Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,575 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
-
|
| 151 |
-
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
+
license: mit
|
| 4 |
+
task_categories:
|
| 5 |
+
- text-generation
|
| 6 |
+
language:
|
| 7 |
+
- en
|
| 8 |
+
tags:
|
| 9 |
+
- agent
|
| 10 |
+
- Agentic Learning
|
| 11 |
+
- tool use
|
| 12 |
+
- BFCL
|
| 13 |
---
|
| 14 |
|
| 15 |
+
[](https://huggingface.co/collections/prem-research/funcdex) [](https://huggingface.co/datasets/prem-research/Funcdex-MT-Function-Calling) [](https://github.com/prem-research/Funcdex-Synthesizer) [](https://www.premai.io/)
|
| 16 |
+
|
| 17 |
+
# Funcdex-1.7B
|
| 18 |
+
|
| 19 |
+
<div align="center">
|
| 20 |
+
<img src="assets/funcdex_hero.png" alt="Funcdex Hero" width="40%">
|
| 21 |
+
</div>
|
| 22 |
+
|
| 23 |
+
Funcdex-1.7B is a research preview model by Prem Labs. It has been trained on a mix of [Funcdex-MT-Function-Calling](https://huggingface.co/datasets/prem-research/Funcdex-MT-Function-Calling), Instruct-Following, Single-turn function datasets. It is a LoRA finetune of Qwen3-1.7B (with thinking disabled).
|
| 24 |
+
|
| 25 |
+
This model excels at Multi-turn Function Calling with tools from `gmail`, `jira`, `calendar`, `docs`, etc.
|
| 26 |
+
|
| 27 |
+
The code used to generate the dataset can be found [here](https://github.com/prem-research/Funcdex-Synthesizer).
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# Quickstart
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 34 |
+
from peft import PeftModel
|
| 35 |
+
import torch
|
| 36 |
+
import json
|
| 37 |
+
|
| 38 |
+
# Load model and tokenizer
|
| 39 |
+
base_model_name = "ojus1/Qwen3-1.7B-Instruct"
|
| 40 |
+
model_name = "prem-research/Funcdex-1.7B"
|
| 41 |
+
|
| 42 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 43 |
+
|
| 44 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 45 |
+
base_model_name,
|
| 46 |
+
torch_dtype="auto",
|
| 47 |
+
device_map="auto"
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
model = PeftModel.from_pretrained(
|
| 51 |
+
base_model,
|
| 52 |
+
model_name,
|
| 53 |
+
torch_dtype="auto",
|
| 54 |
+
device_map="auto"
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
# Define tools (supports all toolkits)
|
| 58 |
+
tools = [
|
| 59 |
+
{
|
| 60 |
+
"type": "function",
|
| 61 |
+
"function": {
|
| 62 |
+
"name": "CREATE_SHARED_DRIVE",
|
| 63 |
+
"description": "Create a new shared drive in Google Drive",
|
| 64 |
+
"parameters": {
|
| 65 |
+
"type": "object",
|
| 66 |
+
"properties": {
|
| 67 |
+
"name": {"type": "string", "description": "Name of the shared drive"},
|
| 68 |
+
"requestId": {"type": "string", "description": "Unique request ID"}
|
| 69 |
+
},
|
| 70 |
+
"required": ["name", "requestId"]
|
| 71 |
+
}
|
| 72 |
+
}
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"type": "function",
|
| 76 |
+
"function": {
|
| 77 |
+
"name": "CREATE_A_FOLDER",
|
| 78 |
+
"description": "Create a folder in Google Drive",
|
| 79 |
+
"parameters": {
|
| 80 |
+
"type": "object",
|
| 81 |
+
"properties": {
|
| 82 |
+
