File size: 54,461 Bytes
70af7bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:124788
- loss:GISTEmbedLoss
base_model: BAAI/bge-small-en-v1.5
widget:
- source_sentence: 其他机械、设备和有形货物租赁服务代表
  sentences:
  - 其他机械和设备租赁服务工作人员
  - 电子和电信设备及零部件物流经理
  - 工业主厨
- source_sentence: 公交车司机
  sentences:
  - 表演灯光设计师
  - 乙烯基地板安装工
  - 国际巴士司机
- source_sentence: online communication manager
  sentences:
  - trades union official
  - social media manager
  - budget manager
- source_sentence: Projektmanagerin
  sentences:
  - Projektmanager/Projektmanagerin
  - Category-Manager
  - Infanterist
- source_sentence: Volksvertreter
  sentences:
  - Parlamentarier
  - Oberbürgermeister
  - Konsul
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@20
- cosine_accuracy@50
- cosine_accuracy@100
- cosine_accuracy@150
- cosine_accuracy@200
- cosine_precision@1
- cosine_precision@20
- cosine_precision@50
- cosine_precision@100
- cosine_precision@150
- cosine_precision@200
- cosine_recall@1
- cosine_recall@20
- cosine_recall@50
- cosine_recall@100
- cosine_recall@150
- cosine_recall@200
- cosine_ndcg@1
- cosine_ndcg@20
- cosine_ndcg@50
- cosine_ndcg@100
- cosine_ndcg@150
- cosine_ndcg@200
- cosine_mrr@1
- cosine_mrr@20
- cosine_mrr@50
- cosine_mrr@100
- cosine_mrr@150
- cosine_mrr@200
- cosine_map@1
- cosine_map@20
- cosine_map@50
- cosine_map@100
- cosine_map@150
- cosine_map@200
- cosine_map@500
model-index:
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: full en
      type: full_en
    metrics:
    - type: cosine_accuracy@1
      value: 0.6571428571428571
      name: Cosine Accuracy@1
    - type: cosine_accuracy@20
      value: 0.9904761904761905
      name: Cosine Accuracy@20
    - type: cosine_accuracy@50
      value: 0.9904761904761905
      name: Cosine Accuracy@50
    - type: cosine_accuracy@100
      value: 0.9904761904761905
      name: Cosine Accuracy@100
    - type: cosine_accuracy@150
      value: 0.9904761904761905
      name: Cosine Accuracy@150
    - type: cosine_accuracy@200
      value: 0.9904761904761905
      name: Cosine Accuracy@200
    - type: cosine_precision@1
      value: 0.6571428571428571
      name: Cosine Precision@1
    - type: cosine_precision@20
      value: 0.5076190476190475
      name: Cosine Precision@20
    - type: cosine_precision@50
      value: 0.3089523809523809
      name: Cosine Precision@50
    - type: cosine_precision@100
      value: 0.1872380952380952
      name: Cosine Precision@100
    - type: cosine_precision@150
      value: 0.1321904761904762
      name: Cosine Precision@150
    - type: cosine_precision@200
      value: 0.1027142857142857
      name: Cosine Precision@200
    - type: cosine_recall@1
      value: 0.0680237860830842
      name: Cosine Recall@1
    - type: cosine_recall@20
      value: 0.5459242543214992
      name: Cosine Recall@20
    - type: cosine_recall@50
      value: 0.728483344815942
      name: Cosine Recall@50
    - type: cosine_recall@100
      value: 0.8382149119179341
      name: Cosine Recall@100
    - type: cosine_recall@150
      value: 0.8762032488748317
      name: Cosine Recall@150
    - type: cosine_recall@200
      value: 0.9059964336434017
      name: Cosine Recall@200
    - type: cosine_ndcg@1
      value: 0.6571428571428571
      name: Cosine Ndcg@1
    - type: cosine_ndcg@20
      value: 0.6895375515490911
      name: Cosine Ndcg@20
    - type: cosine_ndcg@50
      value: 0.7060633068166344
      name: Cosine Ndcg@50
    - type: cosine_ndcg@100
      value: 0.7619501692018719
      name: Cosine Ndcg@100
    - type: cosine_ndcg@150
      value: 0.778798440383198
      name: Cosine Ndcg@150
    - type: cosine_ndcg@200
      value: 0.7899830993214225
      name: Cosine Ndcg@200
    - type: cosine_mrr@1
      value: 0.6571428571428571
      name: Cosine Mrr@1
    - type: cosine_mrr@20
      value: 0.8098412698412698
      name: Cosine Mrr@20
    - type: cosine_mrr@50
      value: 0.8098412698412698
      name: Cosine Mrr@50
    - type: cosine_mrr@100
      value: 0.8098412698412698
      name: Cosine Mrr@100
    - type: cosine_mrr@150
      value: 0.8098412698412698
      name: Cosine Mrr@150
    - type: cosine_mrr@200
      value: 0.8098412698412698
      name: Cosine Mrr@200
    - type: cosine_map@1
      value: 0.6571428571428571
      name: Cosine Map@1
    - type: cosine_map@20
      value: 0.5464916843297755
      name: Cosine Map@20
    - type: cosine_map@50
      value: 0.5351890636433139
      name: Cosine Map@50
    - type: cosine_map@100
      value: 0.5685440196941911
      name: Cosine Map@100
    - type: cosine_map@150
      value: 0.5756567539581475
      name: Cosine Map@150
    - type: cosine_map@200
      value: 0.5791635361565666
      name: Cosine Map@200
    - type: cosine_map@500
      value: 0.5835322146366259
      name: Cosine Map@500
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: full es
      type: full_es
    metrics:
    - type: cosine_accuracy@1
      value: 0.12432432432432433
      name: Cosine Accuracy@1
