Commit
·
89a5701
1
Parent(s):
78d0bd9
Add verifyToken field to verify evaluation results are produced by Hugging Face's automatic model evaluator (#7)
Browse files- Add verifyToken field to verify evaluation results are produced by Hugging Face's automatic model evaluator (eb755ed87550a6b8003e9a23d204fa55ea6d93c5)
Co-authored-by: Evaluation Bot <[email protected]>
README.md
CHANGED
|
@@ -1,18 +1,18 @@
|
|
| 1 |
---
|
| 2 |
-
languages: en
|
| 3 |
license:
|
| 4 |
- apache-2.0
|
| 5 |
- bsd-3-clause
|
| 6 |
-
datasets:
|
| 7 |
-
- kmfoda/booksum
|
| 8 |
tags:
|
| 9 |
- summarization
|
| 10 |
- summary
|
| 11 |
- booksum
|
| 12 |
- long-document
|
| 13 |
- long-form
|
|
|
|
|
|
|
| 14 |
metrics:
|
| 15 |
- rouge
|
|
|
|
| 16 |
widget:
|
| 17 |
- text: large earthquakes along a given fault segment do not occur at random intervals
|
| 18 |
because it takes time to accumulate the strain energy for the rupture. The rates
|
|
@@ -27,39 +27,38 @@ widget:
|
|
| 27 |
deviation of the average recurrence interval, the more specific could be the long
|
| 28 |
term prediction of a future mainshock.
|
| 29 |
example_title: earthquakes
|
| 30 |
-
- text:
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
\ this function space (Section 5)."
|
| 63 |
example_title: scientific paper
|
| 64 |
- text: 'Is a else or outside the cob and tree written being of early client rope
|
| 65 |
and you have is for good reasons. On to the ocean in Orange for time. By''s the
|
|
@@ -111,68 +110,82 @@ widget:
|
|
| 111 |
the point of you of your model. This hidden data is complete by unseen. In other
|
| 112 |
words, we solve our problem of validation.'
|
| 113 |
example_title: transcribed audio - lecture
|
| 114 |
-
- text:
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
example_title: bigbird blog intro
|
| 159 |
-
- text:
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
|
|
|
|
|
|
| 176 |
example_title: Richard & Mortimer
|
| 177 |
parameters:
|
| 178 |
max_length: 48
|
|
@@ -194,30 +207,36 @@ model-index:
|
|
| 194 |
config: samsum
|
| 195 |
split: test
|
| 196 |
metrics:
|
| 197 |
-
-
|
| 198 |
-
type: rouge
|
| 199 |
value: 33.1401
|
|
|
|
| 200 |
verified: true
|
| 201 |
-
|
| 202 |
-
|
| 203 |
value: 9.3095
|
|
|
|
| 204 |
verified: true
|
| 205 |
-
|
| 206 |
-
|
| 207 |
value: 24.8552
|
|
|
|
| 208 |
verified: true
|
| 209 |
-
|
| 210 |
-
|
| 211 |
value: 29.0391
|
|
|
|
| 212 |
verified: true
|
| 213 |
-
|
| 214 |
-
|
| 215 |
value: 2.288182497024536
|
|
|
|
| 216 |
verified: true
|
| 217 |
-
|
| 218 |
-
|
| 219 |
value: 45.2173
|
|
|
|
| 220 |
verified: true
|
|
|
|
| 221 |
- task:
|
| 222 |
type: summarization
|
| 223 |
name: Summarization
|
|
@@ -227,30 +246,36 @@ model-index:
|
|
| 227 |
config: plain_text
|
| 228 |
split: test
|
| 229 |
metrics:
|
| 230 |
-
-
|
| 231 |
-
type: rouge
|
| 232 |
value: 39.7279
|
|
|
|
| 233 |
verified: true
|
| 234 |
-
|
| 235 |
-
|
| 236 |
value: 10.8944
|
|
|
|
| 237 |
verified: true
|
| 238 |
-
|
| 239 |
-
|
| 240 |
value: 19.7018
|
|
|
|
| 241 |
verified: true
|
| 242 |
-
|
| 243 |
-
|
| 244 |
value: 36.5634
|
|
|
|
| 245 |
verified: true
|
| 246 |
-
|
| 247 |
-
|
| 248 |
value: 2.473011016845703
