File size: 32,807 Bytes
5ba0603 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
---
language:
- en
tags:
- sentence-transformers
- cross-encoder
- reranker
- generated_from_trainer
- dataset_size:39704
- loss:ListNetLoss
base_model: jhu-clsp/ettin-encoder-17m
datasets:
- microsoft/ms_marco
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
model-index:
- name: CrossEncoder based on jhu-clsp/ettin-encoder-17m
results:
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoMSMARCO R100
type: NanoMSMARCO_R100
metrics:
- type: map
value: 0.3623
name: Map
- type: mrr@10
value: 0.3446
name: Mrr@10
- type: ndcg@10
value: 0.409
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoNFCorpus R100
type: NanoNFCorpus_R100
metrics:
- type: map
value: 0.2789
name: Map
- type: mrr@10
value: 0.4065
name: Mrr@10
- type: ndcg@10
value: 0.252
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoNQ R100
type: NanoNQ_R100
metrics:
- type: map
value: 0.2369
name: Map
- type: mrr@10
value: 0.2211
name: Mrr@10
- type: ndcg@10
value: 0.2731
name: Ndcg@10
- task:
type: cross-encoder-nano-beir
name: Cross Encoder Nano BEIR
dataset:
name: NanoBEIR R100 mean
type: NanoBEIR_R100_mean
metrics:
- type: map
value: 0.2927
name: Map
- type: mrr@10
value: 0.3241
name: Mrr@10
- type: ndcg@10
value: 0.3113
name: Ndcg@10
---
# CrossEncoder based on jhu-clsp/ettin-encoder-17m
This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [jhu-clsp/ettin-encoder-17m](https://huggingface.co/jhu-clsp/ettin-encoder-17m) on the [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
## Model Details
### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [jhu-clsp/ettin-encoder-17m](https://huggingface.co/jhu-clsp/ettin-encoder-17m) <!-- at revision 987607455c61e7a5bbc85f7758e0512ea6d0ae4c -->
- **Maximum Sequence Length:** 7999 tokens
- **Number of Output Labels:** 1 label
- **Training Dataset:**
- [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("rahulseetharaman/reranker-msmarco-v1.1-ettin-encoder-17m-listnet")
# Get scores for pairs of texts
pairs = [
['what are jellyfishes enemies', 'Jellyfish enemies are sea stars and sea turtles. They are favorite meals to them. Other species of jellyfish are among the most common and important jellyfish predators, some of which specialize in jellies. Other predators include tuna, shark, swordfish, sea turtles, and at least one species of Pacific salmon.'],
['what are jellyfishes enemies', 'Other species of jellyfish are among the most common and important jellyfish predators, some of which specialize in jellies. Other predators include tuna, shark, swordfish … , sea turtles, and at least one species of Pacific salmon.'],
['what are jellyfishes enemies', 'The jellyfish mainly feeds on the zooplankton, snails, small fishes and larvae and eggs of other marine animals. It catches its prey with its tentacles, which has a venom to immobilise them.'],
['what are jellyfishes enemies', 'There are many kinds, or species, of jellyfish in all the oceans of the earth. The main predator of jellyfish is other jellyfish, usually of a different species. But jellyfish also have a number of other natural enemies that like to eat them. These predators include tunas, sharks, swordfish and some species of salmon. Sea turtles also like to eat jellyfish.'],
['what are jellyfishes enemies', 'Jellyfish Enemies. The jellyfish is a strange creature inhabiting the oceans of the world. It is fascinating to watch a jellyfish swim in the sea and people are trying to breed them in home aquariums and tanks. The jellyfish is a delicate creature and will just collapse if taken out of the water. The different species are known to survive in the ocean at all depths, and in different water temperatures.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'what are jellyfishes enemies',
[
'Jellyfish enemies are sea stars and sea turtles. They are favorite meals to them. Other species of jellyfish are among the most common and important jellyfish predators, some of which specialize in jellies. Other predators include tuna, shark, swordfish, sea turtles, and at least one species of Pacific salmon.',
'Other species of jellyfish are among the most common and important jellyfish predators, some of which specialize in jellies. Other predators include tuna, shark, swordfish … , sea turtles, and at least one species of Pacific salmon.',
'The jellyfish mainly feeds on the zooplankton, snails, small fishes and larvae and eggs of other marine animals. It catches its prey with its tentacles, which has a venom to immobilise them.',
'There are many kinds, or species, of jellyfish in all the oceans of the earth. The main predator of jellyfish is other jellyfish, usually of a different species. But jellyfish also have a number of other natural enemies that like to eat them. These predators include tunas, sharks, swordfish and some species of salmon. Sea turtles also like to eat jellyfish.',
'Jellyfish Enemies. The jellyfish is a strange creature inhabiting the oceans of the world. It is fascinating to watch a jellyfish swim in the sea and people are trying to breed them in home aquariums and tanks. The jellyfish is a delicate creature and will just collapse if taken out of the water. The different species are known to survive in the ocean at all depths, and in different water temperatures.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Cross Encoder Reranking
* Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100`
