Commit
·
e7834ee
1
Parent(s):
7855f8d
End of training
Browse files- README.md +79 -0
- logs/events.out.tfevents.1666709386.6dedd18d3c89.167.0 +2 -2
- preprocessor_config.json +10 -0
- pytorch_model.bin +1 -1
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +39 -0
- vocab.txt +0 -0
README.md
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- generated_from_trainer
|
| 4 |
+
datasets:
|
| 5 |
+
- funsd
|
| 6 |
+
model-index:
|
| 7 |
+
- name: layoutlm-funsd
|
| 8 |
+
results: []
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 12 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 13 |
+
|
| 14 |
+
# layoutlm-funsd
|
| 15 |
+
|
| 16 |
+
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
| 17 |
+
It achieves the following results on the evaluation set:
|
| 18 |
+
- Loss: 0.6820
|
| 19 |
+
- Answer: {'precision': 0.7084257206208425, 'recall': 0.7898640296662547, 'f1': 0.7469316189362946, 'number': 809}
|
| 20 |
+
- Header: {'precision': 0.2689655172413793, 'recall': 0.3277310924369748, 'f1': 0.2954545454545454, 'number': 119}
|
| 21 |
+
- Question: {'precision': 0.7870619946091644, 'recall': 0.8225352112676056, 'f1': 0.8044077134986226, 'number': 1065}
|
| 22 |
+
- Overall Precision: 0.7194
|
| 23 |
+
- Overall Recall: 0.7797
|
| 24 |
+
- Overall F1: 0.7484
|
| 25 |
+
- Overall Accuracy: 0.8102
|
| 26 |
+
|
| 27 |
+
## Model description
|
| 28 |
+
|
| 29 |
+
More information needed
|
| 30 |
+
|
| 31 |
+
## Intended uses & limitations
|
| 32 |
+
|
| 33 |
+
More information needed
|
| 34 |
+
|
| 35 |
+
## Training and evaluation data
|
| 36 |
+
|
| 37 |
+
More information needed
|
| 38 |
+
|
| 39 |
+
## Training procedure
|
| 40 |
+
|
| 41 |
+
### Training hyperparameters
|
| 42 |
+
|
| 43 |
+
The following hyperparameters were used during training:
|
| 44 |
+
- learning_rate: 3e-05
|
| 45 |
+
- train_batch_size: 16
|
| 46 |
+
- eval_batch_size: 8
|
| 47 |
+
- seed: 42
|
| 48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 49 |
+
- lr_scheduler_type: linear
|
| 50 |
+
- num_epochs: 15
|
| 51 |
+
- mixed_precision_training: Native AMP
|
| 52 |
+
|
| 53 |
+
### Training results
|
| 54 |
+
|
| 55 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
| 56 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
| 57 |
+
| 1.7857 | 1.0 | 10 | 1.5985 | {'precision': 0.009248554913294798, 'recall': 0.009888751545117428, 'f1': 0.00955794504181601, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.1273972602739726, 'recall': 0.08732394366197183, 'f1': 0.10362116991643454, 'number': 1065} | 0.0633 | 0.0507 | 0.0563 | 0.3562 |
|
| 58 |
+
| 1.4597 | 2.0 | 20 | 1.2331 | {'precision': 0.18717683557394002, 'recall': 0.22373300370828184, 'f1': 0.20382882882882883, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4439461883408072, 'recall': 0.5577464788732395, 'f1': 0.4943820224719101, 'number': 1065} | 0.3362 | 0.3889 | 0.3606 | 0.6007 |
|
| 59 |
+
| 1.0902 | 3.0 | 30 | 0.9489 | {'precision': 0.4371069182389937, 'recall': 0.515451174289246, 'f1': 0.47305728871242203, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.6257615317667538, 'recall': 0.6751173708920187, 'f1': 0.6495031616982836, 'number': 1065} | 0.5311 | 0.5700 | 0.5499 | 0.6910 |
|
| 60 |
+
