. These models are designed to support both general-purpose medical tasks and domain-specific fine-tuning, thereby serving as effective foundation models. To facilitate reproducibility and further research, we develop a modular and extensible codebase, MedM-VL, and release two LVLM variants: MedM-VL-2D for 2D medical image analysis and MedM-VL-CT-Chest for 3D CT-based applications. The code and models are available at: https://github.com/MSIIP/MedM-VL
ComPEFT: Compression for Communicating Parameter Efficient Updates via Sparsification and Quantization
Parameter-efficient fine-tuning (PEFT) techniques make it possible to efficiently adapt a language model to create "expert" models that specialize to new tasks or domains. Recent techniques in model merging and compositional generalization leverage these expert models by dynamically composing modules to improve zero/few-shot generalization. Despite the efficiency of PEFT methods, the size of expert models can make it onerous to retrieve expert models per query over high-latency networks like the Internet or serve multiple experts on a single GPU. To address these issues, we present ComPEFT, a novel method for compressing fine-tuning residuals (task vectors) of PEFT based models. ComPEFT employs sparsification and ternary quantization to reduce the size of the PEFT module without performing any additional retraining while preserving or enhancing model performance. In extensive evaluation across T5, T0, and LLaMA-based models with 200M - 65B parameters, ComPEFT achieves compression ratios of 8x - 50x. In particular, we show that ComPEFT improves with scale - stronger models exhibit higher compressibility and better performance. For example, we show that ComPEFT applied to LLaMA outperforms QLoRA by 4.16% on MMLU with a storage size reduction of up to 26x. In addition, we show that the compressed experts produced by ComPEFT maintain few-shot compositional generalization capabilities, facilitate efficient communication and computation, and exhibit enhanced performance when merged. Lastly, we provide an analysis of different method components, compare it with other PEFT methods, and test ComPEFT's efficacy for compressing the residual of full-finetuning. Our code is available at https://github.com/prateeky2806/compeft.
The impact of internal variability on benchmarking deep learning climate emulators
Full-complexity Earth system models (ESMs) are computationally very expensive, limiting their use in exploring the climate outcomes of multiple emission pathways. More efficient emulators that approximate ESMs can directly map emissions onto climate outcomes, and benchmarks are being used to evaluate their accuracy on standardized tasks and datasets. We investigate a popular benchmark in data-driven climate emulation, ClimateBench, on which deep learning-based emulators are currently achieving the best performance. We implement a linear regression-based emulator, akin to pattern scaling, and find that it outperforms the incumbent 100M-parameter deep learning foundation model, ClimaX, on 3 out of 4 regionally-resolved surface-level climate variables. While emulating surface temperature is expected to be predominantly linear, this result is surprising for emulating precipitation. We identify that this outcome is a result of high levels of internal variability in the benchmark targets. To address internal variability, we update the benchmark targets with ensemble averages from the MPI-ESM1.2-LR model that contain 50 instead of 3 climate simulations per emission pathway. Using the new targets, we show that linear pattern scaling continues to be more accurate on temperature, but can be outperformed by a deep learning-based model for emulating precipitation. We publish our code, data, and an interactive tutorial at github.com/blutjens/climate-emulator.
PathInsight: Instruction Tuning of Multimodal Datasets and Models for Intelligence Assisted Diagnosis in Histopathology
Pathological diagnosis remains the definitive standard for identifying tumors. The rise of multimodal large models has simplified the process of integrating image analysis with textual descriptions. Despite this advancement, the substantial costs associated with training and deploying these complex multimodal models, together with a scarcity of high-quality training datasets, create a significant divide between cutting-edge technology and its application in the clinical setting. We had meticulously compiled a dataset of approximately 45,000 cases, covering over 6 different tasks, including the classification of organ tissues, generating pathology report descriptions, and addressing pathology-related questions and answers. We have fine-tuned multimodal large models, specifically LLaVA, Qwen-VL, InternLM, with this dataset to enhance instruction-based performance. We conducted a qualitative assessment of the capabilities of the base model and the fine-tuned model in performing image captioning and classification tasks on the specific dataset. The evaluation results demonstrate that the fine-tuned model exhibits proficiency in addressing typical pathological questions. We hope that by making both our models and datasets publicly available, they can be valuable to the medical and research communities.
