File size: 38,435 Bytes
3236276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
"""
SentilensAI - Advanced Sentiment Analysis for AI Chatbot Messages

This module provides comprehensive sentiment analysis capabilities specifically designed
for analyzing AI chatbot conversations using LangChain integration and multiple ML models.

Features:
- Multi-model sentiment analysis (VADER, TextBlob, spaCy, Transformers)
- LangChain integration for intelligent conversation analysis
- Real-time sentiment tracking for chatbot interactions
- Advanced emotion detection and classification
- Context-aware sentiment analysis for conversational AI

Author: Pravin Selvamuthu
Repository: https://github.com/kernelseed/sentilens-ai
"""

import re
import json
import logging
from typing import Dict, List, Tuple, Optional, Union, Any
from datetime import datetime
from dataclasses import dataclass
from pathlib import Path

import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
import joblib

# NLP Libraries
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize, sent_tokenize
from nltk.stem import WordNetLemmatizer
from textblob import TextBlob
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer

# LangChain Integration
from langchain_core.messages import BaseMessage, HumanMessage, AIMessage, SystemMessage
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain_community.llms import OpenAI
from langchain_core.callbacks import BaseCallbackHandler
from langchain_core.output_parsers import BaseOutputParser

# Transformers for advanced sentiment analysis
try:
    from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
    import torch
    TRANSFORMERS_AVAILABLE = True
except ImportError:
    TRANSFORMERS_AVAILABLE = False

# Multilingual support
try:
    from multilingual_sentiment import MultilingualSentimentAnalyzer, MultilingualSentimentResult
    MULTILINGUAL_AVAILABLE = True
except ImportError:
    MULTILINGUAL_AVAILABLE = False

# spaCy for advanced NLP
try:
    import spacy
    SPACY_AVAILABLE = True
except ImportError:
    SPACY_AVAILABLE = False

# Download required NLTK data
try:
    nltk.download('punkt', quiet=True)
    nltk.download('stopwords', quiet=True)
    nltk.download('wordnet', quiet=True)
    nltk.download('vader_lexicon', quiet=True)
except:
    pass

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


@dataclass
class SentimentResult:
    """Data class for sentiment analysis results"""
    text: str
    sentiment: str  # positive, negative, neutral
    confidence: float
    polarity: float  # -1 to 1
    subjectivity: float  # 0 to 1
    emotions: Dict[str, float]
    timestamp: datetime
    model_used: str
    metadata: Dict[str, Any]


@dataclass
class ChatbotMessage:
    """Data class for chatbot message analysis"""
    message_id: str
    user_message: str
    bot_response: str
    timestamp: datetime
    conversation_id: str
    user_sentiment: SentimentResult
    bot_sentiment: SentimentResult
    conversation_sentiment: str
    satisfaction_score: float


class SentimentOutputParser(BaseOutputParser):
    """Custom output parser for LangChain sentiment analysis"""
    
    def parse(self, text: str) -> Dict[str, Any]:
        """Parse sentiment analysis output from LLM"""
        try:
            # Try to parse as JSON first
            if text.strip().startswith('{'):
                return json.loads(text)
            
            # Extract sentiment information using regex
            sentiment_match = re.search(r'sentiment["\']?\s*:\s*["\']?(\w+)', text, re.IGNORECASE)
            confidence_match = re.search(r'confidence["\']?\s*:\s*([0-9.]+)', text, re.IGNORECASE)
            polarity_match = re.search(r'polarity["\']?\s*:\s*([-0-9.]+)', text, re.IGNORECASE)
            
            result = {
                'sentiment': sentiment_match.group(1).lower() if sentiment_match else 'neutral',
                'confidence': float(confidence_match.group(1)) if confidence_match else 0.5,
                'polarity': float(polarity_match.group(1)) if polarity_match else 0.0,
                'raw_output': text
            }
            
            return result
        except Exception as e:
            logger.warning(f"Failed to parse sentiment output: {e}")
            return {
                'sentiment': 'neutral',
                'confidence': 0.5,
                'polarity': 0.0,
                'raw_output': text
            }


class SentilensAIAnalyzer:
    """
    Advanced sentiment analysis for AI chatbot messages using multiple models and LangChain
    """
    
    def __init__(self, openai_api_key: Optional[str] = None, model_cache_dir: str = "./model_cache", 
                 enable_multilingual: bool = True):
        """
        Initialize the SentimentsAI analyzer
        