"folder_name": {"type": "string", "description": "Name of the folder"},
|
| 83 |
+
"parent_id": {"type": "string", "description": "Parent drive or folder ID"}
|
| 84 |
+
},
|
| 85 |
+
"required": ["folder_name", "parent_id"]
|
| 86 |
+
}
|
| 87 |
+
}
|
| 88 |
+
}
|
| 89 |
+
]
|
| 90 |
+
|
| 91 |
+
# Define conversation
|
| 92 |
+
messages = [
|
| 93 |
+
{"role": "system", "content": "You are a helpful assistant that can help with tasks by using tools."},
|
| 94 |
+
{"role": "user", "content": "Create a shared drive named 'Partner-Alpha-Integration' with request ID 'req-12345'."}
|
| 95 |
+
]
|
| 96 |
+
|
| 97 |
+
# Apply chat template with tools
|
| 98 |
+
formatted_input = tokenizer.apply_chat_template(
|
| 99 |
+
messages,
|
| 100 |
+
tools=tools,
|
| 101 |
+
tokenize=False,
|
| 102 |
+
add_generation_prompt=True
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
# Tokenize and generate
|
| 106 |
+
input_tokens = tokenizer(formatted_input, return_tensors="pt").to(model.device)
|
| 107 |
+
output = model.generate(**input_tokens, max_new_tokens=256, do_sample=False)
|
| 108 |
+
response = tokenizer.decode(output[0][input_tokens['input_ids'].shape[1]:], skip_special_tokens=True)
|
| 109 |
+
|
| 110 |
+
print("Response:", response)
|
| 111 |
+
# Expected output includes: <tool_call>{"name": "CREATE_SHARED_DRIVE", "arguments": {"name": "Partner-Alpha-Integration", "requestId": "req-12345"}}</tool_call>
|
| 112 |
+
```
|
| 113 |
+
|
| 114 |
+
For best results, provide detailed system-prompt to steer the tool-use behaviour.
|
| 115 |
+
|
| 116 |
+
# Evaluation
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
<div align="center">
|
| 120 |
+
<img src="assets/line_plot.png" alt="Line Plot" width="40%">
|
| 121 |
+
</div>
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
## Inference
|
| 125 |
+
|
| 126 |
+
- Given a conversation, we extract all tuples `(context_messages, function_calls)` and use it to generate predictions. We ignore the `content` field and only evaluate `function_calls` generated by an LLM.
|
| 127 |
+
- We use vLLM deployment with `tool_choice="auto"`.
|
| 128 |
+
|
| 129 |
+
## Metrics
|
| 130 |
+
|
| 131 |
+
Given a list of predicted and reference function calls, we report two metrics:
|
| 132 |
+
- **Function Call String Match (SR)**: We perform greedy match and report best-matched string ratio using `difflib.SequenceMatcher.ratio`. The number reported is average string ratio.
|
| 133 |
+
- **Exact Match (EM)**: Same as above, but we perform exact string match instead. The number reported is EM F1 Score.
|
| 134 |
+
|
| 135 |
+
EM is a strict metric, and penalizes string arguments in function calls that may be "okay", e.g. `"email_content": "This is an example."` v/s `"email_content": "This is an Example."`, both only differ by one letter.
|
| 136 |
+
|
| 137 |
+
## Results
|
| 138 |
+
|
| 139 |
+
### BFCL v3
|
| 140 |
+
- We filtered BFCLv3 examples relevant to the toolkits/bundles and report performance:
|
| 141 |
+
- The filtered set is only 83 examples. Further emphasizing the need for workflow/toolkit-specialized workflows.