    - type: cosine_accuracy@20
      value: 1.0
      name: Cosine Accuracy@20
    - type: cosine_accuracy@50
      value: 1.0
      name: Cosine Accuracy@50
    - type: cosine_accuracy@100
      value: 1.0
      name: Cosine Accuracy@100
    - type: cosine_accuracy@150
      value: 1.0
      name: Cosine Accuracy@150
    - type: cosine_accuracy@200
      value: 1.0
      name: Cosine Accuracy@200
    - type: cosine_precision@1
      value: 0.12432432432432433
      name: Cosine Precision@1
    - type: cosine_precision@20
      value: 0.4924324324324324
      name: Cosine Precision@20
    - type: cosine_precision@50
      value: 0.31686486486486487
      name: Cosine Precision@50
    - type: cosine_precision@100
      value: 0.19843243243243244
      name: Cosine Precision@100
    - type: cosine_precision@150
      value: 0.14702702702702705
      name: Cosine Precision@150
    - type: cosine_precision@200
      value: 0.11762162162162161
      name: Cosine Precision@200
    - type: cosine_recall@1
      value: 0.003111544931768446
      name: Cosine Recall@1
    - type: cosine_recall@20
      value: 0.3235933309332048
      name: Cosine Recall@20
    - type: cosine_recall@50
      value: 0.4622883553307717
      name: Cosine Recall@50
    - type: cosine_recall@100
      value: 0.5424114301447981
      name: Cosine Recall@100
    - type: cosine_recall@150
      value: 0.5822792579944903
      name: Cosine Recall@150
    - type: cosine_recall@200
      value: 0.612586126212026
      name: Cosine Recall@200
    - type: cosine_ndcg@1
      value: 0.12432432432432433
      name: Cosine Ndcg@1
    - type: cosine_ndcg@20
      value: 0.5406828319866788
      name: Cosine Ndcg@20
    - type: cosine_ndcg@50
      value: 0.500776817925352
      name: Cosine Ndcg@50
    - type: cosine_ndcg@100
      value: 0.5143442473922782
      name: Cosine Ndcg@100
    - type: cosine_ndcg@150
      value: 0.5349751306205418
      name: Cosine Ndcg@150
    - type: cosine_ndcg@200
      value: 0.5498255219419508
      name: Cosine Ndcg@200
    - type: cosine_mrr@1
      value: 0.12432432432432433
      name: Cosine Mrr@1
    - type: cosine_mrr@20
      value: 0.5516816816816817
      name: Cosine Mrr@20
    - type: cosine_mrr@50
      value: 0.5516816816816817
      name: Cosine Mrr@50
    - type: cosine_mrr@100
      value: 0.5516816816816817
      name: Cosine Mrr@100
    - type: cosine_mrr@150
      value: 0.5516816816816817
      name: Cosine Mrr@150
    - type: cosine_mrr@200
      value: 0.5516816816816817
      name: Cosine Mrr@200
    - type: cosine_map@1
      value: 0.12432432432432433
      name: Cosine Map@1
    - type: cosine_map@20
      value: 0.4061591888137979
      name: Cosine Map@20
    - type: cosine_map@50
      value: 0.3426196432849601
      name: Cosine Map@50
    - type: cosine_map@100
      value: 0.3398108870028267
      name: Cosine Map@100
    - type: cosine_map@150
      value: 0.3482007813358776
      name: Cosine Map@150
    - type: cosine_map@200
      value: 0.3534583367060008
      name: Cosine Map@200
    - type: cosine_map@500
      value: 0.36353547903357536
      name: Cosine Map@500
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: full de
      type: full_de
    metrics:
    - type: cosine_accuracy@1
      value: 0.2955665024630542
      name: Cosine Accuracy@1
    - type: cosine_accuracy@20
      value: 0.9211822660098522
      name: Cosine Accuracy@20
    - type: cosine_accuracy@50
      value: 0.9605911330049262
      name: Cosine Accuracy@50
    - type: cosine_accuracy@100
      value: 0.9753694581280788
      name: Cosine Accuracy@100
    - type: cosine_accuracy@150
      value: 0.9852216748768473
      name: Cosine Accuracy@150
    - type: cosine_accuracy@200
      value: 0.9852216748768473
      name: Cosine Accuracy@200
    - type: cosine_precision@1
      value: 0.2955665024630542
      name: Cosine Precision@1
    - type: cosine_precision@20
      value: 0.4226600985221674
      name: Cosine Precision@20
    - type: cosine_precision@50
      value: 0.2775369458128079
      name: Cosine Precision@50
    - type: cosine_precision@100
      value: 0.1787192118226601
      name: Cosine Precision@100
    - type: cosine_precision@150
      value: 0.1349753694581281
      name: Cosine Precision@150
    - type: cosine_precision@200
      value: 0.10960591133004927
      name: Cosine Precision@200
    - type: cosine_recall@1
      value: 0.01108543831680986
      name: Cosine Recall@1
    - type: cosine_recall@20
      value: 0.25787568646307335
      name: Cosine Recall@20
    - type: cosine_recall@50
      value: 0.378544115518205
      name: Cosine Recall@50
    - type: cosine_recall@100
      value: 0.4646991741198787
      name: Cosine Recall@100
    - type: cosine_recall@150
      value: 0.514077820298434
      name: Cosine Recall@150
    - type: cosine_recall@200
      value: 0.5479242719935129
      name: Cosine Recall@200
    - type: cosine_ndcg@1
