Whisper-Large-V3-Turbo: Optimized for Mobile Deployment
Transformer-based automatic speech recognition (ASR) model for multilingual transcription and translation available on HuggingFace
Whisper large-v3-turbo is a finetuned version of a pruned Whisper large-v3. In other words, it's the exact same model, except that the number of decoding layers have reduced from 32 to 4. As a result, the model is way faster, at the expense of a minor quality degradation. This model is based on the transformer architecture and has been optimized for edge inference by replacing Multi-Head Attention (MHA) with Single-Head Attention (SHA) and linear layers with convolutional (conv) layers. It exhibits robust performance in realistic, noisy environments, making it highly reliable for real-world applications. Specifically, it excels in long-form transcription, capable of accurately transcribing audio clips up to 30 seconds long. Time to the first token is the encoder's latency, while time to each additional token is decoder's latency, where we assume a max decoded length specified below.
This model is an implementation of Whisper-Large-V3-Turbo found here.
This repository provides scripts to run Whisper-Large-V3-Turbo on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.speech_recognition
- Model Stats:
- Model checkpoint: openai/whisper-large-v3-turbo
- Input resolution: 128x3000 (30 seconds audio)
- Max decoded sequence length: 200 tokens
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
|---|---|---|---|---|---|---|---|---|
| HfWhisperEncoder | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_CONTEXT_BINARY | 2244.068 ms | 2 - 9 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 625.105 ms | 2 - 8 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 759.643 ms | 2 - 9 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | SA7255P ADP | Qualcomm® SA7255P | QNN_CONTEXT_BINARY | 2244.068 ms | 2 - 9 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 627.809 ms | 2 - 6 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | SA8295P ADP | Qualcomm® SA8295P | QNN_CONTEXT_BINARY | 1119.439 ms | 2 - 15 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 638.294 ms | 2 - 3 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 759.643 ms | 2 - 9 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 487.533 ms | 1 - 17 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 599.955 ms | 124 - 139 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_CONTEXT_BINARY | 349.531 ms | 0 - 15 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | PRECOMPILED_QNN_ONNX | 471.233 ms | 127 - 143 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_CONTEXT_BINARY | 270.823 ms | 4 - 11 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | PRECOMPILED_QNN_ONNX | 401.988 ms | 125 - 137 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 633.894 ms | 1 - 1 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 800.599 ms | 1396 - 1396 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_CONTEXT_BINARY | 19.446 ms | 53 - 62 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 13.048 ms | 67 - 70 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 14.102 ms | 59 - 68 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | SA7255P ADP | Qualcomm® SA7255P | QNN_CONTEXT_BINARY | 19.446 ms | 53 - 62 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 13.426 ms | 67 - 68 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | SA8295P ADP | Qualcomm® SA8295P | QNN_CONTEXT_BINARY | 15.09 ms | 66 - 81 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 13.128 ms | 67 - 69 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 14.102 ms | 59 - 68 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 9.985 ms | 66 - 85 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 10.601 ms | 84 - 104 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_CONTEXT_BINARY | 9.019 ms | 50 - 64 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | PRECOMPILED_QNN_ONNX | 9.363 ms | 47 - 58 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_CONTEXT_BINARY | 7.841 ms | 64 - 76 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | PRECOMPILED_QNN_ONNX | 8.189 ms | 83 - 94 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 10.737 ms | 67 - 67 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 10.543 ms | 367 - 367 MB | NPU | Use Export Script |
Installation
Install the package via pip:
# NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
pip install "qai-hub-models[whisper-large-v3-turbo]"
Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub Workbench with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.whisper_large_v3_turbo.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.whisper_large_v3_turbo.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.whisper_large_v3_turbo.export
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace and then call the submit_compile_job API.
import torch
import qai_hub as hub
from qai_hub_models.models.whisper_large_v3_turbo import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S25")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tfliteexport): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.soexport ): This sample app provides instructions on how to use the.soshared library in an Android application.
View on Qualcomm® AI Hub
Get more details on Whisper-Large-V3-Turbo's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of Whisper-Large-V3-Turbo can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
