File size: 24,546 Bytes
4e5af29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
#!/usr/bin/env python3
"""
SentilensAI - Deep Learning Sentiment Analysis Module

Advanced deep learning capabilities for sentiment analysis using:
- Transformer-based models (BERT, RoBERTa, DistilBERT)
- LSTM/GRU networks for sequence modeling
- CNN for text classification
- Ensemble methods combining multiple models
- Transfer learning and fine-tuning capabilities

Author: Pravin Selvamuthu
"""

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
from sklearn.preprocessing import LabelEncoder
import logging
from typing import Dict, List, Tuple, Optional, Any
import json
from datetime import datetime
import pickle
import os

# Deep learning libraries
try:
    from transformers import (
        AutoTokenizer, AutoModel, AutoModelForSequenceClassification,
        TrainingArguments, Trainer, pipeline
    )
    TRANSFORMERS_AVAILABLE = True
except ImportError:
    TRANSFORMERS_AVAILABLE = False

try:
    import torch.nn.functional as F
    TORCH_AVAILABLE = True
except ImportError:
    TORCH_AVAILABLE = False

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class SentimentDataset(Dataset):
    """Custom dataset for sentiment analysis"""
    
    def __init__(self, texts, labels, tokenizer, max_length=128):
        self.texts = texts
        self.labels = labels
        self.tokenizer = tokenizer
        self.max_length = max_length
    
    def __len__(self):
        return len(self.texts)
    
    def __getitem__(self, idx):
        text = str(self.texts[idx])
        label = self.labels[idx]
        
        encoding = self.tokenizer(
            text,
            truncation=True,
            padding='max_length',
            max_length=self.max_length,
            return_tensors='pt'
        )
        
        return {
            'input_ids': encoding['input_ids'].flatten(),
            'attention_mask': encoding['attention_mask'].flatten(),
            'labels': torch.tensor(label, dtype=torch.long)
        }

class SentimentLSTM(nn.Module):
    """LSTM-based sentiment analysis model"""
    
    def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, num_layers=2, dropout=0.3):
        super(SentimentLSTM, self).__init__()
        
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.lstm = nn.LSTM(
            embedding_dim, 
            hidden_dim, 
            num_layers=num_layers,
            batch_first=True,
            dropout=dropout if num_layers > 1 else 0
        )
        self.dropout = nn.Dropout(dropout)
        self.fc = nn.Linear(hidden_dim, output_dim)
        
    def forward(self, x):
        embedded = self.embedding(x)
        lstm_out, (hidden, cell) = self.lstm(embedded)
        
        # Use the last hidden state
        output = self.dropout(hidden[-1])
        output = self.fc(output)
        return output

class SentimentCNN(nn.Module):
    """CNN-based sentiment analysis model"""
    
    def __init__(self, vocab_size, embedding_dim, num_filters, filter_sizes, output_dim, dropout=0.3):
        super(SentimentCNN, self).__init__()
        
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.convs = nn.ModuleList([
            nn.Conv1d(embedding_dim, num_filters, kernel_size=fs)
            for fs in filter_sizes
        ])
        self.dropout = nn.Dropout(dropout)
        self.fc = nn.Linear(len(filter_sizes) * num_filters, output_dim)
        
    def forward(self, x):
        embedded = self.embedding(x).transpose(1, 2)  # (batch, embedding_dim, seq_len)
        
        conv_outputs = []
        for conv in self.convs:
            conv_out = F.relu(conv(embedded))
            pooled = F.max_pool1d(conv_out, conv_out.size(2))
            conv_outputs.append(pooled.squeeze(2))
        
        concatenated = torch.cat(conv_outputs, dim=1)
        output = self.dropout(concatenated)
        output = self.fc(output)
        return output

class SentimentEnsemble(nn.Module):
    """Ensemble model combining multiple architectures"""
    
    def __init__(self, models, num_classes):
        super(SentimentEnsemble, self).__init__()
        self.models = nn.ModuleList(models)
        self.num_classes = num_classes
        self.fusion_layer = nn.Linear(len(models) * num_classes, num_classes)
        
    def forward(self, x):
        model_outputs = []
        for model in self.models:
            output = model(x)
            model_outputs.append(output)
        
        concatenated = torch.cat(model_outputs, dim=1)
        final_output = self.fusion_layer(concatenated)
        return final_output

class DeepLearningSentimentAnalyzer:
    """Advanced deep learning sentiment analyzer"""
    
    def __init__(self, model_cache_dir: str = "./deep_learning_models"):
        self.model_cache_dir = model_cache_dir
        os.makedirs(model_cache_dir, exist_ok=True)
        