      value: 0.2955665024630542
      name: Cosine Ndcg@1
    - type: cosine_ndcg@20
      value: 0.4571806408684656
      name: Cosine Ndcg@20
    - type: cosine_ndcg@50
      value: 0.4186161244795668
      name: Cosine Ndcg@50
    - type: cosine_ndcg@100
      value: 0.43413691996468995
      name: Cosine Ndcg@100
    - type: cosine_ndcg@150
      value: 0.45936827865079527
      name: Cosine Ndcg@150
    - type: cosine_ndcg@200
      value: 0.4762742892652946
      name: Cosine Ndcg@200
    - type: cosine_mrr@1
      value: 0.2955665024630542
      name: Cosine Mrr@1
    - type: cosine_mrr@20
      value: 0.488501497777794
      name: Cosine Mrr@20
    - type: cosine_mrr@50
      value: 0.48978270334574775
      name: Cosine Mrr@50
    - type: cosine_mrr@100
      value: 0.4900376562912742
      name: Cosine Mrr@100
    - type: cosine_mrr@150
      value: 0.4901135143922775
      name: Cosine Mrr@150
    - type: cosine_mrr@200
      value: 0.4901135143922775
      name: Cosine Mrr@200
    - type: cosine_map@1
      value: 0.2955665024630542
      name: Cosine Map@1
    - type: cosine_map@20
      value: 0.3211048669539684
      name: Cosine Map@20
    - type: cosine_map@50
      value: 0.261888445835493
      name: Cosine Map@50
    - type: cosine_map@100
      value: 0.2558901722323677
      name: Cosine Map@100
    - type: cosine_map@150
      value: 0.2649913870834412
      name: Cosine Map@150
    - type: cosine_map@200
      value: 0.27010541031599244
      name: Cosine Map@200
    - type: cosine_map@500
      value: 0.28106938786931224
      name: Cosine Map@500
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: full zh
      type: full_zh
    metrics:
    - type: cosine_accuracy@1
      value: 0.30097087378640774
      name: Cosine Accuracy@1
    - type: cosine_accuracy@20
      value: 0.7087378640776699
      name: Cosine Accuracy@20
    - type: cosine_accuracy@50
      value: 0.8252427184466019
      name: Cosine Accuracy@50
    - type: cosine_accuracy@100
      value: 0.8543689320388349
      name: Cosine Accuracy@100
    - type: cosine_accuracy@150
      value: 0.912621359223301
      name: Cosine Accuracy@150
    - type: cosine_accuracy@200
      value: 0.941747572815534
      name: Cosine Accuracy@200
    - type: cosine_precision@1
      value: 0.30097087378640774
      name: Cosine Precision@1
    - type: cosine_precision@20
      value: 0.16844660194174763
      name: Cosine Precision@20
    - type: cosine_precision@50
      value: 0.09436893203883494
      name: Cosine Precision@50
    - type: cosine_precision@100
      value: 0.05844660194174757
      name: Cosine Precision@100
    - type: cosine_precision@150
      value: 0.04601941747572815
      name: Cosine Precision@150
    - type: cosine_precision@200
      value: 0.038203883495145634
      name: Cosine Precision@200
    - type: cosine_recall@1
      value: 0.024446152054452382
      name: Cosine Recall@1
    - type: cosine_recall@20
      value: 0.17513112391433697
      name: Cosine Recall@20
    - type: cosine_recall@50
      value: 0.23948897590045773
      name: Cosine Recall@50
    - type: cosine_recall@100
      value: 0.2859906000645493
      name: Cosine Recall@100
    - type: cosine_recall@150
      value: 0.32910264724851107
      name: Cosine Recall@150
    - type: cosine_recall@200
      value: 0.36304017348331746
      name: Cosine Recall@200
    - type: cosine_ndcg@1
      value: 0.30097087378640774
      name: Cosine Ndcg@1
    - type: cosine_ndcg@20
      value: 0.23848199480652515
      name: Cosine Ndcg@20
    - type: cosine_ndcg@50
      value: 0.23417872356945213
      name: Cosine Ndcg@50
    - type: cosine_ndcg@100
      value: 0.2558557487315817
      name: Cosine Ndcg@100
    - type: cosine_ndcg@150
      value: 0.27344459654855646
      name: Cosine Ndcg@150
    - type: cosine_ndcg@200
      value: 0.28574499658549296
      name: Cosine Ndcg@200
    - type: cosine_mrr@1
      value: 0.30097087378640774
      name: Cosine Mrr@1
    - type: cosine_mrr@20
      value: 0.4211010881954553
      name: Cosine Mrr@20
    - type: cosine_mrr@50
      value: 0.4249525777196882
      name: Cosine Mrr@50
    - type: cosine_mrr@100
      value: 0.42539460155740233
      name: Cosine Mrr@100
    - type: cosine_mrr@150
      value: 0.42587488715939736
      name: Cosine Mrr@150
    - type: cosine_mrr@200
      value: 0.4260266850474542
      name: Cosine Mrr@200
    - type: cosine_map@1
      value: 0.30097087378640774
      name: Cosine Map@1
    - type: cosine_map@20
      value: 0.14164601531439067
      name: Cosine Map@20
    - type: cosine_map@50
      value: 0.12333195286802508
      name: Cosine Map@50
    - type: cosine_map@100
      value: 0.12884550949445583
      name: Cosine Map@100
    - type: cosine_map@150
      value: 0.13149151347084506
      name: Cosine Map@150
    - type: cosine_map@200
      value: 0.1329204280861929
      name: Cosine Map@200
    - type: cosine_map@500
      value: 0.13684460640814028