The Well: a Large-Scale Collection of Diverse Physics Simulations for Machine Learning
Machine learning based surrogate models offer researchers powerful tools for accelerating simulation-based workflows. However, as standard datasets in this space often cover small classes of physical behavior, it can be difficult to evaluate the efficacy of new approaches. To address this gap, we introduce the Well: a large-scale collection of datasets containing numerical simulations of a wide variety of spatiotemporal physical systems. The Well draws from domain experts and numerical software developers to provide 15TB of data across 16 datasets covering diverse domains such as biological systems, fluid dynamics, acoustic scattering, as well as magneto-hydrodynamic simulations of extra-galactic fluids or supernova explosions. These datasets can be used individually or as part of a broader benchmark suite. To facilitate usage of the Well, we provide a unified PyTorch interface for training and evaluating models. We demonstrate the function of this library by introducing example baselines that highlight the new challenges posed by the complex dynamics of the Well. The code and data is available at https://github.com/PolymathicAI/the_well.
Fast Model Editing at Scale
While large pre-trained models have enabled impressive results on a variety of downstream tasks, the largest existing models still make errors, and even accurate predictions may become outdated over time. Because detecting all such failures at training time is impossible, enabling both developers and end users of such models to correct inaccurate outputs while leaving the model otherwise intact is desirable. However, the distributed, black-box nature of the representations learned by large neural networks makes producing such targeted edits difficult. If presented with only a single problematic input and new desired output, fine-tuning approaches tend to overfit; other editing algorithms are either computationally infeasible or simply ineffective when applied to very large models. To enable easy post-hoc editing at scale, we propose Model Editor Networks using Gradient Decomposition (MEND), a collection of small auxiliary editing networks that use a single desired input-output pair to make fast, local edits to a pre-trained model's behavior. MEND learns to transform the gradient obtained by standard fine-tuning, using a low-rank decomposition of the gradient to make the parameterization of this transformation tractable. MEND can be trained on a single GPU in less than a day even for 10 billion+ parameter models; once trained MEND enables rapid application of new edits to the pre-trained model. Our experiments with T5, GPT, BERT, and BART models show that MEND is the only approach to model editing that effectively edits the behavior of models with more than 10 billion parameters. Code and data available at https://sites.google.com/view/mend-editing.
PHI-S: Distribution Balancing for Label-Free Multi-Teacher Distillation
Various visual foundation models have distinct strengths and weaknesses, both of which can be improved through heterogeneous multi-teacher knowledge distillation without labels, termed "agglomerative models." We build upon this body of work by studying the effect of the teachers' activation statistics, particularly the impact of the loss function on the resulting student model quality. We explore a standard toolkit of statistical normalization techniques to better align the different distributions and assess their effects. Further, we examine the impact on downstream teacher-matching metrics, which motivates the use of Hadamard matrices. With these matrices, we demonstrate useful properties, showing how they can be used for isotropic standardization, where each dimension of a multivariate distribution is standardized using the same scale. We call this technique "PHI Standardization" (PHI-S) and empirically demonstrate that it produces the best student model across the suite of methods studied.