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        logger.info(f"Using device: {self.device}")
        
        # Initialize models
        self.models = {}
        self.tokenizers = {}
        self.label_encoders = {}
        self.training_history = {}
        
        # Load pre-trained transformers
        self._load_pretrained_models()
    
    def _load_pretrained_models(self):
        """Load pre-trained transformer models"""
        if not TRANSFORMERS_AVAILABLE:
            logger.warning("Transformers library not available. Deep learning features limited.")
            return
        
        # Load different transformer models
        model_configs = {
            'bert-base': 'bert-base-uncased',
            'roberta-base': 'roberta-base',
            'distilbert': 'distilbert-base-uncased',
            'twitter-roberta': 'cardiffnlp/twitter-roberta-base-sentiment-latest'
        }
        
        for model_name, model_path in model_configs.items():
            try:
                logger.info(f"Loading {model_name}...")
                self.tokenizers[model_name] = AutoTokenizer.from_pretrained(model_path)
                self.models[model_name] = AutoModelForSequenceClassification.from_pretrained(
                    model_path, 
                    num_labels=3,  # positive, negative, neutral
                    ignore_mismatched_sizes=True
                ).to(self.device)
                logger.info(f"βœ… {model_name} loaded successfully")
            except Exception as e:
                logger.warning(f"Failed to load {model_name}: {e}")
    
    def prepare_training_data(self, texts: List[str], labels: List[str]) -> Tuple[Dataset, Dataset]:
        """Prepare training data for deep learning models"""
        
        # Encode labels
        label_encoder = LabelEncoder()
        encoded_labels = label_encoder.fit_transform(labels)
        self.label_encoders['main'] = label_encoder
        
        # Split data
        X_train, X_test, y_train, y_test = train_test_split(
            texts, encoded_labels, test_size=0.2, random_state=42, stratify=encoded_labels
        )
        
        # Create datasets for different models
        datasets = {}
        
        # BERT dataset
        if 'bert-base' in self.tokenizers:
            train_dataset = SentimentDataset(X_train, y_train, self.tokenizers['bert-base'])
            test_dataset = SentimentDataset(X_test, y_test, self.tokenizers['bert-base'])
            datasets['bert'] = (train_dataset, test_dataset)
        
        # RoBERTa dataset
        if 'roberta-base' in self.tokenizers:
            train_dataset = SentimentDataset(X_train, y_train, self.tokenizers['roberta-base'])
            test_dataset = SentimentDataset(X_test, y_test, self.tokenizers['roberta-base'])
            datasets['roberta'] = (train_dataset, test_dataset)
        
        return datasets, (X_train, X_test, y_train, y_test)
    
    def train_custom_lstm(self, texts: List[str], labels: List[str], 
                         embedding_dim=100, hidden_dim=128, num_layers=2, 
                         epochs=10, batch_size=32, learning_rate=0.001):
        """Train custom LSTM model"""
        
        logger.info("Training custom LSTM model...")
        
        # Prepare data
        from sklearn.feature_extraction.text import CountVectorizer
        
        vectorizer = CountVectorizer(max_features=10000)
        X = vectorizer.fit_transform(texts).toarray()
        
        label_encoder = LabelEncoder()
        y = label_encoder.fit_transform(labels)
        
        X_train, X_test, y_train, y_test = train_test_split(
            X, y, test_size=0.2, random_state=42, stratify=y
        )
        
        # Convert to PyTorch tensors
        X_train_tensor = torch.tensor(X_train, dtype=torch.long)
        y_train_tensor = torch.tensor(y_train, dtype=torch.long)
        X_test_tensor = torch.tensor(X_test, dtype=torch.long)
        y_test_tensor = torch.tensor(y_test, dtype=torch.long)
        
        # Create model
        vocab_size = len(vectorizer.vocabulary_)
        num_classes = len(np.unique(y))
        
        model = SentimentLSTM(
            vocab_size=vocab_size,
            embedding_dim=embedding_dim,
            hidden_dim=hidden_dim,
            output_dim=num_classes,
            num_layers=num_layers
        ).to(self.device)
        
        # Training setup
        criterion = nn.CrossEntropyLoss()
        optimizer = optim.Adam(model.parameters(), lr=learning_rate)
        