      name: Cosine Map@500
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: mix es
      type: mix_es
    metrics:
    - type: cosine_accuracy@1
      value: 0.40717628705148207
      name: Cosine Accuracy@1
    - type: cosine_accuracy@20
      value: 0.7581903276131046
      name: Cosine Accuracy@20
    - type: cosine_accuracy@50
      value: 0.8455538221528861
      name: Cosine Accuracy@50
    - type: cosine_accuracy@100
      value: 0.9048361934477379
      name: Cosine Accuracy@100
    - type: cosine_accuracy@150
      value: 0.9370774830993239
      name: Cosine Accuracy@150
    - type: cosine_accuracy@200
      value: 0.9547581903276131
      name: Cosine Accuracy@200
    - type: cosine_precision@1
      value: 0.40717628705148207
      name: Cosine Precision@1
    - type: cosine_precision@20
      value: 0.08819552782111284
      name: Cosine Precision@20
    - type: cosine_precision@50
      value: 0.04139365574622985
      name: Cosine Precision@50
    - type: cosine_precision@100
      value: 0.022704108164326574
      name: Cosine Precision@100
    - type: cosine_precision@150
      value: 0.015822499566649332
      name: Cosine Precision@150
    - type: cosine_precision@200
      value: 0.012189287571502862
      name: Cosine Precision@200
    - type: cosine_recall@1
      value: 0.1547198078399326
      name: Cosine Recall@1
    - type: cosine_recall@20
      value: 0.652070178045217
      name: Cosine Recall@20
    - type: cosine_recall@50
      value: 0.7639576059232845
      name: Cosine Recall@50
    - type: cosine_recall@100
      value: 0.8390052744966942
      name: Cosine Recall@100
    - type: cosine_recall@150
      value: 0.877764158185375
      name: Cosine Recall@150
    - type: cosine_recall@200
      value: 0.9016677809969541
      name: Cosine Recall@200
    - type: cosine_ndcg@1
      value: 0.40717628705148207
      name: Cosine Ndcg@1
    - type: cosine_ndcg@20
      value: 0.5052212563002627
      name: Cosine Ndcg@20
    - type: cosine_ndcg@50
      value: 0.5356805472279078
      name: Cosine Ndcg@50
    - type: cosine_ndcg@100
      value: 0.5521009256440798
      name: Cosine Ndcg@100
    - type: cosine_ndcg@150
      value: 0.5595924746165437
      name: Cosine Ndcg@150
    - type: cosine_ndcg@200
      value: 0.5639157869620031
      name: Cosine Ndcg@200
    - type: cosine_mrr@1
      value: 0.40717628705148207
      name: Cosine Mrr@1
    - type: cosine_mrr@20
      value: 0.49319826751048873
      name: Cosine Mrr@20
    - type: cosine_mrr@50
      value: 0.49612329710657893
      name: Cosine Mrr@50
    - type: cosine_mrr@100
      value: 0.4969826860284758
      name: Cosine Mrr@100
    - type: cosine_mrr@150
      value: 0.49724671253026886
      name: Cosine Mrr@150
    - type: cosine_mrr@200
      value: 0.49734552981578295
      name: Cosine Mrr@200
    - type: cosine_map@1
      value: 0.40717628705148207
      name: Cosine Map@1
    - type: cosine_map@20
      value: 0.419614969499609
      name: Cosine Map@20
    - type: cosine_map@50
      value: 0.427088485280225
      name: Cosine Map@50
    - type: cosine_map@100
      value: 0.4292014145714
      name: Cosine Map@100
    - type: cosine_map@150
      value: 0.4298202694277485
      name: Cosine Map@150
    - type: cosine_map@200
      value: 0.4300980044671579
      name: Cosine Map@200
    - type: cosine_map@500
      value: 0.43055010151569684
      name: Cosine Map@500
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: mix de
      type: mix_de
    metrics:
    - type: cosine_accuracy@1
      value: 0.29017160686427457
      name: Cosine Accuracy@1
    - type: cosine_accuracy@20
      value: 0.6484659386375455
      name: Cosine Accuracy@20
    - type: cosine_accuracy@50
      value: 0.7540301612064483
      name: Cosine Accuracy@50
    - type: cosine_accuracy@100
      value: 0.8419136765470618
      name: Cosine Accuracy@100
    - type: cosine_accuracy@150
      value: 0.8788351534061363
      name: Cosine Accuracy@150
    - type: cosine_accuracy@200
      value: 0.9089963598543942
      name: Cosine Accuracy@200
    - type: cosine_precision@1
      value: 0.29017160686427457
      name: Cosine Precision@1
    - type: cosine_precision@20
      value: 0.07251690067602704
      name: Cosine Precision@20
    - type: cosine_precision@50
      value: 0.0355486219448778
      name: Cosine Precision@50
    - type: cosine_precision@100
      value: 0.02041601664066563
      name: Cosine Precision@100
    - type: cosine_precision@150
      value: 0.014505113537874847
      name: Cosine Precision@150
    - type: cosine_precision@200
      value: 0.01137545501820073
      name: Cosine Precision@200
    - type: cosine_recall@1
      value: 0.10890968972092217
      name: Cosine Recall@1
    - type: cosine_recall@20
      value: 0.5299011960478419
      name: Cosine Recall@20
    - type: cosine_recall@50
      value: 0.647191887675507
      name: Cosine Recall@50
    - type: cosine_recall@100