|
|
|
|
| 249 |
verified: true
|
| 250 |
-
|
| 251 |
-
|
| 252 |
value: 212.8243
|
|
|
|
| 253 |
verified: true
|
|
|
|
| 254 |
- task:
|
| 255 |
type: summarization
|
| 256 |
name: Summarization
|
|
@@ -260,30 +285,36 @@ model-index:
|
|
| 260 |
config: default
|
| 261 |
split: test
|
| 262 |
metrics:
|
| 263 |
-
-
|
| 264 |
-
type: rouge
|
| 265 |
value: 42.1065
|
|
|
|
| 266 |
verified: true
|
| 267 |
-
|
| 268 |
-
|
| 269 |
value: 15.4079
|
|
|
|
| 270 |
verified: true
|
| 271 |
-
|
| 272 |
-
|
| 273 |
value: 24.8814
|
|
|
|
| 274 |
verified: true
|
| 275 |
-
|
| 276 |
-
|
| 277 |
value: 36.0375
|
|
|
|
| 278 |
verified: true
|
| 279 |
-
|
| 280 |
-
|
| 281 |
value: 1.9130958318710327
|
|
|
|
| 282 |
verified: true
|
| 283 |
-
|
| 284 |
-
|
| 285 |
value: 179.2184
|
|
|
|
| 286 |
verified: true
|
|
|
|
| 287 |
- task:
|
| 288 |
type: summarization
|
| 289 |
name: Summarization
|
|
@@ -293,30 +324,36 @@ model-index:
|
|
| 293 |
config: kmfoda--booksum
|
| 294 |
split: test
|
| 295 |
metrics:
|
| 296 |
-
-
|
| 297 |
-
type: rouge
|
| 298 |
value: 35.2154
|
|
|
|
| 299 |
verified: true
|
| 300 |
-
|
| 301 |
-
|
| 302 |
value: 6.8702
|
|
|
|
| 303 |
verified: true
|
| 304 |
-
|
| 305 |
-
|
| 306 |
value: 17.6693
|
|
|
|
| 307 |
verified: true
|
| 308 |
-
|
| 309 |
-
|
| 310 |
value: 32.8365
|
|
|
|
| 311 |
verified: true
|
| 312 |
-
|
| 313 |
-
|
| 314 |
value: 2.9878039360046387
|
|
|
|
| 315 |
verified: true
|
| 316 |
-
|
| 317 |
-
|
| 318 |
value: 200.6785
|
|
|
|
| 319 |
verified: true
|
|
|
|
| 320 |
- task:
|
| 321 |
type: summarization
|
| 322 |
name: Summarization
|
|
@@ -326,30 +363,36 @@ model-index:
|
|
| 326 |
config: y
|
| 327 |
split: test
|
| 328 |
metrics:
|
| 329 |
-
-
|
| 330 |
-
type: rouge
|
| 331 |
value: 37.376
|
|
|
|
| 332 |
verified: true
|
| 333 |
-
|
| 334 |
-
|
| 335 |
value: 11.4432
|
|
|
|
| 336 |
verified: true
|
| 337 |
-
|
| 338 |
-
|
| 339 |
value: 22.2754
|
|
|
|
| 340 |
verified: true
|
| 341 |
-
|
| 342 |
-
|
| 343 |
value: 32.5087
|
|
|
|
| 344 |
verified: true
|
| 345 |
-
|
| 346 |
-
|
| 347 |
value: 2.9867310523986816
|
|
|
|
| 348 |
verified: true
|
| 349 |
-
|
| 350 |
-
|
| 351 |
value: 172.7776
|
|
|
|
| 352 |
verified: true
|
|
|
|
| 353 |
---
|
| 354 |
|
| 355 |
# pszemraj/pegasus-x-large-book-summary
|
|
|
|
| 1 |
---
|
|
|
|
| 2 |
license:
|
| 3 |
- apache-2.0
|
| 4 |
- bsd-3-clause
|
|
|
|
|
|
|
| 5 |
tags:
|
| 6 |
- summarization
|
| 7 |
- summary
|
| 8 |
- booksum
|
| 9 |
- long-document
|
| 10 |
- long-form
|
| 11 |
+
datasets:
|
| 12 |
+
- kmfoda/booksum
|
| 13 |
metrics:
|
| 14 |
- rouge
|
| 15 |
+
languages: en
|
| 16 |
widget:
|
| 17 |
- text: large earthquakes along a given fault segment do not occur at random intervals
|
| 18 |
because it takes time to accumulate the strain energy for the rupture. The rates
|
|
|
|
| 27 |
deviation of the average recurrence interval, the more specific could be the long
|
| 28 |
term prediction of a future mainshock.
|
| 29 |
example_title: earthquakes
|
| 30 |
+
- text: ' A typical feed-forward neural field algorithm. Spatiotemporal coordinates
|
| 31 |
+
are fed into a neural network that predicts values in the reconstructed domain.
