Update README.md
Browse files
README.md
CHANGED
@@ -3,197 +3,155 @@ library_name: transformers
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
##
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
[
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
+
# Baichuan-M1-14B-Instruct-tokenizer
|
7 |
+
|
8 |
+
Fast transformers tokenizer for [mlx-community/Baichuan-M1-14B-Instruct-8bit](https://hf.co/mlx-community/Baichuan-M1-14B-Instruct-8bit)
|
9 |
+
|
10 |
+
Thanks a lot @Xenova for finding the final fix! 🙌
|
11 |
+
|
12 |
+
## Conversion
|
13 |
+
|
14 |
+
```py
|
15 |
+
from tokenization_baichuan import BaichuanTokenizer
|
16 |
+
|
17 |
+
original = BaichuanTokenizer.from_pretrained(".")
|
18 |
+
|
19 |
+
from transformers.convert_slow_tokenizer import SpmConverter, LlamaConverter, GemmaConverter, _get_prepend_scheme
|
20 |
+
from tokenizers import decoders, normalizers, pre_tokenizers, processors, Tokenizer, AddedToken
|
21 |
+
from tokenizers.models import BPE
|
22 |
+
|
23 |
+
class BaichuanConverter(SpmConverter):
|
24 |
+
handle_byte_fallback = True
|
25 |
+
|
26 |
+
def vocab(self, proto):
|
27 |
+
vocab = [
|
28 |
+
(self.original_tokenizer.convert_ids_to_tokens(0), 0.0),
|
29 |
+
(self.original_tokenizer.convert_ids_to_tokens(1), 0.0),
|
30 |
+
(self.original_tokenizer.convert_ids_to_tokens(2), 0.0),
|
31 |
+
]
|
32 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
33 |
+
return vocab
|
34 |
+
|
35 |
+
def unk_id(self, proto):
|
36 |
+
unk_id = 0
|
37 |
+
return unk_id
|
38 |
+
|
39 |
+
def decoder(self, replacement, add_prefix_space):
|
40 |
+
sequence = [
|
41 |
+
decoders.Replace("▁", " "),
|
42 |
+
decoders.ByteFallback(),
|
43 |
+
decoders.Fuse(),
|
44 |
+
]
|
45 |
+
return decoders.Sequence(sequence)
|
46 |
+
|
47 |
+
def normalizer(self, proto):
|
48 |
+
return normalizers.Replace(pattern=" ", content="▁")
|
49 |
+
|
50 |
+
def pre_tokenizer(self, replacement, add_prefix_space):
|
51 |
+
return None
|
52 |
+
|
53 |
+
def post_processor(self):
|
54 |
+
return None
|
55 |
+
|
56 |
+
def tokenizer(self, proto):
|
57 |
+
vocab_scores = self.vocab(proto)
|
58 |
+
_, merges = self.SpmExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
|
59 |
+
bpe_vocab = {word: i for i, (word, score) in enumerate(vocab_scores)}
|
60 |
+
tokenizer = Tokenizer(
|
61 |
+
BPE(
|
62 |
+
bpe_vocab,
|
63 |
+
merges,
|
64 |
+
unk_token=proto.trainer_spec.unk_piece,
|
65 |
+
fuse_unk=True,
|
66 |
+
byte_fallback=self.handle_byte_fallback,
|
67 |
+
dropout=None,
|
68 |
+
)
|
69 |
+
)
|
70 |
+
|
71 |
+
# control tokens are special
|
72 |
+
# user defined symbols are not
|
73 |
+
# both user and control tokens are AddedTokens
|
74 |
+
# Add user defined symbols (type == 4) from sentencepiece (https://github.com/google/sentencepiece/blob/6225e08edb2577757163b3f5dbba4c0b670ef445/src/sentencepiece_model.proto#L299C29-L299C33)
|
75 |
+
spm_added_tokens = [
|
76 |
+
(id, p.piece, p.type == 3 or p.piece in self.special_tokens)
|
77 |
+
for id, p in enumerate(proto.pieces)
|
78 |
+
if p.type in [3, 4]
|
79 |
+
]
|
80 |
+
|
81 |
+
# Reproduce weird behaviour in original tokenizer
|
82 |
+
# only add tokens that did not originally exist
|
83 |
+
bad_added_tokens = set()
|
84 |
+
for _, token, _ in spm_added_tokens:
|
85 |
+
encoded = self.original_tokenizer.encode(token)
|
86 |
+
if len(encoded) != 1:
|
87 |
+
bad_added_tokens.add(token)
|
88 |
+
|
89 |
+
tokenizer.add_tokens(
|
90 |
+
[
|
91 |
+
AddedToken(token, normalized=True, special=special)
|
92 |
+
for id, token, special in sorted(spm_added_tokens, key=lambda x: x[0])
|
93 |
+
if token not in bad_added_tokens
|
94 |
+
]
|
95 |
+
)
|
96 |
+
|
97 |
+
return tokenizer
|
98 |
+
|
99 |
+
converter = BaichuanConverter(original)
|
100 |
+
converted = converter.converted()
|
101 |
+
|
102 |
+
from transformers import PreTrainedTokenizerFast
|
103 |
+
|
104 |
+
t_fast = PreTrainedTokenizerFast(
|
105 |
+
tokenizer_object=converted,
|
106 |
+
model_input_names=original.model_input_names,
|
107 |
+
model_max_length=32768,
|
108 |
+
clean_up_tokenization_spaces=False,
|
109 |
+
)
|
110 |
+
|
111 |
+
test_strings = [
|
112 |
+
" {\n",
|
113 |
+
" {\n",
|
114 |
+
"x {\n",
|
115 |
+
"----------------------------------------------------------------------------\n",
|
116 |
+
"\n \n",
|
117 |
+
"\n \n",
|
118 |
+
'// -----------------------------------------------------------------------\n',
|
119 |
+
'-----------------------------------------------------------------------\n',
|
120 |
+
]
|
121 |
+
for test_string in test_strings:
|
122 |
+
print("Original:", original.encode(test_string))
|
123 |
+
print("Fast: ", t_fast.encode(test_string))
|
124 |
+
|
125 |
+
|
126 |
+
# Testing on xnli
|
127 |
+
|
128 |
+
from datasets import load_dataset
|
129 |
+
from tqdm import tqdm
|
130 |
+
|
131 |
+
xnli = load_dataset("xnli", "all_languages", split="validation")
|
132 |
+
|
133 |
+
def verify(lang, text):
|
134 |
+
encoded_original = original.encode(text)
|
135 |
+
encoded_fast = t_fast.encode(text)
|
136 |
+
assert encoded_fast == encoded_original, f"Fast encode error: {lang} - {text}"
|
137 |
+
decoded = original.decode(encoded_original)
|
138 |
+
decoded_fast = t_fast.decode(encoded_fast, skip_special_tokens=True)
|
139 |
+
assert decoded_fast == decoded, f"Fast decode error: {lang} - {text}"
|
140 |
+
|
141 |
+
for p in tqdm(xnli["premise"]):
|
142 |
+
for lang, text in p.items():
|
143 |
+
verify(lang, text)
|
144 |
+
|
145 |
+
# Testing on codeparrot
|
146 |
+
|
147 |
+
ds = load_dataset("codeparrot/github-code", streaming=True, trust_remote_code=True, split="train")
|
148 |
+
|
149 |
+
iterator = iter(ds)
|
150 |
+
for _ in tqdm(range(1000)):
|
151 |
+
item = next(iterator)
|
152 |
+
code = item["code"]
|
153 |
+
lang = item["language"]
|
154 |
+
verify(lang, code)
|
155 |
+
|
156 |
+
t_fast.push_to_hub("Baichuan-M1-14B-Instruct-tokenizer")
|
157 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|