experiments
Browse files- batch_finetune_eu_jav_base_exp_bas_16.sh +8 -0
- batch_finetune_eu_jav_base_exp_bs_16.sh +7 -0
- batch_finetune_eu_jav_base_exp_dropout_02.sh +7 -0
- batch_finetune_eu_jav_base_exp_dropout_04.sh +7 -0
- batch_finetune_eu_jav_base_test.sh +2 -2
- finetune_classification_base_exp_bs_16.gin +40 -0
- finetune_classification_base_exp_dropout_02.gin +39 -0
- finetune_classification_base_exp_dropout_04.gin +39 -0
- tasks_test.py +1 -1
batch_finetune_eu_jav_base_exp_bas_16.sh
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
PROJECT_DIR=${HOME}"/models/eu-jav-categorisation"
|
| 2 |
+
export PYTHONPATH=${PROJECT_DIR}
|
| 3 |
+
INITIAL_CHECKPOINT_PATH=\"gs://t5-data/pretrained_models/t5x/mt5_base/checkpoint_1000000\"
|
| 4 |
+
TRAIN_STEPS=1002000
|
| 5 |
+
|
| 6 |
+
python3 ../../t5x/t5x/train.py --gin_search_paths="./" --gin.TRAIN_STEPS=${TRAIN_STEPS} --gin_file="finetune_classification_base_test.gin" --gin.INITIAL_CHECKPOINT_PATH=${INITIAL_CHECKPOINT_PATH} --gin.MIXTURE_OR_TASK_NAME=\"classify_tweets\" --gin.MODEL_DIR=\"gs://eu-jav-t5x/finetuned/italian_tweets/evaltest_classify_tweets_base_v1\"
|
| 7 |
+
python3 ../../t5x/t5x/train.py --gin_search_paths="./" --gin.TRAIN_STEPS=${TRAIN_STEPS} --gin_file="finetune_classification_base_test.gin" --gin.INITIAL_CHECKPOINT_PATH=${INITIAL_CHECKPOINT_PATH} --gin.MIXTURE_OR_TASK_NAME=\"classify_tweets\" --gin.MODEL_DIR=\"gs://eu-jav-t5x/finetuned/italian_tweets/evaltest_classify_tweets_base_2\"
|
| 8 |
+
|
batch_finetune_eu_jav_base_exp_bs_16.sh
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
PROJECT_DIR=${HOME}"/models/eu-jav-categorisation"
|
| 2 |
+
export PYTHONPATH=${PROJECT_DIR}
|
| 3 |
+
INITIAL_CHECKPOINT_PATH=\"gs://t5-data/pretrained_models/t5x/mt5_base/checkpoint_1000000\"
|
| 4 |
+
TRAIN_STEPS=1003000
|
| 5 |
+
|
| 6 |
+
python3 ../../t5x/t5x/train.py --gin_search_paths="./" --gin.TRAIN_STEPS=${TRAIN_STEPS} --gin_file="finetune_classification_base_exp_bs_16.gin" --gin.INITIAL_CHECKPOINT_PATH=${INITIAL_CHECKPOINT_PATH} --gin.MIXTURE_OR_TASK_NAME=\"classify_tweets\" --gin.MODEL_DIR=\"gs://eu-jav-t5x/finetuned/italian_tweets/exp_bs_16_classify_tweets_base_v1\"
|
| 7 |
+
|
batch_finetune_eu_jav_base_exp_dropout_02.sh
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
PROJECT_DIR=${HOME}"/models/eu-jav-categorisation"
|
| 2 |
+
export PYTHONPATH=${PROJECT_DIR}
|
| 3 |
+
INITIAL_CHECKPOINT_PATH=\"gs://t5-data/pretrained_models/t5x/mt5_base/checkpoint_1000000\"
|
| 4 |
+
TRAIN_STEPS=1003000
|
| 5 |
+
|
| 6 |
+
python3 ../../t5x/t5x/train.py --gin_search_paths="./" --gin.TRAIN_STEPS=${TRAIN_STEPS} --gin_file="finetune_classification_base_exp_dropout_02.gin" --gin.INITIAL_CHECKPOINT_PATH=${INITIAL_CHECKPOINT_PATH} --gin.MIXTURE_OR_TASK_NAME=\"classify_tweets\" --gin.MODEL_DIR=\"gs://eu-jav-t5x/finetuned/italian_tweets/exp_dropout_02_classify_tweets_base_v1\"
|
| 7 |
+
|
batch_finetune_eu_jav_base_exp_dropout_04.sh
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
PROJECT_DIR=${HOME}"/models/eu-jav-categorisation"
