--- license: apache-2.0 language: - en base_model: - google/siglip2-base-patch16-224 pipeline_tag: image-classification library_name: transformers tags: - gender - male - female - siglip2 datasets: - myvision/gender-classification --- ![2.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/gfvc6sCbh9saiVnczYH2c.png) # **Gender-Classifier-Mini** > **Gender-Classifier-Mini** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify images based on gender using the **SiglipForImageClassification** architecture. ```py Accuracy: 0.9720 F1 Score: 0.9720 Classification Report: precision recall f1-score support Female ♀ 0.9660 0.9796 0.9727 2549 Male ♂ 0.9785 0.9641 0.9712 2451 accuracy 0.9720 5000 macro avg 0.9722 0.9718 0.9720 5000 weighted avg 0.9721 0.9720 0.9720 5000 ``` ![Untitled.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/MNO7bk_1wr5lvfyTDnhjF.png) The model categorizes images into two classes: - **Class 0:** "Female ♀" - **Class 1:** "Male ♂" # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor from transformers import SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Gender-Classifier-Mini" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def gender_classification(image): """Predicts gender category for an image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = {"0": "Female ♀", "1": "Male ♂"} predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=gender_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Gender Classification", description="Upload an image to classify its gender." ) # Launch the app if __name__ == "__main__": iface.launch() ``` # **Intended Use:** The **Gender-Classifier-Mini** model is designed to classify images into gender categories. Potential use cases include: - **Demographic Analysis:** Assisting in understanding gender distribution in datasets. - **Face Recognition Systems:** Enhancing identity verification processes. - **Marketing & Advertising:** Personalizing content based on demographic insights. - **Healthcare & Research:** Supporting gender-based analysis in medical imaging.