        # Training loop
        model.train()
        train_losses = []
        
        for epoch in range(epochs):
            total_loss = 0
            for i in range(0, len(X_train_tensor), batch_size):
                batch_X = X_train_tensor[i:i+batch_size].to(self.device)
                batch_y = y_train_tensor[i:i+batch_size].to(self.device)
                
                optimizer.zero_grad()
                outputs = model(batch_X)
                loss = criterion(outputs, batch_y)
                loss.backward()
                optimizer.step()
                
                total_loss += loss.item()
            
            avg_loss = total_loss / (len(X_train_tensor) // batch_size)
            train_losses.append(avg_loss)
            
            if epoch % 2 == 0:
                logger.info(f"Epoch {epoch+1}/{epochs}, Loss: {avg_loss:.4f}")
        
        # Evaluation
        model.eval()
        with torch.no_grad():
            test_outputs = model(X_test_tensor.to(self.device))
            test_predictions = torch.argmax(test_outputs, dim=1).cpu().numpy()
            test_accuracy = accuracy_score(y_test, test_predictions)
        
        logger.info(f"LSTM Test Accuracy: {test_accuracy:.4f}")
        
        # Save model
        model_path = os.path.join(self.model_cache_dir, 'lstm_sentiment_model.pth')
        torch.save({
            'model_state_dict': model.state_dict(),
            'vectorizer': vectorizer,
            'label_encoder': label_encoder,
            'model_config': {
                'vocab_size': vocab_size,
                'embedding_dim': embedding_dim,
                'hidden_dim': hidden_dim,
                'num_layers': num_layers,
                'num_classes': num_classes
            }
        }, model_path)
        
        self.models['lstm'] = model
        self.training_history['lstm'] = {
            'train_losses': train_losses,
            'test_accuracy': test_accuracy,
            'epochs': epochs
        }
        
        return model, test_accuracy
    
    def train_custom_cnn(self, texts: List[str], labels: List[str],
                        embedding_dim=100, num_filters=100, filter_sizes=[3, 4, 5],
                        epochs=10, batch_size=32, learning_rate=0.001):
        """Train custom CNN model"""
        
        logger.info("Training custom CNN model...")
        
        # Prepare data
        from sklearn.feature_extraction.text import CountVectorizer
        
        vectorizer = CountVectorizer(max_features=10000)
        X = vectorizer.fit_transform(texts).toarray()
        
        label_encoder = LabelEncoder()
        y = label_encoder.fit_transform(labels)
        
        X_train, X_test, y_train, y_test = train_test_split(
            X, y, test_size=0.2, random_state=42, stratify=y
        )
        
        # Convert to PyTorch tensors
        X_train_tensor = torch.tensor(X_train, dtype=torch.long)
        y_train_tensor = torch.tensor(y_train, dtype=torch.long)
        X_test_tensor = torch.tensor(X_test, dtype=torch.long)
        y_test_tensor = torch.tensor(y_test, dtype=torch.long)
        
        # Create model
        vocab_size = len(vectorizer.vocabulary_)
        num_classes = len(np.unique(y))
        
        model = SentimentCNN(
            vocab_size=vocab_size,
            embedding_dim=embedding_dim,
            num_filters=num_filters,
            filter_sizes=filter_sizes,
            output_dim=num_classes
        ).to(self.device)
        
        # Training setup
        criterion = nn.CrossEntropyLoss()
        optimizer = optim.Adam(model.parameters(), lr=learning_rate)
        
        # Training loop
        model.train()
        train_losses = []
        
        for epoch in range(epochs):
            total_loss = 0
            for i in range(0, len(X_train_tensor), batch_size):
                batch_X = X_train_tensor[i:i+batch_size].to(self.device)
                batch_y = y_train_tensor[i:i+batch_size].to(self.device)
                
                optimizer.zero_grad()
                outputs = model(batch_X)
                loss = criterion(outputs, batch_y)
                loss.backward()
                optimizer.step()
                
                total_loss += loss.item()
            
            avg_loss = total_loss / (len(X_train_tensor) // batch_size)
            train_losses.append(avg_loss)
            
            if epoch % 2 == 0:
                logger.info(f"Epoch {epoch+1}/{epochs}, Loss: {avg_loss:.4f}")
        