Don't be lazy: CompleteP enables compute-efficient deep transformers
We study compute efficiency of LLM training when using different parameterizations, i.e., rules for adjusting model and optimizer hyperparameters (HPs) as model size changes. Some parameterizations fail to transfer optimal base HPs (such as learning rate) across changes in model depth, requiring practitioners to either re-tune these HPs as they scale up (expensive), or accept sub-optimal training when re-tuning is prohibitive. Even when they achieve HP transfer, we develop theory to show parameterizations may still exist in the lazy learning regime where layers learn only features close to their linearization, preventing effective use of depth and nonlinearity. Finally, we identify and adopt the parameterization we call CompleteP that achieves both depth-wise HP transfer and non-lazy learning in all layers. CompleteP enables a wider range of model width/depth ratios to remain compute-efficient, unlocking shapes better suited for different hardware settings and operational contexts. Moreover, CompleteP enables 12-34% compute efficiency improvements over the prior state-of-the-art.
Mantis: Lightweight Calibrated Foundation Model for User-Friendly Time Series Classification
In recent years, there has been increasing interest in developing foundation models for time series data that can generalize across diverse downstream tasks. While numerous forecasting-oriented foundation models have been introduced, there is a notable scarcity of models tailored for time series classification. To address this gap, we present Mantis, a new open-source foundation model for time series classification based on the Vision Transformer (ViT) architecture that has been pre-trained using a contrastive learning approach. Our experimental results show that Mantis outperforms existing foundation models both when the backbone is frozen and when fine-tuned, while achieving the lowest calibration error. In addition, we propose several adapters to handle the multivariate setting, reducing memory requirements and modeling channel interdependence.
Establishing Trustworthy LLM Evaluation via Shortcut Neuron Analysis
The development of large language models (LLMs) depends on trustworthy evaluation. However, most current evaluations rely on public benchmarks, which are prone to data contamination issues that significantly compromise fairness. Previous researches have focused on constructing dynamic benchmarks to address contamination. However, continuously building new benchmarks is costly and cyclical. In this work, we aim to tackle contamination by analyzing the mechanisms of contaminated models themselves. Through our experiments, we discover that the overestimation of contaminated models is likely due to parameters acquiring shortcut solutions in training. We further propose a novel method for identifying shortcut neurons through comparative and causal analysis. Building on this, we introduce an evaluation method called shortcut neuron patching to suppress shortcut neurons. Experiments validate the effectiveness of our approach in mitigating contamination. Additionally, our evaluation results exhibit a strong linear correlation with MixEval, a recently released trustworthy benchmark, achieving a Spearman coefficient (rho) exceeding 0.95. This high correlation indicates that our method closely reveals true capabilities of the models and is trustworthy. We conduct further experiments to demonstrate the generalizability of our method across various benchmarks and hyperparameter settings. Code: https://github.com/GaryStack/Trustworthy-Evaluation
Optimally Weighted Ensembles of Regression Models: Exact Weight Optimization and Applications
Automated model selection is often proposed to users to choose which machine learning model (or method) to apply to a given regression task. In this paper, we show that combining different regression models can yield better results than selecting a single ('best') regression model, and outline an efficient method that obtains optimally weighted convex linear combination from a heterogeneous set of regression models. More specifically, in this paper, a heuristic weight optimization, used in a preceding conference paper, is replaced by an exact optimization algorithm using convex quadratic programming. We prove convexity of the quadratic programming formulation for the straightforward formulation and for a formulation with weighted data points. The novel weight optimization is not only (more) exact but also more efficient. The methods we develop in this paper are implemented and made available via github-open source. They can be executed on commonly available hardware and offer a transparent and easy to interpret interface. The results indicate that the approach outperforms model selection methods on a range of data sets, including data sets with mixed variable type from drug discovery applications.
Sketched Ridgeless Linear Regression: The Role of Downsampling
Overparametrization often helps improve the generalization performance. This paper proposes a dual view of overparametrization suggesting that downsampling may also help generalize. Motivated by this dual view, we characterize two out-of-sample prediction risks of the sketched ridgeless least square estimator in the proportional regime masymp n asymp p, where m is the sketching size, n the sample size, and p the feature dimensionality. Our results reveal the statistical role of downsampling. Specifically, downsampling does not always hurt the generalization performance, and may actually help improve it in some cases. We identify the optimal sketching sizes that minimize the out-of-sample prediction risks, and find that the optimally sketched estimator has stabler risk curves that eliminates the peaks of those for the full-sample estimator. We then propose a practical procedure to empirically identify the optimal sketching size. Finally, we extend our results to cover central limit theorems and misspecified models. Numerical studies strongly support our theory.