      value: 0.7442624371641533
      name: Cosine Recall@100
    - type: cosine_recall@150
      value: 0.7928583810019068
      name: Cosine Recall@150
    - type: cosine_recall@200
      value: 0.8289478245796498
      name: Cosine Recall@200
    - type: cosine_ndcg@1
      value: 0.29017160686427457
      name: Cosine Ndcg@1
    - type: cosine_ndcg@20
      value: 0.38598145754556046
      name: Cosine Ndcg@20
    - type: cosine_ndcg@50
      value: 0.41773491829410075
      name: Cosine Ndcg@50
    - type: cosine_ndcg@100
      value: 0.43906545567486005
      name: Cosine Ndcg@100
    - type: cosine_ndcg@150
      value: 0.4485955578737219
      name: Cosine Ndcg@150
    - type: cosine_ndcg@200
      value: 0.45520732213321263
      name: Cosine Ndcg@200
    - type: cosine_mrr@1
      value: 0.29017160686427457
      name: Cosine Mrr@1
    - type: cosine_mrr@20
      value: 0.37232551415227233
      name: Cosine Mrr@20
    - type: cosine_mrr@50
      value: 0.375685507642469
      name: Cosine Mrr@50
    - type: cosine_mrr@100
      value: 0.3769348294784883
      name: Cosine Mrr@100
    - type: cosine_mrr@150
      value: 0.377239930826995
      name: Cosine Mrr@150
    - type: cosine_mrr@200
      value: 0.3774183771765249
      name: Cosine Mrr@200
    - type: cosine_map@1
      value: 0.29017160686427457
      name: Cosine Map@1
    - type: cosine_map@20
      value: 0.30311022602590254
      name: Cosine Map@20
    - type: cosine_map@50
      value: 0.31036427264538485
      name: Cosine Map@50
    - type: cosine_map@100
      value: 0.31304585670015317
      name: Cosine Map@100
    - type: cosine_map@150
      value: 0.3138396622777036
      name: Cosine Map@150
    - type: cosine_map@200
      value: 0.31426372512191
      name: Cosine Map@200
    - type: cosine_map@500
      value: 0.3150399864057635
      name: Cosine Map@500
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: mix zh
      type: mix_zh
    metrics:
    - type: cosine_accuracy@1
      value: 0.09394572025052192
      name: Cosine Accuracy@1
    - type: cosine_accuracy@20
      value: 0.35281837160751567
      name: Cosine Accuracy@20
    - type: cosine_accuracy@50
      value: 0.48329853862212946
      name: Cosine Accuracy@50
    - type: cosine_accuracy@100
      value: 0.5918580375782881
      name: Cosine Accuracy@100
    - type: cosine_accuracy@150
      value: 0.6649269311064718
      name: Cosine Accuracy@150
    - type: cosine_accuracy@200
      value: 0.7004175365344467
      name: Cosine Accuracy@200
    - type: cosine_precision@1
      value: 0.09394572025052192
      name: Cosine Precision@1
    - type: cosine_precision@20
      value: 0.030897703549060546
      name: Cosine Precision@20
    - type: cosine_precision@50
      value: 0.018204592901878917
      name: Cosine Precision@50
    - type: cosine_precision@100
      value: 0.011362212943632568
      name: Cosine Precision@100
    - type: cosine_precision@150
      value: 0.008639526791927627
      name: Cosine Precision@150
    - type: cosine_precision@200
      value: 0.007019832985386221
      name: Cosine Precision@200
    - type: cosine_recall@1
      value: 0.03185455810716771
      name: Cosine Recall@1
    - type: cosine_recall@20
      value: 0.20592877025549258
      name: Cosine Recall@20
    - type: cosine_recall@50
      value: 0.30069837956059253
      name: Cosine Recall@50
    - type: cosine_recall@100
      value: 0.3754792557245584
      name: Cosine Recall@100
    - type: cosine_recall@150
      value: 0.4282591046160983
      name: Cosine Recall@150
    - type: cosine_recall@200
      value: 0.46372361401067036
      name: Cosine Recall@200
    - type: cosine_ndcg@1
      value: 0.09394572025052192
      name: Cosine Ndcg@1
    - type: cosine_ndcg@20
      value: 0.13433471892252347
      name: Cosine Ndcg@20
    - type: cosine_ndcg@50
      value: 0.16091824243484512
      name: Cosine Ndcg@50
    - type: cosine_ndcg@100
      value: 0.1780017996510726
      name: Cosine Ndcg@100
    - type: cosine_ndcg@150
      value: 0.1886875211403746
      name: Cosine Ndcg@150
    - type: cosine_ndcg@200
      value: 0.19541417908856412
      name: Cosine Ndcg@200
    - type: cosine_mrr@1
      value: 0.09394572025052192
      name: Cosine Mrr@1
    - type: cosine_mrr@20
      value: 0.14710513443845905
      name: Cosine Mrr@20
    - type: cosine_mrr@50
      value: 0.15122849766144658
      name: Cosine Mrr@50
    - type: cosine_mrr@100
      value: 0.15275090014884107
      name: Cosine Mrr@100
    - type: cosine_mrr@150
      value: 0.1533445728241347
      name: Cosine Mrr@150
    - type: cosine_mrr@200
      value: 0.1535456563541225
      name: Cosine Mrr@200
    - type: cosine_map@1
      value: 0.09394572025052192
      name: Cosine Map@1
    - type: cosine_map@20
      value: 0.083759101073897
      name: Cosine Map@20
    - type: cosine_map@50
      value: 0.08908800548950695
      name: Cosine Map@50
    - type: cosine_map@100