|
| 142 |
+
|
| 143 |
+
<table border="1" class="dataframe">
|
| 144 |
+
<thead>
|
| 145 |
+
<tr style="text-align: center;">
|
| 146 |
+
<th>LLM</th>
|
| 147 |
+
<th>Acc %</th>
|
| 148 |
+
</tr>
|
| 149 |
+
</thead>
|
| 150 |
+
<tbody>
|
| 151 |
+
<tr style="text-align: center;">
|
| 152 |
+
<td>GPT-5 Mini<br>(medium)</td>
|
| 153 |
+
<td>0.71</td>
|
| 154 |
+
</tr>
|
| 155 |
+
<tr style="text-align: center;">
|
| 156 |
+
<td>Qwen3-1.7B</td>
|
| 157 |
+
<td>0.82</td>
|
| 158 |
+
</tr>
|
| 159 |
+
<tr style="text-align: center;">
|
| 160 |
+
<td><strong><a href="https://huggingface.co/prem-research/Funcdex-1.7B">Funcdex-1.7B</a><strong></td>
|
| 161 |
+
<td><strong>0.86</strong></td>
|
| 162 |
+
</tr>
|
| 163 |
+
</tbody>
|
| 164 |
+
</table>
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
### Funcdex-MT: Overall Performance
|
| 168 |
+
|
| 169 |
+
<table border="1" class="dataframe">
|
| 170 |
+
<thead>
|
| 171 |
+
<tr style="text-align: center;">
|
| 172 |
+
<th>LLM</th>
|
| 173 |
+
<th>Exact Match</th>
|
| 174 |
+
<th>String Ratio</th>
|
| 175 |
+
<th>Total Cost ($)</th>
|
| 176 |
+
</tr>
|
| 177 |
+
</thead>
|
| 178 |
+
<tbody>
|
| 179 |
+
<tr style="text-align: center;">
|
| 180 |
+
<td>GPT-OSS-120B<br>(medium)</td>
|
| 181 |
+
<td>0.35</td>
|
| 182 |
+
<td>0.51</td>
|
| 183 |
+
<td>9.32</td>
|
| 184 |
+
</tr>
|
| 185 |
+
<tr style="text-align: center;">
|
| 186 |
+
<td>GPT-5 Mini<br>(medium)</td>
|
| 187 |
+
<td>0.35</td>
|
| 188 |
+
<td>0.58</td>
|
| 189 |
+
<td>99.71</td>
|
| 190 |
+
</tr>
|
| 191 |
+
<tr style="text-align: center;">
|
| 192 |
+
<td>GPT-5<br>(minimal)</td>
|
| 193 |
+
<td>0.18</td>
|
| 194 |
+
<td>0.59</td>
|
| 195 |
+
<td>205.45</td>
|
| 196 |
+
</tr>
|
| 197 |
+
<tr style="text-align: center;">
|
| 198 |
+
<td>Qwen3-0.6B</td>
|
| 199 |
+
<td>0.27</td>
|
| 200 |
+
<td>0.59</td>
|
| 201 |
+
<td>2.83</td>
|
| 202 |
+
</tr>
|
| 203 |
+
<tr style="text-align: center;">
|
| 204 |
+
<td>Qwen3-1.7B</td>
|
| 205 |
+
<td>0.27</td>
|
| 206 |
+
<td>0.69</td>
|
| 207 |
+
<td>5.73</td>
|
| 208 |
+
</tr>
|
| 209 |
+
<tr style="text-align: center;">
|
| 210 |
+
<td><strong><a href="https://huggingface.co/collections/prem-research/funcdex">Funcdex-0.6B</a></strong></td>
|
| 211 |
+
<td><strong>0.39</strong></td>
|
| 212 |
+
<td><strong>0.70</strong></td>
|
| 213 |
+
<td><strong>0.19</strong></td>
|
| 214 |
+
</tr>
|
| 215 |
+
<tr style="text-align: center;">
|
| 216 |
+
<td><strong><a href="https://huggingface.co/prem-research/Funcdex-1.7B">Funcdex-1.7B</a></strong></td>
|
| 217 |
+
<td><strong>0.43</strong></td>
|
| 218 |
+
<td><strong>0.81</strong></td>
|
| 219 |
