Tobias Mann
commited on
Update README.md
Browse files
README.md
CHANGED
|
@@ -23,56 +23,6 @@ This is a W8A8 quantized version of [Qwen/Qwen3-32B](https://huggingface.co/Qwen
|
|
| 23 |
- **Model Size**: Significantly reduced from original 32.8B parameters
|
| 24 |
- **Precision**: INT8 for both weights and activations
|
| 25 |
|
| 26 |
-
## Usage
|
| 27 |
-
|
| 28 |
-
This quantized model maintains the same API as the original Qwen3-32B model. You can use it with the standard transformers library:
|
| 29 |
-
|
| 30 |
-
```python
|
| 31 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 32 |
-
|
| 33 |
-
model_name = "your-username/qwen3-32b-w8a8" # Replace with your model path
|
| 34 |
-
|
| 35 |
-
# Load the tokenizer and quantized model
|
| 36 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 37 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 38 |
-
model_name,
|
| 39 |
-
torch_dtype="auto",
|
| 40 |
-
device_map="auto"
|
| 41 |
-
)
|
| 42 |
-
|
| 43 |
-
# Prepare model input
|
| 44 |
-
prompt = "Give me a short introduction to large language model."
|
| 45 |
-
messages = [
|
| 46 |
-
{"role": "user", "content": prompt}
|
| 47 |
-
]
|
| 48 |
-
text = tokenizer.apply_chat_template(
|
| 49 |
-
messages,
|
| 50 |
-
tokenize=False,
|
| 51 |
-
add_generation_prompt=True,
|
| 52 |
-
enable_thinking=True # Switches between thinking and non-thinking modes
|
| 53 |
-
)
|
| 54 |
-
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 55 |
-
|
| 56 |
-
# Generate response
|
| 57 |
-
generated_ids = model.generate(
|
| 58 |
-
**model_inputs,
|
| 59 |
-
max_new_tokens=32768
|
| 60 |
-
)
|
| 61 |
-
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
| 62 |
-
|
| 63 |
-
# Parse thinking content (same as original model)
|
| 64 |
-
try:
|
| 65 |
-
index = len(output_ids) - output_ids[::-1].index(151668) # </think>
|
| 66 |
-
except ValueError:
|
| 67 |
-
index = 0
|
| 68 |
-
|
| 69 |
-
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
|
| 70 |
-
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
|
| 71 |
-
|
| 72 |
-
print("thinking content:", thinking_content)
|
| 73 |
-
print("content:", content)
|
| 74 |
-
```
|
| 75 |
-
|
| 76 |
## Performance Considerations
|
| 77 |
|
| 78 |
- **Memory Usage**: Significantly reduced memory footprint compared to the original FP16/BF16 model
|
|
@@ -132,12 +82,6 @@ Follow the same best practices as the original model:
|
|
| 132 |
|
| 133 |
3. **Avoid Greedy Decoding**: Do not use greedy decoding in thinking mode
|
| 134 |
|
| 135 |
-
## Deployment
|
| 136 |
-
|
| 137 |
-
The quantized model can be deployed using the same frameworks as the original:
|
| 138 |
-
|
| 139 |
-
- **SGLang**: `python -m sglang.launch_server --model-path your-username/qwen3-32b-w8a8 --reasoning-parser qwen3`
|
| 140 |
-
- **vLLM**: `vllm serve your-username/qwen3-32b-w8a8 --enable-reasoning --reasoning-parser deepseek_r1`
|
| 141 |
|
| 142 |
## Original Model Information
|
| 143 |
|
|
|
|
| 23 |
- **Model Size**: Significantly reduced from original 32.8B parameters
|
| 24 |
- **Precision**: INT8 for both weights and activations
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
## Performance Considerations
|
| 27 |
|
| 28 |
- **Memory Usage**: Significantly reduced memory footprint compared to the original FP16/BF16 model
|
|
|
|
| 82 |
|
| 83 |
3. **Avoid Greedy Decoding**: Do not use greedy decoding in thinking mode
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
## Original Model Information
|
| 87 |
|