      value: 0.09092612397080438
      name: Cosine Map@100
    - type: cosine_map@150
      value: 0.09168814149038751
      name: Cosine Map@150
    - type: cosine_map@200
      value: 0.09208168156532727
      name: Cosine Map@200
    - type: cosine_map@500
      value: 0.09301554391402207
      name: Cosine Map@500
---

# SentenceTransformer based on BAAI/bge-small-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the full_en, full_de, full_es, full_zh and mix datasets. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
    - full_en
    - full_de
    - full_es
    - full_zh
    - mix
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Volksvertreter',
    'Parlamentarier',
    'Oberbürgermeister',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric               | full_en  | full_es    | full_de    | full_zh    | mix_es     | mix_de     | mix_zh     |
|:---------------------|:---------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1    | 0.6571   | 0.1243     | 0.2956     | 0.301      | 0.4072     | 0.2902     | 0.0939     |
| cosine_accuracy@20   | 0.9905   | 1.0        | 0.9212     | 0.7087     | 0.7582     | 0.6485     | 0.3528     |
| cosine_accuracy@50   | 0.9905   | 1.0        | 0.9606     | 0.8252     | 0.8456     | 0.754      | 0.4833     |
| cosine_accuracy@100  | 0.9905   | 1.0        | 0.9754     | 0.8544     | 0.9048     | 0.8419     | 0.5919     |
| cosine_accuracy@150  | 0.9905   | 1.0        | 0.9852     | 0.9126     | 0.9371     | 0.8788     | 0.6649     |
| cosine_accuracy@200  | 0.9905   | 1.0        | 0.9852     | 0.9417     | 0.9548     | 0.909      | 0.7004     |
| cosine_precision@1   | 0.6571   | 0.1243     | 0.2956     | 0.301      | 0.4072     | 0.2902     | 0.0939     |
| cosine_precision@20  | 0.5076   | 0.4924     | 0.4227     | 0.1684     | 0.0882     | 0.0725     | 0.0309     |
| cosine_precision@50  | 0.309    | 0.3169     | 0.2775     | 0.0944     | 0.0414     | 0.0355     | 0.0182     |
| cosine_precision@100 | 0.1872   | 0.1984     | 0.1787     | 0.0584     | 0.0227     | 0.0204     | 0.0114     |
| cosine_precision@150 | 0.1322   | 0.147      | 0.135      | 0.046      | 0.0158     | 0.0145     | 0.0086     |
| cosine_precision@200 | 0.1027   | 0.1176     | 0.1096     | 0.0382     | 0.0122     | 0.0114     | 0.007      |
| cosine_recall@1      | 0.068    | 0.0031     | 0.0111     | 0.0244     | 0.1547     | 0.1089     | 0.0319     |
| cosine_recall@20     | 0.5459   | 0.3236     | 0.2579     | 0.1751     | 0.6521     | 0.5299     | 0.2059     |
| cosine_recall@50     | 0.7285   | 0.4623     | 0.3785     | 0.2395     | 0.764      | 0.6472     | 0.3007     |
| cosine_recall@100    | 0.8382   | 0.5424     | 0.4647     | 0.286      | 0.839      | 0.7443     | 0.3755     |
| cosine_recall@150    | 0.8762   | 0.5823     | 0.5141     | 0.3291     | 0.8778     | 0.7929     | 0.4283     |
| cosine_recall@200    | 0.906    | 0.6126     | 0.5479     | 0.363      | 0.9017     | 0.8289     | 0.4637     |
| cosine_ndcg@1        | 0.6571   | 0.1243     | 0.2956     | 0.301      | 0.4072     | 0.2902     | 0.0939     |
| cosine_ndcg@20       | 0.6895   | 0.5407     | 0.4572     | 0.2385     | 0.5052     | 0.386      | 0.1343     |
| cosine_ndcg@50       | 0.7061   | 0.5008     | 0.4186     | 0.2342     | 0.5357     | 0.4177     | 0.1609     |
| cosine_ndcg@100      | 0.762    | 0.5143     | 0.4341     | 0.2559     | 0.5521     | 0.4391     | 0.178      |
| cosine_ndcg@150      | 0.7788   | 0.535      | 0.4594     | 0.2734     | 0.5596     | 0.4486     | 0.1887     |
| **cosine_ndcg@200**  | **0.79** | **0.5498** | **0.4763** | **0.2857** | **0.5639** | **0.4552** | **0.1954** |
| cosine_mrr@1         | 0.6571   | 0.1243     | 0.2956     | 0.301      | 0.4072     | 0.2902     | 0.0939     |
| cosine_mrr@20        | 0.8098   | 0.5517     | 0.4885     | 0.4211     | 0.4932     | 0.3723     | 0.1471     |
| cosine_mrr@50        | 0.8098   | 0.5517     | 0.4898     | 0.425      | 0.4961     | 0.3757     | 0.1512     |
| cosine_mrr@100       | 0.8098   | 0.5517     | 0.49       | 0.4254     | 0.497      | 0.3769     | 0.1528     |
| cosine_mrr@150       | 0.8098   | 0.5517     | 0.4901     | 0.4259     | 0.4972     | 0.3772     | 0.1533     |
| cosine_mrr@200       | 0.8098   | 0.5517     | 0.4901     | 0.426      | 0.4973     | 0.3774     | 0.1535     |
| cosine_map@1         | 0.6571   | 0.1243     | 0.2956     | 0.301      | 0.4072     | 0.2902     | 0.0939     |
| cosine_map@20        | 0.5465   | 0.4062     | 0.3211     | 0.1416     | 0.4196     | 0.3031     | 0.0838     |
| cosine_map@50        | 0.5352   | 0.3426     | 0.2619     | 0.1233     | 0.4271     | 0.3104     | 0.0891     |
| cosine_map@100       | 0.5685   | 0.3398     | 0.2559     | 0.1288     | 0.4292     | 0.313      | 0.0909     |
| cosine_map@150       | 0.5757   | 0.3482     | 0.265      | 0.1315     | 0.4298     | 0.3138     | 0.0917     |
| cosine_map@200       | 0.5792   | 0.3535     | 0.2701     | 0.1329     | 0.4301     | 0.3143     | 0.0921     |
