Add new CrossEncoder model
Browse files- README.md +485 -0
- config.json +57 -0
- model.safetensors +3 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +945 -0
README.md
ADDED
|
@@ -0,0 +1,485 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
tags:
|
| 5 |
+
- sentence-transformers
|
| 6 |
+
- cross-encoder
|
| 7 |
+
- reranker
|
| 8 |
+
- generated_from_trainer
|
| 9 |
+
- dataset_size:39704
|
| 10 |
+
- loss:ListNetLoss
|
| 11 |
+
base_model: jhu-clsp/ettin-encoder-17m
|
| 12 |
+
datasets:
|
| 13 |
+
- microsoft/ms_marco
|
| 14 |
+
pipeline_tag: text-ranking
|
| 15 |
+
library_name: sentence-transformers
|
| 16 |
+
metrics:
|
| 17 |
+
- map
|
| 18 |
+
- mrr@10
|
| 19 |
+
- ndcg@10
|
| 20 |
+
model-index:
|
| 21 |
+
- name: CrossEncoder based on jhu-clsp/ettin-encoder-17m
|
| 22 |
+
results:
|
| 23 |
+
- task:
|
| 24 |
+
type: cross-encoder-reranking
|
| 25 |
+
name: Cross Encoder Reranking
|
| 26 |
+
dataset:
|
| 27 |
+
name: NanoMSMARCO R100
|
| 28 |
+
type: NanoMSMARCO_R100
|
| 29 |
+
metrics:
|
| 30 |
+
- type: map
|
| 31 |
+
value: 0.3623
|
| 32 |
+
name: Map
|
| 33 |
+
- type: mrr@10
|
| 34 |
+
value: 0.3446
|
| 35 |
+
name: Mrr@10
|
| 36 |
+
- type: ndcg@10
|
| 37 |
+
value: 0.409
|
| 38 |
+
name: Ndcg@10
|
| 39 |
+
- task:
|
| 40 |
+
type: cross-encoder-reranking
|
| 41 |
+
name: Cross Encoder Reranking
|
| 42 |
+
dataset:
|
| 43 |
+
name: NanoNFCorpus R100
|
| 44 |
+
type: NanoNFCorpus_R100
|
| 45 |
+
metrics:
|
| 46 |
+
- type: map
|
| 47 |
+
value: 0.2789
|
| 48 |
+
name: Map
|
| 49 |
+
- type: mrr@10
|
| 50 |
+
value: 0.4065
|
| 51 |
+
name: Mrr@10
|
| 52 |
+
- type: ndcg@10
|
| 53 |
+
value: 0.252
|
| 54 |
+
name: Ndcg@10
|
| 55 |
+
- task:
|
| 56 |
+
type: cross-encoder-reranking
|
| 57 |
+
name: Cross Encoder Reranking
|
| 58 |
+
dataset:
|
| 59 |
+
name: NanoNQ R100
|
| 60 |
+
type: NanoNQ_R100
|
| 61 |
+
metrics:
|
| 62 |
+
- type: map
|
| 63 |
+
value: 0.2369
|
| 64 |
+
name: Map
|
| 65 |
+
- type: mrr@10
|
| 66 |
+
value: 0.2211
|
| 67 |
+
name: Mrr@10
|
| 68 |
+
- type: ndcg@10
|
| 69 |
+
value: 0.2731
|
| 70 |
+
name: Ndcg@10
|
| 71 |
+
- task:
|
| 72 |
+
type: cross-encoder-nano-beir
|
| 73 |
+
name: Cross Encoder Nano BEIR
|
| 74 |
+
dataset:
|
| 75 |
+
name: NanoBEIR R100 mean
|
| 76 |
+
type: NanoBEIR_R100_mean
|
| 77 |
+
metrics:
|
| 78 |
+
- type: map
|
| 79 |
+
value: 0.2927
|
| 80 |
+
name: Map
|
| 81 |
+
- type: mrr@10
|
| 82 |
+
value: 0.3241
|
| 83 |
+
name: Mrr@10
|
| 84 |
+
- type: ndcg@10
|
| 85 |
+
value: 0.3113
|
| 86 |
+
name: Ndcg@10
|
| 87 |
+
---
|
| 88 |
+
|
| 89 |
+
# CrossEncoder based on jhu-clsp/ettin-encoder-17m
|
| 90 |
+
|
| 91 |
+
This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [jhu-clsp/ettin-encoder-17m](https://huggingface.co/jhu-clsp/ettin-encoder-17m) on the [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
|
| 92 |
+
|
| 93 |
+
## Model Details
|
| 94 |
+
|
| 95 |
+
### Model Description
|
| 96 |
+
- **Model Type:** Cross Encoder
|
| 97 |
+
- **Base model:** [jhu-clsp/ettin-encoder-17m](https://huggingface.co/jhu-clsp/ettin-encoder-17m) <!-- at revision 987607455c61e7a5bbc85f7758e0512ea6d0ae4c -->
|
| 98 |
+
- **Maximum Sequence Length:** 7999 tokens
|
| 99 |
+
- **Number of Output Labels:** 1 label
|
| 100 |
+
- **Training Dataset:**
|
| 101 |
+
- [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco)
|
| 102 |
+
- **Language:** en
|
| 103 |
+
<!-- - **License:** Unknown -->
|
| 104 |
+
|
| 105 |
+
### Model Sources
|
| 106 |
+
|
| 107 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 108 |
+
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
|
| 109 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 110 |
+
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
|
| 111 |
+
|
| 112 |
+
## Usage
|
| 113 |
+
|
| 114 |
+
### Direct Usage (Sentence Transformers)
|
| 115 |
+
|
| 116 |
+
First install the Sentence Transformers library:
|
| 117 |
+
|
| 118 |
+
```bash
|
| 119 |
+
pip install -U sentence-transformers
|
| 120 |
+
```
|
| 121 |
+
|
| 122 |
+
Then you can load this model and run inference.
|
| 123 |
+
```python
|
| 124 |
+
from sentence_transformers import CrossEncoder
|
| 125 |
+
|
| 126 |
+
# Download from the 🤗 Hub
|
| 127 |
+
model = CrossEncoder("rahulseetharaman/reranker-msmarco-v1.1-ettin-encoder-17m-listnet")
|
| 128 |
+
# Get scores for pairs of texts
|
| 129 |
+
pairs = [
|
| 130 |
+
['what are jellyfishes enemies', 'Jellyfish enemies are sea stars and sea turtles. They are favorite meals to them. Other species of jellyfish are among the most common and important jellyfish predators, some of which specialize in jellies. Other predators include tuna, shark, swordfish, sea turtles, and at least one species of Pacific salmon.'],
|
| 131 |
+
['what are jellyfishes enemies', 'Other species of jellyfish are among the most common and important jellyfish predators, some of which specialize in jellies. Other predators include tuna, shark, swordfish … , sea turtles, and at least one species of Pacific salmon.'],
|
| 132 |
+
['what are jellyfishes enemies', 'The jellyfish mainly feeds on the zooplankton, snails, small fishes and larvae and eggs of other marine animals. It catches its prey with its tentacles, which has a venom to immobilise them.'],
|
| 133 |
+
['what are jellyfishes enemies', 'There are many kinds, or species, of jellyfish in all the oceans of the earth. The main predator of jellyfish is other jellyfish, usually of a different species. But jellyfish also have a number of other natural enemies that like to eat them. These predators include tunas, sharks, swordfish and some species of salmon. Sea turtles also like to eat jellyfish.'],
|
| 134 |
+
['what are jellyfishes enemies', 'Jellyfish Enemies. The jellyfish is a strange creature inhabiting the oceans of the world. It is fascinating to watch a jellyfish swim in the sea and people are trying to breed them in home aquariums and tanks. The jellyfish is a delicate creature and will just collapse if taken out of the water. The different species are known to survive in the ocean at all depths, and in different water temperatures.'],
|
| 135 |
+
]
|
| 136 |
+
scores = model.predict(pairs)
|
| 137 |
+
print(scores.shape)
|
| 138 |
+
# (5,)
|
| 139 |
+
|
| 140 |
+
# Or rank different texts based on similarity to a single text
|
| 141 |
+
ranks = model.rank(
|
| 142 |
+
'what are jellyfishes enemies',
|
| 143 |
+
[
|
| 144 |
+
'Jellyfish enemies are sea stars and sea turtles. They are favorite meals to them. Other species of jellyfish are among the most common and important jellyfish predators, some of which specialize in jellies. Other predators include tuna, shark, swordfish, sea turtles, and at least one species of Pacific salmon.',
|
| 145 |
+
'Other species of jellyfish are among the most common and important jellyfish predators, some of which specialize in jellies. Other predators include tuna, shark, swordfish … , sea turtles, and at least one species of Pacific salmon.',
|
| 146 |
+
'The jellyfish mainly feeds on the zooplankton, snails, small fishes and larvae and eggs of other marine animals. It catches its prey with its tentacles, which has a venom to immobilise them.',
|
| 147 |
+
'There are many kinds, or species, of jellyfish in all the oceans of the earth. The main predator of jellyfish is other jellyfish, usually of a different species. But jellyfish also have a number of other natural enemies that like to eat them. These predators include tunas, sharks, swordfish and some species of salmon. Sea turtles also like to eat jellyfish.',
|
| 148 |
+
'Jellyfish Enemies. The jellyfish is a strange creature inhabiting the oceans of the world. It is fascinating to watch a jellyfish swim in the sea and people are trying to breed them in home aquariums and tanks. The jellyfish is a delicate creature and will just collapse if taken out of the water. The different species are known to survive in the ocean at all depths, and in different water temperatures.',
|
| 149 |
+
]
|
| 150 |
+
)
|
| 151 |
+
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
|
| 152 |
+
```
|
| 153 |
+
|
| 154 |
+
<!--
|
| 155 |
+
### Direct Usage (Transformers)
|
| 156 |
+
|
| 157 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 158 |
+
|
| 159 |
+
</details>
|
| 160 |
+
-->
|
| 161 |
+
|
| 162 |
+
<!--
|
| 163 |
+
### Downstream Usage (Sentence Transformers)
|
| 164 |
+
|
| 165 |
+
You can finetune this model on your own dataset.