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
```json
{
"at_k": 10,
"always_rerank_positives": true
}
```
| Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
|:------------|:---------------------|:---------------------|:---------------------|
| map | 0.3623 (-0.1273) | 0.2789 (+0.0179) | 0.2369 (-0.1827) |
| mrr@10 | 0.3446 (-0.1329) | 0.4065 (-0.0933) | 0.2211 (-0.2056) |
| **ndcg@10** | **0.4090 (-0.1314)** | **0.2520 (-0.0731)** | **0.2731 (-0.2276)** |
#### Cross Encoder Nano BEIR
* Dataset: `NanoBEIR_R100_mean`
* Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco",
"nfcorpus",
"nq"
],
"rerank_k": 100,
"at_k": 10,
"always_rerank_positives": true
}
```
| Metric | Value |
|:------------|:---------------------|
| map | 0.2927 (-0.0974) |
| mrr@10 | 0.3241 (-0.1439) |
| **ndcg@10** | **0.3113 (-0.1440)** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### ms_marco
* Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)
* Size: 39,704 training samples
* Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>
* Approximate statistics based on the first 1000 samples:
| | query | docs | labels |
|:--------|:-----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
| type | string | list | list |
| details | <ul><li>min: 11 characters</li><li>mean: 33.65 characters</li><li>max: 96 characters</li></ul> | <ul><li>min: 2 elements</li><li>mean: 6.00 elements</li><li>max: 10 elements</li></ul> | <ul><li>min: 2 elements</li><li>mean: 6.00 elements</li><li>max: 10 elements</li></ul> |
* Samples:
| query | docs | labels |
|:------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
| <code>what is PMA sales</code> | <code>['A history of helping people create great futures. PMA USA, headquartered in Dallas, Texas is a national company that provides insurance benefits solutions and markets voluntary insurance products. PMA USA has been helping hard-working middle Americans protect their families’ financial futures since 1999.', 'PMA is the full-service trade association representing the $113-billion metalforming industry of North America―the industry that creates precision metal products using stamping, fabricating and other value-added processes.', 'PMA USA, headquartered in Dallas, Texas is a national company that provides insurance benefits solutions and markets voluntary insurance products. We offer supplemental health, accident and life insurance, serving individual customers and employer groups across the country.', 'Who we arePMA USA, headquartered in Dallas, Texas is a national company that provides insurance benefits solutions and markets voluntary insurance products.', 'Who we are. PMA USA, head...</code> | <code>[1, 1, 0, 0, 0, ...]</code> |
| <code>what is whitebait</code> | <code>['Whitebait is the immature fry of fish, in this case sardines and anchovies fished on the Riviera. Whitebait is a collective term for the immature fry of fish, typically between 25 and 50 millimetres long. Such young fish often travel together in schools along the coast, and move into estuaries and sometimes up rivers where they can be easily caught with fine meshed fishing nets. Whitebait are tender and edible, and can be regarded as a delicacy. The entire fish is eaten including head, fins, bones, and guts. Some species make better eating than others, and the particular species that are marketed as whitebait varies in different parts of the world.', 'Whitebait recipes. Whitebait are tiny, immature, silvery members of the herring group that are typically deep-fried to serve. They are widely thought to be baby herring and are usually sold frozen. Preparation. Whitebait require little preparation. Toss them in well-seasoned flour (for devilled whitebait, small quantities of dried Engli...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
| <code>how to disable automatic sign in hotmail</code> | <code>['If you are referring to the Web Messenger in Hotmail, you can definitely turn it off automatically by following the steps below: 1. Sign in your account. 2. On the left pane of the window, click on Sign out of Messenger.. 3. Sign out of Hotmail. 4. Sign in your account again. On the other hand, the option to turn off the Messenger in Outlook.com is not available. Thank you.', "1) Click on the messenger tab at the top. I see my contacts, the option to sign out of messenger (don't get excited it will log you in again the next time you open hotmail), contacts, profile, add friends and invitations. Why isn't the auto sign in option here. Why isn't everything to do with messenger under the messenger button. 1. Sign in your account. 2. On the left pane of the window, click on Sign out of Messenger.. 3. Sign out of Hotmail. 4. Sign in your account again. On the other hand, the option to turn off the Messenger in Outlook.com is not available.", "Disabling automatic sign-in. If you're being...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
* Loss: [<code>ListNetLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#listnetloss) with these parameters:
```json
{
"activation_fn": "torch.nn.modules.linear.Identity",
"mini_batch_size": 16
}
```
### Evaluation Dataset
#### ms_marco
* Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)
* Size: 40,000 evaluation samples
* Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>
* Approximate statistics based on the first 1000 samples:
| | query | docs | labels |
