Update README.md
Browse files
README.md
CHANGED
|
@@ -89,19 +89,19 @@ Refer to the Provided Files table below to see what files use which methods, and
|
|
| 89 |
|
| 90 |
| Name | Quant method | Bits | Size | Use case |
|
| 91 |
| ---- | ---- | ---- | ---- | ---- |
|
| 92 |
-
| [tc-instruct-dpo.Q2_K.gguf](/tc-instruct-dpo.Q2_K.gguf) | Q2_K | 2 | 2.88 GB | smallest, significant quality loss - not recommended for most purposes |
|
| 93 |
-
| [tc-instruct-dpo.Q3_K_S.gguf](/tc-instruct-dpo.Q3_K_S.gguf) | Q3_K_S | 3 | 2.96 GB | very small, high quality loss |
|
| 94 |
-
| [tc-instruct-dpo.Q3_K_M.gguf](/tc-instruct-dpo.Q3_K_M.gguf) | Q3_K_M | 3 | 3.29 GB | very small, high quality loss |
|
| 95 |
-
| [tc-instruct-dpo.Q3_K_L.gguf](/tc-instruct-dpo.Q3_K_L.gguf) | Q3_K_L | 3 | 3.57 GB | small, substantial quality loss |
|
| 96 |
-
| [tc-instruct-dpo.Q4_0.gguf](/tc-instruct-dpo.Q4_0.gguf) | Q4_0 | 4 | 3.84 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
|
| 97 |
-
| [tc-instruct-dpo.Q4_K_S.gguf](/tc-instruct-dpo.Q4_K_S.gguf) | Q4_K_S | 4 | 3.87 GB | small, greater quality loss |
|
| 98 |
-
| [tc-instruct-dpo.Q4_K_M.gguf](/tc-instruct-dpo.Q4_K_M.gguf) | Q4_K_M | 4 | 4.08 GB | medium, balanced quality - recommended |
|
| 99 |
-
| [tc-instruct-dpo.Q5_0.gguf](/tc-instruct-dpo.Q5_0.gguf) | Q5_0 | 5 | 4.67 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
|
| 100 |
-
| [tc-instruct-dpo.Q5_K_S.gguf](/tc-instruct-dpo.Q5_K_S.gguf) | Q5_K_S | 5 | 4.67 GB | large, low quality loss - recommended |
|
| 101 |
-
| [tc-instruct-dpo.Q5_K_M.gguf](/tc-instruct-dpo.Q5_K_M.gguf) | Q5_K_M | 5 | 4.79 GB | large, very low quality loss - recommended |
|
| 102 |
-
| [tc-instruct-dpo.Q6_K.gguf](/tc-instruct-dpo.Q6_K.gguf) | Q6_K | 6 | 5.55 GB | very large, extremely low quality loss |
|
| 103 |
-
| [tc-instruct-dpo.Q8_0.gguf](/tc-instruct-dpo.Q8_0.gguf) | Q8_0 | 8 | 7.19 GB | very large, extremely low quality loss - not recommended |
|
| 104 |
-
| [tc-instruct-dpo.QF16.gguf](/tc-instruct-dpo.Q8_0.gguf) | QF16 | 16 | 13.53 GB | largest, lowest quality loss - highly not recommended |
|
| 105 |
|
| 106 |
# Inference Code
|
| 107 |
|
|
@@ -153,3 +153,103 @@ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
| 153 |
print(f"Response time: {time.time() - st_time} seconds")
|
| 154 |
print(response)
|
| 155 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
| Name | Quant method | Bits | Size | Use case |
|
| 91 |
| ---- | ---- | ---- | ---- | ---- |
|
| 92 |
+
| [tc-instruct-dpo.Q2_K.gguf](https://huggingface.co/pek111/TC-instruct-DPO-GGUF/blob/main/tc-instruct-dpo.Q2_K.gguf) | Q2_K | 2 | 2.88 GB | smallest, significant quality loss - not recommended for most purposes |
|
| 93 |
+
| [tc-instruct-dpo.Q3_K_S.gguf](https://huggingface.co/pek111/TC-instruct-DPO-GGUF/blob/main/tc-instruct-dpo.Q3_K_S.gguf) | Q3_K_S | 3 | 2.96 GB | very small, high quality loss |
|
| 94 |
+
| [tc-instruct-dpo.Q3_K_M.gguf](https://huggingface.co/pek111/TC-instruct-DPO-GGUF/blob/main/tc-instruct-dpo.Q3_K_M.gguf) | Q3_K_M | 3 | 3.29 GB | very small, high quality loss |