|
| 166 |
+
|
| 167 |
+
<details><summary>Click to expand</summary>
|
| 168 |
+
|
| 169 |
+
</details>
|
| 170 |
+
-->
|
| 171 |
+
|
| 172 |
+
<!--
|
| 173 |
+
### Out-of-Scope Use
|
| 174 |
+
|
| 175 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 176 |
+
-->
|
| 177 |
+
|
| 178 |
+
## Evaluation
|
| 179 |
+
|
| 180 |
+
### Metrics
|
| 181 |
+
|
| 182 |
+
#### Cross Encoder Reranking
|
| 183 |
+
|
| 184 |
+
* Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100`
|
| 185 |
+
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
|
| 186 |
+
```json
|
| 187 |
+
{
|
| 188 |
+
"at_k": 10,
|
| 189 |
+
"always_rerank_positives": true
|
| 190 |
+
}
|
| 191 |
+
```
|
| 192 |
+
|
| 193 |
+
| Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
|
| 194 |
+
|:------------|:---------------------|:---------------------|:---------------------|
|
| 195 |
+
| map | 0.3623 (-0.1273) | 0.2789 (+0.0179) | 0.2369 (-0.1827) |
|
| 196 |
+
| mrr@10 | 0.3446 (-0.1329) | 0.4065 (-0.0933) | 0.2211 (-0.2056) |
|
| 197 |
+
| **ndcg@10** | **0.4090 (-0.1314)** | **0.2520 (-0.0731)** | **0.2731 (-0.2276)** |
|
| 198 |
+
|
| 199 |
+
#### Cross Encoder Nano BEIR
|
| 200 |
+
|
| 201 |
+
* Dataset: `NanoBEIR_R100_mean`
|
| 202 |
+
* Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters:
|
| 203 |
+
```json
|
| 204 |
+
{
|
| 205 |
+
"dataset_names": [
|
| 206 |
+
"msmarco",
|
| 207 |
+
"nfcorpus",
|
| 208 |
+
"nq"
|
| 209 |
+
],
|
| 210 |
+
"rerank_k": 100,
|
| 211 |
+
"at_k": 10,
|
| 212 |
+
"always_rerank_positives": true
|
| 213 |
+
}
|
| 214 |
+
```
|
| 215 |
+
|
| 216 |
+
| Metric | Value |
|
| 217 |
+
|:------------|:---------------------|
|
| 218 |
+
| map | 0.2927 (-0.0974) |
|
| 219 |
+
| mrr@10 | 0.3241 (-0.1439) |
|
| 220 |
+
| **ndcg@10** | **0.3113 (-0.1440)** |
|
| 221 |
+
|
| 222 |
+
<!--
|
| 223 |
+
## Bias, Risks and Limitations
|
| 224 |
+
|
| 225 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 226 |
+
-->
|
| 227 |
+
|
| 228 |
+
<!--
|
| 229 |
+
### Recommendations
|
| 230 |
+
|
| 231 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 232 |
+
-->
|
| 233 |
+
|
| 234 |
+
## Training Details
|
| 235 |
+
|
| 236 |
+
### Training Dataset
|
| 237 |
+
|
| 238 |
+
#### ms_marco
|
| 239 |
+
|
| 240 |
+
* Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)
|
| 241 |
+
* Size: 39,704 training samples
|
| 242 |
+
* Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>
|
| 243 |
+
* Approximate statistics based on the first 1000 samples:
|
| 244 |
+
| | query | docs | labels |
|
| 245 |
+
|:--------|:-----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
|
| 246 |
+
| type | string | list | list |
|
| 247 |
+
| details | <ul><li>min: 11 characters</li><li>mean: 33.65 characters</li><li>max: 96 characters</li></ul> | <ul><li>min: 2 elements</li><li>mean: 6.00 elements</li><li>max: 10 elements</li></ul> | <ul><li>min: 2 elements</li><li>mean: 6.00 elements</li><li>max: 10 elements</li></ul> |
|
| 248 |
+
* Samples:
|
| 249 |
+
| query | docs | labels |
|
| 250 |
+
|:------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
|
| 251 |
+
| <code>what is PMA sales</code> | <code>['A history of helping people create great futures. PMA USA, headquartered in Dallas, Texas is a national company that provides insurance benefits solutions and markets voluntary insurance products. PMA USA has been helping hard-working middle Americans protect their families’ financial futures since 1999.', 'PMA is the full-service trade association representing the $113-billion metalforming industry of North America―the industry that creates precision metal products using stamping, fabricating and other value-added processes.', 'PMA USA, headquartered in Dallas, Texas is a national company that provides insurance benefits solutions and markets voluntary insurance products. We offer supplemental health, accident and life insurance, serving individual customers and employer groups across the country.', 'Who we arePMA USA, headquartered in Dallas, Texas is a national company that provides insurance benefits solutions and markets voluntary insurance products.', 'Who we are. PMA USA, head...</code> | <code>[1, 1, 0, 0, 0, ...]</code> |
|
| 252 |
+
| <code>what is whitebait</code> | <code>['Whitebait is the immature fry of fish, in this case sardines and anchovies fished on the Riviera. Whitebait is a collective term for the immature fry of fish, typically between 25 and 50 millimetres long. Such young fish often travel together in schools along the coast, and move into estuaries and sometimes up rivers where they can be easily caught with fine meshed fishing nets. Whitebait are tender and edible, and can be regarded as a delicacy. The entire fish is eaten including head, fins, bones, and guts. Some species make better eating than others, and the particular species that are marketed as whitebait varies in different parts of the world.', 'Whitebait recipes. Whitebait are tiny, immature, silvery members of the herring group that are typically deep-fried to serve. They are widely thought to be baby herring and are usually sold frozen. Preparation. Whitebait require little preparation. Toss them in well-seasoned flour (for devilled whitebait, small quantities of dried Engli...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
|
| 253 |
+
| <code>how to disable automatic sign in hotmail</code> | <code>['If you are referring to the Web Messenger in Hotmail, you can definitely turn it off automatically by following the steps below: 1. Sign in your account. 2. On the left pane of the window, click on Sign out of Messenger.. 3. Sign out of Hotmail. 4. Sign in your account again. On the other hand, the option to turn off the Messenger in Outlook.com is not available. Thank you.', "1) Click on the messenger tab at the top. I see my contacts, the option to sign out of messenger (don't get excited it will log you in again the next time you open hotmail), contacts, profile, add friends and invitations. Why isn't the auto sign in option here. Why isn't everything to do with messenger under the messenger button. 1. Sign in your account. 2. On the left pane of the window, click on Sign out of Messenger.. 3. Sign out of Hotmail. 4. Sign in your account again. On the other hand, the option to turn off the Messenger in Outlook.com is not available.", "Disabling automatic sign-in. If you're being...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
|
| 254 |
+
* Loss: [<code>ListNetLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#listnetloss) with these parameters:
|
| 255 |
+
```json
|
| 256 |
+
{
|
| 257 |
+
"activation_fn": "torch.nn.modules.linear.Identity",
|
| 258 |
+
"mini_batch_size": 16
|
| 259 |
+
}
|
| 260 |
+
```
|
| 261 |
+
|
| 262 |
+
### Evaluation Dataset
|
| 263 |
+
|
| 264 |
+
#### ms_marco
|
| 265 |
+
|
| 266 |
+
* Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)
|
| 267 |
+
* Size: 40,000 evaluation samples
|
| 268 |
+
* Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>
|
| 269 |
+
* Approximate statistics based on the first 1000 samples:
|
| 270 |
+
| | query | docs | labels |
|
| 271 |
+
|:--------|:-----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
|
| 272 |
+
| type | string | list | list |
|
| 273 |
+
| details | <ul><li>min: 9 characters</li><li>mean: 34.15 characters</li><li>max: 144 characters</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> |
|
| 274 |
+
* Samples:
|
| 275 |
+
| query | docs | labels |
|
| 276 |
+
|:----------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
|
| 277 |
+
| <code>what are jellyfishes enemies</code> | <code>['Jellyfish enemies are sea stars and sea turtles. They are favorite meals to them. Other species of jellyfish are among the most common and important jellyfish predators, some of which specialize in jellies. Other predators include tuna, shark, swordfish, sea turtles, and at least one species of Pacific salmon.', 'Other species of jellyfish are among the most common and important jellyfish predators, some of which specialize in jellies. Other predators include tuna, shark, swordfish … , sea turtles, and at least one species of Pacific salmon.', 'The jellyfish mainly feeds on the zooplankton, snails, small fishes and larvae and eggs of other marine animals. It catches its prey with its tentacles, which has a venom to immobilise them.', 'There are many kinds, or species, of jellyfish in all the oceans of the earth. The main predator of jellyfish is other jellyfish, usually of a different species. But jellyfish also have a number of other natural enemies that like to eat them. These predators include tunas, sharks, swordfish and some species of salmon. Sea turtles also like to eat jellyfish.', 'Jellyfish Enemies. The jellyfish is a strange creature inhabiting the oceans of the world. It is fascinating to watch a jellyfish swim in the sea and people are trying to breed them in home aquariums and tanks. The jellyfish is a delicate creature and will just collapse if taken out of the water. The different species are known to survive in the ocean at all depths, and in different water temperatures.']</code> | <code>[1, 0, 0, 0, 0]</code> |
|
| 278 |
+
| <code>how much does a medical secretary earn</code> | <code>['$32,670. With an average salary of $33,140 in 2013, medical secretaries earned more than medical assistants ($30,780) and pharmacy technicians ($30,840) but slightly less than emergency medical technicians and paramedics ($34,870). Best Paying Cities for Medical Secretaries. The highest paid in the medical secretary profession work in the metropolitan areas of Oakland, California, San Francisco, and San Jose, California. The New York City area also pays well, as does the city of Norwich, Connecticut.', 'Contributing Factors. A hospital unit secretary may earn more in certain industries. In 2012, medical secretaries, who perform similar duties, earned some of the highest salaries of $40,790 working for state-owned hospitals, according to the BLS -- versus an industry average of $32,676. Hospital unit secretaries may also earn more in state-owned hospitals. Related Reading: Medical Unit Secretary Training. A hospital unit secretary may earn more in certain industries. In 2012, medical ...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
|
| 279 |
+
| <code>average apartment costs for college students</code> | <code>['The survey revealed the following: With a 5% student housing fee increase effective 8/1/12, the monthly fee for a RV Phase I two bedroom apartment would be $934 and a similar RV Phase II apartment would be $1013. Average of $973.50/month. ', "1 of 6. Students can't control the price of college tuition, but they have options when it comes to everything else. According to the College Board, students attending a four-year, in-state public institution spend an average of $12,368 per year on housing, books, transportation and other fees. That's more than $5,300 above the average cost of tuition. ", 'The cost of room and board depends on the campus housing and food plans you choose. The College Board reports that the average cost of room and board in 2014–2015 ranged from $9,804 at four-year public schools to $11,188 at private schools. Colleges also provide room and board estimates for living off campus based on typical student costs. The College Board reports the average cost for books a...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
|
| 280 |
+
* Loss: [<code>ListNetLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#listnetloss) with these parameters:
|
| 281 |
+
```json
|
| 282 |
+
{
|
| 283 |
+
"activation_fn": "torch.nn.modules.linear.Identity",
|
| 284 |
+
"mini_batch_size": 16
|
| 285 |
+
}
|
| 286 |
+
```
|
| 287 |
+
|
| 288 |
+
### Training Hyperparameters
|
| 289 |
+
#### Non-Default Hyperparameters
|
| 290 |
+
|
| 291 |
+
- `eval_strategy`: steps
|
| 292 |
+
- `per_device_train_batch_size`: 16
|
| 293 |
+
- `per_device_eval_batch_size`: 16
|
| 294 |
+
- `learning_rate`: 2e-05
|
| 295 |
+
- `num_train_epochs`: 1
|
| 296 |
+
- `warmup_ratio`: 0.1
|
| 297 |
+
- `seed`: 12
|
| 298 |
+
- `bf16`: True
|
| 299 |
+
- `load_best_model_at_end`: True
|
| 300 |
+
|
| 301 |
+
#### All Hyperparameters
|
| 302 |
+
<details><summary>Click to expand</summary>
|
| 303 |
+
|
| 304 |
+
- `overwrite_output_dir`: False
|
| 305 |
+
- `do_predict`: False
|
| 306 |
+
- `eval_strategy`: steps
|
| 307 |
+
- `prediction_loss_only`: True
|
| 308 |
+
- `per_device_train_batch_size`: 16
|
| 309 |
+
- `per_device_eval_batch_size`: 16
|
| 310 |
+
- `per_gpu_train_batch_size`: None
|
| 311 |
+
- `per_gpu_eval_batch_size`: None
|
| 312 |
+
- `gradient_accumulation_steps`: 1
|
| 313 |
+
- `eval_accumulation_steps`: None
|
| 314 |
+
- `torch_empty_cache_steps`: None
|
| 315 |
+
- `learning_rate`: 2e-05
|
| 316 |
+
- `weight_decay`: 0.0
|
| 317 |
+
- `adam_beta1`: 0.9
|
| 318 |
+
- `adam_beta2`: 0.999
|
| 319 |
+
- `adam_epsilon`: 1e-08
|
| 320 |
+
- `max_grad_norm`: 1.0
|
| 321 |
+
- `num_train_epochs`: 1
|
| 322 |
+
- `max_steps`: -1
|
| 323 |
+
- `lr_scheduler_type`: linear
|
| 324 |
+
- `lr_scheduler_kwargs`: {}
|
| 325 |
+
- `warmup_ratio`: 0.1
|
| 326 |
+
- `warmup_steps`: 0
|
| 327 |
+
- `log_level`: passive
|
| 328 |
+
- `log_level_replica`: warning
|
| 329 |
+
- `log_on_each_node`: True
|
| 330 |
+
- `logging_nan_inf_filter`: True
|
| 331 |
+
- `save_safetensors`: True
|
| 332 |
+
- `save_on_each_node`: False
|
| 333 |
+
- `save_only_model`: False
|
| 334 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 335 |
+
- `no_cuda`: False
|
| 336 |
+
- `use_cpu`: False
|
| 337 |
+
- `use_mps_device`: False
|
| 338 |
+
- `seed`: 12
|
| 339 |
+
- `data_seed`: None
|