| cosine_map@500       | 0.5835   | 0.3635     | 0.2811     | 0.1368     | 0.4306     | 0.315      | 0.093      |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Datasets
<details><summary>full_en</summary>

#### full_en

* Dataset: full_en
* Size: 28,880 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                          | positive                                                                         |
  |:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | string                                                                          | string                                                                           |
  | details | <ul><li>min: 3 tokens</li><li>mean: 5.0 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.01 tokens</li><li>max: 13 tokens</li></ul> |
* Samples:
  | anchor                                   | positive                                 |
  |:-----------------------------------------|:-----------------------------------------|
  | <code>air commodore</code>               | <code>flight lieutenant</code>           |
  | <code>command and control officer</code> | <code>flight officer</code>              |
  | <code>air commodore</code>               | <code>command and control officer</code> |
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
  ```
</details>
<details><summary>full_de</summary>

#### full_de

* Dataset: full_de
* Size: 23,023 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 3 tokens</li><li>mean: 11.05 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 11.43 tokens</li><li>max: 45 tokens</li></ul> |
* Samples:
  | anchor                            | positive                                             |
  |:----------------------------------|:-----------------------------------------------------|
  | <code>Staffelkommandantin</code>  | <code>Kommodore</code>                               |
  | <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> |
  | <code>Staffelkommandantin</code>  | <code>Luftwaffenoffizierin</code>                    |
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
  ```
</details>
<details><summary>full_es</summary>

#### full_es

* Dataset: full_es
* Size: 20,724 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 3 tokens</li><li>mean: 12.95 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 12.57 tokens</li><li>max: 50 tokens</li></ul> |
* Samples:
  | anchor                              | positive                                   |
  |:------------------------------------|:-------------------------------------------|
  | <code>jefe de escuadrón</code>      | <code>instructor</code>                    |
  | <code>comandante de aeronave</code> | <code>instructor de simulador</code>       |
  | <code>instructor</code>             | <code>oficial del Ejército del Aire</code> |
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
  ```
</details>
<details><summary>full_zh</summary>

#### full_zh

* Dataset: full_zh
* Size: 30,401 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                           | positive                                                                         |
  |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                           |
  | details | <ul><li>min: 4 tokens</li><li>mean: 8.36 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.95 tokens</li><li>max: 27 tokens</li></ul> |
* Samples:
  | anchor            | positive             |
  |:------------------|:---------------------|
  | <code>技术总监</code> | <code>技术和运营总监</code> |
  | <code>技术总监</code> | <code>技术主管</code>    |
  | <code>技术总监</code> | <code>技术艺术总监</code>  |
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
  ```
</details>
<details><summary>mix</summary>

#### mix

* Dataset: mix
* Size: 21,760 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                           | positive                                                                          |
  |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                            |
  | details | <ul><li>min: 2 tokens</li><li>mean: 5.65 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 10.08 tokens</li><li>max: 30 tokens</li></ul> |
* Samples:
  | anchor                                    | positive                                                        |
  |:------------------------------------------|:----------------------------------------------------------------|
  | <code>technical manager</code>            | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> |
  | <code>head of technical</code>            | <code>directora técnica</code>                                  |
  | <code>head of technical department</code> | <code>技术艺术总监</code>                                             |
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
  ```
</details>

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `gradient_accumulation_steps`: 2