        Args:
            openai_api_key: OpenAI API key for LangChain integration
            model_cache_dir: Directory to cache downloaded models
            enable_multilingual: Enable multilingual support for English, Spanish, and Chinese
        """
        self.model_cache_dir = Path(model_cache_dir)
        self.model_cache_dir.mkdir(exist_ok=True)
        
        # Multilingual support
        self.enable_multilingual = enable_multilingual and MULTILINGUAL_AVAILABLE
        if self.enable_multilingual:
            try:
                self.multilingual_analyzer = MultilingualSentimentAnalyzer()
                logger.info("โœ… Multilingual support enabled (English, Spanish, Chinese)")
            except Exception as e:
                logger.warning(f"Failed to initialize multilingual analyzer: {e}")
                self.enable_multilingual = False
        else:
            self.multilingual_analyzer = None
        
        # Initialize sentiment analyzers
        self.vader_analyzer = SentimentIntensityAnalyzer()
        self.lemmatizer = WordNetLemmatizer()
        
        # Load stopwords
        try:
            self.stop_words = set(stopwords.words('english'))
        except:
            self.stop_words = set()
        
        # Initialize spaCy model
        self.spacy_model = None
        if SPACY_AVAILABLE:
            try:
                self.spacy_model = spacy.load("en_core_web_sm")
            except OSError:
                logger.warning("spaCy model 'en_core_web_sm' not found. Install with: python -m spacy download en_core_web_sm")
        
        # Initialize transformers pipeline
        self.transformers_pipeline = None
        if TRANSFORMERS_AVAILABLE:
            try:
                self.transformers_pipeline = pipeline(
                    "sentiment-analysis",
                    model="cardiffnlp/twitter-roberta-base-sentiment-latest",
                    cache_dir=self.model_cache_dir
                )
            except Exception as e:
                logger.warning(f"Failed to load transformers pipeline: {e}")
        
        # Initialize LangChain components
        self.llm = None
        self.sentiment_chain = None
        if openai_api_key:
            try:
                self.llm = OpenAI(api_key=openai_api_key, temperature=0.1)
                self._setup_langchain_components()
            except Exception as e:
                logger.warning(f"Failed to initialize OpenAI LLM: {e}")
        
        # Emotion detection patterns
        self.emotion_patterns = {
            'joy': [r'\b(happy|joy|excited|great|wonderful|amazing|fantastic|love|adore)\b'],
            'sadness': [r'\b(sad|depressed|upset|disappointed|hurt|grief|sorrow)\b'],
            'anger': [r'\b(angry|mad|furious|rage|annoyed|irritated|frustrated)\b'],
            'fear': [r'\b(scared|afraid|worried|anxious|nervous|terrified|panic)\b'],
            'surprise': [r'\b(surprised|shocked|amazed|wow|incredible|unbelievable)\b'],
            'disgust': [r'\b(disgusted|revolted|sick|gross|nasty|awful|terrible)\b']
        }
    
    def _setup_langchain_components(self):
        """Setup LangChain components for sentiment analysis"""
        if not self.llm:
            return
        
        # Create sentiment analysis prompt template
        sentiment_prompt = PromptTemplate(
            input_variables=["text", "context"],
            template="""
            Analyze the sentiment of the following text from an AI chatbot conversation.
            Consider the context of the conversation and provide a detailed sentiment analysis.
            
