Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
### Training Code
|
| 2 |
+
```python
|
| 3 |
+
from torch.utils.data import dataset
|
| 4 |
+
from datasets import load_dataset, load_from_disk
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
from datasets import load_metric
|
| 7 |
+
from transformers import (
|
| 8 |
+
Seq2SeqTrainer,
|
| 9 |
+
Seq2SeqTrainingArguments,
|
| 10 |
+
AutoTokenizer,
|
| 11 |
+
AutoModelForSeq2SeqLM,
|
| 12 |
+
DataCollatorForSeq2Seq
|
| 13 |
+
)
|
| 14 |
+
import evaluate
|
| 15 |
+
import os
|
| 16 |
+
from datasets import load_dataset
|
| 17 |
+
import numpy as np
|
| 18 |
+
|
| 19 |
+
MAX_LENGTH_INPUT = 512+128
|
| 20 |
+
MAX_LENGTH_OUTPUT = 2
|
| 21 |
+
|
| 22 |
+
from datasets import load_dataset
|
| 23 |
+
|
| 24 |
+
class Seq2SeqDataset(dataset.Dataset):
|
| 25 |
+
|
| 26 |
+
def __init__(self, tokenizer, type_data='train'):
|
| 27 |
+
|
| 28 |
+
# Set up the datasets
|
| 29 |
+
data_path = "CarperAI/openai_summarize_comparisons"
|
| 30 |
+
if type_data == 'train':
|
| 31 |
+
dataset = load_dataset("CarperAI/openai_summarize_comparisons", split="train")
|
| 32 |
+
else:
|
| 33 |
+
dataset = load_dataset("CarperAI/openai_summarize_comparisons", split="test").select(range(20000))
|
| 34 |
+
self.prompts = []
|
| 35 |
+
self.outputs = []
|
| 36 |
+
inputs = dataset["prompt"]
|
| 37 |
+
choosen = dataset["chosen"]
|
| 38 |
+
rejected = dataset["rejected"]
|
| 39 |
+
for i, (inp, ch, re) in enumerate(zip(inputs, choosen, rejected)):
|
| 40 |
+
choice_first = np.random.choice([ch, re])
|
| 41 |
+
res = "A" if choice_first == ch else "B"
|
| 42 |
+
choice_second = ch if choice_first == re else re
|
| 43 |
+
prompt = f"""POST: {inp}\n\nRESPONSE A: {choice_first}\n\nRESPONSE B: {choice_second}\n\nWhich response is better? RESPONSE"""
|
| 44 |
+
output = f"{res}"
|
| 45 |
+
self.prompts.append(prompt)
|
| 46 |
+
self.outputs.append(output)
|
| 47 |
+
print("Example prompt: ", self.prompts[0])
|
| 48 |
+
print("Example output: ", self.outputs[0])
|
| 49 |
+
self.tokenizer = tokenizer
|
| 50 |
+
|
| 51 |
+
def __len__(self):
|
| 52 |
+
return len(self.prompts)
|
| 53 |
+
|
| 54 |
+
def __getitem__(self, idx):
|
| 55 |
+
input_text = self.prompts[idx]
|
| 56 |
+
output_text = self.outputs[idx]
|
| 57 |
+
|
| 58 |
+
model_input = self.tokenizer(
|
| 59 |
+
input_text,
|
| 60 |
+
max_length=MAX_LENGTH_INPUT,
|
| 61 |
+
padding='max_length',
|
| 62 |
+
truncation=True
|
| 63 |
+
)
|
| 64 |
+
with self.tokenizer.as_target_tokenizer():
|
| 65 |
+
labels = self.tokenizer(
|
| 66 |
+
output_text,
|
| 67 |
+
max_length=MAX_LENGTH_OUTPUT,
|
| 68 |
+
padding='max_length',
|
| 69 |
+
truncation=True
|
| 70 |
+
)["input_ids"]
|
| 71 |
+
model_input['labels'] = labels
|
| 72 |
+
model_input['labels'] = [-100 if token == self.tokenizer.pad_token_id else token for token in model_input['labels']]
|
| 73 |
+
return model_input
|
| 74 |
+
|
| 75 |
+
import wandb
|
| 76 |
+
wandb.init(name="stanfordnlp/SteamSHP-flan-t5-xl", project="trlx", entity="pvduy")
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
if __name__=="__main__":
|
| 80 |
+
config = {
|
| 81 |
+
"logging_steps": 100,
|
| 82 |
+
"eval_steps": 100,
|
| 83 |
+
"save_steps": 500,
|
| 84 |
+
"batch_size": 4,
|
| 85 |
+
"batch_size_val": 4,
|
| 86 |
+
"warmup_steps": 100,
|
| 87 |
+
"accum_steps": 2,
|
| 88 |
+
"num_beams": 3,
|
| 89 |
+
"output_dir": "flan-t5-rm",
|
| 90 |
+
}
|
| 91 |
+
|
| 92 |
+
accuracy_metric = evaluate.load("accuracy")
|
| 93 |
+
def compute_metrics(pred):
