Update README.md
Browse files
README.md
CHANGED
@@ -11,26 +11,36 @@ tags:
|
|
11 |
- image-to-text
|
12 |
---
|
13 |
|
14 |
-
> **Finetune SigLIP2 Image Classification
|
15 |
|
16 |
This notebook demonstrates how to fine-tune SigLIP 2, a robust multilingual vision-language model, for single-label image classification tasks. The fine-tuning process incorporates advanced techniques such as captioning-based pretraining, self-distillation, and masked prediction, unified within a streamlined training pipeline. The workflow supports datasets in both structured and unstructured forms, making it adaptable to various domains and resource levels.
|
17 |
|
18 |
| Notebook Name | Description | Notebook Link |
|
19 |
|-------------------------------------|--------------------------------------------------|----------------|
|
20 |
-
| notebook-siglip2-finetune-type1 | Train/Test Splits | [Download](https://huggingface.co/prithivMLmods/FineTuning-SigLIP2-Notebook/blob/main/Finetune-SigLIP2-Image-Classification/1.SigLIP2_Finetune_ImageClassification_TrainTest_Splits.ipynb) |
|
21 |
-
| notebook-siglip2-finetune-type2 | Only Train Split | [Download](https://huggingface.co/prithivMLmods/FineTuning-SigLIP2-Notebook/blob/main/Finetune-SigLIP2-Image-Classification/2.SigLIP2_Finetune_ImageClassification_OnlyTrain_Splits.ipynb) |
|
22 |
|
23 |
The notebook outlines two data handling scenarios. In the first, datasets include predefined train and test splits, enabling conventional supervised learning and generalization evaluation. In the second scenario, only a training split is available; in such cases, the training set is either partially reserved for validation or reused entirely for evaluation. This flexibility supports experimentation in constrained or domain-specific settings, where standard test annotations may not exist.
|
24 |
|
25 |
-
|
26 |
```
|
27 |
last updated : jul 2025
|
28 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
| **Type 1: Train/Test Splits** | **Type 2: Only Train Split** |
|
31 |
|------------------------------|------------------------------|
|
32 |
|  |  |
|
33 |
|
|
|
34 |
---
|
35 |
|
36 |
| Platform | Link |
|
|
|
11 |
- image-to-text
|
12 |
---
|
13 |
|
14 |
+
> **Finetune SigLIP2 Image Classification📦**
|
15 |
|
16 |
This notebook demonstrates how to fine-tune SigLIP 2, a robust multilingual vision-language model, for single-label image classification tasks. The fine-tuning process incorporates advanced techniques such as captioning-based pretraining, self-distillation, and masked prediction, unified within a streamlined training pipeline. The workflow supports datasets in both structured and unstructured forms, making it adaptable to various domains and resource levels.
|
17 |
|
18 |
| Notebook Name | Description | Notebook Link |
|
19 |
|-------------------------------------|--------------------------------------------------|----------------|
|
20 |
+
| notebook-siglip2-finetune-type1 | Train/Test Splits | [⬇️Download](https://huggingface.co/prithivMLmods/FineTuning-SigLIP2-Notebook/blob/main/Finetune-SigLIP2-Image-Classification/1.SigLIP2_Finetune_ImageClassification_TrainTest_Splits.ipynb) |
|
21 |
+
| notebook-siglip2-finetune-type2 | Only Train Split | [⬇️Download](https://huggingface.co/prithivMLmods/FineTuning-SigLIP2-Notebook/blob/main/Finetune-SigLIP2-Image-Classification/2.SigLIP2_Finetune_ImageClassification_OnlyTrain_Splits.ipynb) |
|
22 |
|
23 |
The notebook outlines two data handling scenarios. In the first, datasets include predefined train and test splits, enabling conventional supervised learning and generalization evaluation. In the second scenario, only a training split is available; in such cases, the training set is either partially reserved for validation or reused entirely for evaluation. This flexibility supports experimentation in constrained or domain-specific settings, where standard test annotations may not exist.
|
24 |
|
|
|
25 |
```
|
26 |
last updated : jul 2025
|
27 |
```
|
28 |
+
---
|
29 |
+
|
30 |
+
<div style="
|
31 |
+
background: rgba(255, 193, 61, 0.15);
|
32 |
+
padding: 16px;
|
33 |
+
border-radius: 6px;
|
34 |
+
border: 1px solid rgba(255, 165, 0, 0.3);
|
35 |
+
margin: 16px 0;
|
36 |
+
">
|
37 |
+
|
38 |
|
39 |
| **Type 1: Train/Test Splits** | **Type 2: Only Train Split** |
|
40 |
|------------------------------|------------------------------|
|
41 |
|  |  |
|
42 |
|
43 |
+
</div>
|
44 |
---
|
45 |
|
46 |
| Platform | Link |
|