ONEBench to Test Them All: Sample-Level Benchmarking Over Open-Ended Capabilities
Traditional fixed test sets fall short in evaluating open-ended capabilities of foundation models. To address this, we propose ONEBench(OpeN-Ended Benchmarking), a new testing paradigm that consolidates individual evaluation datasets into a unified, ever-expanding sample pool. ONEBench allows users to generate custom, open-ended evaluation benchmarks from this pool, corresponding to specific capabilities of interest. By aggregating samples across test sets, ONEBench enables the assessment of diverse capabilities beyond those covered by the original test sets, while mitigating overfitting and dataset bias. Most importantly, it frames model evaluation as a collective process of selecting and aggregating sample-level tests. The shift from task-specific benchmarks to ONEBench introduces two challenges: (1)heterogeneity and (2)incompleteness. Heterogeneity refers to the aggregation over diverse metrics, while incompleteness describes comparing models evaluated on different data subsets. To address these challenges, we explore algorithms to aggregate sparse measurements into reliable model scores. Our aggregation algorithm ensures identifiability(asymptotically recovering ground-truth scores) and rapid convergence, enabling accurate model ranking with less data. On homogenous datasets, we show our aggregation algorithm provides rankings that highly correlate with those produced by average scores. We also demonstrate robustness to ~95% of measurements missing, reducing evaluation cost by up to 20x with little-to-no change in model rankings. We introduce ONEBench-LLM for language models and ONEBench-LMM for vision-language models, unifying evaluations across these domains. Overall, we present a technique for open-ended evaluation, which can aggregate over incomplete, heterogeneous sample-level measurements to continually grow a benchmark alongside the rapidly developing foundation models.
Improve Representation for Imbalanced Regression through Geometric Constraints
In representation learning, uniformity refers to the uniform feature distribution in the latent space (i.e., unit hypersphere). Previous work has shown that improving uniformity contributes to the learning of under-represented classes. However, most of the previous work focused on classification; the representation space of imbalanced regression remains unexplored. Classification-based methods are not suitable for regression tasks because they cluster features into distinct groups without considering the continuous and ordered nature essential for regression. In a geometric aspect, we uniquely focus on ensuring uniformity in the latent space for imbalanced regression through two key losses: enveloping and homogeneity. The enveloping loss encourages the induced trace to uniformly occupy the surface of a hypersphere, while the homogeneity loss ensures smoothness, with representations evenly spaced at consistent intervals. Our method integrates these geometric principles into the data representations via a Surrogate-driven Representation Learning (SRL) framework. Experiments with real-world regression and operator learning tasks highlight the importance of uniformity in imbalanced regression and validate the efficacy of our geometry-based loss functions.
Deep Learning and Foundation Models for Weather Prediction: A Survey
Physics-based numerical models have been the bedrock of atmospheric sciences for decades, offering robust solutions but often at the cost of significant computational resources. Deep learning (DL) models have emerged as powerful tools in meteorology, capable of analyzing complex weather and climate data by learning intricate dependencies and providing rapid predictions once trained. While these models demonstrate promising performance in weather prediction, often surpassing traditional physics-based methods, they still face critical challenges. This paper presents a comprehensive survey of recent deep learning and foundation models for weather prediction. We propose a taxonomy to classify existing models based on their training paradigms: deterministic predictive learning, probabilistic generative learning, and pre-training and fine-tuning. For each paradigm, we delve into the underlying model architectures, address major challenges, offer key insights, and propose targeted directions for future research. Furthermore, we explore real-world applications of these methods and provide a curated summary of open-source code repositories and widely used datasets, aiming to bridge research advancements with practical implementations while fostering open and trustworthy scientific practices in adopting cutting-edge artificial intelligence for weather prediction. The related sources are available at https://github.com/JimengShi/ DL-Foundation-Models-Weather.