| 0.8339 | 4.0 | 40 | 0.7979 | {'precision': 0.5977366255144033, 'recall': 0.7181705809641533, 'f1': 0.652442448062886, 'number': 809} | {'precision': 0.13513513513513514, 'recall': 0.08403361344537816, 'f1': 0.10362694300518135, 'number': 119} | {'precision': 0.6854545454545454, 'recall': 0.707981220657277, 'f1': 0.6965357967667436, 'number': 1065} | 0.6267 | 0.6749 | 0.6499 | 0.7453 |
|
| 61 |
+
| 0.6983 | 5.0 | 50 | 0.7659 | {'precision': 0.6392896781354052, 'recall': 0.7119901112484549, 'f1': 0.6736842105263159, 'number': 809} | {'precision': 0.19626168224299065, 'recall': 0.17647058823529413, 'f1': 0.18584070796460178, 'number': 119} | {'precision': 0.6688102893890675, 'recall': 0.7812206572769953, 'f1': 0.7206582936336077, 'number': 1065} | 0.6345 | 0.7170 | 0.6733 | 0.7610 |
|
| 62 |
+
| 0.5815 | 6.0 | 60 | 0.6907 | {'precision': 0.6410256410256411, 'recall': 0.7725587144622992, 'f1': 0.7006726457399104, 'number': 809} | {'precision': 0.23863636363636365, 'recall': 0.17647058823529413, 'f1': 0.20289855072463767, 'number': 119} | {'precision': 0.7027463651050081, 'recall': 0.8169014084507042, 'f1': 0.7555362570560139, 'number': 1065} | 0.6588 | 0.7607 | 0.7061 | 0.7913 |
|
| 63 |
+
| 0.5044 | 7.0 | 70 | 0.6802 | {'precision': 0.6727078891257996, 'recall': 0.7799752781211372, 'f1': 0.7223812249570692, 'number': 809} | {'precision': 0.26605504587155965, 'recall': 0.24369747899159663, 'f1': 0.2543859649122807, 'number': 119} | {'precision': 0.7305699481865285, 'recall': 0.7943661971830986, 'f1': 0.7611336032388665, 'number': 1065} | 0.6830 | 0.7556 | 0.7175 | 0.7902 |
|
| 64 |
+
| 0.4534 | 8.0 | 80 | 0.6595 | {'precision': 0.7018701870187019, 'recall': 0.788627935723115, 'f1': 0.7427240977881256, 'number': 809} | {'precision': 0.234375, 'recall': 0.25210084033613445, 'f1': 0.242914979757085, 'number': 119} | {'precision': 0.7378559463986599, 'recall': 0.8272300469483568, 'f1': 0.779991146525011, 'number': 1065} | 0.6943 | 0.7772 | 0.7334 | 0.8074 |
|
| 65 |
+
| 0.3971 | 9.0 | 90 | 0.6625 | {'precision': 0.6967032967032967, 'recall': 0.7836835599505563, 'f1': 0.7376381617219313, 'number': 809} | {'precision': 0.27007299270072993, 'recall': 0.31092436974789917, 'f1': 0.2890625, 'number': 119} | {'precision': 0.7433930093776641, 'recall': 0.8187793427230047, 'f1': 0.7792672028596961, 'number': 1065} | 0.6950 | 0.7742 | 0.7325 | 0.8060 |
|
| 66 |
+
| 0.3593 | 10.0 | 100 | 0.6634 | {'precision': 0.7079152731326644, 'recall': 0.7849196538936959, 'f1': 0.7444314185228605, 'number': 809} | {'precision': 0.2714285714285714, 'recall': 0.31932773109243695, 'f1': 0.29343629343629346, 'number': 119} | {'precision': 0.7571305099394987, 'recall': 0.8225352112676056, 'f1': 0.7884788478847885, 'number': 1065} | 0.7060 | 0.7772 | 0.7399 | 0.8115 |
|
| 67 |
+
| 0.3209 | 11.0 | 110 | 0.6655 | {'precision': 0.6973262032085561, 'recall': 0.8059332509270705, 'f1': 0.7477064220183487, 'number': 809} | {'precision': 0.2903225806451613, 'recall': 0.3025210084033613, 'f1': 0.2962962962962963, 'number': 119} | {'precision': 0.7788632326820604, 'recall': 0.8234741784037559, 'f1': 0.8005476951163851, 'number': 1065} | 0.7162 | 0.7852 | 0.7492 | 0.8129 |
|
| 68 |
+
| 0.3064 | 12.0 | 120 | 0.6771 | {'precision': 0.7104072398190046, 'recall': 0.7762669962917181, 'f1': 0.74187832250443, 'number': 809} | {'precision': 0.2689655172413793, 'recall': 0.3277310924369748, 'f1': 0.2954545454545454, 'number': 119} | {'precision': 0.7795698924731183, 'recall': 0.8169014084507042, 'f1': 0.797799174690509, 'number': 1065} | 0.7166 | 0.7712 | 0.7429 | 0.8088 |