|
| 32 |
+
Then, this domain is mapped to the sensor domain where sensor measurements are
|
| 33 |
+
available as supervision. Class and Section Problems Addressed Generalization
|
| 34 |
+
(Section 2) Inverse problems, ill-posed problems, editability; symmetries. Hybrid
|
| 35 |
+
Representations (Section 3) Computation & memory efficiency, representation capacity,
|
| 36 |
+
editability: Forward Maps (Section 4) Inverse problems Network Architecture (Section
|
| 37 |
+
5) Spectral bias, integration & derivatives. Manipulating Neural Fields (Section
|
| 38 |
+
6) Edit ability, constraints, regularization. Table 2: The five classes of techniques
|
| 39 |
+
in the neural field toolbox each addresses problems that arise in learning, inference,
|
| 40 |
+
and control. (Section 3). We can supervise reconstruction via differentiable forward
|
| 41 |
+
maps that transform Or project our domain (e.g, 3D reconstruction via 2D images;
|
| 42 |
+
Section 4) With appropriate network architecture choices, we can overcome neural
|
| 43 |
+
network spectral biases (blurriness) and efficiently compute derivatives and integrals
|
| 44 |
+
(Section 5). Finally, we can manipulate neural fields to add constraints and regularizations,
|
| 45 |
+
and to achieve editable representations (Section 6). Collectively, these classes
|
| 46 |
+
constitute a ''toolbox'' of techniques to help solve problems with neural fields
|
| 47 |
+
There are three components in a conditional neural field: (1) An encoder or inference
|
| 48 |
+
function € that outputs the conditioning latent variable 2 given an observation
|
| 49 |
+
0 E(0) =2. 2 is typically a low-dimensional vector, and is often referred to aS
|
| 50 |
+
a latent code Or feature code_ (2) A mapping function 4 between Z and neural field
|
| 51 |
+
parameters O: Y(z) = O; (3) The neural field itself $. The encoder € finds the
|
| 52 |
+
most probable z given the observations O: argmaxz P(2/0). The decoder maximizes
|
| 53 |
+
the inverse conditional probability to find the most probable 0 given Z: arg-
|
| 54 |
+
max P(Olz). We discuss different encoding schemes with different optimality guarantees
|
| 55 |
+
(Section 2.1.1), both global and local conditioning (Section 2.1.2), and different
|
| 56 |
+
mapping functions Y (Section 2.1.3) 2. Generalization Suppose we wish to estimate
|
| 57 |
+
a plausible 3D surface shape given a partial or noisy point cloud. We need a suitable
|
| 58 |
+
prior over the sur- face in its reconstruction domain to generalize to the partial
|
| 59 |
+
observations. A neural network expresses a prior via the function space of its
|
| 60 |
+
architecture and parameters 0, and generalization is influenced by the inductive
|
| 61 |
+
bias of this function space (Section 5).'
|
|
|
|
| 62 |
example_title: scientific paper
|
| 63 |
- text: 'Is a else or outside the cob and tree written being of early client rope
|
| 64 |
and you have is for good reasons. On to the ocean in Orange for time. By''s the
|
|
|
|
| 110 |
the point of you of your model. This hidden data is complete by unseen. In other
|
| 111 |
words, we solve our problem of validation.'
|
| 112 |
example_title: transcribed audio - lecture
|
| 113 |
+
- text: 'Transformer-based models have shown to be very useful for many NLP tasks.
|
| 114 |
+
However, a major limitation of transformers-based models is its O(n^2)O(n 2) time
|
| 115 |
+
& memory complexity (where nn is sequence length). Hence, it''s computationally
|
| 116 |
+
very expensive to apply transformer-based models on long sequences n > 512n>512.
|
| 117 |
+
Several recent papers, e.g. Longformer, Performer, Reformer, Clustered attention
|
| 118 |
+
try to remedy this problem by approximating the full attention matrix. You can
|
| 119 |
+
checkout 🤗''s recent blog post in case you are unfamiliar with these models.
|
| 120 |
+
|
| 121 |
+
BigBird (introduced in paper) is one of such recent models to address this issue.
|
| 122 |
+
BigBird relies on block sparse attention instead of normal attention (i.e. BERT''s
|
| 123 |
+
attention) and can handle sequences up to a length of 4096 at a much lower computational
|
| 124 |
+
cost compared to BERT. It has achieved SOTA on various tasks involving very long
|
| 125 |
+
sequences such as long documents summarization, question-answering with long contexts.
|
| 126 |
+
|
| 127 |
+
BigBird RoBERTa-like model is now available in 🤗Transformers. The goal of this
|
| 128 |
+
post is to give the reader an in-depth understanding of big bird implementation
|
| 129 |
+
& ease one''s life in using BigBird with 🤗Transformers. But, before going into
|
| 130 |
+
more depth, it is important to remember that the BigBird''s attention is an approximation
|
| 131 |
+
of BERT''s full attention and therefore does not strive to be better than BERT''s
|
| 132 |
+
full attention, but rather to be more efficient. It simply allows to apply transformer-based
|
| 133 |
+
models to much longer sequences since BERT''s quadratic memory requirement quickly
|
| 134 |
+
becomes unbearable. Simply put, if we would have ∞ compute & ∞ time, BERT''s attention
|
| 135 |
+
would be preferred over block sparse attention (which we are going to discuss
|
| 136 |
+
in this post).
|
| 137 |
+
|
| 138 |
+
If you wonder why we need more compute when working with longer sequences, this
|
| 139 |
+
blog post is just right for you!