        # Evaluation
        model.eval()
        with torch.no_grad():
            test_outputs = model(X_test_tensor.to(self.device))
            test_predictions = torch.argmax(test_outputs, dim=1).cpu().numpy()
            test_accuracy = accuracy_score(y_test, test_predictions)
        
        logger.info(f"CNN Test Accuracy: {test_accuracy:.4f}")
        
        # Save model
        model_path = os.path.join(self.model_cache_dir, 'cnn_sentiment_model.pth')
        torch.save({
            'model_state_dict': model.state_dict(),
            'vectorizer': vectorizer,
            'label_encoder': label_encoder,
            'model_config': {
                'vocab_size': vocab_size,
                'embedding_dim': embedding_dim,
                'num_filters': num_filters,
                'filter_sizes': filter_sizes,
                'num_classes': num_classes
            }
        }, model_path)
        
        self.models['cnn'] = model
        self.training_history['cnn'] = {
            'train_losses': train_losses,
            'test_accuracy': test_accuracy,
            'epochs': epochs
        }
        
        return model, test_accuracy
    
    def analyze_sentiment_deep_learning(self, text: str) -> Dict[str, Any]:
        """Analyze sentiment using deep learning models"""
        
        results = {
            'text': text,
            'models_used': [],
            'predictions': {},
            'ensemble_prediction': None,
            'confidence_scores': {},
            'model_agreement': 0.0
        }
        
        # Analyze with each available model
        predictions = []
        confidence_scores = []
        
        # Transformer models
        for model_name, model in self.models.items():
            if model_name in ['bert-base', 'roberta-base', 'distilbert', 'twitter-roberta']:
                try:
                    tokenizer = self.tokenizers[model_name]
                    inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True)
                    
                    with torch.no_grad():
                        outputs = model(**inputs)
                        probabilities = torch.softmax(outputs.logits, dim=-1)
                        prediction = torch.argmax(probabilities, dim=-1).item()
                        confidence = torch.max(probabilities).item()
                    
                    # Map to sentiment labels
                    sentiment_map = {0: 'negative', 1: 'neutral', 2: 'positive'}
                    sentiment = sentiment_map.get(prediction, 'neutral')
                    
                    results['models_used'].append(model_name)
                    results['predictions'][model_name] = sentiment
                    results['confidence_scores'][model_name] = confidence
                    
                    predictions.append(sentiment)
                    confidence_scores.append(confidence)
                    
                except Exception as e:
                    logger.warning(f"Error with {model_name}: {e}")
        
        # Custom models
        for model_name in ['lstm', 'cnn']:
            if model_name in self.models:
                try:
                    # This would require loading the saved models and running inference
                    # For now, we'll skip this in the demo
                    pass
                except Exception as e:
                    logger.warning(f"Error with {model_name}: {e}")
        
        # Ensemble prediction
        if predictions:
            from collections import Counter
            prediction_counts = Counter(predictions)
            ensemble_prediction = prediction_counts.most_common(1)[0][0]
            results['ensemble_prediction'] = ensemble_prediction
            
            # Calculate model agreement
            agreement = prediction_counts[ensemble_prediction] / len(predictions)
            results['model_agreement'] = agreement
            
            # Average confidence
            results['average_confidence'] = np.mean(confidence_scores)
        
        return results
    
    def generate_learning_recommendations(self, analysis_results: Dict[str, Any]) -> Dict[str, Any]:
        """Generate learning recommendations based on deep learning analysis"""
        
        recommendations = {
            'model_performance': {},
            'training_insights': {},
            'improvement_suggestions': [],
            'data_quality_assessment': {},
            'next_steps': []
        }
        
        # Analyze model performance
        if 'training_history' in analysis_results:
            for model_name, history in analysis_results['training_history'].items():
                recommendations['model_performance'][model_name] = {
                    'test_accuracy': history.get('test_accuracy', 0),
                    'convergence': 'Good' if len(history.get('train_losses', [])) > 0 else 'Unknown',
                    'overfitting_risk': 'Low' if history.get('test_accuracy', 0) > 0.8 else 'Medium'
                }
        
        # Training insights
        recommendations['training_insights'] = {
            'best_performing_model': max(
                analysis_results.get('model_performance', {}).items(),
                key=lambda x: x[1].get('test_accuracy', 0)
            )[0] if analysis_results.get('model_performance') else 'None',
            'ensemble_benefit': 'High' if len(analysis_results.get('models_used', [])) > 2 else 'Medium',
            'confidence_variance': 'Low' if np.std(analysis_results.get('confidence_scores', {}).values()) < 0.1 else 'High'
        }
        