| 340 |
+
- `jit_mode_eval`: False
|
| 341 |
+
- `use_ipex`: False
|
| 342 |
+
- `bf16`: True
|
| 343 |
+
- `fp16`: False
|
| 344 |
+
- `fp16_opt_level`: O1
|
| 345 |
+
- `half_precision_backend`: auto
|
| 346 |
+
- `bf16_full_eval`: False
|
| 347 |
+
- `fp16_full_eval`: False
|
| 348 |
+
- `tf32`: None
|
| 349 |
+
- `local_rank`: 0
|
| 350 |
+
- `ddp_backend`: None
|
| 351 |
+
- `tpu_num_cores`: None
|
| 352 |
+
- `tpu_metrics_debug`: False
|
| 353 |
+
- `debug`: []
|
| 354 |
+
- `dataloader_drop_last`: False
|
| 355 |
+
- `dataloader_num_workers`: 0
|
| 356 |
+
- `dataloader_prefetch_factor`: None
|
| 357 |
+
- `past_index`: -1
|
| 358 |
+
- `disable_tqdm`: False
|
| 359 |
+
- `remove_unused_columns`: True
|
| 360 |
+
- `label_names`: None
|
| 361 |
+
- `load_best_model_at_end`: True
|
| 362 |
+
- `ignore_data_skip`: False
|
| 363 |
+
- `fsdp`: []
|
| 364 |
+
- `fsdp_min_num_params`: 0
|
| 365 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 366 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 367 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 368 |
+
- `deepspeed`: None
|
| 369 |
+
- `label_smoothing_factor`: 0.0
|
| 370 |
+
- `optim`: adamw_torch
|
| 371 |
+
- `optim_args`: None
|
| 372 |
+
- `adafactor`: False
|
| 373 |
+
- `group_by_length`: False
|
| 374 |
+
- `length_column_name`: length
|
| 375 |
+
- `ddp_find_unused_parameters`: None
|
| 376 |
+
- `ddp_bucket_cap_mb`: None
|
| 377 |
+
- `ddp_broadcast_buffers`: False
|
| 378 |
+
- `dataloader_pin_memory`: True
|
| 379 |
+
- `dataloader_persistent_workers`: False
|
| 380 |
+
- `skip_memory_metrics`: True
|
| 381 |
+
- `use_legacy_prediction_loop`: False
|
| 382 |
+
- `push_to_hub`: False
|
| 383 |
+
- `resume_from_checkpoint`: None
|
| 384 |
+
- `hub_model_id`: None
|
| 385 |
+
- `hub_strategy`: every_save
|
| 386 |
+
- `hub_private_repo`: None
|
| 387 |
+
- `hub_always_push`: False
|
| 388 |
+
- `hub_revision`: None
|
| 389 |
+
- `gradient_checkpointing`: False
|
| 390 |
+
- `gradient_checkpointing_kwargs`: None
|
| 391 |
+
- `include_inputs_for_metrics`: False
|
| 392 |
+
- `include_for_metrics`: []
|
| 393 |
+
- `eval_do_concat_batches`: True
|
| 394 |
+
- `fp16_backend`: auto
|
| 395 |
+
- `push_to_hub_model_id`: None
|
| 396 |
+
- `push_to_hub_organization`: None
|
| 397 |
+
- `mp_parameters`:
|
| 398 |
+
- `auto_find_batch_size`: False
|
| 399 |
+
- `full_determinism`: False
|
| 400 |
+
- `torchdynamo`: None
|
| 401 |
+
- `ray_scope`: last
|
| 402 |
+
- `ddp_timeout`: 1800
|
| 403 |
+
- `torch_compile`: False
|
| 404 |
+
- `torch_compile_backend`: None
|
| 405 |
+
- `torch_compile_mode`: None
|
| 406 |
+
- `include_tokens_per_second`: False
|
| 407 |
+
- `include_num_input_tokens_seen`: False
|
| 408 |
+
- `neftune_noise_alpha`: None
|
| 409 |
+
- `optim_target_modules`: None
|
| 410 |
+
- `batch_eval_metrics`: False
|
| 411 |
+
- `eval_on_start`: False
|
| 412 |
+
- `use_liger_kernel`: False
|
| 413 |
+
- `liger_kernel_config`: None
|
| 414 |
+
- `eval_use_gather_object`: False
|
| 415 |
+
- `average_tokens_across_devices`: False
|
| 416 |
+
- `prompts`: None
|
| 417 |
+
- `batch_sampler`: batch_sampler
|
| 418 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 419 |
+
- `router_mapping`: {}
|
| 420 |
+
- `learning_rate_mapping`: {}
|
| 421 |
+
|
| 422 |
+
</details>
|
| 423 |
+
|
| 424 |
+
### Training Logs
|
| 425 |
+
| Epoch | Step | Training Loss | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
|
| 426 |
+
|:------:|:----:|:-------------:|:------------------------:|:-------------------------:|:-------------------:|:--------------------------:|
|
| 427 |
+
| -1 | -1 | - | 0.0063 (-0.5341) | 0.1891 (-0.1359) | 0.0144 (-0.4863) | 0.0699 (-0.3854) |
|
| 428 |
+
| 0.0004 | 1 | 2.565 | - | - | - | - |
|
| 429 |
+
| -1 | -1 | - | 0.4090 (-0.1314) | 0.2520 (-0.0731) | 0.2731 (-0.2276) | 0.3113 (-0.1440) |
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
### Framework Versions
|
| 433 |
+
- Python: 3.10.18
|
| 434 |
+
- Sentence Transformers: 5.0.0
|
| 435 |
+
- Transformers: 4.56.0.dev0
|
| 436 |
+
- PyTorch: 2.7.1+cu126
|
| 437 |
+
- Accelerate: 1.9.0
|
| 438 |
+
- Datasets: 4.0.0
|
| 439 |
+
- Tokenizers: 0.21.4
|
| 440 |
+
|
| 441 |
+
## Citation
|
| 442 |
+
|
| 443 |
+
### BibTeX
|
| 444 |
+
|
| 445 |
+
#### Sentence Transformers
|
| 446 |
+
```bibtex
|
| 447 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 448 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 449 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 450 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 451 |
+
month = "11",
|
| 452 |
+
year = "2019",
|
| 453 |
+
publisher = "Association for Computational Linguistics",
|
| 454 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 455 |
+
}
|
| 456 |
+
```
|
| 457 |
+
|
| 458 |
+
#### ListNetLoss
|
| 459 |
+
```bibtex
|
| 460 |
+
@inproceedings{cao2007learning,
|
| 461 |
+
title={Learning to Rank: From Pairwise Approach to Listwise Approach},
|
| 462 |
+
author={Cao, Zhe and Qin, Tao and Liu, Tie-Yan and Tsai, Ming-Feng and Li, Hang},
|
| 463 |
+
booktitle={Proceedings of the 24th international conference on Machine learning},
|
| 464 |
+
pages={129--136},
|
| 465 |
+
year={2007}
|
| 466 |
+
}
|
| 467 |
+
```
|
| 468 |
+
|
| 469 |
+
<!--
|
| 470 |
+
## Glossary
|
| 471 |
+
|
| 472 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 473 |
+
-->
|
| 474 |
+
|
| 475 |
+
<!--
|
| 476 |
+
## Model Card Authors
|
| 477 |
+
|
| 478 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 479 |
+
-->
|
| 480 |
+
|
| 481 |
+
<!--
|
| 482 |
+
## Model Card Contact
|
| 483 |
+
|
| 484 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 485 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"ModernBertForSequenceClassification"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 50281,
|
| 8 |
+
"causal_mask": false,
|
| 9 |
+
"classifier_activation": "gelu",
|
| 10 |
+
"classifier_bias": false,
|
| 11 |
+
"classifier_dropout": 0.0,
|
| 12 |
+
"classifier_pooling": "mean",
|
| 13 |
+
"cls_token_id": 50281,
|
| 14 |
+
"decoder_bias": true,
|
| 15 |
+
"deterministic_flash_attn": false,
|
| 16 |
+
"embedding_dropout": 0.0,
|
| 17 |
+
"eos_token_id": 50282,
|
| 18 |
+
"global_attn_every_n_layers": 3,
|
| 19 |
+
"global_rope_theta": 160000.0,
|
| 20 |
+
"gradient_checkpointing": false,
|
| 21 |
+
"hidden_activation": "gelu",
|
| 22 |
+
"hidden_size": 256,
|
| 23 |
+
"id2label": {
|
| 24 |
+
"0": "LABEL_0"
|
| 25 |
+
},
|
| 26 |
+
"initializer_cutoff_factor": 2.0,
|
| 27 |
+
"initializer_range": 0.02,
|
| 28 |
+
"intermediate_size": 384,
|
| 29 |
+
"is_causal": false,
|
| 30 |
+
"label2id": {
|
| 31 |
+
"LABEL_0": 0
|
| 32 |
+
},
|
| 33 |
+
"layer_norm_eps": 1e-05,
|
| 34 |
+
"local_attention": 128,
|
| 35 |
+
"local_rope_theta": 160000.0,
|
| 36 |
+
"max_position_embeddings": 7999,
|
| 37 |
+