            Text: "{text}"
            Context: "{context}"
            
            Please provide your analysis in the following JSON format:
            {{
                "sentiment": "positive|negative|neutral",
                "confidence": 0.0-1.0,
                "polarity": -1.0 to 1.0,
                "reasoning": "Brief explanation of your analysis",
                "emotions": {{
                    "joy": 0.0-1.0,
                    "sadness": 0.0-1.0,
                    "anger": 0.0-1.0,
                    "fear": 0.0-1.0,
                    "surprise": 0.0-1.0,
                    "disgust": 0.0-1.0
                }}
            }}
            """
        )
        
        # Create the sentiment analysis chain
        self.sentiment_chain = LLMChain(
            llm=self.llm,
            prompt=sentiment_prompt,
            output_parser=SentimentOutputParser()
        )
    
    def preprocess_text(self, text: str) -> str:
        """
        Preprocess text for sentiment analysis
        
        Args:
            text: Input text to preprocess
            
        Returns:
            Preprocessed text
        """
        if not text:
            return ""
        
        # Convert to lowercase
        text = text.lower()
        
        # Remove URLs, mentions, and hashtags
        text = re.sub(r'http\S+|www\S+|https\S+', '', text, flags=re.MULTILINE)
        text = re.sub(r'@\w+|#\w+', '', text)
        
        # Remove extra whitespace
        text = re.sub(r'\s+', ' ', text).strip()
        
        # Remove special characters but keep basic punctuation
        text = re.sub(r'[^\w\s\.\!\?\,\;\:]', '', text)
        
        return text
    
    def extract_emotions(self, text: str) -> Dict[str, float]:
        """
        Extract emotion scores from text using pattern matching
        
        Args:
            text: Input text
            
        Returns:
            Dictionary of emotion scores
        """
        emotions = {emotion: 0.0 for emotion in self.emotion_patterns.keys()}
        
        for emotion, patterns in self.emotion_patterns.items():
            for pattern in patterns:
                matches = re.findall(pattern, text, re.IGNORECASE)
                emotions[emotion] += len(matches) * 0.1  # Simple scoring
        
        # Normalize scores
        total_score = sum(emotions.values())
        if total_score > 0:
            emotions = {k: min(v / total_score, 1.0) for k, v in emotions.items()}
        
        return emotions
    
    def analyze_with_vader(self, text: str) -> Dict[str, Any]:
        """Analyze sentiment using VADER"""
        scores = self.vader_analyzer.polarity_scores(text)
        
        # Determine sentiment
        if scores['compound'] >= 0.05:
            sentiment = 'positive'
        elif scores['compound'] <= -0.05:
            sentiment = 'negative'
        else:
            sentiment = 'neutral'
        
        return {
            'sentiment': sentiment,
            'confidence': abs(scores['compound']),
            'polarity': scores['compound'],
            'subjectivity': 0.5,  # VADER doesn't provide subjectivity
            'scores': scores
        }
    
    def analyze_with_textblob(self, text: str) -> Dict[str, Any]:
        """Analyze sentiment using TextBlob"""
        blob = TextBlob(text)
        
        # Determine sentiment
        if blob.sentiment.polarity > 0.1:
            sentiment = 'positive'
        elif blob.sentiment.polarity < -0.1:
            sentiment = 'negative'
        else:
            sentiment = 'neutral'
        
        return {
            'sentiment': sentiment,
            'confidence': abs(blob.sentiment.polarity),
            'polarity': blob.sentiment.polarity,
            'subjectivity': blob.sentiment.subjectivity
        }
    
    def analyze_with_spacy(self, text: str) -> Dict[str, Any]:
        """Analyze sentiment using spaCy (if available)"""
        if not self.spacy_model:
            return self.analyze_with_textblob(text)  # Fallback
        
        doc = self.spacy_model(text)
        
        # Simple sentiment analysis using spaCy's token attributes
        positive_words = 0
        negative_words = 0
        total_words = 0
        
        for token in doc:
            if not token.is_stop and not token.is_punct and token.is_alpha:
                total_words += 1
                # Simple heuristic based on word sentiment
                if token.lemma_.lower() in ['good', 'great', 'excellent', 'amazing', 'wonderful']:
                    positive_words += 1
                elif token.lemma_.lower() in ['bad', 'terrible', 'awful', 'horrible', 'worst']:
                    negative_words += 1
        
        if total_words == 0:
            polarity = 0.0
        else:
            polarity = (positive_words - negative_words) / total_words
        