|
| 2 |
+
export PYTHONPATH=${PROJECT_DIR}
|
| 3 |
+
INITIAL_CHECKPOINT_PATH=\"gs://t5-data/pretrained_models/t5x/mt5_base/checkpoint_1000000\"
|
| 4 |
+
TRAIN_STEPS=1003000
|
| 5 |
+
|
| 6 |
+
python3 ../../t5x/t5x/train.py --gin_search_paths="./" --gin.TRAIN_STEPS=${TRAIN_STEPS} --gin_file="finetune_classification_base_exp_dropout_04.gin" --gin.INITIAL_CHECKPOINT_PATH=${INITIAL_CHECKPOINT_PATH} --gin.MIXTURE_OR_TASK_NAME=\"classify_tweets\" --gin.MODEL_DIR=\"gs://eu-jav-t5x/finetuned/italian_tweets/exp_dropout_04_classify_tweets_base_v1\"
|
| 7 |
+
|
batch_finetune_eu_jav_base_test.sh
CHANGED
|
@@ -3,6 +3,6 @@ export PYTHONPATH=${PROJECT_DIR}
|
|
| 3 |
INITIAL_CHECKPOINT_PATH=\"gs://t5-data/pretrained_models/t5x/mt5_base/checkpoint_1000000\"
|
| 4 |
TRAIN_STEPS=1002000
|
| 5 |
|
| 6 |
-
python3 ../../t5x/t5x/train.py --gin_search_paths="./" --gin.TRAIN_STEPS=${TRAIN_STEPS} --gin_file="finetune_classification_base_test.gin" --gin.INITIAL_CHECKPOINT_PATH=${INITIAL_CHECKPOINT_PATH} --gin.MIXTURE_OR_TASK_NAME=\"classify_tweets\" --gin.MODEL_DIR=\"gs://eu-jav-t5x/finetuned/italian_tweets/
|
| 7 |
-
python3 ../../t5x/t5x/train.py --gin_search_paths="./" --gin.TRAIN_STEPS=${TRAIN_STEPS} --gin_file="finetune_classification_base_test.gin" --gin.INITIAL_CHECKPOINT_PATH=${INITIAL_CHECKPOINT_PATH} --gin.MIXTURE_OR_TASK_NAME=\"classify_tweets\" --gin.MODEL_DIR=\"gs://eu-jav-t5x/finetuned/italian_tweets/
|
| 8 |
|
|
|
|
| 3 |
INITIAL_CHECKPOINT_PATH=\"gs://t5-data/pretrained_models/t5x/mt5_base/checkpoint_1000000\"
|
| 4 |
TRAIN_STEPS=1002000
|
| 5 |
|
| 6 |
+
python3 ../../t5x/t5x/train.py --gin_search_paths="./" --gin.TRAIN_STEPS=${TRAIN_STEPS} --gin_file="finetune_classification_base_test.gin" --gin.INITIAL_CHECKPOINT_PATH=${INITIAL_CHECKPOINT_PATH} --gin.MIXTURE_OR_TASK_NAME=\"classify_tweets\" --gin.MODEL_DIR=\"gs://eu-jav-t5x/finetuned/italian_tweets/evaltest_classify_tweets_base_v1\"
|
| 7 |
+
python3 ../../t5x/t5x/train.py --gin_search_paths="./" --gin.TRAIN_STEPS=${TRAIN_STEPS} --gin_file="finetune_classification_base_test.gin" --gin.INITIAL_CHECKPOINT_PATH=${INITIAL_CHECKPOINT_PATH} --gin.MIXTURE_OR_TASK_NAME=\"classify_tweets\" --gin.MODEL_DIR=\"gs://eu-jav-t5x/finetuned/italian_tweets/evaltest_classify_tweets_base_2\"
|
| 8 |
|
finetune_classification_base_exp_bs_16.gin
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __gin__ import dynamic_registration
|
| 2 |
+
import tasks
|
| 3 |
+
|
| 4 |
+
import __main__ as train_script
|
| 5 |
+
from t5.data import mixtures
|
| 6 |
+
from t5x import models
|
| 7 |
+
from t5x import partitioning
|
| 8 |
+
from t5x import utils
|
| 9 |
+
|
| 10 |
+
include "t5x/examples/t5/mt5/base.gin"
|
| 11 |
+
include "t5x/configs/runs/finetune.gin"
|
| 12 |
+
|
| 13 |
+
MIXTURE_OR_TASK_NAME = %gin.REQUIRED
|
| 14 |
+
TASK_FEATURE_LENGTHS = {"inputs": 256, "targets": 2}
|
| 15 |
+
INITIAL_CHECKPOINT_PATH = %gin.REQUIRED
|
| 16 |
+
TRAIN_STEPS = %gin.REQUIRED # 1000000 pre-trained steps + 10000 fine-tuning steps.
