--- library_name: pytorch license: other tags: - real_time - android pipeline_tag: image-segmentation --- ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/ffnet_78s_lowres/web-assets/model_demo.png) # FFNet-78S-LowRes: Optimized for Mobile Deployment ## Semantic segmentation for automotive street scenes FFNet-78S-LowRes is a "fuss-free network" that segments street scene images with per-pixel classes like road, sidewalk, and pedestrian. Trained on the Cityscapes dataset. This model is an implementation of FFNet-78S-LowRes found [here](https://github.com/Qualcomm-AI-research/FFNet). This repository provides scripts to run FFNet-78S-LowRes on Qualcomm® devices. More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/ffnet_78s_lowres). ### Model Details - **Model Type:** Model_use_case.semantic_segmentation - **Model Stats:** - Model checkpoint: ffnet78S_BCC_cityscapes_state_dict_quarts_pre_down - Input resolution: 1024x512 - Number of output classes: 19 - Number of parameters: 26.8M - Model size (float): 102 MB - Model size (w8a8): 26.0 MB | Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |---|---|---|---|---|---|---|---|---| | FFNet-78S-LowRes | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 48.904 ms | 1 - 63 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.tflite) | | FFNet-78S-LowRes | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 49.544 ms | 6 - 35 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.dlc) | | FFNet-78S-LowRes | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 16.366 ms | 1 - 118 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.tflite) | | FFNet-78S-LowRes | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 24.131 ms | 1 - 41 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.dlc) | | FFNet-78S-LowRes | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 12.551 ms | 0 - 47 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.tflite) | | FFNet-78S-LowRes | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 13.479 ms | 6 - 23 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.dlc) | | FFNet-78S-LowRes | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 7.983 ms | 0 - 117 MB | NPU | [FFNet-78S-LowRes.onnx.zip](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.onnx.zip) | | FFNet-78S-LowRes | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 17.176 ms | 1 - 63 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.tflite) | | FFNet-78S-LowRes | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 17.842 ms | 2 - 31 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.dlc) | | FFNet-78S-LowRes | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 48.904 ms | 1 - 63 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.tflite) | | FFNet-78S-LowRes | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 49.544 ms | 6 - 35 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.dlc) | | FFNet-78S-LowRes | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 12.634 ms | 0 - 124 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.tflite) | | FFNet-78S-LowRes | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 13.416 ms | 2 - 41 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.dlc) | | FFNet-78S-LowRes | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 18.929 ms | 1 - 63 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.tflite) | | FFNet-78S-LowRes | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 19.764 ms | 4 - 33 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.dlc) | | FFNet-78S-LowRes | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 12.622 ms | 0 - 349 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.tflite) | | FFNet-78S-LowRes | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 13.505 ms | 3 - 22 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.dlc) | | FFNet-78S-LowRes | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 17.176 ms | 1 - 63 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.tflite) | | FFNet-78S-LowRes | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 17.842 ms | 2 - 31 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.dlc) | | FFNet-78S-LowRes | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 8.6 ms | 1 - 118 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.tflite) | | FFNet-78S-LowRes | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 8.995 ms | 6 - 43 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.dlc) | | FFNet-78S-LowRes | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 5.751 ms | 7 - 55 MB | NPU | [FFNet-78S-LowRes.onnx.zip](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.onnx.zip) | | FFNet-78S-LowRes | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 7.273 ms | 1 - 68 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.tflite) | | FFNet-78S-LowRes | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 7.555 ms | 6 - 41 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.dlc) | | FFNet-78S-LowRes | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 7.289 ms | 2 - 43 MB | NPU | [FFNet-78S-LowRes.onnx.zip](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.onnx.zip) | | FFNet-78S-LowRes | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 6.183 ms | 1 - 68 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.tflite) | | FFNet-78S-LowRes | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 6.679 ms | 6 - 43 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.dlc) | | FFNet-78S-LowRes | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 4.041 ms | 6 - 48 MB | NPU | [FFNet-78S-LowRes.onnx.zip](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.onnx.zip) | | FFNet-78S-LowRes | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 14.132 ms | 117 - 117 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.dlc) | | FFNet-78S-LowRes | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 8.226 ms | 47 - 47 MB | NPU | [FFNet-78S-LowRes.onnx.zip](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes.onnx.zip) | | FFNet-78S-LowRes | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 7.713 ms | 0 - 42 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.tflite) | | FFNet-78S-LowRes | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 10.618 ms | 2 - 45 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.dlc) | | FFNet-78S-LowRes | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 3.403 ms | 0 - 79 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.tflite) | | FFNet-78S-LowRes | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 7.138 ms | 2 - 74 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.dlc) | | FFNet-78S-LowRes | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 2.987 ms | 0 - 194 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.tflite) | | FFNet-78S-LowRes | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 4.643 ms | 1 - 166 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.dlc) | | FFNet-78S-LowRes | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 3.155 ms | 0 - 169 MB | NPU | [FFNet-78S-LowRes.onnx.zip](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.onnx.zip) | | FFNet-78S-LowRes | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 14.263 ms | 0 - 43 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.tflite) | | FFNet-78S-LowRes | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 5.133 ms | 1 - 46 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.dlc) | | FFNet-78S-LowRes | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 10.463 ms | 0 - 66 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.tflite) | | FFNet-78S-LowRes | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 21.216 ms | 2 - 67 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.dlc) | | FFNet-78S-LowRes | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | ONNX | 106.329 ms | 57 - 76 MB | CPU | [FFNet-78S-LowRes.onnx.zip](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.onnx.zip) | | FFNet-78S-LowRes | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 64.987 ms | 12 - 24 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.tflite) | | FFNet-78S-LowRes | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 97.147 ms | 49 - 83 MB | CPU | [FFNet-78S-LowRes.onnx.zip](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.onnx.zip) | | FFNet-78S-LowRes | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 7.713 ms | 0 - 42 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.tflite) | | FFNet-78S-LowRes | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 10.618 ms | 2 - 45 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.dlc) | | FFNet-78S-LowRes | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 2.99 ms | 0 - 195 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.tflite) | | FFNet-78S-LowRes | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 4.667 ms | 1 - 165 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.dlc) | | FFNet-78S-LowRes | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 4.689 ms | 0 - 48 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.tflite) | | FFNet-78S-LowRes | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 6.577 ms | 2 - 52 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.dlc) | | FFNet-78S-LowRes | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 2.984 ms | 0 - 195 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.tflite) | | FFNet-78S-LowRes | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 4.673 ms | 1 - 184 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.dlc) | | FFNet-78S-LowRes | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 14.263 ms | 0 - 43 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.tflite) | | FFNet-78S-LowRes | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 5.133 ms | 1 - 46 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.dlc) | | FFNet-78S-LowRes | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 2.162 ms | 0 - 80 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.tflite) | | FFNet-78S-LowRes | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 3.28 ms | 0 - 77 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.dlc) | | FFNet-78S-LowRes | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 2.211 ms | 0 - 83 MB | NPU | [FFNet-78S-LowRes.onnx.zip](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.onnx.zip) | | FFNet-78S-LowRes | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 1.801 ms | 0 - 52 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.tflite) | | FFNet-78S-LowRes | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 2.255 ms | 2 - 50 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.dlc) | | FFNet-78S-LowRes | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 1.835 ms | 0 - 52 MB | NPU | [FFNet-78S-LowRes.onnx.zip](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.onnx.zip) | | FFNet-78S-LowRes | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | TFLITE | 4.51 ms | 0 - 63 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.tflite) | | FFNet-78S-LowRes | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | QNN_DLC | 7.332 ms | 2 - 66 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.dlc) | | FFNet-78S-LowRes | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | ONNX | 117.76 ms | 60 - 78 MB | CPU | [FFNet-78S-LowRes.onnx.zip](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.onnx.zip) | | FFNet-78S-LowRes | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 1.625 ms | 0 - 46 MB | NPU | [FFNet-78S-LowRes.tflite](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.tflite) | | FFNet-78S-LowRes | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 1.832 ms | 2 - 52 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.dlc) | | FFNet-78S-LowRes | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 1.59 ms | 1 - 52 MB | NPU | [FFNet-78S-LowRes.onnx.zip](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.onnx.zip) | | FFNet-78S-LowRes | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 5.05 ms | 181 - 181 MB | NPU | [FFNet-78S-LowRes.dlc](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.dlc) | | FFNet-78S-LowRes | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 3.122 ms | 25 - 25 MB | NPU | [FFNet-78S-LowRes.onnx.zip](https://huggingface.co/qualcomm/FFNet-78S-LowRes/blob/main/FFNet-78S-LowRes_w8a8.onnx.zip) | ## Installation Install the package via pip: ```bash # NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported. pip install "qai-hub-models[ffnet-78s-lowres]" ``` ## Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device Sign-in to [Qualcomm® AI Hub Workbench](https://workbench.aihub.qualcomm.com/) with your Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`. With this API token, you can configure your client to run models on the cloud hosted devices. ```bash qai-hub configure --api_token API_TOKEN ``` Navigate to [docs](https://workbench.aihub.qualcomm.com/docs/) for more information. ## Demo off target The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input. ```bash python -m qai_hub_models.models.ffnet_78s_lowres.demo ``` The above demo runs a reference implementation of pre-processing, model inference, and post processing. **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.ffnet_78s_lowres.demo ``` ### Run model on a cloud-hosted device In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following: * Performance check on-device on a cloud-hosted device * Downloads compiled assets that can be deployed on-device for Android. * Accuracy check between PyTorch and on-device outputs. ```bash python -m qai_hub_models.models.ffnet_78s_lowres.export ``` ## How does this work? This [export script](https://aihub.qualcomm.com/models/ffnet_78s_lowres/qai_hub_models/models/FFNet-78S-LowRes/export.py) leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model on-device. Lets go through each step below in detail: Step 1: **Compile model for on-device deployment** To compile a PyTorch model for on-device deployment, we first trace the model in memory using the `jit.trace` and then call the `submit_compile_job` API. ```python import torch import qai_hub as hub from qai_hub_models.models.ffnet_78s_lowres import Model # Load the model torch_model = Model.from_pretrained() # Device device = hub.Device("Samsung Galaxy S25") # Trace model input_shape = torch_model.get_input_spec() sample_inputs = torch_model.sample_inputs() pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()]) # Compile model on a specific device compile_job = hub.submit_compile_job( model=pt_model, device=device, input_specs=torch_model.get_input_spec(), ) # Get target model to run on-device target_model = compile_job.get_target_model() ``` Step 2: **Performance profiling on cloud-hosted device** After compiling models from step 1. Models can be profiled model on-device using the `target_model`. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics. ```python profile_job = hub.submit_profile_job( model=target_model, device=device, ) ``` Step 3: **Verify on-device accuracy** To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device. ```python input_data = torch_model.sample_inputs() inference_job = hub.submit_inference_job( model=target_model, device=device, inputs=input_data, ) on_device_output = inference_job.download_output_data() ``` With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output. **Note**: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. [Sign up for access](https://myaccount.qualcomm.com/signup). ## Run demo on a cloud-hosted device You can also run the demo on-device. ```bash python -m qai_hub_models.models.ffnet_78s_lowres.demo --eval-mode on-device ``` **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.ffnet_78s_lowres.demo -- --eval-mode on-device ``` ## Deploying compiled model to Android The models can be deployed using multiple runtimes: - TensorFlow Lite (`.tflite` export): [This tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a guide to deploy the .tflite model in an Android application. - QNN (`.so` export ): This [sample app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html) provides instructions on how to use the `.so` shared library in an Android application. ## View on Qualcomm® AI Hub Get more details on FFNet-78S-LowRes's performance across various devices [here](https://aihub.qualcomm.com/models/ffnet_78s_lowres). Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/) ## License * The license for the original implementation of FFNet-78S-LowRes can be found [here](https://github.com/Qualcomm-AI-research/FFNet/blob/master/LICENSE). * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf) ## References * [Simple and Efficient Architectures for Semantic Segmentation](https://arxiv.org/abs/2206.08236) * [Source Model Implementation](https://github.com/Qualcomm-AI-research/FFNet) ## Community * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI. * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).