Fully Hyperbolic Convolutional Neural Networks for Computer Vision
Real-world visual data exhibit intrinsic hierarchical structures that can be represented effectively in hyperbolic spaces. Hyperbolic neural networks (HNNs) are a promising approach for learning feature representations in such spaces. However, current HNNs in computer vision rely on Euclidean backbones and only project features to the hyperbolic space in the task heads, limiting their ability to fully leverage the benefits of hyperbolic geometry. To address this, we present HCNN, a fully hyperbolic convolutional neural network (CNN) designed for computer vision tasks. Based on the Lorentz model, we generalize fundamental components of CNNs and propose novel formulations of the convolutional layer, batch normalization, and multinomial logistic regression. {Experiments on standard vision tasks demonstrate the promising performance of our HCNN framework in both hybrid and fully hyperbolic settings.} Overall, we believe our contributions provide a foundation for developing more powerful HNNs that can better represent complex structures found in image data. Our code is publicly available at https://github.com/kschwethelm/HyperbolicCV.
On Investigating the Conservative Property of Score-Based Generative Models
Existing Score-Based Models (SBMs) can be categorized into constrained SBMs (CSBMs) or unconstrained SBMs (USBMs) according to their parameterization approaches. CSBMs model probability density functions as Boltzmann distributions, and assign their predictions as the negative gradients of some scalar-valued energy functions. On the other hand, USBMs employ flexible architectures capable of directly estimating scores without the need to explicitly model energy functions. In this paper, we demonstrate that the architectural constraints of CSBMs may limit their modeling ability. In addition, we show that USBMs' inability to preserve the property of conservativeness may lead to degraded performance in practice. To address the above issues, we propose Quasi-Conservative Score-Based Models (QCSBMs) for keeping the advantages of both CSBMs and USBMs. Our theoretical derivations demonstrate that the training objective of QCSBMs can be efficiently integrated into the training processes by leveraging the Hutchinson's trace estimator. In addition, our experimental results on the CIFAR-10, CIFAR-100, ImageNet, and SVHN datasets validate the effectiveness of QCSBMs. Finally, we justify the advantage of QCSBMs using an example of a one-layered autoencoder.
Community Research Earth Digital Intelligence Twin (CREDIT)
Recent advancements in artificial intelligence (AI) for numerical weather prediction (NWP) have significantly transformed atmospheric modeling. AI NWP models outperform traditional physics-based systems, such as the Integrated Forecast System (IFS), across several global metrics while requiring fewer computational resources. However, existing AI NWP models face limitations related to training datasets and timestep choices, often resulting in artifacts that reduce model performance. To address these challenges, we introduce the Community Research Earth Digital Intelligence Twin (CREDIT) framework, developed at NSF NCAR. CREDIT provides a flexible, scalable, and user-friendly platform for training and deploying AI-based atmospheric models on high-performance computing systems. It offers an end-to-end pipeline for data preprocessing, model training, and evaluation, democratizing access to advanced AI NWP capabilities. We demonstrate CREDIT's potential through WXFormer, a novel deterministic vision transformer designed to predict atmospheric states autoregressively, addressing common AI NWP issues like compounding error growth with techniques such as spectral normalization, padding, and multi-step training. Additionally, to illustrate CREDIT's flexibility and state-of-the-art model comparisons, we train the FUXI architecture within this framework. Our findings show that both FUXI and WXFormer, trained on six-hourly ERA5 hybrid sigma-pressure levels, generally outperform IFS HRES in 10-day forecasts, offering potential improvements in efficiency and forecast accuracy. CREDIT's modular design enables researchers to explore various models, datasets, and training configurations, fostering innovation within the scientific community.