|
| 95 |
+
| [tc-instruct-dpo.Q3_K_L.gguf](https://huggingface.co/pek111/TC-instruct-DPO-GGUF/blob/main/tc-instruct-dpo.Q3_K_L.gguf) | Q3_K_L | 3 | 3.57 GB | small, substantial quality loss |
|
| 96 |
+
| [tc-instruct-dpo.Q4_0.gguf](https://huggingface.co/pek111/TC-instruct-DPO-GGUF/blob/main/tc-instruct-dpo.Q4_0.gguf) | Q4_0 | 4 | 3.84 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
|
| 97 |
+
| [tc-instruct-dpo.Q4_K_S.gguf](https://huggingface.co/pek111/TC-instruct-DPO-GGUF/blob/main/tc-instruct-dpo.Q4_K_S.gguf) | Q4_K_S | 4 | 3.87 GB | small, greater quality loss |
|
| 98 |
+
| [tc-instruct-dpo.Q4_K_M.gguf](https://huggingface.co/pek111/TC-instruct-DPO-GGUF/blob/main/tc-instruct-dpo.Q4_K_M.gguf) | Q4_K_M | 4 | 4.08 GB | medium, balanced quality - recommended |
|
| 99 |
+
| [tc-instruct-dpo.Q5_0.gguf](https://huggingface.co/pek111/TC-instruct-DPO-GGUF/blob/main/tc-instruct-dpo.Q5_0.gguf) | Q5_0 | 5 | 4.67 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
|
| 100 |
+
| [tc-instruct-dpo.Q5_K_S.gguf](https://huggingface.co/pek111/TC-instruct-DPO-GGUF/blob/main/tc-instruct-dpo.Q5_K_S.gguf) | Q5_K_S | 5 | 4.67 GB | large, low quality loss - recommended |
|
| 101 |
+
| [tc-instruct-dpo.Q5_K_M.gguf](https://huggingface.co/pek111/TC-instruct-DPO-GGUF/blob/main/tc-instruct-dpo.Q5_K_M.gguf) | Q5_K_M | 5 | 4.79 GB | large, very low quality loss - recommended |
|
| 102 |
+
| [tc-instruct-dpo.Q6_K.gguf](https://huggingface.co/pek111/TC-instruct-DPO-GGUF/blob/main/tc-instruct-dpo.Q6_K.gguf) | Q6_K | 6 | 5.55 GB | very large, extremely low quality loss |
|
| 103 |
+
| [tc-instruct-dpo.Q8_0.gguf](https://huggingface.co/pek111/TC-instruct-DPO-GGUF/blob/main/tc-instruct-dpo.Q8_0.gguf) | Q8_0 | 8 | 7.19 GB | very large, extremely low quality loss - not recommended |
|
| 104 |
+
| [tc-instruct-dpo.QF16.gguf](https://huggingface.co/pek111/TC-instruct-DPO-GGUF/blob/main/tc-instruct-dpo.Q8_0.gguf) | QF16 | 16 | 13.53 GB | largest, lowest quality loss - highly not recommended |
|
| 105 |
|
| 106 |
# Inference Code
|
| 107 |
|
|
|
|
| 153 |
print(f"Response time: {time.time() - st_time} seconds")
|
| 154 |
print(response)
|
| 155 |
```
|
| 156 |
+
|
| 157 |
+
# Original model card: tanamettpk's TC Instruct DPO - Typhoon 7B
|
| 158 |
+
|
| 159 |
+
# TC-instruct-DPO - Typhoon 7B
|
| 160 |
+
|
| 161 |
+

|
| 162 |
+
|
| 163 |
+
## Model Description
|
| 164 |
+
|
| 165 |
+
TC instruct DPO finetuned มาจาก Typhoon 7B ของ SCB 10X ซึ่งมาจาก Mistral 7B - v0.1 อีกที
|
| 166 |
+
|
| 167 |
+
TC instruct DPO ได้ทำการ Train กับ Data ภาษาไทยเท่าที่จะหาได้ และ พยายามให้ Instruct มีความต่างกันเท่าที่จะทำได้
|
| 168 |
+
|
| 169 |
+
Model นี้ตั้งใจทำขึ้นเพื่อการศึกษาขั้นตอนในการสร้าง LLM เท่านั้น
|
| 170 |
+
|
| 171 |
+
และอย่างที่บอกว่าเพื่อศึกษา และ เราไม่เคยสร้าง LLM มาก่อนหรือศึกษามาเป็นอย่างดีนัก
|
| 172 |
+
|
| 173 |
+
เราเลยมีความโง่หลายๆอย่างเช่น เราใช้ Prompt template เป็น Alpaca template ซึ่งไอ้สัส มารู้ทีหลังว่าต้องใช้ ChatML ดีกว่า
|
| 174 |
+
|
| 175 |
+
โดยการ Train Model นี้เราใช้ QLoRA Rank 32 Alpha 64
|
| 176 |
+
|
| 177 |
+
Train ด้วย Custom Script ของ Huggingface (อย่าหาทำ ย้ายไปใช้ axolotl หรือ unsloth ดีกว่าประหยัดตัง)
|
| 178 |
+
|
| 179 |
+
ใช้ H100 PCIE 80 GB 1 ตัวจาก vast.ai ราคาประมาณ 3$/hr Train แค่ Model นี้ก็ประมาณ 21 ชม. แต่ถ้ารวมลองผิดลองถูกด้วยก็ 10k บาท
|
| 180 |
+
|
| 181 |
+
ด้วย Batch size 24 (จริงๆอยากใช้ 32 แต่ OOM และ 16 ก็แหม๋~~~ เพิล กูใช้ H100 80GB จะให้กู Train แค่ 40 GB บ้าบ้อ)
|
| 182 |
+
|
| 183 |
+
## ถ้าใครเอาไปใช้แล้วมันช่วยได้จะมาช่วย Donate ให้จะขอบคุณมากๆ
|
| 184 |
+
Tipme: https://bit.ly/3m3uH5p
|
| 185 |
+
|
| 186 |
+
# Prompt Format
|
| 187 |
+
```
|
| 188 |
+
### Instruction:
|
| 189 |
+
จะทำอะไรก็เรื่องของมึง
|
| 190 |
+
|
| 191 |
+
### Response:
|
| 192 |
+
ด่าผมอีกสิครับ
|
| 193 |
+
```
|
| 194 |
+
|
| 195 |
+
# Inference Code
|
| 196 |
+
|
| 197 |
+
Here is example code using HuggingFace Transformers to inference the model (note: in 4bit, it will require around 5GB of VRAM)
|
| 198 |
+
|
| 199 |
+
Note: To use function calling, you should see the github repo above.
|
| 200 |
+
|
| 201 |
+
```python
|
| 202 |
+
# Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages
|
| 203 |
+
|
| 204 |
+
import torch
|
| 205 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, GenerationConfig
|
| 206 |
+
import time
|
| 207 |
+
|
| 208 |
+
base_model_id = "tanamettpk/TC-instruct-DPO"
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
input_text = """
|
| 212 |
+
### Instruction:
|
| 213 |
+
ด่าฉันด้วยคำหยาบคายหน่อย
|
| 214 |
+
|
| 215 |
+
### Response:
|
| 216 |
+
"""
|
| 217 |
+
|
| 218 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 219 |
+
base_model_id,
|
| 220 |
+
low_cpu_mem_usage=True,
|
| 221 |
+
return_dict=True,
|
| 222 |
+
device_map={"": 0},
|
| 223 |
+
)
|
| 224 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
| 225 |
+
|
| 226 |
+
generation_config = GenerationConfig(
|
| 227 |
+
do_sample=True,
|
| 228 |
+
top_k=1,
|
| 229 |
+
temperature=0.5,
|
| 230 |
+
max_new_tokens=300,
|
| 231 |
+
repetition_penalty=1.1,
|
| 232 |
+
pad_token_id=tokenizer.eos_token_id)
|
| 233 |
+
|
| 234 |
+
# Tokenize input
|
| 235 |
+
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
|
| 236 |
+
|
| 237 |
+
# Generate outputs
|
| 238 |
+
st_time = time.time()
|
| 239 |
+
outputs = model.generate(**inputs, generation_config=generation_config)
|
| 240 |
+
|
| 241 |
+
# Decode and print response
|
| 242 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 243 |
+
print(f"Response time: {time.time() - st_time} seconds")
|
| 244 |
+
print(response)
|
| 245 |
+
```
|
| 246 |
+
|
| 247 |
+
# How to cite:
|
| 248 |
+
|
| 249 |
+
```bibtext
|
| 250 |
+
@misc{TC-instruct-DPO,
|
| 251 |
+
url={[https://huggingface.co/tanamettpk/TC-instruct-DPO]https://huggingface.co/tanamettpk/TC-instruct-DPO)},
|
| 252 |
+
title={TC-instruct-DPO},
|
| 253 |
+
author={"tanamettpk", "tanamettpk", "tanamettpk", "and", "tanamettpk"}
|
| 254 |
+
}
|
| 255 |
+
```
|