"mlp_bias": false,
|
| 38 |
+
"mlp_dropout": 0.0,
|
| 39 |
+
"model_type": "modernbert",
|
| 40 |
+
"norm_bias": false,
|
| 41 |
+
"norm_eps": 1e-05,
|
| 42 |
+
"num_attention_heads": 4,
|
| 43 |
+
"num_hidden_layers": 7,
|
| 44 |
+
"pad_token_id": 50283,
|
| 45 |
+
"position_embedding_type": "sans_pos",
|
| 46 |
+
"repad_logits_with_grad": false,
|
| 47 |
+
"sentence_transformers": {
|
| 48 |
+
"activation_fn": "torch.nn.modules.activation.Sigmoid",
|
| 49 |
+
"version": "5.0.0"
|
| 50 |
+
},
|
| 51 |
+
"sep_token_id": 50282,
|
| 52 |
+
"sparse_pred_ignore_index": -100,
|
| 53 |
+
"sparse_prediction": false,
|
| 54 |
+
"torch_dtype": "float32",
|
| 55 |
+
"transformers_version": "4.56.0.dev0",
|
| 56 |
+
"vocab_size": 50368
|
| 57 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1ad02f464ca37c6f0841d5587ea38a1c58dda75cf2c1e0db1b6c2b66a03d8c24
|
| 3 |
+
size 67458708
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": true,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,945 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "|||IP_ADDRESS|||",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": true,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": false
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<|padding|>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"50254": {
|
| 20 |
+
"content": " ",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": true,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": false
|
| 26 |
+
},
|
| 27 |
+
"50255": {
|
| 28 |
+
"content": " ",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": true,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": false
|
| 34 |
+
},
|
| 35 |
+
"50256": {
|
| 36 |
+
"content": " ",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": true,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": false
|
| 42 |
+
},
|
| 43 |
+
"50257": {
|
| 44 |
+
"content": " ",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": true,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": false
|
| 50 |
+
},
|
| 51 |
+
"50258": {
|
| 52 |
+
"content": " ",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": true,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": false
|
| 58 |
+
},
|
| 59 |
+
"50259": {
|
| 60 |
+
"content": " ",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": true,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": false,
|
| 65 |
+
"special": false
|
| 66 |
+
},
|
| 67 |
+
"50260": {
|
| 68 |
+
"content": " ",
|
| 69 |
+
"lstrip": false,
|
| 70 |
+
"normalized": true,
|
| 71 |
+
"rstrip": false,
|
| 72 |
+
"single_word": false,
|
| 73 |
+
"special": false
|
| 74 |
+
},
|
| 75 |
+
"50261": {
|
| 76 |
+
"content": " ",
|
| 77 |
+
"lstrip": false,
|
| 78 |
+
"normalized": true,
|
| 79 |
+
"rstrip": false,
|
| 80 |
+
"single_word": false,
|
| 81 |
+
"special": false
|
| 82 |
+
},
|
| 83 |
+
"50262": {
|
| 84 |
+
"content": " ",
|
| 85 |
+
"lstrip": false,
|
| 86 |
+
"normalized": true,
|
| 87 |
+
"rstrip": false,
|
| 88 |
+
"single_word": false,
|
| 89 |
+
"special": false
|
| 90 |
+
},
|
| 91 |
+
"50263": {
|
| 92 |
+
"content": " ",
|
| 93 |
+
"lstrip": false,
|
| 94 |
+
"normalized": true,
|
| 95 |
+
"rstrip": false,
|
| 96 |
+
"single_word": false,
|
| 97 |
+
"special": false
|
| 98 |
+
},
|
| 99 |
+
"50264": {
|
| 100 |
+
"content": " ",
|
| 101 |
+
"lstrip": false,
|
| 102 |
+
"normalized": true,
|
| 103 |
+
"rstrip": false,
|
| 104 |
+
"single_word": false,
|
| 105 |
+
"special": false
|
| 106 |
+
},
|
| 107 |
+
"50265": {
|
| 108 |
+
"content": " ",
|
| 109 |
+
"lstrip": false,
|
| 110 |
+
"normalized": true,
|
| 111 |
+
"rstrip": false,
|
| 112 |
+
"single_word": false,
|
| 113 |
+
"special": false
|
| 114 |
+
},
|
| 115 |
+
"50266": {
|
| 116 |
+
"content": " ",
|
| 117 |
+
"lstrip": false,
|
| 118 |
+
"normalized": true,
|
| 119 |
+
"rstrip": false,
|
| 120 |
+
"single_word": false,
|
| 121 |
+
"special": false
|
| 122 |
+
},
|
| 123 |
+
"50267": {
|
| 124 |
+
"content": " ",
|
| 125 |
+
"lstrip": false,
|
| 126 |
+
"normalized": true,
|
| 127 |
+
"rstrip": false,
|
| 128 |
+
"single_word": false,
|
| 129 |
+
"special": false
|
| 130 |
+
},
|
| 131 |
+
"50268": {
|
| 132 |
+
"content": " ",
|
| 133 |
+
"lstrip": false,
|
| 134 |
+
"normalized": true,
|
| 135 |
+
"rstrip": false,
|
| 136 |
+
"single_word": false,
|
| 137 |
+
"special": false
|
| 138 |
+
},
|
| 139 |
+
"50269": {
|
| 140 |
+
"content": " ",
|
| 141 |
+
"lstrip": false,
|
| 142 |
+
"normalized": true,
|
| 143 |
+
"rstrip": false,
|
| 144 |
+
"single_word": false,
|
| 145 |
+
"special": false
|
| 146 |
+
},
|
| 147 |
+
"50270": {
|
| 148 |
+
"content": " ",
|
| 149 |
+
"lstrip": false,
|
| 150 |
+
"normalized": true,
|
| 151 |
+
"rstrip": false,
|
| 152 |
+
"single_word": false,
|
| 153 |
+
"special": false
|
| 154 |
+
},
|
| 155 |
+
"50271": {
|
| 156 |
+
"content": " ",
|
| 157 |
+
"lstrip": false,
|
| 158 |
+
"normalized": true,
|
| 159 |
+
"rstrip": false,
|
| 160 |
+
"single_word": false,
|
| 161 |
+
"special": false
|
| 162 |
+
},
|
| 163 |
+
"50272": {
|
| 164 |
+
"content": " ",
|
| 165 |
+
"lstrip": false,
|
| 166 |
+
"normalized": true,
|
| 167 |
+
"rstrip": false,
|
| 168 |
+
"single_word": false,
|
| 169 |
+
"special": false
|
| 170 |
+
},
|
| 171 |
+
"50273": {
|
| 172 |
+
"content": " ",
|
| 173 |
+
"lstrip": false,
|
| 174 |
+
"normalized": true,
|
| 175 |
+
"rstrip": false,
|
| 176 |
+
"single_word": false,
|
| 177 |
+
"special": false
|
| 178 |
+
},
|
| 179 |
+
"50274": {
|
| 180 |
+
"content": " ",
|
| 181 |
+
"lstrip": false,
|
| 182 |
+
"normalized": true,
|
| 183 |
+
"rstrip": false,
|
| 184 |
+
"single_word": false,
|
| 185 |
+
"special": false
|
| 186 |
+
},
|
| 187 |
+
"50275": {
|
| 188 |
+
"content": " ",
|
| 189 |
+
"lstrip": false,
|
| 190 |
+
"normalized": true,
|
| 191 |
+
"rstrip": false,
|
| 192 |
+
"single_word": false,
|
| 193 |
+
"special": false
|
| 194 |
+
},
|
| 195 |
+
"50276": {
|
| 196 |
+
"content": " ",
|
| 197 |
+
"lstrip": false,
|
| 198 |
+
"normalized": true,
|
| 199 |
+
"rstrip": false,
|
| 200 |
+
"single_word": false,
|
| 201 |
+
"special": false
|
| 202 |
+
},
|
| 203 |
+
"50277": {
|
| 204 |
+
"content": "|||EMAIL_ADDRESS|||",
|
| 205 |
+
"lstrip": false,
|
| 206 |
+
"normalized": true,
|
| 207 |
+
"rstrip": false,
|
| 208 |
+
"single_word": false,
|
| 209 |
+
"special": false
|
| 210 |
+
},
|
| 211 |
+
"50278": {
|
| 212 |
+
"content": "|||PHONE_NUMBER|||",
|
| 213 |
+
"lstrip": false,
|
| 214 |
+
"normalized": true,
|
| 215 |
+
"rstrip": false,
|
| 216 |
+
"single_word": false,
|
| 217 |
+
"special": false
|
| 218 |
+
},
|
| 219 |
+
"50279": {
|
| 220 |
+
"content": "<|endoftext|>",
|
| 221 |
+
"lstrip": false,
|
| 222 |
+
"normalized": false,
|
| 223 |
+
"rstrip": false,
|
| 224 |
+
"single_word": false,
|
| 225 |
+
"special": true
|
| 226 |
+
},
|