        # Improvement suggestions
        if analysis_results.get('model_agreement', 0) < 0.7:
            recommendations['improvement_suggestions'].append({
                'area': 'Model Agreement',
                'issue': 'Low model agreement detected',
                'suggestion': 'Consider ensemble methods or model fine-tuning',
                'priority': 'High'
            })
        
        if analysis_results.get('average_confidence', 0) < 0.6:
            recommendations['improvement_suggestions'].append({
                'area': 'Confidence',
                'issue': 'Low average confidence scores',
                'suggestion': 'Increase training data or improve model architecture',
                'priority': 'High'
            })
        
        # Data quality assessment
        recommendations['data_quality_assessment'] = {
            'training_data_size': 'Adequate' if analysis_results.get('training_samples', 0) > 1000 else 'Insufficient',
            'class_balance': 'Balanced' if analysis_results.get('class_balance_score', 0) > 0.8 else 'Imbalanced',
            'text_diversity': 'Good' if analysis_results.get('vocabulary_size', 0) > 5000 else 'Limited'
        }
        
        # Next steps
        recommendations['next_steps'] = [
            'Fine-tune best performing model on domain-specific data',
            'Implement active learning for continuous improvement',
            'Add data augmentation techniques',
            'Consider transfer learning from larger datasets',
            'Implement model monitoring and retraining pipeline'
        ]
        
        return recommendations

def main():
    """Demo function for deep learning sentiment analysis"""
    print("πŸ€– SentilensAI - Deep Learning Sentiment Analysis Demo")
    print("=" * 60)
    
    # Initialize deep learning analyzer
    analyzer = DeepLearningSentimentAnalyzer()
    
    # Sample data for training
    sample_texts = [
        "I love this product! It's amazing and works perfectly.",
        "This is terrible. I hate it and want a refund immediately.",
        "The service was okay, nothing special but not bad either.",
        "Excellent customer support! They were very helpful.",
        "I'm frustrated with the slow response time.",
        "Great quality and fast delivery. Highly recommended!",
        "The interface is confusing and hard to use.",
        "Outstanding service! Will definitely use again.",
        "Average experience, could be better.",
        "Worst customer service ever. Very disappointed."
    ]
    
    sample_labels = [
        "positive", "negative", "neutral", "positive", "negative",
        "positive", "negative", "positive", "neutral", "negative"
    ]
    
    print(f"πŸ“Š Training on {len(sample_texts)} sample texts...")
    
    # Train custom models
    try:
        lstm_model, lstm_accuracy = analyzer.train_custom_lstm(sample_texts, sample_labels, epochs=5)
        print(f"βœ… LSTM model trained - Accuracy: {lstm_accuracy:.4f}")
    except Exception as e:
        print(f"❌ LSTM training failed: {e}")
    
    try:
        cnn_model, cnn_accuracy = analyzer.train_custom_cnn(sample_texts, sample_labels, epochs=5)
        print(f"βœ… CNN model trained - Accuracy: {cnn_accuracy:.4f}")
    except Exception as e:
        print(f"❌ CNN training failed: {e}")
    
    # Test deep learning analysis
    test_text = "I'm really happy with the service and would recommend it to others!"
    print(f"\nπŸ” Testing deep learning analysis on: '{test_text}'")
    
    dl_results = analyzer.analyze_sentiment_deep_learning(test_text)
    print(f"πŸ“Š Deep Learning Results:")
    print(f"   Models Used: {dl_results['models_used']}")
    print(f"   Predictions: {dl_results['predictions']}")
    print(f"   Ensemble Prediction: {dl_results['ensemble_prediction']}")
    print(f"   Model Agreement: {dl_results['model_agreement']:.2f}")
    print(f"   Average Confidence: {dl_results['average_confidence']:.2f}")
    
    # Generate learning recommendations
    recommendations = analyzer.generate_learning_recommendations(dl_results)
    print(f"\nπŸŽ“ Learning Recommendations:")
    print(f"   Best Model: {recommendations['training_insights']['best_performing_model']}")
    print(f"   Ensemble Benefit: {recommendations['training_insights']['ensemble_benefit']}")
    print(f"   Next Steps: {len(recommendations['next_steps'])} recommendations generated")
    
    print(f"\nβœ… Deep learning sentiment analysis demo completed!")
    print(f"πŸš€ Advanced AI capabilities ready for production!")

if __name__ == "__main__":
    main()