Monotonicity and Double Descent in Uncertainty Estimation with Gaussian Processes
The quality of many modern machine learning models improves as model complexity increases, an effect that has been quantified, for predictive performance, with the non-monotonic double descent learning curve. Here, we address the overarching question: is there an analogous theory of double descent for models which estimate uncertainty? We provide a partially affirmative and partially negative answer in the setting of Gaussian processes (GP). Under standard assumptions, we prove that higher model quality for optimally-tuned GPs (including uncertainty prediction) under marginal likelihood is realized for larger input dimensions, and therefore exhibits a monotone error curve. After showing that marginal likelihood does not naturally exhibit double descent in the input dimension, we highlight related forms of posterior predictive loss that do exhibit non-monotonicity. Finally, we verify empirically that our results hold for real data, beyond our considered assumptions, and we explore consequences involving synthetic covariates.
Preface: A Data-driven Volumetric Prior for Few-shot Ultra High-resolution Face Synthesis
NeRFs have enabled highly realistic synthesis of human faces including complex appearance and reflectance effects of hair and skin. These methods typically require a large number of multi-view input images, making the process hardware intensive and cumbersome, limiting applicability to unconstrained settings. We propose a novel volumetric human face prior that enables the synthesis of ultra high-resolution novel views of subjects that are not part of the prior's training distribution. This prior model consists of an identity-conditioned NeRF, trained on a dataset of low-resolution multi-view images of diverse humans with known camera calibration. A simple sparse landmark-based 3D alignment of the training dataset allows our model to learn a smooth latent space of geometry and appearance despite a limited number of training identities. A high-quality volumetric representation of a novel subject can be obtained by model fitting to 2 or 3 camera views of arbitrary resolution. Importantly, our method requires as few as two views of casually captured images as input at inference time.
ML-SIM: A deep neural network for reconstruction of structured illumination microscopy images
Structured illumination microscopy (SIM) has become an important technique for optical super-resolution imaging because it allows a doubling of image resolution at speeds compatible for live-cell imaging. However, the reconstruction of SIM images is often slow and prone to artefacts. Here we propose a versatile reconstruction method, ML-SIM, which makes use of machine learning. The model is an end-to-end deep residual neural network that is trained on a simulated data set to be free of common SIM artefacts. ML-SIM is thus robust to noise and irregularities in the illumination patterns of the raw SIM input frames. The reconstruction method is widely applicable and does not require the acquisition of experimental training data. Since the training data are generated from simulations of the SIM process on images from generic libraries the method can be efficiently adapted to specific experimental SIM implementations. The reconstruction quality enabled by our method is compared with traditional SIM reconstruction methods, and we demonstrate advantages in terms of noise, reconstruction fidelity and contrast for both simulated and experimental inputs. In addition, reconstruction of one SIM frame typically only takes ~100ms to perform on PCs with modern Nvidia graphics cards, making the technique compatible with real-time imaging. The full implementation and the trained networks are available at http://ML-SIM.com.
Deep Learning Model Reuse in the HuggingFace Community: Challenges, Benefit and Trends
The ubiquity of large-scale Pre-Trained Models (PTMs) is on the rise, sparking interest in model hubs, and dedicated platforms for hosting PTMs. Despite this trend, a comprehensive exploration of the challenges that users encounter and how the community leverages PTMs remains lacking. To address this gap, we conducted an extensive mixed-methods empirical study by focusing on discussion forums and the model hub of HuggingFace, the largest public model hub. Based on our qualitative analysis, we present a taxonomy of the challenges and benefits associated with PTM reuse within this community. We then conduct a quantitative study to track model-type trends and model documentation evolution over time. Our findings highlight prevalent challenges such as limited guidance for beginner users, struggles with model output comprehensibility in training or inference, and a lack of model understanding. We also identified interesting trends among models where some models maintain high upload rates despite a decline in topics related to them. Additionally, we found that despite the introduction of model documentation tools, its quantity has not increased over time, leading to difficulties in model comprehension and selection among users. Our study sheds light on new challenges in reusing PTMs that were not reported before and we provide recommendations for various stakeholders involved in PTM reuse.