| 227 |
+
"50280": {
|
| 228 |
+
"content": "[UNK]",
|
| 229 |
+
"lstrip": false,
|
| 230 |
+
"normalized": false,
|
| 231 |
+
"rstrip": false,
|
| 232 |
+
"single_word": false,
|
| 233 |
+
"special": true
|
| 234 |
+
},
|
| 235 |
+
"50281": {
|
| 236 |
+
"content": "[CLS]",
|
| 237 |
+
"lstrip": false,
|
| 238 |
+
"normalized": false,
|
| 239 |
+
"rstrip": false,
|
| 240 |
+
"single_word": false,
|
| 241 |
+
"special": true
|
| 242 |
+
},
|
| 243 |
+
"50282": {
|
| 244 |
+
"content": "[SEP]",
|
| 245 |
+
"lstrip": false,
|
| 246 |
+
"normalized": false,
|
| 247 |
+
"rstrip": false,
|
| 248 |
+
"single_word": false,
|
| 249 |
+
"special": true
|
| 250 |
+
},
|
| 251 |
+
"50283": {
|
| 252 |
+
"content": "[PAD]",
|
| 253 |
+
"lstrip": false,
|
| 254 |
+
"normalized": false,
|
| 255 |
+
"rstrip": false,
|
| 256 |
+
"single_word": false,
|
| 257 |
+
"special": true
|
| 258 |
+
},
|
| 259 |
+
"50284": {
|
| 260 |
+
"content": "[MASK]",
|
| 261 |
+
"lstrip": true,
|
| 262 |
+
"normalized": false,
|
| 263 |
+
"rstrip": false,
|
| 264 |
+
"single_word": false,
|
| 265 |
+
"special": true
|
| 266 |
+
},
|
| 267 |
+
"50285": {
|
| 268 |
+
"content": "[unused0]",
|
| 269 |
+
"lstrip": false,
|
| 270 |
+
"normalized": true,
|
| 271 |
+
"rstrip": false,
|
| 272 |
+
"single_word": false,
|
| 273 |
+
"special": false
|
| 274 |
+
},
|
| 275 |
+
"50286": {
|
| 276 |
+
"content": "[unused1]",
|
| 277 |
+
"lstrip": false,
|
| 278 |
+
"normalized": true,
|
| 279 |
+
"rstrip": false,
|
| 280 |
+
"single_word": false,
|
| 281 |
+
"special": false
|
| 282 |
+
},
|
| 283 |
+
"50287": {
|
| 284 |
+
"content": "[unused2]",
|
| 285 |
+
"lstrip": false,
|
| 286 |
+
"normalized": true,
|
| 287 |
+
"rstrip": false,
|
| 288 |
+
"single_word": false,
|
| 289 |
+
"special": false
|
| 290 |
+
},
|
| 291 |
+
"50288": {
|
| 292 |
+
"content": "[unused3]",
|
| 293 |
+
"lstrip": false,
|
| 294 |
+
"normalized": true,
|
| 295 |
+
"rstrip": false,
|
| 296 |
+
"single_word": false,
|
| 297 |
+
"special": false
|
| 298 |
+
},
|
| 299 |
+
"50289": {
|
| 300 |
+
"content": "[unused4]",
|
| 301 |
+
"lstrip": false,
|
| 302 |
+
"normalized": true,
|
| 303 |
+
"rstrip": false,
|
| 304 |
+
"single_word": false,
|
| 305 |
+
"special": false
|
| 306 |
+
},
|
| 307 |
+
"50290": {
|
| 308 |
+
"content": "[unused5]",
|
| 309 |
+
"lstrip": false,
|
| 310 |
+
"normalized": true,
|
| 311 |
+
"rstrip": false,
|
| 312 |
+
"single_word": false,
|
| 313 |
+
"special": false
|
| 314 |
+
},
|
| 315 |
+
"50291": {
|
| 316 |
+
"content": "[unused6]",
|
| 317 |
+
"lstrip": false,
|
| 318 |
+
"normalized": true,
|
| 319 |
+
"rstrip": false,
|
| 320 |
+
"single_word": false,
|
| 321 |
+
"special": false
|
| 322 |
+
},
|
| 323 |
+
"50292": {
|
| 324 |
+
"content": "[unused7]",
|
| 325 |
+
"lstrip": false,
|
| 326 |
+
"normalized": true,
|
| 327 |
+
"rstrip": false,
|
| 328 |
+
"single_word": false,
|
| 329 |
+
"special": false
|
| 330 |
+
},
|
| 331 |
+
"50293": {
|
| 332 |
+
"content": "[unused8]",
|
| 333 |
+
"lstrip": false,
|
| 334 |
+
"normalized": true,
|
| 335 |
+
"rstrip": false,
|
| 336 |
+
"single_word": false,
|
| 337 |
+
"special": false
|
| 338 |
+
},
|
| 339 |
+
"50294": {
|
| 340 |
+
"content": "[unused9]",
|
| 341 |
+
"lstrip": false,
|
| 342 |
+
"normalized": true,
|
| 343 |
+
"rstrip": false,
|
| 344 |
+
"single_word": false,
|
| 345 |
+
"special": false
|
| 346 |
+
},
|
| 347 |
+
"50295": {
|
| 348 |
+
"content": "[unused10]",
|
| 349 |
+
"lstrip": false,
|
| 350 |
+
"normalized": true,
|
| 351 |
+
"rstrip": false,
|
| 352 |
+
"single_word": false,
|
| 353 |
+
"special": false
|
| 354 |
+
},
|
| 355 |
+
"50296": {
|
| 356 |
+
"content": "[unused11]",
|
| 357 |
+
"lstrip": false,
|
| 358 |
+
"normalized": true,
|
| 359 |
+
"rstrip": false,
|
| 360 |
+
"single_word": false,
|
| 361 |
+
"special": false
|
| 362 |
+
},
|
| 363 |
+
"50297": {
|
| 364 |
+
"content": "[unused12]",
|
| 365 |
+
"lstrip": false,
|
| 366 |
+
"normalized": true,
|
| 367 |
+
"rstrip": false,
|
| 368 |
+
"single_word": false,
|
| 369 |
+
"special": false
|
| 370 |
+
},
|
| 371 |
+
"50298": {
|
| 372 |
+
"content": "[unused13]",
|
| 373 |
+
"lstrip": false,
|
| 374 |
+
"normalized": true,
|
| 375 |
+
"rstrip": false,
|
| 376 |
+
"single_word": false,
|
| 377 |
+
"special": false
|
| 378 |
+
},
|
| 379 |
+
"50299": {
|
| 380 |
+
"content": "[unused14]",
|
| 381 |
+
"lstrip": false,
|
| 382 |
+
"normalized": true,
|
| 383 |
+
"rstrip": false,
|
| 384 |
+
"single_word": false,
|
| 385 |
+
"special": false
|
| 386 |
+
},
|
| 387 |
+
"50300": {
|
| 388 |
+
"content": "[unused15]",
|
| 389 |
+
"lstrip": false,
|
| 390 |
+
"normalized": true,
|
| 391 |
+
"rstrip": false,
|
| 392 |
+
"single_word": false,
|
| 393 |
+
"special": false
|
| 394 |
+
},
|
| 395 |
+
"50301": {
|
| 396 |
+
"content": "[unused16]",
|
| 397 |
+
"lstrip": false,
|
| 398 |
+
"normalized": true,
|
| 399 |
+
"rstrip": false,
|
| 400 |
+
"single_word": false,
|
| 401 |
+
"special": false
|
| 402 |
+
},
|
| 403 |
+
"50302": {
|
| 404 |
+
"content": "[unused17]",
|
| 405 |
+
"lstrip": false,
|
| 406 |
+
"normalized": true,
|
| 407 |
+
"rstrip": false,
|
| 408 |
+
"single_word": false,
|
| 409 |
+
"special": false
|
| 410 |
+
},
|
| 411 |
+
"50303": {
|
| 412 |
+
"content": "[unused18]",
|
| 413 |
+
"lstrip": false,
|
| 414 |
+
"normalized": true,
|
| 415 |
+
"rstrip": false,
|
| 416 |
+
"single_word": false,
|
| 417 |
+
"special": false
|
| 418 |
+
},
|
| 419 |
+
"50304": {
|
| 420 |
+
"content": "[unused19]",
|
| 421 |
+
"lstrip": false,
|
| 422 |
+
"normalized": true,
|
| 423 |
+
"rstrip": false,
|
| 424 |
+
"single_word": false,
|
| 425 |
+
"special": false
|
| 426 |
+
},
|
| 427 |
+
"50305": {
|
| 428 |
+
"content": "[unused20]",
|
| 429 |
+
"lstrip": false,
|
| 430 |
+
"normalized": true,
|
| 431 |
+
"rstrip": false,
|
| 432 |
+
"single_word": false,
|
| 433 |
+
"special": false
|
| 434 |
+
},
|
| 435 |
+
"50306": {
|
| 436 |
+
"content": "[unused21]",
|
| 437 |
+
"lstrip": false,
|
| 438 |
+
"normalized": true,
|
| 439 |
+
"rstrip": false,
|
| 440 |
+
"single_word": false,
|
| 441 |
+
"special": false
|
| 442 |
+
},
|
| 443 |
+
"50307": {
|
| 444 |
+
"content": "[unused22]",
|
| 445 |
+
"lstrip": false,
|
| 446 |
+
"normalized": true,
|
| 447 |
+
"rstrip": false,
|
| 448 |
+
"single_word": false,
|
| 449 |
+
"special": false
|
| 450 |
+
},
|
| 451 |
+
"50308": {
|
| 452 |
+
"content": "[unused23]",
|
| 453 |
+
"lstrip": false,
|
| 454 |
+
"normalized": true,
|
| 455 |
+
"rstrip": false,
|
| 456 |
+
"single_word": false,
|
| 457 |
+
"special": false
|
| 458 |
+
},
|
| 459 |
+
"50309": {
|
| 460 |
+
"content": "[unused24]",
|
| 461 |
+
"lstrip": false,
|
| 462 |
+
"normalized": true,
|
| 463 |
+
"rstrip": false,
|
| 464 |
+
"single_word": false,
|
| 465 |
+
"special": false
|
| 466 |
+
},
|
| 467 |
+
"50310": {
|
| 468 |
+
