pcuenq HF Staff commited on
Commit
b3b52d7
·
verified ·
1 Parent(s): 04983ee

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +152 -194
README.md CHANGED
@@ -3,197 +3,155 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
3
  tags: []
4
  ---
5
 
6
+ # Baichuan-M1-14B-Instruct-tokenizer
7
+
8
+ Fast transformers tokenizer for [mlx-community/Baichuan-M1-14B-Instruct-8bit](https://hf.co/mlx-community/Baichuan-M1-14B-Instruct-8bit)
9
+
10
+ Thanks a lot @Xenova for finding the final fix! 🙌
11
+
12
+ ## Conversion
13
+
14
+ ```py
15
+ from tokenization_baichuan import BaichuanTokenizer
16
+
17
+ original = BaichuanTokenizer.from_pretrained(".")
18
+
19
+ from transformers.convert_slow_tokenizer import SpmConverter, LlamaConverter, GemmaConverter, _get_prepend_scheme
20
+ from tokenizers import decoders, normalizers, pre_tokenizers, processors, Tokenizer, AddedToken
21
+ from tokenizers.models import BPE
22
+
23
+ class BaichuanConverter(SpmConverter):
24
+ handle_byte_fallback = True
25
+
26
+ def vocab(self, proto):
27
+ vocab = [
28
+ (self.original_tokenizer.convert_ids_to_tokens(0), 0.0),
29
+ (self.original_tokenizer.convert_ids_to_tokens(1), 0.0),
30
+ (self.original_tokenizer.convert_ids_to_tokens(2), 0.0),
31
+ ]
32
+ vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
33
+ return vocab
34
+
35
+ def unk_id(self, proto):
36
+ unk_id = 0
37
+ return unk_id
38
+
39
+ def decoder(self, replacement, add_prefix_space):
40
+ sequence = [
41
+ decoders.Replace("▁", " "),
42
+ decoders.ByteFallback(),
43
+ decoders.Fuse(),
44
+ ]
45
+ return decoders.Sequence(sequence)
46
+
47
+ def normalizer(self, proto):
48
+ return normalizers.Replace(pattern=" ", content="▁")
49
+
50
+ def pre_tokenizer(self, replacement, add_prefix_space):
51
+ return None
52
+
53
+ def post_processor(self):
54
+ return None
55
+
56
+ def tokenizer(self, proto):
57
+ vocab_scores = self.vocab(proto)
58
+ _, merges = self.SpmExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
59
+ bpe_vocab = {word: i for i, (word, score) in enumerate(vocab_scores)}
60
+ tokenizer = Tokenizer(
61
+ BPE(
62
+ bpe_vocab,
63
+ merges,
64
+ unk_token=proto.trainer_spec.unk_piece,
65
+ fuse_unk=True,
66
+ byte_fallback=self.handle_byte_fallback,
67
+ dropout=None,
68
+ )
69
+ )
70
+
71
+ # control tokens are special
72
+ # user defined symbols are not
73
+ # both user and control tokens are AddedTokens
74
+ # Add user defined symbols (type == 4) from sentencepiece (https://github.com/google/sentencepiece/blob/6225e08edb2577757163b3f5dbba4c0b670ef445/src/sentencepiece_model.proto#L299C29-L299C33)
75
+ spm_added_tokens = [
76
+ (id, p.piece, p.type == 3 or p.piece in self.special_tokens)
77
+ for id, p in enumerate(proto.pieces)
78
+ if p.type in [3, 4]
79
+ ]
80
+
81
+ # Reproduce weird behaviour in original tokenizer
82
+ # only add tokens that did not originally exist
83
+ bad_added_tokens = set()
84
+ for _, token, _ in spm_added_tokens:
85
+ encoded = self.original_tokenizer.encode(token)
86
+ if len(encoded) != 1:
87
+ bad_added_tokens.add(token)
88
+
89
+ tokenizer.add_tokens(
90
+ [
91
+ AddedToken(token, normalized=True, special=special)
92
+ for id, token, special in sorted(spm_added_tokens, key=lambda x: x[0])
93
+ if token not in bad_added_tokens
94
+ ]
95
+ )
96
+
97
+ return tokenizer
98
+
99
+ converter = BaichuanConverter(original)
100
+ converted = converter.converted()
101
+
102
+ from transformers import PreTrainedTokenizerFast
103
+
104
+ t_fast = PreTrainedTokenizerFast(
105
+ tokenizer_object=converted,
106
+ model_input_names=original.model_input_names,
107
+ model_max_length=32768,
108
+ clean_up_tokenization_spaces=False,
109
+ )
110
+
111
+ test_strings = [
112
+ " {\n",
113
+ " {\n",
114
+ "x {\n",
115
+ "----------------------------------------------------------------------------\n",
116
+ "\n \n",
117
+ "\n \n",
118
+ '// -----------------------------------------------------------------------\n',
119
+ '-----------------------------------------------------------------------\n',
120
+ ]
121
+ for test_string in test_strings:
122
+ print("Original:", original.encode(test_string))
123
+ print("Fast: ", t_fast.encode(test_string))
124
+
125
+
126
+ # Testing on xnli
127
+
128
+ from datasets import load_dataset
129
+ from tqdm import tqdm
130
+
131
+ xnli = load_dataset("xnli", "all_languages", split="validation")
132
+
133
+ def verify(lang, text):
134
+ encoded_original = original.encode(text)
135
+ encoded_fast = t_fast.encode(text)
136
+ assert encoded_fast == encoded_original, f"Fast encode error: {lang} - {text}"
137
+ decoded = original.decode(encoded_original)
138
+ decoded_fast = t_fast.decode(encoded_fast, skip_special_tokens=True)
139
+ assert decoded_fast == decoded, f"Fast decode error: {lang} - {text}"
140
+
141
+ for p in tqdm(xnli["premise"]):
142
+ for lang, text in p.items():
143
+ verify(lang, text)
144
+
145
+ # Testing on codeparrot
146
+
147
+ ds = load_dataset("codeparrot/github-code", streaming=True, trust_remote_code=True, split="train")
148
+
149
+ iterator = iter(ds)
150
+ for _ in tqdm(range(1000)):
151
+ item = next(iterator)
152
+ code = item["code"]
153
+ lang = item["language"]
154
+ verify(lang, code)
155
+
156
+ t_fast.push_to_hub("Baichuan-M1-14B-Instruct-tokenizer")
157
+ ```