prithivMLmods commited on
Commit
5c6364b
·
verified ·
1 Parent(s): 10d526c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -1
README.md CHANGED
@@ -23,12 +23,16 @@ Finetune SigLIP2 Image Classification (Notebook)
23
 
24
 
25
  This notebook demonstrates how to fine-tune SigLIP 2, a robust multilingual vision-language model, for single-label image classification tasks. The fine-tuning process incorporates advanced techniques such as captioning-based pretraining, self-distillation, and masked prediction, unified within a streamlined training pipeline. The workflow supports datasets in both structured and unstructured forms, making it adaptable to various domains and resource levels.
26
-
 
 
27
  | Notebook Name | Description | Notebook Link |
28
  |-------------------------------------|--------------------------------------------------|----------------|
29
  | notebook-siglip2-finetune-type1 | Train/Test Splits | [⬇️Download](https://huggingface.co/prithivMLmods/FineTuning-SigLIP2-Notebook/blob/main/Finetune-SigLIP2-Image-Classification/1.SigLIP2_Finetune_ImageClassification_TrainTest_Splits.ipynb) |
30
  | notebook-siglip2-finetune-type2 | Only Train Split | [⬇️Download](https://huggingface.co/prithivMLmods/FineTuning-SigLIP2-Notebook/blob/main/Finetune-SigLIP2-Image-Classification/2.SigLIP2_Finetune_ImageClassification_OnlyTrain_Splits.ipynb) |
31
 
 
 
32
  The notebook outlines two data handling scenarios. In the first, datasets include predefined train and test splits, enabling conventional supervised learning and generalization evaluation. In the second scenario, only a training split is available; in such cases, the training set is either partially reserved for validation or reused entirely for evaluation. This flexibility supports experimentation in constrained or domain-specific settings, where standard test annotations may not exist.
33
 
34
  ```
 
23
 
24
 
25
  This notebook demonstrates how to fine-tune SigLIP 2, a robust multilingual vision-language model, for single-label image classification tasks. The fine-tuning process incorporates advanced techniques such as captioning-based pretraining, self-distillation, and masked prediction, unified within a streamlined training pipeline. The workflow supports datasets in both structured and unstructured forms, making it adaptable to various domains and resource levels.
26
+
27
+ ---
28
+
29
  | Notebook Name | Description | Notebook Link |
30
  |-------------------------------------|--------------------------------------------------|----------------|
31
  | notebook-siglip2-finetune-type1 | Train/Test Splits | [⬇️Download](https://huggingface.co/prithivMLmods/FineTuning-SigLIP2-Notebook/blob/main/Finetune-SigLIP2-Image-Classification/1.SigLIP2_Finetune_ImageClassification_TrainTest_Splits.ipynb) |
32
  | notebook-siglip2-finetune-type2 | Only Train Split | [⬇️Download](https://huggingface.co/prithivMLmods/FineTuning-SigLIP2-Notebook/blob/main/Finetune-SigLIP2-Image-Classification/2.SigLIP2_Finetune_ImageClassification_OnlyTrain_Splits.ipynb) |
33
 
34
+ ---
35
+
36
  The notebook outlines two data handling scenarios. In the first, datasets include predefined train and test splits, enabling conventional supervised learning and generalization evaluation. In the second scenario, only a training split is available; in such cases, the training set is either partially reserved for validation or reused entirely for evaluation. This flexibility supports experimentation in constrained or domain-specific settings, where standard test annotations may not exist.
37
 
38
  ```