+
<td>5.64</td>
|
| 220 |
+
</tr>
|
| 221 |
+
</tbody>
|
| 222 |
+
</table>
|
| 223 |
+
|
| 224 |
+
### Funcdex-MT: Toolkit-Level Performance
|
| 225 |
+
|
| 226 |
+
<table border="1" class="dataframe">
|
| 227 |
+
<thead>
|
| 228 |
+
<tr style="text-align: center;">
|
| 229 |
+
<th rowspan="2">Toolkit</th>
|
| 230 |
+
<th colspan="2">GPT-OSS-120B<br>(medium)</th>
|
| 231 |
+
<th colspan="2">GPT-5<br>(minimal)</th>
|
| 232 |
+
<th colspan="2">GPT-5 Mini<br>(medium)</th>
|
| 233 |
+
<th colspan="2">Qwen3-0.6B</th>
|
| 234 |
+
<th colspan="3">Funcdex-0.6B</th>
|
| 235 |
+
<th colspan="2">Qwen3-1.7B</th>
|
| 236 |
+
<th colspan="3">Funcdex-1.7B</th>
|
| 237 |
+
</tr>
|
| 238 |
+
<tr style="text-align: center;">
|
| 239 |
+
<th>EM</th>
|
| 240 |
+
<th>SR</th>
|
| 241 |
+
<th>EM</th>
|
| 242 |
+
<th>SR</th>
|
| 243 |
+
<th>EM</th>
|
| 244 |
+
<th>SR</th>
|
| 245 |
+
<th>EM</th>
|
| 246 |
+
<th>SR</th>
|
| 247 |
+
<th>EM</th>
|
| 248 |
+
<th>SR</th>
|
| 249 |
+
<th>LoRA Checkpoint</th>
|
| 250 |
+
<th>EM</th>
|
| 251 |
+
<th>SR</th>
|
| 252 |
+
<th>EM</th>
|
| 253 |
+
<th>SR</th>
|
| 254 |
+
<th>LoRA Checkpoint</th>
|
| 255 |
+
</tr>
|
| 256 |
+
</thead>
|
| 257 |
+
<tbody>
|
| 258 |
+
<tr style="text-align: center;">
|
| 259 |
+
<td><img src="assets/icons/asana.png" width="20" height="20" style="vertical-align: middle;"/> Asana</td>
|
| 260 |
+
<td>0.38</td>
|
| 261 |
+
<td>0.47</td>
|
| 262 |
+
<td>0.12</td>
|
| 263 |
+
<td>0.68</td>
|
| 264 |
+
<td>0.49</td>
|
| 265 |
+
<td>0.71</td>
|
| 266 |
+
<td>0.33</td>
|
| 267 |
+
<td>0.63</td>
|
| 268 |
+
<td>0.46</td>
|
| 269 |
+
<td>0.69</td>
|
| 270 |
+
<td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-asana">π€</a></td>
|
| 271 |
+
<td>0.30</td>
|
| 272 |
+
<td>0.79</td>
|
| 273 |
+
<td>0.52</td>
|
| 274 |
+
<td>0.82</td>
|
| 275 |
+
<td rowspan="10"><a href="https://huggingface.co/prem-research/Funcdex-1.7B">π€</a></td>
|
| 276 |
+
</tr>
|
| 277 |
+
<tr style="text-align: center;">
|
| 278 |
+
<td><img src="assets/icons/calendly.png" width="20" height="20" style="vertical-align: middle;"/> Calendly</td>
|
| 279 |
+
<td>0.47</td>
|
| 280 |
+
<td>0.56</td>
|
| 281 |
+
<td>0.41</td>
|
| 282 |
+
<td>0.63</td>
|
| 283 |
+
<td>0.41</td>
|
| 284 |
+
<td>0.56</td>
|
| 285 |
+
<td>0.44</td>
|
| 286 |
+
<td>0.66</td>
|
| 287 |
+
<td>0.54</td>
|
| 288 |
+
<td>0.78</td>
|
| 289 |
+
<td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-calendly">π€</a></td>
|
| 290 |
+
<td>0.47</td>
|
| 291 |
+
<td>0.74</td>
|
| 292 |
+
<td>0.54</td>
|
| 293 |
+
<td>0.86</td>
|
| 294 |
+
</tr>
|
| 295 |
+
<tr style="text-align: center;">
|
| 296 |
+
<td><img src="assets/icons/gmail.png" width="20" height="20" style="vertical-align: middle;"/> Gmail</td>
|
| 297 |
+
<td>0.48</td>
|
| 298 |
+
<td>0.70</td>
|
| 299 |
+
<td>0.24</td>
|
| 300 |
+
<td>0.69</td>
|
| 301 |
+
<td>0.50</td>
|
| 302 |
+
<td>0.73</td>
|
| 303 |
+
<td>0.27</td>
|
| 304 |
+
<td>0.61</td>
|
| 305 |
+
<td>0.47</td>
|
| 306 |
+
<td>0.72</td>
|
| 307 |
+
<td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-gmail">π€</a></td>
|
| 308 |
+
<td>0.31</td>
|
| 309 |
+
<td>0.73</td>
|
| 310 |
+
<td>0.53</td>
|
| 311 |
+
<td>0.83</td>
|
| 312 |
+
</tr>
|
| 313 |
+
<tr style="text-align: center;">
|
| 314 |
+
<td><img src="assets/icons/google-calendar.png" width="20" height="20" style="vertical-align: middle;"/> Calendar</td>
|
| 315 |
+
<td>0.27</td>
|
| 316 |
+
<td>0.52</td>
|
| 317 |
+
<td>0.20</td>
|
| 318 |
+
<td>0.50</td>
|
| 319 |
+
<td>0.21</td>
|
| 320 |
+
<td>0.51</td>
|
| 321 |
+
<td>0.21</td>
|
| 322 |
+
<td>0.53</td>
|
| 323 |
+
<td>0.39</td>
|
| 324 |
+
<td>0.74</td>
|
| 325 |
+
<td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-googlecalendar">π€</a></td>
|
| 326 |
+
<td>0.23</td>
|
| 327 |
+
<td>0.64</td>
|
| 328 |
+
<td>0.47</td>
|
| 329 |
+
<td>0.83</td>
|
| 330 |
+
</tr>
|
| 331 |
+
<tr style="text-align: center;">
|
| 332 |
+
<td><img src="assets/icons/docs.png" width="20" height="20" style="vertical-align: middle;"/> Docs</td>
|
| 333 |
+
<td>0.19</td>
|
| 334 |
+
<td>0.38</td>
|
| 335 |
+
<td>0.07</td>
|
| 336 |
+
<td>0.49</td>
|
| 337 |
+
<td>0.18</td>
|
| 338 |
+
<td>0.46</td>
|
| 339 |
+
<td>0.07</td>
|
| 340 |
+
<td>0.58</td>
|
| 341 |
+
<td>0.13</td>
|
| 342 |
+
<td>0.64</td>
|
| 343 |
+
<td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-googledocs">π€</a></td>
|
| 344 |
+
<td>0.11</td>
|
| 345 |
+
<td>0.62</td>
|
| 346 |
+
<td>0.18</td>
|
| 347 |
+
<td>0.79</td>
|
| 348 |
+
</tr>
|
| 349 |
+
<tr style="text-align: center;">
|
| 350 |
+
<td><img src="assets/icons/google-drive.png" width="20" height="20" style="vertical-align: middle;"/> Drive</td>
|
| 351 |
+
<td>0.34</td>
|
| 352 |
+
<td>0.52</td>
|
| 353 |
+
<td>0.19</td>
|
| 354 |
+
<td>0.61</td>
|
| 355 |
+
<td>0.38</td>
|
| 356 |
+
<td>0.58</td>
|
| 357 |
+
<td>0.26</td>
|
| 358 |
+
<td>0.65</td>
|
| 359 |
+
<td>0.40</td>
|
| 360 |
+
<td>0.75</td>
|
| 361 |
+
<td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-googledrive">π€</a></td>
|
| 362 |
+
<td>0.26</td>
|
| 363 |
+
<td>0.73</td>
|
| 364 |
+
<td>0.48</td>
|
| 365 |
+
<td>0.82</td>
|
| 366 |
+
</tr>
|
| 367 |
+
<tr style="text-align: center;">
|
| 368 |
+
<td><img src="assets/icons/jira.png" width="20" height="20" style="vertical-align: middle;"/> Jira</td>