- `num_train_epochs`: 5
- `warmup_ratio`: 0.05
- `log_on_each_node`: False
- `fp16`: True
- `dataloader_num_workers`: 4
- `ddp_find_unused_parameters`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.05
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: False
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: True
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
|:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
| -1     | -1   | -             | 0.7322                  | 0.4690                  | 0.3853                  | 0.2723                  | 0.3209                 | 0.2244                 | 0.0919                 |
| 0.0021 | 1    | 23.8878       | -                       | -                       | -                       | -                       | -                      | -                      | -                      |
| 0.2058 | 100  | 7.2098        | -                       | -                       | -                       | -                       | -                      | -                      | -                      |
| 0.4115 | 200  | 4.2635        | 0.7800                  | 0.5132                  | 0.4268                  | 0.2798                  | 0.4372                 | 0.2996                 | 0.1447                 |
| 0.6173 | 300  | 4.1931        | -                       | -                       | -                       | -                       | -                      | -                      | -                      |
| 0.8230 | 400  | 3.73          | 0.7863                  | 0.5274                  | 0.4451                  | 0.2805                  | 0.4762                 | 0.3455                 | 0.1648                 |
| 1.0309 | 500  | 3.3569        | -                       | -                       | -                       | -                       | -                      | -                      | -                      |
| 1.2366 | 600  | 3.6464        | 0.7868                  | 0.5372                  | 0.4540                  | 0.2813                  | 0.5063                 | 0.3794                 | 0.1755                 |
| 1.4424 | 700  | 3.0772        | -                       | -                       | -                       | -                       | -                      | -                      | -                      |
| 1.6481 | 800  | 3.114         | 0.7906                  | 0.5391                  | 0.4576                  | 0.2832                  | 0.5221                 | 0.4047                 | 0.1779                 |
| 1.8539 | 900  | 2.9246        | -                       | -                       | -                       | -                       | -                      | -                      | -                      |
| 2.0617 | 1000 | 2.7479        | 0.7873                  | 0.5423                  | 0.4631                  | 0.2871                  | 0.5323                 | 0.4143                 | 0.1843                 |
| 2.2675 | 1100 | 3.049         | -                       | -                       | -                       | -                       | -                      | -                      | -                      |
| 2.4733 | 1200 | 2.6137        | 0.7878                  | 0.5418                  | 0.4685                  | 0.2870                  | 0.5470                 | 0.4339                 | 0.1932                 |
| 2.6790 | 1300 | 2.8607        | -                       | -                       | -                       | -                       | -                      | -                      | -                      |
| 2.8848 | 1400 | 2.7071        | 0.7889                  | 0.5465                  | 0.4714                  | 0.2891                  | 0.5504                 | 0.4362                 | 0.1944                 |
| 3.0926 | 1500 | 2.7012        | -                       | -                       | -                       | -                       | -                      | -                      | -                      |
| 3.2984 | 1600 | 2.7423        | 0.7882                  | 0.5471                  | 0.4748                  | 0.2868                  | 0.5542                 | 0.4454                 | 0.1976                 |
| 3.5041 | 1700 | 2.5316        | -                       | -                       | -                       | -                       | -                      | -                      | -                      |
| 3.7099 | 1800 | 2.6344        | 0.7900                  | 0.5498                  | 0.4763                  | 0.2857                  | 0.5639                 | 0.4552                 | 0.1954                 |


### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### GISTEmbedLoss
```bibtex
@misc{solatorio2024gistembed,
    title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
    author={Aivin V. Solatorio},
    year={2024},
    eprint={2402.16829},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->