adding __main__py file
Browse files- __main__.py +89 -0
__main__.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import Pipeline, AutoTokenizer
|
| 2 |
+
import torch
|
| 3 |
+
from bs4 import BeautifulSoup
|
| 4 |
+
import re
|
| 5 |
+
|
| 6 |
+
class MyPipeline(Pipeline):
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained("abacusai/Llama-3-Smaug-8B")
|
| 8 |
+
def _sanitize_parameters(self, **kwargs):
|
| 9 |
+
preprocess_kwargs = {}
|
| 10 |
+
if "context" in kwargs:
|
| 11 |
+
preprocess_kwargs["context"] = kwargs["context"]
|
| 12 |
+
if "search_person" in kwargs:
|
| 13 |
+
preprocess_kwargs["search_person"] = kwargs["search_person"]
|
| 14 |
+
return preprocess_kwargs, {}, {}
|
| 15 |
+
|
| 16 |
+
def preprocess(self, inputs, **kwargs):
|
| 17 |
+
tokenizer = MyPipeline.tokenizer
|
| 18 |
+
context = inputs["context"]
|
| 19 |
+
search_person = inputs["search_person"]
|
| 20 |
+
#print(f"here --> {len(context)}, {search_person}")
|
| 21 |
+
|
| 22 |
+
def create_prompt(context, search_person):
|
| 23 |
+
def clean_text(text):
|
| 24 |
+
soup = BeautifulSoup(text, 'html.parser')
|
| 25 |
+
for link in soup.find_all('a'):
|
| 26 |
+
link.decompose()
|
| 27 |
+
text = re.sub(r'\([^)]*\)', '', soup.get_text())
|
| 28 |
+
return text
|
| 29 |
+
|
| 30 |
+
def prepare_question(search_person):
|
| 31 |
+
q = f"""
|
| 32 |
+
Based on the information provided in the context, what is the most likely perception of {search_person}?
|
| 33 |
+
Pick one answer option.
|
| 34 |
+
|
| 35 |
+
Answer options:
|
| 36 |
+
|
| 37 |
+
Positive: {search_person} is portrayed in a favorable light, and the context suggests that she is a caring and responsible parent.
|
| 38 |
+
Negative: {search_person} is portrayed in an unfavorable light, and the context suggests that she is a neglectful and/or abusive parent.
|
| 39 |
+
Neutral: The context does not provide enough information to make a determination about the character or actions of {search_person}, or it presents a balanced and unbiased view of her.
|
| 40 |
+
"""
|
| 41 |
+
return q
|
| 42 |
+
|
| 43 |
+
context = clean_text(context)
|
| 44 |
+
question = prepare_question(search_person)
|
| 45 |
+
if len(tokenizer.tokenize(context + ' ' + question)) > tokenizer.model_max_length:
|
| 46 |
+
print("found such")
|
| 47 |
+
context = context[500:]
|
| 48 |
+
|
| 49 |
+
prompt_template = f"### CONTEXT\n{context}\n\n### QUESTION\n{question}\n\n### ANSWER\n"
|
| 50 |
+
return prompt_template
|
| 51 |
+
|
| 52 |
+
prompt = create_prompt(context, search_person)
|
| 53 |
+
predToken = tokenizer(prompt, return_tensors='pt')
|
| 54 |
+
#tokens = self.tokenizer(prompt, return_tensors='pt')
|
| 55 |
+
|
| 56 |
+
return predToken
|
| 57 |
+
|
| 58 |
+
def _forward(self, model_inputs):
|
| 59 |
+
tokenizer = MyPipeline.tokenizer
|
| 60 |
+
try:
|
| 61 |
+
# out of memory error is most likely to happen here
|
| 62 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 63 |
+
self.model = self.model.to(device)
|
| 64 |
+
model_inputs = {k:v.to(device) for k,v in model_inputs.items()}
|
| 65 |
+
except RuntimeError as e:
|
| 66 |
+
# explicitly transferring to cpu
|
| 67 |
+
self.model = self.model.to("cpu")
|
| 68 |
+
model_inputs = {k:v.to("cpu") for k,v in model_inputs.items()}
|
| 69 |
+
#model_inputs = model_inputs.to(device)
|
| 70 |
+
|
| 71 |
+
with torch.no_grad():
|
| 72 |
+
outputs = self.model.generate(**model_inputs, max_new_tokens=20,pad_token_id=tokenizer.eos_token_id)
|
| 73 |
+
generated_tokens = outputs[0, len(model_inputs['input_ids'][0]):]
|
| 74 |
+
out_text = tokenizer.decode(generated_tokens, skip_special_tokens=True).strip()
|
| 75 |
+
return {'out_text': out_text}
|
| 76 |
+
|
| 77 |
+
def postprocess(self, model_outputs):
|
| 78 |
+
out_text = model_outputs['out_text']
|
| 79 |
+
if 'Positive' in out_text:
|
| 80 |
+
return 'Positive'
|
| 81 |
+
elif 'Negative' in out_text:
|
| 82 |
+
return 'Negative'
|
| 83 |
+
elif 'Neutral' in out_text:
|
| 84 |
+
return 'Neutral'
|
| 85 |
+
else:
|
| 86 |
+
return 'Neutral'
|
| 87 |
+
|
| 88 |
+
# Initialize the model and tokenizer
|
| 89 |
+
|