|:--------|:-----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
| type | string | list | list |
| details | <ul><li>min: 9 characters</li><li>mean: 34.15 characters</li><li>max: 144 characters</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> |
* Samples:
| query | docs | labels |
|:----------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
| <code>what are jellyfishes enemies</code> | <code>['Jellyfish enemies are sea stars and sea turtles. They are favorite meals to them. Other species of jellyfish are among the most common and important jellyfish predators, some of which specialize in jellies. Other predators include tuna, shark, swordfish, sea turtles, and at least one species of Pacific salmon.', 'Other species of jellyfish are among the most common and important jellyfish predators, some of which specialize in jellies. Other predators include tuna, shark, swordfish … , sea turtles, and at least one species of Pacific salmon.', 'The jellyfish mainly feeds on the zooplankton, snails, small fishes and larvae and eggs of other marine animals. It catches its prey with its tentacles, which has a venom to immobilise them.', 'There are many kinds, or species, of jellyfish in all the oceans of the earth. The main predator of jellyfish is other jellyfish, usually of a different species. But jellyfish also have a number of other natural enemies that like to eat them. These predators include tunas, sharks, swordfish and some species of salmon. Sea turtles also like to eat jellyfish.', 'Jellyfish Enemies. The jellyfish is a strange creature inhabiting the oceans of the world. It is fascinating to watch a jellyfish swim in the sea and people are trying to breed them in home aquariums and tanks. The jellyfish is a delicate creature and will just collapse if taken out of the water. The different species are known to survive in the ocean at all depths, and in different water temperatures.']</code> | <code>[1, 0, 0, 0, 0]</code> |
| <code>how much does a medical secretary earn</code> | <code>['$32,670. With an average salary of $33,140 in 2013, medical secretaries earned more than medical assistants ($30,780) and pharmacy technicians ($30,840) but slightly less than emergency medical technicians and paramedics ($34,870). Best Paying Cities for Medical Secretaries. The highest paid in the medical secretary profession work in the metropolitan areas of Oakland, California, San Francisco, and San Jose, California. The New York City area also pays well, as does the city of Norwich, Connecticut.', 'Contributing Factors. A hospital unit secretary may earn more in certain industries. In 2012, medical secretaries, who perform similar duties, earned some of the highest salaries of $40,790 working for state-owned hospitals, according to the BLS -- versus an industry average of $32,676. Hospital unit secretaries may also earn more in state-owned hospitals. Related Reading: Medical Unit Secretary Training. A hospital unit secretary may earn more in certain industries. In 2012, medical ...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
| <code>average apartment costs for college students</code> | <code>['The survey revealed the following: With a 5% student housing fee increase effective 8/1/12, the monthly fee for a RV Phase I two bedroom apartment would be $934 and a similar RV Phase II apartment would be $1013. Average of $973.50/month. ', "1 of 6. Students can't control the price of college tuition, but they have options when it comes to everything else. According to the College Board, students attending a four-year, in-state public institution spend an average of $12,368 per year on housing, books, transportation and other fees. That's more than $5,300 above the average cost of tuition. ", 'The cost of room and board depends on the campus housing and food plans you choose. The College Board reports that the average cost of room and board in 2014–2015 ranged from $9,804 at four-year public schools to $11,188 at private schools. Colleges also provide room and board estimates for living off campus based on typical student costs. The College Board reports the average cost for books a...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
* Loss: [<code>ListNetLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#listnetloss) with these parameters:
```json
{
"activation_fn": "torch.nn.modules.linear.Identity",
"mini_batch_size": 16
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | Training Loss | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
|:------:|:----:|:-------------:|:------------------------:|:-------------------------:|:-------------------:|:--------------------------:|
| -1 | -1 | - | 0.0063 (-0.5341) | 0.1891 (-0.1359) | 0.0144 (-0.4863) | 0.0699 (-0.3854) |
| 0.0004 | 1 | 2.565 | - | - | - | - |
| -1 | -1 | - | 0.4090 (-0.1314) | 0.2520 (-0.0731) | 0.2731 (-0.2276) | 0.3113 (-0.1440) |
### Framework Versions
- Python: 3.10.18
- Sentence Transformers: 5.0.0
- Transformers: 4.56.0.dev0
- PyTorch: 2.7.1+cu126
- Accelerate: 1.9.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### ListNetLoss
```bibtex
@inproceedings{cao2007learning,
title={Learning to Rank: From Pairwise Approach to Listwise Approach},
author={Cao, Zhe and Qin, Tao and Liu, Tie-Yan and Tsai, Ming-Feng and Li, Hang},
booktitle={Proceedings of the 24th international conference on Machine learning},
pages={129--136},
year={2007}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |