--- license: apache-2.0 datasets: - DamarJati/Face-Mask-Detection language: - en base_model: - google/siglip2-base-patch16-224 pipeline_tag: image-classification library_name: transformers tags: - Face-Mask-Detection - SigLIP2 --- ![6.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/UOJ8KTNPv3KPtk9ZyY9Ll.png) # **Face-Mask-Detection** > **Face-Mask-Detection** is a binary image classification model based on `google/siglip2-base-patch16-224`, trained to detect whether a person is **wearing a face mask** or **not**. This model can be used in **public health monitoring**, **access control systems**, and **workplace compliance enforcement**. ```py Classification Report: precision recall f1-score support Face_Mask Found 0.9662 0.9561 0.9611 5883 Face_Mask Not_Found 0.9568 0.9667 0.9617 5909 accuracy 0.9614 11792 macro avg 0.9615 0.9614 0.9614 11792 weighted avg 0.9615 0.9614 0.9614 11792 ``` ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/sHVD-hwWEVZT2lQMmlq9_.png) --- ## **Label Classes** The model distinguishes between the following face mask statuses: ``` 0: Face_Mask Found 1: Face_Mask Not_Found ``` --- ## **Installation** ```bash pip install transformers torch pillow gradio ``` --- ## **Example Inference Code** ```python import gradio as gr from transformers import AutoImageProcessor, SiglipForImageClassification from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Face-Mask-Detection" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) # ID to label mapping id2label = { "0": "Face_Mask Found", "1": "Face_Mask Not_Found" } def detect_face_mask(image): image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() prediction = {id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))} return prediction # Gradio Interface iface = gr.Interface( fn=detect_face_mask, inputs=gr.Image(type="numpy"), outputs=gr.Label(num_top_classes=2, label="Mask Status"), title="Face-Mask-Detection", description="Upload an image to check if a person is wearing a face mask or not." ) if __name__ == "__main__": iface.launch() ``` --- ## **Applications** * **COVID-19 Compliance Monitoring** * **Security and Access Control** * **Automated Surveillance Systems** * **Health Safety Enforcement in Public Spaces**