|
| 17 |
+
USE_CACHED_TASKS = False
|
| 18 |
+
DROPOUT_RATE = 0.1
|
| 19 |
+
RANDOM_SEED = 0
|
| 20 |
+
BATCH_SIZE = 16
|
| 21 |
+
|
| 22 |
+
#Fixing a small error
|
| 23 |
+
infer_eval/utils.DatasetConfig:
|
| 24 |
+
task_feature_lengths = %TASK_FEATURE_LENGTHS
|
| 25 |
+
|
| 26 |
+
#Saving every 1000 steps
|
| 27 |
+
utils.SaveCheckpointConfig:
|
| 28 |
+
period = 500
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
# Pere: Only necessary if we load a t5 model. We can start with an t5x model here
|
| 32 |
+
# `LOSS_NORMALIZING_FACTOR`: When fine-tuning a model that was pre-trained
|
| 33 |
+
# using Mesh Tensorflow (e.g. the public T5 / mT5 / ByT5 models), this should be
|
| 34 |
+
# set to `pretraining batch_size` * `target_token_length`. For T5 and T5.1.1:
|
| 35 |
+
# `2048 * 114`. For mT5: `1024 * 229`. For ByT5: `1024 * 189`.
|
| 36 |
+
# LOSS_NORMALIZING_FACTOR = 234496
|
| 37 |
+
|
| 38 |
+
# Might have to ba changed based on architecture
|
| 39 |
+
# partitioning.PjitPartitioner.num_partitions = 1
|
| 40 |
+
|
finetune_classification_base_exp_dropout_02.gin
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __gin__ import dynamic_registration
|
| 2 |
+
import tasks
|
| 3 |
+
|
| 4 |
+
import __main__ as train_script
|
| 5 |
+
from t5.data import mixtures
|
| 6 |
+
from t5x import models
|
| 7 |
+
from t5x import partitioning
|
| 8 |
+
from t5x import utils
|
| 9 |
+
|
| 10 |
+
include "t5x/examples/t5/mt5/base.gin"
|
| 11 |
+
include "t5x/configs/runs/finetune.gin"
|
| 12 |
+
|
| 13 |
+
MIXTURE_OR_TASK_NAME = %gin.REQUIRED
|
| 14 |
+
TASK_FEATURE_LENGTHS = {"inputs": 256, "targets": 2}
|
| 15 |
+
INITIAL_CHECKPOINT_PATH = %gin.REQUIRED
|
| 16 |
+
TRAIN_STEPS = %gin.REQUIRED # 1000000 pre-trained steps + 10000 fine-tuning steps.
|
| 17 |
+
USE_CACHED_TASKS = False
|
| 18 |
+
DROPOUT_RATE = 0.2
|
| 19 |
+
RANDOM_SEED = 0
|
| 20 |
+
|
| 21 |
+
#Fixing a small error
|
| 22 |
+
infer_eval/utils.DatasetConfig:
|
| 23 |
+
task_feature_lengths = %TASK_FEATURE_LENGTHS
|
| 24 |
+
|
| 25 |
+
#Saving every 1000 steps
|
| 26 |
+
utils.SaveCheckpointConfig:
|
| 27 |
+
period = 500
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# Pere: Only necessary if we load a t5 model. We can start with an t5x model here