|
| 140 |
+
|
| 141 |
+
Some of the main questions one might have when working with standard BERT-like
|
| 142 |
+
attention include:
|
| 143 |
+
|
| 144 |
+
Do all tokens really have to attend to all other tokens? Why not compute attention
|
| 145 |
+
only over important tokens? How to decide what tokens are important? How to attend
|
| 146 |
+
to just a few tokens in a very efficient way? In this blog post, we will try to
|
| 147 |
+
answer those questions.
|
| 148 |
+
|
| 149 |
+
What tokens should be attended to? We will give a practical example of how attention
|
| 150 |
+
works by considering the sentence ''BigBird is now available in HuggingFace for
|
| 151 |
+
extractive question answering''. In BERT-like attention, every word would simply
|
| 152 |
+
attend to all other tokens.
|
| 153 |
+
|
| 154 |
+
Let''s think about a sensible choice of key tokens that a queried token actually
|
| 155 |
+
only should attend to by writing some pseudo-code. Will will assume that the token
|
| 156 |
+
available is queried and build a sensible list of key tokens to attend to.
|
| 157 |
+
|
| 158 |
+
>>> # let''s consider following sentence as an example >>> example = [''BigBird'',
|
| 159 |
+
''is'', ''now'', ''available'', ''in'', ''HuggingFace'', ''for'', ''extractive'',
|
| 160 |
+
''question'', ''answering'']
|
| 161 |
+
|
| 162 |
+
>>> # further let''s assume, we''re trying to understand the representation of
|
| 163 |
+
''available'' i.e. >>> query_token = ''available'' >>> # We will initialize an
|
| 164 |
+
empty `set` and fill up the tokens of our interest as we proceed in this section.
|
| 165 |
+
>>> key_tokens = [] # => currently ''available'' token doesn''t have anything
|
| 166 |
+
to attend Nearby tokens should be important because, in a sentence (sequence of
|
| 167 |
+
words), the current word is highly dependent on neighboring past & future tokens.
|
| 168 |
+
This intuition is the idea behind the concept of sliding attention.'
|
| 169 |
example_title: bigbird blog intro
|
| 170 |
+
- text: 'To be fair, you have to have a very high IQ to understand Rick and Morty.
|
| 171 |
+
The humour is extremely subtle, and without a solid grasp of theoretical physics
|
| 172 |
+
most of the jokes will go over a typical viewer''s head. There''s also Rick''s
|
| 173 |
+
nihilistic outlook, which is deftly woven into his characterisation- his personal
|
| 174 |
+
philosophy draws heavily from Narodnaya Volya literature, for instance. The fans
|
| 175 |
+
understand this stuff; they have the intellectual capacity to truly appreciate
|
| 176 |
+
the depths of these jokes, to realise that they''re not just funny- they say something
|
| 177 |
+
deep about LIFE. As a consequence people who dislike Rick & Morty truly ARE idiots-
|
| 178 |
+
of course they wouldn''t appreciate, for instance, the humour in Rick''s existential
|
| 179 |
+
catchphrase ''Wubba Lubba Dub Dub,'' which itself is a cryptic reference to Turgenev''s
|
| 180 |
+
Russian epic Fathers and Sons. I''m smirking right now just imagining one of those
|
| 181 |
+
addlepated simpletons scratching their heads in confusion as Dan Harmon''s genius
|
| 182 |
+
wit unfolds itself on their television screens. What fools.. how I pity them.
|
| 183 |
+
😂
|
| 184 |
+
|
| 185 |
+
And yes, by the way, i DO have a Rick & Morty tattoo. And no, you cannot see it.