Gemstones: A Model Suite for Multi-Faceted Scaling Laws
Scaling laws are typically fit using a family of models with a narrow range of frozen hyper-parameter choices. In this work we study scaling laws using a wide range of architecture and hyper-parameter choices, and highlight their impact on resulting prescriptions. As a primary artifact of our research, we release the Gemstones: the most comprehensive open-source scaling law dataset to date, consisting of over 4000 checkpoints from transformers with up to 2 billion parameters; these models have been trained with different learning rates, cooldown schedules, and architectural shapes. Our checkpoints enable more complex studies of scaling, such as a law that predicts language modeling performance as a function of model width and depth. By examining the various facets of our model suite, we find that the prescriptions of scaling laws can be highly sensitive to the experimental design process and the specific model checkpoints used during fitting. Code: https://github.com/mcleish7/gemstone-scaling-laws
Estimating Model Performance Under Covariate Shift Without Labels
Machine learning models often experience performance degradation post-deployment due to shifts in data distribution. It is challenging to assess model's performance accurately when labels are missing or delayed. Existing proxy methods, such as drift detection, fail to measure the effects of these shifts adequately. To address this, we introduce a new method, Probabilistic Adaptive Performance Estimation (PAPE), for evaluating classification models on unlabeled data that accurately quantifies the impact of covariate shift on model performance. It is model and data-type agnostic and works for various performance metrics. Crucially, PAPE operates independently of the original model, relying only on its predictions and probability estimates, and does not need any assumptions about the nature of the covariate shift, learning directly from data instead. We tested PAPE on tabular data using over 900 dataset-model combinations created from US census data, assessing its performance against multiple benchmarks. Overall, PAPE provided more accurate performance estimates than other evaluated methodologies.
PINN surrogate of Li-ion battery models for parameter inference. Part I: Implementation and multi-fidelity hierarchies for the single-particle model
To plan and optimize energy storage demands that account for Li-ion battery aging dynamics, techniques need to be developed to diagnose battery internal states accurately and rapidly. This study seeks to reduce the computational resources needed to determine a battery's internal states by replacing physics-based Li-ion battery models -- such as the single-particle model (SPM) and the pseudo-2D (P2D) model -- with a physics-informed neural network (PINN) surrogate. The surrogate model makes high-throughput techniques, such as Bayesian calibration, tractable to determine battery internal parameters from voltage responses. This manuscript is the first of a two-part series that introduces PINN surrogates of Li-ion battery models for parameter inference (i.e., state-of-health diagnostics). In this first part, a method is presented for constructing a PINN surrogate of the SPM. A multi-fidelity hierarchical training, where several neural nets are trained with multiple physics-loss fidelities is shown to significantly improve the surrogate accuracy when only training on the governing equation residuals. The implementation is made available in a companion repository (https://github.com/NREL/pinnstripes). The techniques used to develop a PINN surrogate of the SPM are extended in Part II for the PINN surrogate for the P2D battery model, and explore the Bayesian calibration capabilities of both surrogates.
Tune As You Scale: Hyperparameter Optimization For Compute Efficient Training
Hyperparameter tuning of deep learning models can lead to order-of-magnitude performance gains for the same amount of compute. Despite this, systematic tuning is uncommon, particularly for large models, which are expensive to evaluate and tend to have many hyperparameters, necessitating difficult judgment calls about tradeoffs, budgets, and search bounds. To address these issues and propose a practical method for robustly tuning large models, we present Cost-Aware Pareto Region Bayesian Search (CARBS), a Bayesian optimization algorithm that performs local search around the performance-cost Pareto frontier. CARBS does well even in unbounded search spaces with many hyperparameters, learns scaling relationships so that it can tune models even as they are scaled up, and automates much of the "black magic" of tuning. Among our results, we effectively solve the entire ProcGen benchmark just by tuning a simple baseline (PPO, as provided in the original ProcGen paper). We also reproduce the model size vs. training tokens scaling result from the Chinchilla project (Hoffmann et al. 2022), while simultaneously discovering scaling laws for every other hyperparameter, via an easy automated process that uses significantly less compute and is applicable to any deep learning problem (not just language models).