|
| 369 |
+
<td>0.47</td>
|
| 370 |
+
<td>0.53</td>
|
| 371 |
+
<td>0.17</td>
|
| 372 |
+
<td>0.65</td>
|
| 373 |
+
<td>0.47</td>
|
| 374 |
+
<td>0.66</td>
|
| 375 |
+
<td>0.51</td>
|
| 376 |
+
<td>0.69</td>
|
| 377 |
+
<td>0.58</td>
|
| 378 |
+
<td>0.76</td>
|
| 379 |
+
<td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-jira">π€</a></td>
|
| 380 |
+
<td>0.47</td>
|
| 381 |
+
<td>0.76</td>
|
| 382 |
+
<td>0.59</td>
|
| 383 |
+
<td>0.83</td>
|
| 384 |
+
</tr>
|
| 385 |
+
<tr style="text-align: center;">
|
| 386 |
+
<td><img src="assets/icons/stripe.png" width="20" height="20" style="vertical-align: middle;"/> Stripe</td>
|
| 387 |
+
<td>0.15</td>
|
| 388 |
+
<td>0.37</td>
|
| 389 |
+
<td>0.10</td>
|
| 390 |
+
<td>0.46</td>
|
| 391 |
+
<td>0.12</td>
|
| 392 |
+
<td>0.39</td>
|
| 393 |
+
<td>0.08</td>
|
| 394 |
+
<td>0.50</td>
|
| 395 |
+
<td>0.17</td>
|
| 396 |
+
<td>0.71</td>
|
| 397 |
+
<td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-stripe">π€</a></td>
|
| 398 |
+
<td>0.09</td>
|
| 399 |
+
<td>0.56</td>
|
| 400 |
+
<td>0.16</td>
|
| 401 |
+
<td>0.80</td>
|
| 402 |
+
</tr>
|
| 403 |
+
<tr style="text-align: center;">
|
| 404 |
+
<td><img src="assets/icons/to-do-list.png" width="20" height="20" style="vertical-align: middle;"/> Todoist</td>
|
| 405 |
+
<td>0.65</td>
|
| 406 |
+
<td>0.74</td>
|
| 407 |
+
<td>0.19</td>
|
| 408 |
+
<td>0.72</td>
|
| 409 |
+
<td>0.64</td>
|
| 410 |
+
<td>0.79</td>
|
| 411 |
+
<td>0.57</td>
|
| 412 |
+
<td>0.87</td>
|
| 413 |
+
<td>0.65</td>
|
| 414 |
+
<td>0.88</td>
|
| 415 |
+
<td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-todoist">π€</a></td>
|
| 416 |
+
<td>0.55</td>
|
| 417 |
+
<td>0.91</td>
|
| 418 |
+
<td>0.72</td>
|
| 419 |
+
<td>0.94</td>
|
| 420 |
+
</tr>
|
| 421 |
+
<tr style="text-align: center;">
|
| 422 |
+
<td><img src="assets/icons/whatsapp.png" width="20" height="20" style="vertical-align: middle;"/> Whatsapp</td>
|
| 423 |
+
<td>0.23</td>
|
| 424 |
+
<td>0.39</td>
|
| 425 |
+
<td>0.13</td>
|
| 426 |
+
<td>0.47</td>
|
| 427 |
+
<td>0.24</td>
|
| 428 |
+
<td>0.43</td>
|
| 429 |
+
<td>0.20</td>
|
| 430 |
+
<td>0.43</td>
|
| 431 |
+
<td>0.28</td>
|
| 432 |
+
<td>0.64</td>
|
| 433 |
+
<td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-whatsapp">π€</a></td>
|
| 434 |
+
<td>0.26</td>
|
| 435 |
+
<td>0.55</td>
|
| 436 |
+
<td>0.31</td>
|
| 437 |
+
<td>0.71</td>
|
| 438 |
+
</tr>
|
| 439 |
+
</tbody>
|
| 440 |
+
</table>
|
| 441 |
+
|
| 442 |
+
- Funcdex-0.6B are specialized models. Reported number is the average performance of each specific model in their respective subset.