|
| 69 |
+
| 0.286 | 13.0 | 130 | 0.6765 | {'precision': 0.7030905077262694, 'recall': 0.7873918417799752, 'f1': 0.7428571428571429, 'number': 809} | {'precision': 0.2689655172413793, 'recall': 0.3277310924369748, 'f1': 0.2954545454545454, 'number': 119} | {'precision': 0.769298245614035, 'recall': 0.8234741784037559, 'f1': 0.7954648526077097, 'number': 1065} | 0.7088 | 0.7792 | 0.7424 | 0.8111 |
|
| 70 |
+
| 0.2806 | 14.0 | 140 | 0.6820 | {'precision': 0.7052980132450332, 'recall': 0.7898640296662547, 'f1': 0.7451895043731779, 'number': 809} | {'precision': 0.2689655172413793, 'recall': 0.3277310924369748, 'f1': 0.2954545454545454, 'number': 119} | {'precision': 0.7793594306049823, 'recall': 0.8225352112676056, 'f1': 0.8003654636820466, 'number': 1065} | 0.7145 | 0.7797 | 0.7457 | 0.8106 |
|
| 71 |
+
| 0.2736 | 15.0 | 150 | 0.6820 | {'precision': 0.7084257206208425, 'recall': 0.7898640296662547, 'f1': 0.7469316189362946, 'number': 809} | {'precision': 0.2689655172413793, 'recall': 0.3277310924369748, 'f1': 0.2954545454545454, 'number': 119} | {'precision': 0.7870619946091644, 'recall': 0.8225352112676056, 'f1': 0.8044077134986226, 'number': 1065} | 0.7194 | 0.7797 | 0.7484 | 0.8102 |
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
### Framework versions
|
| 75 |
+
|
| 76 |
+
- Transformers 4.23.1
|
| 77 |
+
- Pytorch 1.12.1+cu113
|
| 78 |
+
- Datasets 2.6.1
|
| 79 |
+
- Tokenizers 0.13.1
|
logs/events.out.tfevents.1666709386.6dedd18d3c89.167.0
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f7eede695fc9cfcdf23a821fd452cf5f9a7ef7a56421c67f76c0d6dff85409e5
|
| 3 |
+
size 14110
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"apply_ocr": true,
|
| 3 |
+
"do_resize": true,
|
| 4 |
+
"feature_extractor_type": "LayoutLMv2FeatureExtractor",
|
| 5 |
+
"ocr_lang": null,
|
| 6 |
+
"processor_class": "LayoutLMv2Processor",
|
| 7 |
+
"resample": 2,
|
| 8 |
+
"size": 224,
|
| 9 |
+
"tesseract_config": ""
|
| 10 |
+
}
|
pytorch_model.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 450606565
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:054f317693eb039bcd4e73d5d3a9459d2220ab27f91ac39ec0d706213c111ed9
|
| 3 |
size 450606565
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": null,
|
| 3 |
+
"apply_ocr": false,
|
| 4 |
+
"cls_token": "[CLS]",
|
| 5 |
+
"cls_token_box": [
|
| 6 |
+
0,
|
| 7 |
+
0,
|
| 8 |
+
0,
|
| 9 |
+
0
|
| 10 |
+
],
|
| 11 |
+
"do_basic_tokenize": true,
|
| 12 |
+
"do_lower_case": true,
|
| 13 |
+
"mask_token": "[MASK]",
|
| 14 |
+
"model_max_length": 512,
|
| 15 |
+
"name_or_path": "microsoft/layoutlmv2-base-uncased",
|
| 16 |
+
"never_split": null,
|
| 17 |
+
"only_label_first_subword": true,
|
| 18 |
+
"pad_token": "[PAD]",
|
| 19 |
+
"pad_token_box": [
|
| 20 |
+
0,
|
| 21 |
+
0,
|
| 22 |
+
0,
|
| 23 |
+
0
|
| 24 |
+
],
|
| 25 |
+
"pad_token_label": -100,
|
| 26 |
+
"processor_class": "LayoutLMv2Processor",
|
| 27 |
+
"sep_token": "[SEP]",
|
| 28 |
+
"sep_token_box": [
|
| 29 |
+
1000,
|
| 30 |
+
1000,
|
| 31 |
+
1000,
|
| 32 |
+
1000
|
| 33 |
+
],
|
| 34 |
+
"special_tokens_map_file": null,
|
| 35 |
+
"strip_accents": null,
|
| 36 |
+
"tokenize_chinese_chars": true,
|
| 37 |
+
"tokenizer_class": "LayoutLMv2Tokenizer",
|
| 38 |
+
"unk_token": "[UNK]"
|
| 39 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|