|
| 186 |
+
It''s for the ladies'' eyes only- and even then they have to demonstrate that
|
| 187 |
+
they''re within 5 IQ points of my own (preferably lower) beforehand. Nothin personnel
|
| 188 |
+
kid 😎'
|
| 189 |
example_title: Richard & Mortimer
|
| 190 |
parameters:
|
| 191 |
max_length: 48
|
|
|
|
| 207 |
config: samsum
|
| 208 |
split: test
|
| 209 |
metrics:
|
| 210 |
+
- type: rouge
|
|
|
|
| 211 |
value: 33.1401
|
| 212 |
+
name: ROUGE-1
|
| 213 |
verified: true
|
| 214 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjQ1NjY1OGVjYWEwMzBjMzk3ZmMyZDA0ZTcxOTdmZTUxNTc0OGYxYmY3MzJkMzFmYTVjNzU2ZTk4MzE0NWMzMSIsInZlcnNpb24iOjF9.PSHB6DMF6tkwSw5nsFE57a2ApRAy_tkS6ziKA6PSTWddEdaqfca4pfig6_olmRmcS4KxN6HHcsmioHzv4LJQBw
|
| 215 |
+
- type: rouge
|
| 216 |
value: 9.3095
|
| 217 |
+
name: ROUGE-2
|
| 218 |
verified: true
|
| 219 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzk3MTA3NmY1OGE3MzFjZTJhYWYzNGU4NTUzMTgwM2Y1NWZjMmEyNDNmNmEzYmQzZThjOGExMjc2ZjAyZjMzZCIsInZlcnNpb24iOjF9.tfgp8p-WlkVrfducTSg4zs-byeZMCmdZw1aizPQHXm_qRAwGtKcuVkZcmza5Y3o3VqsAEmGzg5HQD1vnZvWIDA
|
| 220 |
+
- type: rouge
|
| 221 |
value: 24.8552
|
| 222 |
+
name: ROUGE-L
|
| 223 |
verified: true
|
| 224 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTVmMTIwNDQwNTI4MmI2MmY1ODc1Mjk0NGQ5ZWE4ZTYzOGNkMjY2ZmJhMjg2MTZlNTdhYTA2ZDAxNTFjMjA2MSIsInZlcnNpb24iOjF9.9HLgy9842oIDm6ABb3L94R1P4zAqTI0QN8aP62xzIyDxUXTbWw68PEDufYLiBJbTgZ8ElopZ9I7aou2zCgXeAA
|
| 225 |
+
- type: rouge
|
| 226 |
value: 29.0391
|
| 227 |
+
name: ROUGE-LSUM
|
| 228 |
verified: true
|
| 229 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmNhYWJjYjdjMzMxMmE4ZTE4NGEzMDdmZDZjODI5ZWRjZWJmYTEyZGIzYWQ2NjM3YzQ4MjI4ZTM4MmU5MzRjZSIsInZlcnNpb24iOjF9.d2yoVdmxjVJnsgIYFiLuaBO5Krgw4Axl5yeOSTKrvHygrAxoqT1nl4anzQiyoR3PwYBXwBkwmgpJUfZ7RNXtDQ
|
| 230 |
+
- type: loss
|
| 231 |
value: 2.288182497024536
|
| 232 |
+
name: loss
|
| 233 |
verified: true
|
| 234 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzM5NGIwODMxOTA3MTY3ODc2ZDczYTNmMTMwM2QyZmNlZjFmZDJjMGY3NWNkMDEyYzA4OTA2ZDRiODY3Zjg4OCIsInZlcnNpb24iOjF9.8k9mC050OS7mQSR9oA8liDRDQvEx1VxmTXGLmDYJVYYtTh2HYJFGP8Vy_krocFRIYDxh-IHPEOOSr5NrLMWHBA
|
| 235 |
+
- type: gen_len
|
| 236 |
value: 45.2173
|
| 237 |
+
name: gen_len
|
| 238 |
verified: true
|
| 239 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWZhNzQ5OTQ5Yjg5YjhlOTZiZmJhZjZiODNmY2E2OTg4YTg4NWVhYzRkNzM2Mzk4NzdlMDgxM2M4NjY2YzhhYSIsInZlcnNpb24iOjF9.tDEEsPUclZDygAdGhNrBGrF24vR8ao08Nw7hmtUt5lmSZZZK_u-8rpz97QgVS6MCJdjFVnbYC4bkFnlQWI_FAA
|
| 240 |
- task:
|
| 241 |
type: summarization
|
| 242 |
name: Summarization
|
|
|
|
| 246 |
config: plain_text
|
| 247 |
split: test
|
| 248 |
metrics:
|
| 249 |
+
- type: rouge
|
|
|
|
| 250 |
value: 39.7279
|
| 251 |
+
name: ROUGE-1
|
| 252 |
verified: true
|
| 253 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTAxODk3OTUwMTIzODU3NzU2YzAzZjE2NTM3MzBjNDA0ZWRmZGU3NWUzNTg1YThhNDQ1NjQ5ZmM3OWI2YzBhNSIsInZlcnNpb24iOjF9.vnNKucBNt2-nIyODj9P2HeaWPX5AQR8L-DL8QzrO7kj58-vZnjT6hsAGmepRNzdZ1TLF-3j2J2plcNJ8lUO8Dg
|
| 254 |
+
- type: rouge
|
| 255 |
value: 10.8944
|
| 256 |
+
name: ROUGE-2
|
| 257 |
verified: true
|
| 258 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjYzMmIxOTJmZjkxOGI5N2U0NTRmMmQwOGJhMzMxYWIzMWMzYzUwMDEyMDdiZDQ2YTUzOWU0OTViMTI2YTAwYiIsInZlcnNpb24iOjF9.De0PaAikWqfWpoIXTCYP-mSFu3PUATLX08Qq74OHXM8784heFVDX1E1sXlh_QbbKJbuMuZtTKM4qr7oLUizOAw
|
| 259 |
+
- type: rouge
|
| 260 |
value: 19.7018
|
| 261 |
+
name: ROUGE-L
|
| 262 |
verified: true
|
| 263 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzI3MjQzOGQ3MGE3NDNkZTEyMWRkYjUyYTYzNDEwOWVjMGFmNTBiZjE4ZTBhMGYzMmI1Yzk0YjBmYmIzMWMxZSIsInZlcnNpb24iOjF9.FVikJ5Ma0gUgM-tpbomWXnC4jtmvhxqikPqCk84t4IbIdU0CIYGTQEONiz-VqI0fJeNrnTS6lxpBv7XxKoq3BQ
|
| 264 |
+
- type: rouge
|
| 265 |
value: 36.5634
|
| 266 |
+
name: ROUGE-LSUM
|
| 267 |
verified: true
|
| 268 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTI2OTVmNDZiZWE5ZjNkODIwZjJiNTU2ZjJjYjczODUwM2JiNDEzYmE3N2U5YWM5NzJjOWEzMmYzZjdlYWJmYyIsInZlcnNpb24iOjF9.poR4zcqRvdaierfWFdTa53Cv6ZbNbnRwyRTi9HukHF5AWAQgc6zpBLkwOYFYoWjuSH83ohWeMM3MoIdw3zypBw
|
| 269 |
+
- type: loss
|
| 270 |
value: 2.473011016845703
|
| 271 |
+
name: loss
|
| 272 |
verified: true
|
| 273 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDFmMjg3NWQ2YTMxMTc1OGZiYWYzNjg5NDY3MWE4MjY5ZDQxZDZhZGI1OTc5MzZkZGEzYmVlNWFiMzZjNDdhNCIsInZlcnNpb24iOjF9.05nKB3SmEfFKSduJqlleF4Fd2_IhwJS8eTOrnzZYCQQfLCfpJAZLhp3eLQCuBY4htd-FNrZftrThL66zVxyrCQ
|
| 274 |
+
- type: gen_len
|
| 275 |
value: 212.8243
|
| 276 |
+
name: gen_len
|
| 277 |
verified: true
|
| 278 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGNjMTg4ZDZlZjAxZGNhN2M0NWI0ZTA0OWEzNDkzNDAzOTJhODA2MmVkODI4YjYzN2FiOTU1ZDMwM2VlNWMyYyIsInZlcnNpb24iOjF9.WYx6XJFKokY2heoN-jpAMp1Z1gsyJus3zpktQgNd0FOYJxOUqW40A0kkHtd15y4dUhsbccLpuJGY1fNJgHOiDw
|
| 279 |
- task:
|
| 280 |
type: summarization
|
| 281 |
name: Summarization
|
|
|
|
| 285 |
config: default
|
| 286 |
split: test
|
| 287 |
metrics:
|
| 288 |
+
- type: rouge
|
|
|
|
| 289 |
value: 42.1065
|
| 290 |
+
name: ROUGE-1
|
| 291 |
verified: true
|
| 292 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDJhNDM2MWEwMjJlYjRmZTVkYzljODcwMzlmMGUxMDA4ZmRjNjM0NmY3ZWJlMmZjNGI3NDQ3NTQyOTQ3MjBkNSIsInZlcnNpb24iOjF9.l1MiZbXyFyXAcsfFChMrTvSaBhzBR6AuDnBuII8zY3Csz3ShWK0vo09MkQdZ1epe8PKWV9wwUBuJyKk3wL7MDw
|
| 293 |
+
- type: rouge
|
| 294 |
value: 15.4079
|
| 295 |
+
name: ROUGE-2
|
| 296 |
verified: true
|
| 297 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTY3NDBkYTVkNjdhY2I0ZmY0NTA4YzVkMGE5YWE5ODdjOGE1MDhkOTJhOWY3NmI2ZWI1MGU2MGI1NDRlYjI3MSIsInZlcnNpb24iOjF9.VN-5eK2SzFDCJnFTHHu7XCU_lynaxW_JEDc3llmcNo_ffDgRmISHHGaqV7fPFymBBMXpPly7XblO_sukyqj1Cg
|
| 298 |
+
- type: rouge
|
| 299 |
value: 24.8814
|
| 300 |
+
name: ROUGE-L
|
| 301 |
verified: true
|
| 302 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDYyNGZmNDY3MTY4YzI4ZjZhODE0NGIyN2ZkOGEyYzM3MWZjM2QzZTg5ZjNmZmYzZDE5NzhiZDQ4OGM1YjNiMyIsInZlcnNpb24iOjF9.L73M1M5XdMQkf8zSdfLN0MUrxtO0r6UiLjoOkHfrIGbWNsNJ8tU5lciYFNIhJrICUL8LchCsFqR9LAClKS4bCg
|
| 303 |
+
- type: rouge
|
| 304 |
value: 36.0375
|
| 305 |
+
name: ROUGE-LSUM
|
| 306 |
verified: true
|
| 307 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTBlMTQ5OTQxNTA3ZmFiMGYyZWQ0MGM0ODY2YWI3MzgyNjkwNzQyM2FmNGRjMzc3MjJmZDZkOWY4M2RhZTg2MSIsInZlcnNpb24iOjF9.IiMSSVahBgH8n34bGCC_DDGpujDXQbIvGhlcpVV2EBVQLLWUqcCy5WwBdbRrxPC-asBRCNERQxj8Uii4FvPsDQ
|
| 308 |
+
- type: loss
|
| 309 |
value: 1.9130958318710327
|
| 310 |
+
name: loss
|
| 311 |
verified: true
|
| 312 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTg2NTMxZDE3MDg3MDFkMTYxNjY1OTc5YjQ4ODcyMGUxMTFiZjJiNDgyYWZhN2NjZmE1MDQ1NTRmZGY0NjQzZSIsInZlcnNpb24iOjF9.kADUBMO8i6-oGDDt1cOiGMrGcMkF_Qc1jSpS2NSFyksDRusQa_YuuShefF4DuHVEr3CS0hNjjRH9_JBeX9ZQDg
|
| 313 |
+
- type: gen_len
|
| 314 |
value: 179.2184
|
| 315 |
+
name: gen_len
|
| 316 |
verified: true
|
| 317 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjM4NGNiMTY3YzZjMzg4MTRiMDdiZDFiMzA1ZDIyMDM2MDk1OWRhYWQzN2UxZDNlODIxOWVhY2JlYjk4Mjk5YyIsInZlcnNpb24iOjF9.nU8ImMNWgjg9BKjUBJQLFaJOBq3kyIne8ldlpL0OV0e4888wOntIAcJP0dCCYfRSLVmZuXQ1M8cpDuTf50hNCw
|
| 318 |
- task:
|
| 319 |
type: summarization
|
| 320 |
name: Summarization
|
|
|
|
| 324 |
config: kmfoda--booksum
|
| 325 |
split: test
|
| 326 |
metrics:
|
| 327 |
+
- type: rouge
|
|
|
|
| 328 |
value: 35.2154
|
| 329 |
+
name: ROUGE-1
|
| 330 |
verified: true
|
| 331 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWQ5MGMzNDc4MDBiNmRiNDY5ZDM4N2QzYTJlYTNiYTcwNDBlMzdlM2I4N2VmM2ZjMmQ3NGU3OTRlMTMzMTg3NyIsInZlcnNpb24iOjF9.E55gu7HvMwc4HejF3YOD6yqQJj7_6GCoCMWm78sY5_w2glR-oM98tu9IsG27VaPva7UklxsspzT2DIVaVKY0CQ
|
| 332 |
+
- type: rouge
|
| 333 |
value: 6.8702
|
| 334 |
+
name: ROUGE-2
|
| 335 |
verified: true
|
| 336 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjFhN2JlYzlmMGZmYzkwYjBlNjY4YzhlYzNmMTdmZWYyYmU3NWI0ZTRkMTgxNmRiM2EyZWMyMWFjY2JkNzg1MCIsInZlcnNpb24iOjF9.I9BoHbGt8LLNtLAssIXm9tQ4lHqFCMt0zJS_zTezzxGRMS5On71c3jnlzrDtwEm6wjmZEwYIJK8qqJh-Qa5YAA
|
| 337 |
+
- type: rouge
|
| 338 |
value: 17.6693
|
| 339 |
+
name: ROUGE-L
|
| 340 |
verified: true
|
| 341 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGZlZjcwOTZjMmNjZWFkM2M5Zjg1OTgzMzcxOTM2Y2RkMzY4NGU2NDE2MTVjMjcyMWIwNWI4ODc0YTY3YTA2MSIsInZlcnNpb24iOjF9.Ou1C6U6PrOtXPxlk9PMucdJ_vlnVnSk94QrLJL4b_g2pcY3D80Xrw09iz4BTOPzZ2UTNBLyn8YdLY3m2vHpiAQ
|
| 342 |
+
- type: rouge
|
| 343 |
value: 32.8365
|
| 344 |
+
name: ROUGE-LSUM
|
| 345 |
verified: true
|
| 346 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmIzMGQ5MzQ1MjI4MTU0ZGZkZTRhODllNWQyOTQ4ZjA5YWE4ZTJjMzQ2ZWQzOGFiMWUzZDMxOTU5NzkxYjliZiIsInZlcnNpb24iOjF9.2mYURQZYo7e3AY0tfkpqFMNhoHvrysvBXza-XYYrX_xLpruMU9Gzrwc3jvpi2wtp4eeyhzIiZJvH0O6la6zxCg
|
| 347 |
+
- type: loss
|
| 348 |
value: 2.9878039360046387
|
| 349 |
+
name: loss
|
| 350 |
verified: true
|
| 351 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGU0ODBmN2I3OGFkNTFiM2I3YWQyNmUzNzUwYzEwNzczZWEwZjIxYTAwZDE2ZTIwMGE3ZGNmMDQzNTFmNjEwYyIsInZlcnNpb24iOjF9.0IKWIImKTXqysQUb2IMPk2eeHlOcBjndiPcU42nfFBMhRTqeXdBqOCP6cidlho7pVN4hsC-77ArJ9pZlbTFuBg
|
| 352 |
+
- type: gen_len
|
| 353 |
value: 200.6785
|
| 354 |
+
name: gen_len
|
| 355 |
verified: true
|
| 356 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDUzYTE3MmIxZGM3MWI1MjNhMTU3MTdkMjJjNjY5Y2UzYTdjYWRiY2I4MmUxMDY4NTA5NWZjYWU0NzliODdkYiIsInZlcnNpb24iOjF9.BqmCaWzbCMNUied6zNO744Dl-0LC47FCIv-l8kDjkhSkwQcb_hi93VYts5PTsrFY_MmM8j7AsY1PiFr6nNFMBQ
|
| 357 |
- task:
|
| 358 |
type: summarization
|
| 359 |
name: Summarization
|
|
|
|
| 363 |
config: y
|
| 364 |
split: test
|
| 365 |
metrics:
|
| 366 |
+
- type: rouge
|
|
|
|
| 367 |
value: 37.376
|
| 368 |
+
name: ROUGE-1
|
| 369 |
verified: true
|
| 370 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWI4ZjMxODcxMThiMzE3NjQ3Zjg0NzhmZjlhY2ZmYjQwMGY5ZjlkZGY1MzZmY2M5YTU4NmY1Y2NhZDA3YWFkOCIsInZlcnNpb24iOjF9.sYh4IynXgOpVetYYSWUp0v5QZWvXC1x7_uJR0LZUxaeYKEc4yfICNmDOPzNzoroaV4ELeOaPjHQpYVm-lpAHBA
|
| 371 |
+
- type: rouge
|
| 372 |
value: 11.4432
|
| 373 |
+
name: ROUGE-2
|
| 374 |
verified: true
|
| 375 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTZkOGIyYzU3YTQ5ZTFmMDU3MjQ5ZWM2NGQ1MzgwMDYyZDkxN2Q2YjgyZTkzMTEyYjczMGJiYmNkZmU5MTQ3NSIsInZlcnNpb24iOjF9.Qk38acpjPjU64Z1nXEuqMXjKZrGvdC9oY586EjuCPeEAJCSzKimp8FsB-1QrjMH73q6rN2CdumJUxih6HF-KAA
|
| 376 |
+
- type: rouge
|
| 377 |
value: 22.2754
|
| 378 |
+
name: ROUGE-L
|
| 379 |
verified: true
|
| 380 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzlmOTUxYmEzYzYyYmVjNGZlNzNiZWIwZmQ5OWVlY2U3NTBiZDExYWUwODQ0Y2ZjMmQyMTNmMTlmNjdmZWUwNCIsInZlcnNpb24iOjF9.bUVhxaepySyaityby71j6h4YO_l4x8OSeZoblagwUMYGXRc0Ej286QzEtZFeRGygMJ5sjUN_loWCtOmAnHY2BA
|
| 381 |
+
- type: rouge
|
| 382 |
value: 32.5087
|
| 383 |
+
name: ROUGE-LSUM
|
| 384 |
verified: true
|
| 385 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDEyNjM5NjAzYTNjN2MwZTY4MWY2Y2U5YWUyM2Y1YjAyNjBhZTM0YTAyZjM5N2M1ZDkxOWUxNzE2OWZkYTBmMSIsInZlcnNpb24iOjF9.QfMHkcoAR3xqzsgL1xjHk3Lui1xhE12pJKvYujQ_h5o6PBXT79dsENsrqDGGBjiKdTKNwWqADgaviy1VrWMDCQ
|
| 386 |
+
- type: loss
|
| 387 |
value: 2.9867310523986816
|
| 388 |
+
name: loss
|
| 389 |
verified: true
|
| 390 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTUzM2Q5MmE5MzU4YmFlMjFiMmUzZGU2NDAzMTQ1Y2NjZDVlYWI3NGE5MjM0NmMxMjdiOWI3MTU0NDk3NmNkZiIsInZlcnNpb24iOjF9.VoQqu6ZU3AR_cji82UkpvbLnTmZ17fZmR2E4DeonjCyTZpyyfvUsQ2nbKDovQf34DBkYXENk42EUsUF1mBZNBg
|
| 391 |
+
- type: gen_len
|
| 392 |
value: 172.7776
|
| 393 |
+
name: gen_len
|
| 394 |
verified: true
|
| 395 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTEzNTMyMDY1N2Q5ZTMxNjNlMTI0Nzk5ZDc1ZWQ5Y2IwZWM0NWNhNWY2MTk3YTRkYzUwMTI4NjZiOWVhOGQwYSIsInZlcnNpb24iOjF9.-Rek2VFmGqIEgqeFoxU_0aCWdFbGYi9BV5c7x-izm9_4vtZdYQ4ITXm4T8C3UlpOax60veJQt2Uax5vyiFc9Ag
|
| 396 |
---
|
| 397 |
|
| 398 |
# pszemraj/pegasus-x-large-book-summary
|