prithivMLmods commited on
Commit
57e2915
·
verified ·
1 Parent(s): fa2a95e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -4
README.md CHANGED
@@ -11,26 +11,36 @@ tags:
11
  - image-to-text
12
  ---
13
 
14
- > **Finetune SigLIP2 Image Classification**
15
 
16
  This notebook demonstrates how to fine-tune SigLIP 2, a robust multilingual vision-language model, for single-label image classification tasks. The fine-tuning process incorporates advanced techniques such as captioning-based pretraining, self-distillation, and masked prediction, unified within a streamlined training pipeline. The workflow supports datasets in both structured and unstructured forms, making it adaptable to various domains and resource levels.
17
 
18
  | Notebook Name | Description | Notebook Link |
19
  |-------------------------------------|--------------------------------------------------|----------------|
20
- | notebook-siglip2-finetune-type1 | Train/Test Splits | [Download](https://huggingface.co/prithivMLmods/FineTuning-SigLIP2-Notebook/blob/main/Finetune-SigLIP2-Image-Classification/1.SigLIP2_Finetune_ImageClassification_TrainTest_Splits.ipynb) |
21
- | notebook-siglip2-finetune-type2 | Only Train Split | [Download](https://huggingface.co/prithivMLmods/FineTuning-SigLIP2-Notebook/blob/main/Finetune-SigLIP2-Image-Classification/2.SigLIP2_Finetune_ImageClassification_OnlyTrain_Splits.ipynb) |
22
 
23
  The notebook outlines two data handling scenarios. In the first, datasets include predefined train and test splits, enabling conventional supervised learning and generalization evaluation. In the second scenario, only a training split is available; in such cases, the training set is either partially reserved for validation or reused entirely for evaluation. This flexibility supports experimentation in constrained or domain-specific settings, where standard test annotations may not exist.
24
 
25
-
26
  ```
27
  last updated : jul 2025
28
  ```
 
 
 
 
 
 
 
 
 
 
29
 
30
  | **Type 1: Train/Test Splits** | **Type 2: Only Train Split** |
31
  |------------------------------|------------------------------|
32
  | ![Type 1](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/l0vfc0wtIp5mHgP-KGtff.png) | ![Type 2](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/xFXZYGbbL1PgoyyobVLym.png) |
33
 
 
34
  ---
35
 
36
  | Platform | Link |
 
11
  - image-to-text
12
  ---
13
 
14
+ > **Finetune SigLIP2 Image Classification📦**
15
 
16
  This notebook demonstrates how to fine-tune SigLIP 2, a robust multilingual vision-language model, for single-label image classification tasks. The fine-tuning process incorporates advanced techniques such as captioning-based pretraining, self-distillation, and masked prediction, unified within a streamlined training pipeline. The workflow supports datasets in both structured and unstructured forms, making it adaptable to various domains and resource levels.
17
 
18
  | Notebook Name | Description | Notebook Link |
19
  |-------------------------------------|--------------------------------------------------|----------------|
20
+ | notebook-siglip2-finetune-type1 | Train/Test Splits | [⬇️Download](https://huggingface.co/prithivMLmods/FineTuning-SigLIP2-Notebook/blob/main/Finetune-SigLIP2-Image-Classification/1.SigLIP2_Finetune_ImageClassification_TrainTest_Splits.ipynb) |
21
+ | notebook-siglip2-finetune-type2 | Only Train Split | [⬇️Download](https://huggingface.co/prithivMLmods/FineTuning-SigLIP2-Notebook/blob/main/Finetune-SigLIP2-Image-Classification/2.SigLIP2_Finetune_ImageClassification_OnlyTrain_Splits.ipynb) |
22
 
23
  The notebook outlines two data handling scenarios. In the first, datasets include predefined train and test splits, enabling conventional supervised learning and generalization evaluation. In the second scenario, only a training split is available; in such cases, the training set is either partially reserved for validation or reused entirely for evaluation. This flexibility supports experimentation in constrained or domain-specific settings, where standard test annotations may not exist.
24
 
 
25
  ```
26
  last updated : jul 2025
27
  ```
28
+ ---
29
+
30
+ <div style="
31
+ background: rgba(255, 193, 61, 0.15);
32
+ padding: 16px;
33
+ border-radius: 6px;
34
+ border: 1px solid rgba(255, 165, 0, 0.3);
35
+ margin: 16px 0;
36
+ ">
37
+
38
 
39
  | **Type 1: Train/Test Splits** | **Type 2: Only Train Split** |
40
  |------------------------------|------------------------------|
41
  | ![Type 1](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/l0vfc0wtIp5mHgP-KGtff.png) | ![Type 2](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/xFXZYGbbL1PgoyyobVLym.png) |
42
 
43
+ </div>
44
  ---
45
 
46
  | Platform | Link |