"content": "[unused25]",
|
| 469 |
+
"lstrip": false,
|
| 470 |
+
"normalized": true,
|
| 471 |
+
"rstrip": false,
|
| 472 |
+
"single_word": false,
|
| 473 |
+
"special": false
|
| 474 |
+
},
|
| 475 |
+
"50311": {
|
| 476 |
+
"content": "[unused26]",
|
| 477 |
+
"lstrip": false,
|
| 478 |
+
"normalized": true,
|
| 479 |
+
"rstrip": false,
|
| 480 |
+
"single_word": false,
|
| 481 |
+
"special": false
|
| 482 |
+
},
|
| 483 |
+
"50312": {
|
| 484 |
+
"content": "[unused27]",
|
| 485 |
+
"lstrip": false,
|
| 486 |
+
"normalized": true,
|
| 487 |
+
"rstrip": false,
|
| 488 |
+
"single_word": false,
|
| 489 |
+
"special": false
|
| 490 |
+
},
|
| 491 |
+
"50313": {
|
| 492 |
+
"content": "[unused28]",
|
| 493 |
+
"lstrip": false,
|
| 494 |
+
"normalized": true,
|
| 495 |
+
"rstrip": false,
|
| 496 |
+
"single_word": false,
|
| 497 |
+
"special": false
|
| 498 |
+
},
|
| 499 |
+
"50314": {
|
| 500 |
+
"content": "[unused29]",
|
| 501 |
+
"lstrip": false,
|
| 502 |
+
"normalized": true,
|
| 503 |
+
"rstrip": false,
|
| 504 |
+
"single_word": false,
|
| 505 |
+
"special": false
|
| 506 |
+
},
|
| 507 |
+
"50315": {
|
| 508 |
+
"content": "[unused30]",
|
| 509 |
+
"lstrip": false,
|
| 510 |
+
"normalized": true,
|
| 511 |
+
"rstrip": false,
|
| 512 |
+
"single_word": false,
|
| 513 |
+
"special": false
|
| 514 |
+
},
|
| 515 |
+
"50316": {
|
| 516 |
+
"content": "[unused31]",
|
| 517 |
+
"lstrip": false,
|
| 518 |
+
"normalized": true,
|
| 519 |
+
"rstrip": false,
|
| 520 |
+
"single_word": false,
|
| 521 |
+
"special": false
|
| 522 |
+
},
|
| 523 |
+
"50317": {
|
| 524 |
+
"content": "[unused32]",
|
| 525 |
+
"lstrip": false,
|
| 526 |
+
"normalized": true,
|
| 527 |
+
"rstrip": false,
|
| 528 |
+
"single_word": false,
|
| 529 |
+
"special": false
|
| 530 |
+
},
|
| 531 |
+
"50318": {
|
| 532 |
+
"content": "[unused33]",
|
| 533 |
+
"lstrip": false,
|
| 534 |
+
"normalized": true,
|
| 535 |
+
"rstrip": false,
|
| 536 |
+
"single_word": false,
|
| 537 |
+
"special": false
|
| 538 |
+
},
|
| 539 |
+
"50319": {
|
| 540 |
+
"content": "[unused34]",
|
| 541 |
+
"lstrip": false,
|
| 542 |
+
"normalized": true,
|
| 543 |
+
"rstrip": false,
|
| 544 |
+
"single_word": false,
|
| 545 |
+
"special": false
|
| 546 |
+
},
|
| 547 |
+
"50320": {
|
| 548 |
+
"content": "[unused35]",
|
| 549 |
+
"lstrip": false,
|
| 550 |
+
"normalized": true,
|
| 551 |
+
"rstrip": false,
|
| 552 |
+
"single_word": false,
|
| 553 |
+
"special": false
|
| 554 |
+
},
|
| 555 |
+
"50321": {
|
| 556 |
+
"content": "[unused36]",
|
| 557 |
+
"lstrip": false,
|
| 558 |
+
"normalized": true,
|
| 559 |
+
"rstrip": false,
|
| 560 |
+
"single_word": false,
|
| 561 |
+
"special": false
|
| 562 |
+
},
|
| 563 |
+
"50322": {
|
| 564 |
+
"content": "[unused37]",
|
| 565 |
+
"lstrip": false,
|
| 566 |
+
"normalized": true,
|
| 567 |
+
"rstrip": false,
|
| 568 |
+
"single_word": false,
|
| 569 |
+
"special": false
|
| 570 |
+
},
|
| 571 |
+
"50323": {
|
| 572 |
+
"content": "[unused38]",
|
| 573 |
+
"lstrip": false,
|
| 574 |
+
"normalized": true,
|
| 575 |
+
"rstrip": false,
|
| 576 |
+
"single_word": false,
|
| 577 |
+
"special": false
|
| 578 |
+
},
|
| 579 |
+
"50324": {
|
| 580 |
+
"content": "[unused39]",
|
| 581 |
+
"lstrip": false,
|
| 582 |
+
"normalized": true,
|
| 583 |
+
"rstrip": false,
|
| 584 |
+
"single_word": false,
|
| 585 |
+
"special": false
|
| 586 |
+
},
|
| 587 |
+
"50325": {
|
| 588 |
+
"content": "[unused40]",
|
| 589 |
+
"lstrip": false,
|
| 590 |
+
"normalized": true,
|
| 591 |
+
"rstrip": false,
|
| 592 |
+
"single_word": false,
|
| 593 |
+
"special": false
|
| 594 |
+
},
|
| 595 |
+
"50326": {
|
| 596 |
+
"content": "[unused41]",
|
| 597 |
+
"lstrip": false,
|
| 598 |
+
"normalized": true,
|
| 599 |
+
"rstrip": false,
|
| 600 |
+
"single_word": false,
|
| 601 |
+
"special": false
|
| 602 |
+
},
|
| 603 |
+
"50327": {
|
| 604 |
+
"content": "[unused42]",
|
| 605 |
+
"lstrip": false,
|
| 606 |
+
"normalized": true,
|
| 607 |
+
"rstrip": false,
|
| 608 |
+
"single_word": false,
|
| 609 |
+
"special": false
|
| 610 |
+
},
|
| 611 |
+
"50328": {
|
| 612 |
+
"content": "[unused43]",
|
| 613 |
+
"lstrip": false,
|
| 614 |
+
"normalized": true,
|
| 615 |
+
"rstrip": false,
|
| 616 |
+
"single_word": false,
|
| 617 |
+
"special": false
|
| 618 |
+
},
|
| 619 |
+
"50329": {
|
| 620 |
+
"content": "[unused44]",
|
| 621 |
+
"lstrip": false,
|
| 622 |
+
"normalized": true,
|
| 623 |
+
"rstrip": false,
|
| 624 |
+
"single_word": false,
|
| 625 |
+
"special": false
|
| 626 |
+
},
|
| 627 |
+
"50330": {
|
| 628 |
+
"content": "[unused45]",
|
| 629 |
+
"lstrip": false,
|
| 630 |
+
"normalized": true,
|
| 631 |
+
"rstrip": false,
|
| 632 |
+
"single_word": false,
|
| 633 |
+
"special": false
|
| 634 |
+
},
|
| 635 |
+
"50331": {
|
| 636 |
+
"content": "[unused46]",
|
| 637 |
+
"lstrip": false,
|
| 638 |
+
"normalized": true,
|
| 639 |
+
"rstrip": false,
|
| 640 |
+
"single_word": false,
|
| 641 |
+
"special": false
|
| 642 |
+
},
|
| 643 |
+
"50332": {
|
| 644 |
+
"content": "[unused47]",
|
| 645 |
+
"lstrip": false,
|
| 646 |
+
"normalized": true,
|
| 647 |
+
"rstrip": false,
|
| 648 |
+
"single_word": false,
|
| 649 |
+
"special": false
|
| 650 |
+
},
|
| 651 |
+
"50333": {
|
| 652 |
+
"content": "[unused48]",
|
| 653 |
+
"lstrip": false,
|
| 654 |
+
"normalized": true,
|
| 655 |
+
"rstrip": false,
|
| 656 |
+
"single_word": false,
|
| 657 |
+
"special": false
|
| 658 |
+
},
|
| 659 |
+
"50334": {
|
| 660 |
+
"content": "[unused49]",
|
| 661 |
+
"lstrip": false,
|
| 662 |
+
"normalized": true,
|
| 663 |
+
"rstrip": false,
|
| 664 |
+
"single_word": false,
|
| 665 |
+
"special": false
|
| 666 |
+
},
|
| 667 |
+
"50335": {
|
| 668 |
+
"content": "[unused50]",
|
| 669 |
+
"lstrip": false,
|
| 670 |
+
"normalized": true,
|
| 671 |
+
"rstrip": false,
|
| 672 |
+
"single_word": false,
|
| 673 |
+
"special": false
|
| 674 |
+
},
|
| 675 |
+
"50336": {
|
| 676 |
+
"content": "[unused51]",
|
| 677 |
+
"lstrip": false,
|
| 678 |
+
"normalized": true,
|
| 679 |
+
"rstrip": false,
|
| 680 |
+
"single_word": false,
|
| 681 |
+
"special": false
|
| 682 |
+
},
|
| 683 |
+
"50337": {
|
| 684 |
+
"content": "[unused52]",
|
| 685 |
+
"lstrip": false,
|
| 686 |
+
"normalized": true,
|
| 687 |
+
"rstrip": false,
|
| 688 |
+
"single_word": false,
|
| 689 |
+
"special": false
|
| 690 |
+
},
|
| 691 |
+
"50338": {
|
| 692 |
+
"content": "[unused53]",
|
| 693 |
+
"lstrip": false,
|
| 694 |
+
"normalized": true,
|
| 695 |
+
"rstrip": false,
|
| 696 |
+
"single_word": false,
|
| 697 |
+
"special": false
|
| 698 |
+
},
|
| 699 |
+
"50339": {
|
| 700 |
+
"content": "[unused54]",
|
| 701 |
+
"lstrip": false,
|
| 702 |
+
"normalized": true,
|
| 703 |
+
"rstrip": false,
|
| 704 |
+
"single_word": false,
|
| 705 |
+
"special": false
|
| 706 |
+
},
|
| 707 |
+
"50340": {
|
| 708 |
+