|
| 94 |
+
labels_ids = pred.label_ids
|
| 95 |
+
pred_ids = pred.predictions
|
| 96 |
+
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
|
| 97 |
+
labels_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True)
|
| 98 |
+
acc = sum(np.array(labels_str) == np.array(pred_str)) / len(labels_str)
|
| 99 |
+
return {"accuracy": acc}
|
| 100 |
+
|
| 101 |
+
training_args = Seq2SeqTrainingArguments(
|
| 102 |
+
output_dir=config["output_dir"],
|
| 103 |
+
do_train=True,
|
| 104 |
+
num_train_epochs=5,
|
| 105 |
+
do_eval=False,
|
| 106 |
+
predict_with_generate=True,
|
| 107 |
+
adam_beta1=0.9,
|
| 108 |
+
adam_beta2=0.999,
|
| 109 |
+
learning_rate=5e-5,
|
| 110 |
+
half_precision_backend=True,
|
| 111 |
+
bf16=True,
|
| 112 |
+
per_device_train_batch_size=config["batch_size"],
|
| 113 |
+
per_device_eval_batch_size=config["batch_size_val"],
|
| 114 |
+
logging_steps=config["logging_steps"],
|
| 115 |
+
evaluation_strategy="epoch",
|
| 116 |
+
warmup_steps=config["warmup_steps"],
|
| 117 |
+
eval_accumulation_steps=1,
|
| 118 |
+
lr_scheduler_type="linear",
|
| 119 |
+
save_strategy="epoch",
|
| 120 |
+
gradient_accumulation_steps=config["accum_steps"],
|
| 121 |
+
deepspeed='configs/ds_configs/ds_config_gpt_2.json',
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
tokenizer = AutoTokenizer.from_pretrained("stanfordnlp/SteamSHP-flan-t5-xl")
|
| 125 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("stanfordnlp/SteamSHP-flan-t5-xl")
|
| 126 |
+
|
| 127 |
+
train_dataset = Seq2SeqDataset(tokenizer, type_data='train')
|
| 128 |
+
val_dataset = Seq2SeqDataset(tokenizer, type_data='val')
|
| 129 |
+
print("Train dataset size: ", len(train_dataset))
|
| 130 |
+
print("Val dataset size: ", len(val_dataset))
|
| 131 |
+
|
| 132 |
+
params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
| 133 |
+
print(f"Number of trainable parameters: {params}")
|
| 134 |
+
|
| 135 |
+
trainer = Seq2SeqTrainer(
|
| 136 |
+
model=model,
|
| 137 |
+
tokenizer=tokenizer,
|
| 138 |
+
args=training_args,
|
| 139 |
+
train_dataset=train_dataset,
|
| 140 |
+
eval_dataset=val_dataset,
|
| 141 |
+
compute_metrics=compute_metrics,
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
trainer.train()
|
| 145 |
+
```
|
| 146 |
+
|
| 147 |
+
### Inference Code
|
| 148 |
+
```python
|
| 149 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 150 |
+
from datasets import load_dataset
|
| 151 |
+
import numpy as np
|
| 152 |
+
import torch
|
| 153 |
+
from tqdm import tqdm
|
| 154 |
+
dataset = load_dataset("CarperAI/openai_summarize_comparisons", split="test")
|
| 155 |
+
|
| 156 |
+
tokenizer = AutoTokenizer.from_pretrained("flan-t5-rm/checkpoint-4338/")
|
| 157 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("flan-t5-rm/checkpoint-4338/")
|
| 158 |
+
|
| 159 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 160 |
+
model.to(device)
|
| 161 |
+
|
| 162 |
+
df = dataset.to_pandas()
|
| 163 |
+
predictions = []
|
| 164 |
+
for i, row in tqdm(df.iterrows(), total=len(df)):
|
| 165 |
+
prompt = f"""POST: {row["prompt"]}\n\nRESPONSE A: {row["chosen"]}\n\nRESPONSE B: {row["rejected"]}\n\nWhich response is better? RESPONSE"""
|
| 166 |
+
x = tokenizer([prompt], return_tensors='pt').input_ids.to(device)
|
| 167 |
+
y = model.generate(x, max_new_tokens=1)
|
| 168 |
+
predictions.append(tokenizer.batch_decode(y, skip_special_tokens=True)[0])
|
| 169 |
+
|
| 170 |
+
print("Accuracy: ", sum(np.array(predictions) == 'A') / len(predictions))
|
| 171 |
+
```
|