|
| 31 |
+
# `LOSS_NORMALIZING_FACTOR`: When fine-tuning a model that was pre-trained
|
| 32 |
+
# using Mesh Tensorflow (e.g. the public T5 / mT5 / ByT5 models), this should be
|
| 33 |
+
# set to `pretraining batch_size` * `target_token_length`. For T5 and T5.1.1:
|
| 34 |
+
# `2048 * 114`. For mT5: `1024 * 229`. For ByT5: `1024 * 189`.
|
| 35 |
+
# LOSS_NORMALIZING_FACTOR = 234496
|
| 36 |
+
|
| 37 |
+
# Might have to ba changed based on architecture
|
| 38 |
+
# partitioning.PjitPartitioner.num_partitions = 1
|
| 39 |
+
|
finetune_classification_base_exp_dropout_04.gin
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __gin__ import dynamic_registration
|
| 2 |
+
import tasks
|
| 3 |
+
|
| 4 |
+
import __main__ as train_script
|
| 5 |
+
from t5.data import mixtures
|
| 6 |
+
from t5x import models
|
| 7 |
+
from t5x import partitioning
|
| 8 |
+
from t5x import utils
|
| 9 |
+
|
| 10 |
+
include "t5x/examples/t5/mt5/base.gin"
|
| 11 |
+
include "t5x/configs/runs/finetune.gin"
|
| 12 |
+
|
| 13 |
+
MIXTURE_OR_TASK_NAME = %gin.REQUIRED
|
| 14 |
+
TASK_FEATURE_LENGTHS = {"inputs": 256, "targets": 2}
|
| 15 |
+
INITIAL_CHECKPOINT_PATH = %gin.REQUIRED
|
| 16 |
+
TRAIN_STEPS = %gin.REQUIRED # 1000000 pre-trained steps + 10000 fine-tuning steps.
|
| 17 |
+
USE_CACHED_TASKS = False
|
| 18 |
+
DROPOUT_RATE = 0.4
|
| 19 |
+
RANDOM_SEED = 0
|
| 20 |
+
|
| 21 |
+
#Fixing a small error
|
| 22 |
+
infer_eval/utils.DatasetConfig:
|
| 23 |
+
task_feature_lengths = %TASK_FEATURE_LENGTHS
|
| 24 |
+
|
| 25 |
+
#Saving every 1000 steps
|
| 26 |
+
utils.SaveCheckpointConfig:
|
| 27 |
+
period = 500
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# Pere: Only necessary if we load a t5 model. We can start with an t5x model here
|
| 31 |
+
# `LOSS_NORMALIZING_FACTOR`: When fine-tuning a model that was pre-trained
|
| 32 |
+
# using Mesh Tensorflow (e.g. the public T5 / mT5 / ByT5 models), this should be
|
| 33 |
+
# set to `pretraining batch_size` * `target_token_length`. For T5 and T5.1.1:
|
| 34 |
+
# `2048 * 114`. For mT5: `1024 * 229`. For ByT5: `1024 * 189`.
|
| 35 |
+
# LOSS_NORMALIZING_FACTOR = 234496
|
| 36 |
+
|
| 37 |
+
# Might have to ba changed based on architecture
|
| 38 |
+
# partitioning.PjitPartitioner.num_partitions = 1
|
| 39 |
+
|
tasks_test.py
CHANGED
|
@@ -11,7 +11,7 @@ import tensorflow.compat.v1 as tf
|
|
| 11 |
|
| 12 |
tsv_path = {
|
| 13 |
"train": "gs://eu-jav-t5x/corpus/labeled/datasetA_train_3categories.tsv",
|
| 14 |
-
"validation": "gs://eu-jav-t5x/corpus/labeled/
|
| 15 |
"test": "gs://eu-jav-t5x/corpus/labeled/ datasetA_test_3categories.tsv"
|
| 16 |
}
|
| 17 |
|
|
|
|
| 11 |
|
| 12 |
tsv_path = {
|
| 13 |
"train": "gs://eu-jav-t5x/corpus/labeled/datasetA_train_3categories.tsv",
|
| 14 |
+
"validation": "gs://eu-jav-t5x/corpus/labeled/datasetA_test_3categories.tsv",
|
| 15 |
"test": "gs://eu-jav-t5x/corpus/labeled/ datasetA_test_3categories.tsv"
|
| 16 |
}
|
| 17 |
|