FOCUS: Familiar Objects in Common and Uncommon Settings
Standard training datasets for deep learning often contain objects in common settings (e.g., "a horse on grass" or "a ship in water") since they are usually collected by randomly scraping the web. Uncommon and rare settings (e.g., "a plane on water", "a car in snowy weather") are thus severely under-represented in the training data. This can lead to an undesirable bias in model predictions towards common settings and create a false sense of accuracy. In this paper, we introduce FOCUS (Familiar Objects in Common and Uncommon Settings), a dataset for stress-testing the generalization power of deep image classifiers. By leveraging the power of modern search engines, we deliberately gather data containing objects in common and uncommon settings in a wide range of locations, weather conditions, and time of day. We present a detailed analysis of the performance of various popular image classifiers on our dataset and demonstrate a clear drop in performance when classifying images in uncommon settings. By analyzing deep features of these models, we show that such errors can be due to the use of spurious features in model predictions. We believe that our dataset will aid researchers in understanding the inability of deep models to generalize well to uncommon settings and drive future work on improving their distributional robustness.
Multiscale Neural Operator: Learning Fast and Grid-independent PDE Solvers
Numerical simulations in climate, chemistry, or astrophysics are computationally too expensive for uncertainty quantification or parameter-exploration at high-resolution. Reduced-order or surrogate models are multiple orders of magnitude faster, but traditional surrogates are inflexible or inaccurate and pure machine learning (ML)-based surrogates too data-hungry. We propose a hybrid, flexible surrogate model that exploits known physics for simulating large-scale dynamics and limits learning to the hard-to-model term, which is called parametrization or closure and captures the effect of fine- onto large-scale dynamics. Leveraging neural operators, we are the first to learn grid-independent, non-local, and flexible parametrizations. Our multiscale neural operator is motivated by a rich literature in multiscale modeling, has quasilinear runtime complexity, is more accurate or flexible than state-of-the-art parametrizations and demonstrated on the chaotic equation multiscale Lorenz96.
EoRA: Training-free Compensation for Compressed LLM with Eigenspace Low-Rank Approximation
In this work, we re-formulate the model compression problem into the customized compensation problem: Given a compressed model, we aim to introduce residual low-rank paths to compensate for compression errors under customized requirements from users (e.g., tasks, compression ratios), resulting in greater flexibility in adjusting overall capacity without being constrained by specific compression formats. However, naively applying SVD to derive residual paths causes suboptimal utilization of the low-rank representation capacity. Instead, we propose Training-free Eigenspace Low-Rank Approximation (EoRA), a method that directly minimizes compression-induced errors without requiring gradient-based training, achieving fast optimization in minutes using a small amount of calibration data. EoRA projects compression errors into the eigenspace of input activations, leveraging eigenvalues to effectively prioritize the reconstruction of high-importance error components. Moreover, EoRA can be seamlessly integrated with fine-tuning and quantization to further improve effectiveness and efficiency. EoRA consistently outperforms previous methods in compensating errors for compressed LLaMA2/3 models on various tasks, such as language generation, commonsense reasoning, and math reasoning tasks (e.g., 31.31%/12.88% and 9.69% improvements on ARC-Easy/ARC-Challenge and MathQA when compensating LLaMA3-8B that is quantized to 4-bit and pruned to 2:4 sparsity). EoRA offers a scalable, training-free solution to compensate for compression errors, making it a powerful tool to deploy LLMs in various capacity and efficiency requirements.