        # Determine sentiment
        if polarity > 0.1:
            sentiment = 'positive'
        elif polarity < -0.1:
            sentiment = 'negative'
        else:
            sentiment = 'neutral'
        
        return {
            'sentiment': sentiment,
            'confidence': abs(polarity),
            'polarity': polarity,
            'subjectivity': 0.5  # spaCy doesn't provide subjectivity
        }
    
    def analyze_with_transformers(self, text: str) -> Dict[str, Any]:
        """Analyze sentiment using Transformers (if available)"""
        if not self.transformers_pipeline:
            return self.analyze_with_textblob(text)  # Fallback
        
        try:
            result = self.transformers_pipeline(text)[0]
            
            # Map transformer labels to our format
            label_mapping = {
                'LABEL_0': 'negative',
                'LABEL_1': 'neutral', 
                'LABEL_2': 'positive'
            }
            
            sentiment = label_mapping.get(result['label'], 'neutral')
            confidence = result['score']
            
            # Estimate polarity from confidence and sentiment
            if sentiment == 'positive':
                polarity = confidence
            elif sentiment == 'negative':
                polarity = -confidence
            else:
                polarity = 0.0
            
            return {
                'sentiment': sentiment,
                'confidence': confidence,
                'polarity': polarity,
                'subjectivity': 0.5  # Transformers don't provide subjectivity
            }
        except Exception as e:
            logger.warning(f"Transformers analysis failed: {e}")
            return self.analyze_with_textblob(text)  # Fallback
    
    def analyze_with_langchain(self, text: str, context: str = "") -> Dict[str, Any]:
        """Analyze sentiment using LangChain and LLM"""
        if not self.sentiment_chain:
            return self.analyze_with_textblob(text)  # Fallback
        
        try:
            result = self.sentiment_chain.run(text=text, context=context)
            
            # Ensure we have the required fields
            if not isinstance(result, dict):
                result = {'sentiment': 'neutral', 'confidence': 0.5, 'polarity': 0.0}
            
            # Validate and normalize the result
            sentiment = result.get('sentiment', 'neutral')
            if sentiment not in ['positive', 'negative', 'neutral']:
                sentiment = 'neutral'
            
            confidence = max(0.0, min(1.0, float(result.get('confidence', 0.5))))
            polarity = max(-1.0, min(1.0, float(result.get('polarity', 0.0))))
            
            # Extract emotions if available
            emotions = result.get('emotions', {})
            if not isinstance(emotions, dict):
                emotions = self.extract_emotions(text)
            
            return {
                'sentiment': sentiment,
                'confidence': confidence,
                'polarity': polarity,
                'subjectivity': 0.5,  # LLM doesn't provide subjectivity
                'emotions': emotions,
                'reasoning': result.get('reasoning', '')
            }
        except Exception as e:
            logger.warning(f"LangChain analysis failed: {e}")
            return self.analyze_with_textblob(text)  # Fallback
    
    def analyze_sentiment(self, text: str, method: str = 'ensemble', context: str = "") -> SentimentResult:
        """
        Analyze sentiment using specified method
        
        Args:
            text: Text to analyze
            method: Analysis method ('vader', 'textblob', 'spacy', 'transformers', 'langchain', 'ensemble')
            context: Additional context for analysis
            
        Returns:
            SentimentResult object
        """
        if not text or not text.strip():
            return SentimentResult(
                text=text,
                sentiment='neutral',
                confidence=0.0,
                polarity=0.0,
                subjectivity=0.0,
                emotions={},
                timestamp=datetime.now(),
                model_used=method,
                metadata={}
            )
        
        # Preprocess text
        processed_text = self.preprocess_text(text)
        
        if method == 'ensemble':
            # Use ensemble of all available methods
            results = []
            
            # VADER
            vader_result = self.analyze_with_vader(processed_text)
            results.append(vader_result)
            
            # TextBlob
            textblob_result = self.analyze_with_textblob(processed_text)
            results.append(textblob_result)
            
            # spaCy
            spacy_result = self.analyze_with_spacy(processed_text)
            results.append(spacy_result)
            
            # Transformers
            if self.transformers_pipeline:
                transformers_result = self.analyze_with_transformers(processed_text)
                results.append(transformers_result)
            
            # LangChain
            if self.sentiment_chain:
                langchain_result = self.analyze_with_langchain(processed_text, context)
                results.append(langchain_result)
            
            # Ensemble voting
            sentiment_votes = [r['sentiment'] for r in results]
            sentiment_counts = {s: sentiment_votes.count(s) for s in set(sentiment_votes)}
            final_sentiment = max(sentiment_counts, key=sentiment_counts.get)
            
            # Average confidence and polarity
            avg_confidence = np.mean([r['confidence'] for r in results])
            avg_polarity = np.mean([r['polarity'] for r in results])
            avg_subjectivity = np.mean([r.get('subjectivity', 0.5) for r in results])
            
            # Combine emotions
            all_emotions = {}
            for result in results:
                if 'emotions' in result:
                    for emotion, score in result['emotions'].items():
                        all_emotions[emotion] = all_emotions.get(emotion, 0) + score
            emotions = {k: v / len(results) for k, v in all_emotions.items()}
            
            if not emotions:
                emotions = self.extract_emotions(processed_text)
            
            final_result = {
                'sentiment': final_sentiment,
                'confidence': avg_confidence,
                'polarity': avg_polarity,
                'subjectivity': avg_subjectivity,
                'emotions': emotions
            }
            
        else:
            # Use specific method
            if method == 'vader':
                final_result = self.analyze_with_vader(processed_text)
            elif method == 'textblob':
                final_result = self.analyze_with_textblob(processed_text)
            elif method == 'spacy':
                final_result = self.analyze_with_spacy(processed_text)
            elif method == 'transformers':
                final_result = self.analyze_with_transformers(processed_text)
            elif method == 'langchain':
                final_result = self.analyze_with_langchain(processed_text, context)
            else:
                raise ValueError(f"Unknown method: {method}")
            
            # Extract emotions if not provided
            if 'emotions' not in final_result:
                final_result['emotions'] = self.extract_emotions(processed_text)
        
        return SentimentResult(
            text=text,
            sentiment=final_result['sentiment'],
            confidence=final_result['confidence'],
            polarity=final_result['polarity'],
            subjectivity=final_result.get('subjectivity', 0.5),
            emotions=final_result['emotions'],
            timestamp=datetime.now(),
            model_used=method,
            metadata=final_result
        )
    
    def analyze_sentiment_multilingual(self, text: str, target_language: Optional[str] = None,
                                     enable_cross_language: bool = False) -> MultilingualSentimentResult:
        """
        Analyze sentiment with multilingual support (English, Spanish, Chinese)
        
        Args:
            text: Text to analyze
            target_language: Specific language to use ('en', 'es', 'zh') or None for auto-detection
            enable_cross_language: Enable cross-language consensus analysis
            
        Returns:
            MultilingualSentimentResult object
        """
        if not self.enable_multilingual or not self.multilingual_analyzer:
            # Fallback to regular analysis
            regular_result = self.analyze_sentiment(text, method='ensemble')
            return MultilingualSentimentResult(
                text=text,
                detected_language='en',
                language_confidence=0.5,
                sentiment=regular_result.sentiment,
                confidence=regular_result.confidence,
                emotions=regular_result.emotions,
                methods_used=[regular_result.model_used],
                language_specific_analysis={'fallback': True}
            )
        
        return self.multilingual_analyzer.analyze_sentiment_multilingual(
            text, target_language, enable_cross_language
        )
    
    def analyze_conversation_multilingual(self, conversation: Dict[str, Any]) -> Dict[str, Any]:
        """
        Analyze a conversation with multilingual support
        
        Args:
            conversation: Conversation dictionary with messages
            
        Returns:
            Dictionary with multilingual analysis results
        """
        if not self.enable_multilingual or not self.multilingual_analyzer:
            # Fallback to regular analysis
            messages = conversation.get('messages', [])
            regular_results = []
            for msg in messages:
                user_text = msg.get('user', '')
                bot_text = msg.get('bot', '')
                if user_text:
                    regular_results.append(self.analyze_sentiment(user_text))
                if bot_text:
                    regular_results.append(self.analyze_sentiment(bot_text))
            return {'fallback': True, 'results': regular_results}
        
        return self.multilingual_analyzer.analyze_conversation_multilingual(conversation)
    
    def get_supported_languages(self) -> List[str]:
        """Get list of supported languages for multilingual analysis"""
        if self.enable_multilingual and self.multilingual_analyzer:
            return self.multilingual_analyzer.get_supported_languages()
        return ['en']  # Default to English only
    
    def get_language_name(self, language_code: str) -> str:
        """Get human-readable language name"""
        if self.enable_multilingual and self.multilingual_analyzer:
            return self.multilingual_analyzer.get_language_name(language_code)
        return {'en': 'English'}.get(language_code, language_code)
    
    def analyze_chatbot_conversation(self, messages: List[Dict[str, Any]]) -> List[ChatbotMessage]:
        """
        Analyze a complete chatbot conversation
        
        Args:
            messages: List of message dictionaries with 'user', 'bot', 'timestamp', 'conversation_id'
            
        Returns:
            List of ChatbotMessage objects
        """
        results = []
        
        for i, msg in enumerate(messages):
            user_text = msg.get('user', '')
            bot_text = msg.get('bot', '')
            timestamp = msg.get('timestamp', datetime.now())
            conversation_id = msg.get('conversation_id', f'conv_{i}')
            message_id = msg.get('message_id', f'{conversation_id}_{i}')
            
            # Analyze user message
            user_sentiment = self.analyze_sentiment(user_text, method='ensemble')
            
            # Analyze bot response
            bot_sentiment = self.analyze_sentiment(bot_text, method='ensemble', context=user_text)
            
            # Determine overall conversation sentiment
            if user_sentiment.sentiment == bot_sentiment.sentiment:
                conversation_sentiment = user_sentiment.sentiment
            else:
                # Use weighted average based on confidence
                user_weight = user_sentiment.confidence
                bot_weight = bot_sentiment.confidence
                total_weight = user_weight + bot_weight
                
                if total_weight > 0:
                    user_polarity_weighted = user_sentiment.polarity * (user_weight / total_weight)
                    bot_polarity_weighted = bot_sentiment.polarity * (bot_weight / total_weight)
                    combined_polarity = user_polarity_weighted + bot_polarity_weighted
                    
                    if combined_polarity > 0.1:
                        conversation_sentiment = 'positive'
                    elif combined_polarity < -0.1:
                        conversation_sentiment = 'negative'
                    else:
                        conversation_sentiment = 'neutral'
                else:
                    conversation_sentiment = 'neutral'
            
            # Calculate satisfaction score (0-1)
            satisfaction_score = self._calculate_satisfaction_score(user_sentiment, bot_sentiment)
            
            chatbot_message = ChatbotMessage(
                message_id=message_id,
                user_message=user_text,
                bot_response=bot_text,
                timestamp=timestamp,
                conversation_id=conversation_id,
                user_sentiment=user_sentiment,
                bot_sentiment=bot_sentiment,
                conversation_sentiment=conversation_sentiment,
                satisfaction_score=satisfaction_score
            )
            
            results.append(chatbot_message)
        
        return results
    
    def _calculate_satisfaction_score(self, user_sentiment: SentimentResult, bot_sentiment: SentimentResult) -> float:
        """Calculate satisfaction score based on sentiment alignment"""
        # Base score from user sentiment
        base_score = (user_sentiment.polarity + 1) / 2  # Convert -1,1 to 0,1
        
        # Adjust based on bot response sentiment
        if user_sentiment.sentiment == 'positive' and bot_sentiment.sentiment == 'positive':
            adjustment = 0.2
        elif user_sentiment.sentiment == 'negative' and bot_sentiment.sentiment == 'positive':
            adjustment = 0.3  # Bot being positive to negative user is good
        elif user_sentiment.sentiment == 'neutral' and bot_sentiment.sentiment == 'positive':
            adjustment = 0.1
        else:
            adjustment = -0.1
        
        # Factor in confidence
        confidence_factor = (user_sentiment.confidence + bot_sentiment.confidence) / 2
        
        final_score = base_score + adjustment
        final_score = max(0.0, min(1.0, final_score))  # Clamp to 0-1
        
        return final_score * confidence_factor
    
    def get_sentiment_summary(self, results: List[SentimentResult]) -> Dict[str, Any]:
        """Get summary statistics for sentiment analysis results"""
        if not results:
            return {}
        
        sentiments = [r.sentiment for r in results]
        confidences = [r.confidence for r in results]
        polarities = [r.polarity for r in results]
        
        sentiment_counts = {s: sentiments.count(s) for s in set(sentiments)}
        total = len(sentiments)
        
        return {
            'total_messages': total,
            'sentiment_distribution': {k: v/total for k, v in sentiment_counts.items()},
            'average_confidence': np.mean(confidences),
            'average_polarity': np.mean(polarities),
            'sentiment_trend': sentiments,
            'confidence_trend': confidences,
            'polarity_trend': polarities
        }
    
    def export_results(self, results: List[Union[SentimentResult, ChatbotMessage]], 
                      filename: str, format: str = 'json') -> str:
        """
        Export analysis results to file
        
        Args:
            results: List of analysis results
            filename: Output filename
            format: Export format ('json', 'csv', 'excel')
            
        Returns:
            Path to exported file
        """
        output_path = Path(filename)
        
        if format == 'json':
            # Convert results to dictionaries
            data = []
            for result in results:
                if isinstance(result, SentimentResult):
                    data.append({
                        'text': result.text,
                        'sentiment': result.sentiment,
                        'confidence': result.confidence,
                        'polarity': result.polarity,
                        'subjectivity': result.subjectivity,
                        'emotions': result.emotions,
                        'timestamp': result.timestamp.isoformat(),
                        'model_used': result.model_used
                    })
                elif isinstance(result, ChatbotMessage):
                    data.append({
                        'message_id': result.message_id,
                        'user_message': result.user_message,
                        'bot_response': result.bot_response,
                        'timestamp': result.timestamp.isoformat(),
                        'conversation_id': result.conversation_id,
                        'user_sentiment': result.user_sentiment.sentiment,
                        'user_confidence': result.user_sentiment.confidence,
                        'user_polarity': result.user_sentiment.polarity,
                        'bot_sentiment': result.bot_sentiment.sentiment,
                        'bot_confidence': result.bot_sentiment.confidence,
                        'bot_polarity': result.bot_sentiment.polarity,
                        'conversation_sentiment': result.conversation_sentiment,
                        'satisfaction_score': result.satisfaction_score
                    })
            
            with open(output_path, 'w', encoding='utf-8') as f:
                json.dump(data, f, indent=2, ensure_ascii=False)
        
        elif format == 'csv':
            # Convert to DataFrame and save as CSV
            data = []
            for result in results:
                if isinstance(result, SentimentResult):
                    data.append({
                        'text': result.text,
                        'sentiment': result.sentiment,
                        'confidence': result.confidence,
                        'polarity': result.polarity,
                        'subjectivity': result.subjectivity,
                        'timestamp': result.timestamp.isoformat(),
                        'model_used': result.model_used
                    })
                elif isinstance(result, ChatbotMessage):
                    data.append({
                        'message_id': result.message_id,
                        'user_message': result.user_message,
                        'bot_response': result.bot_response,
                        'timestamp': result.timestamp.isoformat(),
                        'conversation_id': result.conversation_id,
                        'user_sentiment': result.user_sentiment.sentiment,
                        'user_confidence': result.user_sentiment.confidence,
                        'bot_sentiment': result.bot_sentiment.sentiment,
                        'bot_confidence': result.bot_sentiment.confidence,
                        'conversation_sentiment': result.conversation_sentiment,
                        'satisfaction_score': result.satisfaction_score
                    })
            
            df = pd.DataFrame(data)
            df.to_csv(output_path, index=False, encoding='utf-8')
        