|
| 443 |
+
|
| 444 |
+
### Funcdex-MT: Bundle/Multi-toolkit Performance:
|
| 445 |
+
|
| 446 |
+
<table border="1" class="dataframe">
|
| 447 |
+
<thead>
|
| 448 |
+
<tr style="text-align: center;">
|
| 449 |
+
<th rowspan="2">Bundle</th>
|
| 450 |
+
<th colspan="2">GPT-OSS-120B<br>(medium)</th>
|
| 451 |
+
<th colspan="2">GPT-5<br>(minimal)</th>
|
| 452 |
+
<th colspan="2">GPT-5 Mini<br>(medium)</th>
|
| 453 |
+
<th colspan="2">Qwen3-0.6B</th>
|
| 454 |
+
<th colspan="3">Funcdex-0.6B</th>
|
| 455 |
+
<th colspan="2">Qwen3-1.7B</th>
|
| 456 |
+
<th colspan="3">Funcdex-1.7B</th>
|
| 457 |
+
</tr>
|
| 458 |
+
<tr style="text-align: center;">
|
| 459 |
+
<th>EM</th>
|
| 460 |
+
<th>SR</th>
|
| 461 |
+
<th>EM</th>
|
| 462 |
+
<th>SR</th>
|
| 463 |
+
<th>EM</th>
|
| 464 |
+
<th>SR</th>
|
| 465 |
+
<th>EM</th>
|
| 466 |
+
<th>SR</th>
|
| 467 |
+
<th>EM</th>
|
| 468 |
+
<th>SR</th>
|
| 469 |
+
<th>LoRA Checkpoint</th>
|
| 470 |
+
<th>EM</th>
|
| 471 |
+
<th>SR</th>
|
| 472 |
+
<th>EM</th>
|
| 473 |
+
<th>SR</th>
|
| 474 |
+
<th>LoRA Checkpoint</th>
|
| 475 |
+
</tr>
|
| 476 |
+
</thead>
|
| 477 |
+
<tbody>
|
| 478 |
+
<tr style="text-align: center;">
|
| 479 |
+
<td><img src="assets/icons/gmail.png" width="20" height="20" style="vertical-align: middle;"/>Gmail<img src="assets/icons/google-calendar.png" width="20" height="20" style="vertical-align: middle;"/>Calendar</td>
|
| 480 |
+
<td>0.28</td>
|
| 481 |
+
<td>0.53</td>
|
| 482 |
+
<td>0.15</td>
|
| 483 |
+
<td>0.54</td>
|
| 484 |
+
<td>0.22</td>
|
| 485 |
+
<td>0.56</td>
|
| 486 |
+
<td>0.19</td>
|
| 487 |
+
<td>0.51</td>
|
| 488 |
+
<td>0.26</td>
|
| 489 |
+
<td>0.54</td>
|
| 490 |
+
<td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-gmail_googlecalendar">π€</a></td>
|
| 491 |
+
<td>0.17</td>
|
| 492 |
+
<td>0.61</td>
|
| 493 |
+
<td>0.32</td>
|
| 494 |
+
<td>0.71</td>
|
| 495 |
+
<td rowspan="5"><a href="https://huggingface.co/prem-research/Funcdex-1.7B">π€</a></td>
|
| 496 |
+
</tr>
|
| 497 |
+
<tr style="text-align: center;">
|
| 498 |
+
<td><img src="assets/icons/google-drive.png" width="20" height="20" style="vertical-align: middle;"/>Drive <img src="assets/icons/calendly.png" width="20" height="20" style="vertical-align: middle;"/> Calendly <img src="assets/icons/google-calendar.png" width="20" height="20" style="vertical-align: middle;"/> Calendar</td>
|
| 499 |
+
<td>0.32</td>
|
| 500 |
+
<td>0.45</td>
|
| 501 |
+
<td>0.17</td>
|
| 502 |
+
<td>0.52</td>
|
| 503 |
+
<td>0.35</td>
|
| 504 |
+
<td>0.47</td>
|
| 505 |
+
<td>0.19</td>
|
| 506 |
+
<td>0.49</td>
|
| 507 |
+
<td>0.35</td>
|
| 508 |
+
<td>0.60</td>
|
| 509 |
+