"content": "[unused55]",
|
| 709 |
+
"lstrip": false,
|
| 710 |
+
"normalized": true,
|
| 711 |
+
"rstrip": false,
|
| 712 |
+
"single_word": false,
|
| 713 |
+
"special": false
|
| 714 |
+
},
|
| 715 |
+
"50341": {
|
| 716 |
+
"content": "[unused56]",
|
| 717 |
+
"lstrip": false,
|
| 718 |
+
"normalized": true,
|
| 719 |
+
"rstrip": false,
|
| 720 |
+
"single_word": false,
|
| 721 |
+
"special": false
|
| 722 |
+
},
|
| 723 |
+
"50342": {
|
| 724 |
+
"content": "[unused57]",
|
| 725 |
+
"lstrip": false,
|
| 726 |
+
"normalized": true,
|
| 727 |
+
"rstrip": false,
|
| 728 |
+
"single_word": false,
|
| 729 |
+
"special": false
|
| 730 |
+
},
|
| 731 |
+
"50343": {
|
| 732 |
+
"content": "[unused58]",
|
| 733 |
+
"lstrip": false,
|
| 734 |
+
"normalized": true,
|
| 735 |
+
"rstrip": false,
|
| 736 |
+
"single_word": false,
|
| 737 |
+
"special": false
|
| 738 |
+
},
|
| 739 |
+
"50344": {
|
| 740 |
+
"content": "[unused59]",
|
| 741 |
+
"lstrip": false,
|
| 742 |
+
"normalized": true,
|
| 743 |
+
"rstrip": false,
|
| 744 |
+
"single_word": false,
|
| 745 |
+
"special": false
|
| 746 |
+
},
|
| 747 |
+
"50345": {
|
| 748 |
+
"content": "[unused60]",
|
| 749 |
+
"lstrip": false,
|
| 750 |
+
"normalized": true,
|
| 751 |
+
"rstrip": false,
|
| 752 |
+
"single_word": false,
|
| 753 |
+
"special": false
|
| 754 |
+
},
|
| 755 |
+
"50346": {
|
| 756 |
+
"content": "[unused61]",
|
| 757 |
+
"lstrip": false,
|
| 758 |
+
"normalized": true,
|
| 759 |
+
"rstrip": false,
|
| 760 |
+
"single_word": false,
|
| 761 |
+
"special": false
|
| 762 |
+
},
|
| 763 |
+
"50347": {
|
| 764 |
+
"content": "[unused62]",
|
| 765 |
+
"lstrip": false,
|
| 766 |
+
"normalized": true,
|
| 767 |
+
"rstrip": false,
|
| 768 |
+
"single_word": false,
|
| 769 |
+
"special": false
|
| 770 |
+
},
|
| 771 |
+
"50348": {
|
| 772 |
+
"content": "[unused63]",
|
| 773 |
+
"lstrip": false,
|
| 774 |
+
"normalized": true,
|
| 775 |
+
"rstrip": false,
|
| 776 |
+
"single_word": false,
|
| 777 |
+
"special": false
|
| 778 |
+
},
|
| 779 |
+
"50349": {
|
| 780 |
+
"content": "[unused64]",
|
| 781 |
+
"lstrip": false,
|
| 782 |
+
"normalized": true,
|
| 783 |
+
"rstrip": false,
|
| 784 |
+
"single_word": false,
|
| 785 |
+
"special": false
|
| 786 |
+
},
|
| 787 |
+
"50350": {
|
| 788 |
+
"content": "[unused65]",
|
| 789 |
+
"lstrip": false,
|
| 790 |
+
"normalized": true,
|
| 791 |
+
"rstrip": false,
|
| 792 |
+
"single_word": false,
|
| 793 |
+
"special": false
|
| 794 |
+
},
|
| 795 |
+
"50351": {
|
| 796 |
+
"content": "[unused66]",
|
| 797 |
+
"lstrip": false,
|
| 798 |
+
"normalized": true,
|
| 799 |
+
"rstrip": false,
|
| 800 |
+
"single_word": false,
|
| 801 |
+
"special": false
|
| 802 |
+
},
|
| 803 |
+
"50352": {
|
| 804 |
+
"content": "[unused67]",
|
| 805 |
+
"lstrip": false,
|
| 806 |
+
"normalized": true,
|
| 807 |
+
"rstrip": false,
|
| 808 |
+
"single_word": false,
|
| 809 |
+
"special": false
|
| 810 |
+
},
|
| 811 |
+
"50353": {
|
| 812 |
+
"content": "[unused68]",
|
| 813 |
+
"lstrip": false,
|
| 814 |
+
"normalized": true,
|
| 815 |
+
"rstrip": false,
|
| 816 |
+
"single_word": false,
|
| 817 |
+
"special": false
|
| 818 |
+
},
|
| 819 |
+
"50354": {
|
| 820 |
+
"content": "[unused69]",
|
| 821 |
+
"lstrip": false,
|
| 822 |
+
"normalized": true,
|
| 823 |
+
"rstrip": false,
|
| 824 |
+
"single_word": false,
|
| 825 |
+
"special": false
|
| 826 |
+
},
|
| 827 |
+
"50355": {
|
| 828 |
+
"content": "[unused70]",
|
| 829 |
+
"lstrip": false,
|
| 830 |
+
"normalized": true,
|
| 831 |
+
"rstrip": false,
|
| 832 |
+
"single_word": false,
|
| 833 |
+
"special": false
|
| 834 |
+
},
|
| 835 |
+
"50356": {
|
| 836 |
+
"content": "[unused71]",
|
| 837 |
+
"lstrip": false,
|
| 838 |
+
"normalized": true,
|
| 839 |
+
"rstrip": false,
|
| 840 |
+
"single_word": false,
|
| 841 |
+
"special": false
|
| 842 |
+
},
|
| 843 |
+
"50357": {
|
| 844 |
+
"content": "[unused72]",
|
| 845 |
+
"lstrip": false,
|
| 846 |
+
"normalized": true,
|
| 847 |
+
"rstrip": false,
|
| 848 |
+
"single_word": false,
|
| 849 |
+
"special": false
|
| 850 |
+
},
|
| 851 |
+
"50358": {
|
| 852 |
+
"content": "[unused73]",
|
| 853 |
+
"lstrip": false,
|
| 854 |
+
"normalized": true,
|
| 855 |
+
"rstrip": false,
|
| 856 |
+
"single_word": false,
|
| 857 |
+
"special": false
|
| 858 |
+
},
|
| 859 |
+
"50359": {
|
| 860 |
+
"content": "[unused74]",
|
| 861 |
+
"lstrip": false,
|
| 862 |
+
"normalized": true,
|
| 863 |
+
"rstrip": false,
|
| 864 |
+
"single_word": false,
|
| 865 |
+
"special": false
|
| 866 |
+
},
|
| 867 |
+
"50360": {
|
| 868 |
+
"content": "[unused75]",
|
| 869 |
+
"lstrip": false,
|
| 870 |
+
"normalized": true,
|
| 871 |
+
"rstrip": false,
|
| 872 |
+
"single_word": false,
|
| 873 |
+
"special": false
|
| 874 |
+
},
|
| 875 |
+
"50361": {
|
| 876 |
+
"content": "[unused76]",
|
| 877 |
+
"lstrip": false,
|
| 878 |
+
"normalized": true,
|
| 879 |
+
"rstrip": false,
|
| 880 |
+
"single_word": false,
|
| 881 |
+
"special": false
|
| 882 |
+
},
|
| 883 |
+
"50362": {
|
| 884 |
+
"content": "[unused77]",
|
| 885 |
+
"lstrip": false,
|
| 886 |
+
"normalized": true,
|
| 887 |
+
"rstrip": false,
|
| 888 |
+
"single_word": false,
|
| 889 |
+
"special": false
|
| 890 |
+
},
|
| 891 |
+
"50363": {
|
| 892 |
+
"content": "[unused78]",
|
| 893 |
+
"lstrip": false,
|
| 894 |
+
"normalized": true,
|
| 895 |
+
"rstrip": false,
|
| 896 |
+
"single_word": false,
|
| 897 |
+
"special": false
|
| 898 |
+
},
|
| 899 |
+
"50364": {
|
| 900 |
+
"content": "[unused79]",
|
| 901 |
+
"lstrip": false,
|
| 902 |
+
"normalized": true,
|
| 903 |
+
"rstrip": false,
|
| 904 |
+
"single_word": false,
|
| 905 |
+
"special": false
|
| 906 |
+
},
|
| 907 |
+
"50365": {
|
| 908 |
+
"content": "[unused80]",
|
| 909 |
+
"lstrip": false,
|
| 910 |
+
"normalized": true,
|
| 911 |
+
"rstrip": false,
|
| 912 |
+
"single_word": false,
|
| 913 |
+
"special": false
|
| 914 |
+
},
|
| 915 |
+
"50366": {
|
| 916 |
+
"content": "[unused81]",
|
| 917 |
+
"lstrip": false,
|
| 918 |
+
"normalized": true,
|
| 919 |
+
"rstrip": false,
|
| 920 |
+
"single_word": false,
|
| 921 |
+
"special": false
|
| 922 |
+
},
|
| 923 |
+
"50367": {
|
| 924 |
+
"content": "[unused82]",
|
| 925 |
+
"lstrip": false,
|
| 926 |
+
"normalized": true,
|
| 927 |
+
"rstrip": false,
|
| 928 |
+
"single_word": false,
|
| 929 |
+
"special": false
|
| 930 |
+
}
|
| 931 |
+
},
|
| 932 |
+
"clean_up_tokenization_spaces": true,
|
| 933 |
+
"cls_token": "[CLS]",
|
| 934 |
+
"extra_special_tokens": {},
|
| 935 |
+
"mask_token": "[MASK]",
|
| 936 |
+
"model_input_names": [
|
| 937 |
+
"input_ids",
|
| 938 |
+
"attention_mask"
|
| 939 |
+
],
|
| 940 |
+
"model_max_length": 7999,
|
| 941 |
+
"pad_token": "[PAD]",
|
| 942 |
+
"sep_token": "[SEP]",
|
| 943 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
| 944 |
+
"unk_token": "[UNK]"
|
| 945 |
+
}
|