        elif format == 'excel':
            # Convert to DataFrame and save as Excel
            data = []
            for result in results:
                if isinstance(result, SentimentResult):
                    data.append({
                        'text': result.text,
                        'sentiment': result.sentiment,
                        'confidence': result.confidence,
                        'polarity': result.polarity,
                        'subjectivity': result.subjectivity,
                        'timestamp': result.timestamp.isoformat(),
                        'model_used': result.model_used
                    })
                elif isinstance(result, ChatbotMessage):
                    data.append({
                        'message_id': result.message_id,
                        'user_message': result.user_message,
                        'bot_response': result.bot_response,
                        'timestamp': result.timestamp.isoformat(),
                        'conversation_id': result.conversation_id,
                        'user_sentiment': result.user_sentiment.sentiment,
                        'user_confidence': result.user_sentiment.confidence,
                        'bot_sentiment': result.bot_sentiment.sentiment,
                        'bot_confidence': result.bot_sentiment.confidence,
                        'conversation_sentiment': result.conversation_sentiment,
                        'satisfaction_score': result.satisfaction_score
                    })
            
            df = pd.DataFrame(data)
            df.to_excel(output_path, index=False, engine='openpyxl')
        
        else:
            raise ValueError(f"Unsupported format: {format}")
        
        return str(output_path)


def main():
    """Demo function to showcase SentimentsAI capabilities"""
    print("๐Ÿค– SentilensAI - Advanced Sentiment Analysis for AI Chatbot Messages")
    print("=" * 70)
    
    # Initialize analyzer
    analyzer = SentilensAIAnalyzer()
    
    # Sample chatbot messages
    sample_messages = [
        {
            'user': 'I love this chatbot! It\'s so helpful and friendly.',
            'bot': 'Thank you so much! I\'m thrilled to hear that you\'re having a great experience. Is there anything else I can help you with today?',
            'timestamp': datetime.now(),
            'conversation_id': 'demo_001'
        },
        {
            'user': 'This is terrible. The bot keeps giving me wrong answers.',
            'bot': 'I apologize for the confusion. Let me help you get the correct information. Could you please provide more details about what you\'re looking for?',
            'timestamp': datetime.now(),
            'conversation_id': 'demo_002'
        },
        {
            'user': 'Can you help me with my account balance?',
            'bot': 'Of course! I\'d be happy to help you check your account balance. Please provide your account number or login credentials.',
            'timestamp': datetime.now(),
            'conversation_id': 'demo_003'
        }
    ]
    
    print("\n๐Ÿ“Š Analyzing sample chatbot conversations...")
    
    # Analyze conversations
    results = analyzer.analyze_chatbot_conversation(sample_messages)
    
    # Display results
    for i, result in enumerate(results, 1):
        print(f"\n--- Conversation {i} ---")
        print(f"User: {result.user_message}")
        print(f"Bot: {result.bot_response}")
        print(f"User Sentiment: {result.user_sentiment.sentiment} (confidence: {result.user_sentiment.confidence:.2f})")
        print(f"Bot Sentiment: {result.bot_sentiment.sentiment} (confidence: {result.bot_sentiment.confidence:.2f})")
        print(f"Conversation Sentiment: {result.conversation_sentiment}")
        print(f"Satisfaction Score: {result.satisfaction_score:.2f}")
    
    # Get summary
    sentiment_results = [r.user_sentiment for r in results] + [r.bot_sentiment for r in results]
    summary = analyzer.get_sentiment_summary(sentiment_results)
    
    print(f"\n๐Ÿ“ˆ Summary Statistics:")
    print(f"Total Messages: {summary['total_messages']}")
    print(f"Sentiment Distribution: {summary['sentiment_distribution']}")
    print(f"Average Confidence: {summary['average_confidence']:.2f}")
    print(f"Average Polarity: {summary['average_polarity']:.2f}")
    
    # Export results
    output_file = analyzer.export_results(results, 'sentiment_analysis_results.json', 'json')
    print(f"\n๐Ÿ’พ Results exported to: {output_file}")
    
    print("\nโœ… SentilensAI demo completed successfully!")
    print("๐Ÿš€ Ready for production use with LangChain and ML models!")


if __name__ == "__main__":
    main()