<td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-googledrive_calendly_googlecalendar">π€</a></td>
|
| 510 |
+
<td>0.15</td>
|
| 511 |
+
<td>0.66</td>
|
| 512 |
+
<td>0.40</td>
|
| 513 |
+
<td>0.78</td>
|
| 514 |
+
</tr>
|
| 515 |
+
<tr style="text-align: center;">
|
| 516 |
+
<td><img src="assets/icons/google-drive.png" width="20" height="20" style="vertical-align: middle;"/>Drive <img src="assets/icons/docs.png" width="20" height="20" style="vertical-align: middle;"/> Docs</td>
|
| 517 |
+
<td>0.28</td>
|
| 518 |
+
<td>0.37</td>
|
| 519 |
+
<td>0.12</td>
|
| 520 |
+
<td>0.50</td>
|
| 521 |
+
<td>0.33</td>
|
| 522 |
+
<td>0.47</td>
|
| 523 |
+
<td>0.18</td>
|
| 524 |
+
<td>0.54</td>
|
| 525 |
+
<td>0.34</td>
|
| 526 |
+
<td>0.70</td>
|
| 527 |
+
<td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-googledrive_googledocs">π€</a></td>
|
| 528 |
+
<td>0.19</td>
|
| 529 |
+
<td>0.68</td>
|
| 530 |
+
<td>0.43</td>
|
| 531 |
+
<td>0.76</td>
|
| 532 |
+
</tr>
|
| 533 |
+
<tr style="text-align: center;">
|
| 534 |
+
<td><img src="assets/icons/jira.png" width="20" height="20" style="vertical-align: middle;"/>Jira <img src="assets/icons/gmail.png" width="20" height="20" style="vertical-align: middle;"/> Gmail</td>
|
| 535 |
+
<td>0.42</td>
|
| 536 |
+
<td>0.60</td>
|
| 537 |
+
<td>0.18</td>
|
| 538 |
+
<td>0.66</td>
|
| 539 |
+
<td>0.36</td>
|
| 540 |
+
<td>0.66</td>
|
| 541 |
+
<td>0.29</td>
|
| 542 |
+
<td>0.61</td>
|
| 543 |
+
<td>0.39</td>
|
| 544 |
+
<td>0.71</td>
|
| 545 |
+
<td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-jira_gmail">π€</a></td>
|
| 546 |
+
<td>0.28</td>
|
| 547 |
+
<td>0.72</td>
|
| 548 |
+
<td>0.44</td>
|
| 549 |
+
<td>0.82</td>
|
| 550 |
+
</tr>
|
| 551 |
+
<tr style="text-align: center;">
|
| 552 |
+
<td><img src="assets/icons/whatsapp.png" width="20" height="20" style="vertical-align: middle;"/>Whatsapp <img src="assets/icons/to-do-list.png" width="20" height="20" style="vertical-align: middle;"/> Todoist</td>
|
| 553 |
+
<td>0.32</td>
|
| 554 |
+
<td>0.58</td>
|
| 555 |
+
<td>0.19</td>
|
| 556 |
+
<td>0.66</td>
|
| 557 |
+
<td>0.35</td>
|
| 558 |
+
<td>0.69</td>
|
| 559 |
+
<td>0.26</td>
|
| 560 |
+
<td>0.50</td>
|
| 561 |
+
<td>0.41</td>
|
| 562 |
+
<td>0.70</td>
|
| 563 |
+
<td><a href="https://huggingface.co/prem-research/Funcdex-0.6B-whatsapp_todoist">π€</a></td>
|
| 564 |
+
<td>0.27</td>
|
| 565 |
+
<td>0.68</td>
|
| 566 |
+
<td>0.39</td>
|
| 567 |
+
<td>0.77</td>
|
| 568 |
+
</tr>
|
| 569 |
+
</tbody>
|
| 570 |
+
</table>
|
| 571 |
+
|
| 572 |
+
|
| 573 |
+
# License
|
| 574 |
+
|
| 575 |
+
The models, code and the dataset are licensed under MIT License.
|