reab5555 commited on
Commit
3c6d23b
·
verified ·
1 Parent(s): 2b62cf7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +117 -3
README.md CHANGED
@@ -1,3 +1,117 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ This model is a fine-tuned version of distilbert-base-uncased on Reddit dataset contains text related to mental health reports of users. it predicts mental health disorders from textual content.
5
+
6
+ It achieves the following results on the validation set:
7
+
8
+ * Loss: 0.1873
9
+ * F1: 0.6356
10
+ * AUC: 0.7643
11
+ * Precision: 0.7671
12
+
13
+ # Description
14
+ This model is based on an existing lighter variation of BERT (distilBERT), in order to predict different mental disorders. It does this based on texts or posts (from Reddit) about general experiences of users with mental health problems.
15
+ It includes the following classes:
16
+
17
+ * Borderline
18
+ * Anxiety
19
+ * Depression
20
+ * Bipolar
21
+ * OCD
22
+ * ADHD
23
+ * Schizophrenia
24
+ * Asperger
25
+ * PTSD
26
+
27
+ # Training
28
+ train size: 90%
29
+ val size: 10%
30
+
31
+ Training set class counts (text samples) after balancing:
32
+ Borderline 10398
33
+ Anxiety 10393
34
+ Depression 10400
35
+ Bipolar 10359
36
+ OCD 10413
37
+ ADHD 10412
38
+ Schizophrenia 10447
39
+ Asperger 10470
40
+ PTSD 10489
41
+ dtype: object
42
+ Validation set class counts after balancing:
43
+ Borderline 1180
44
+ Anxiety 1185
45
+ Depression 1178
46
+ Bipolar 1219
47
+ OCD 1165
48
+ ADHD 1166
49
+ Schizophrenia 1131
50
+ Asperger 1108
51
+ PTSD 1089
52
+
53
+ The following hyperparameters were used during training:
54
+
55
+ model-finetuning: distilbert/distilbert-base-uncased
56
+ learning_rate: 1e-5
57
+ train_batch_size: 64
58
+ val_batch_size: 64
59
+ weight_decay: 0.01
60
+ optimizer: AdamW
61
+ num_epochs: 2-3
62
+
63
+ # Training results
64
+ | Training Loss | Epoch | Validation Loss |
65
+ |:-------------:|:-----:|:---------------:|
66
+ | 0.2660 | 1.0 | 0.2031 |
67
+ | 0.1891 | 2.0 | 0.1872 |
68
+
69
+ F1 Score: 0.6355
70
+ AUC Score: 0.7642
71
+
72
+ ## Classification Report:
73
+ Borderline:
74
+ Precision: 0.7606
75
+ Recall: 0.4525
76
+ F1-score: 0.5674
77
+
78
+ Anxiety:
79
+ Precision: 0.7063
80
+ Recall: 0.5459
81
+ F1-score: 0.6158
82
+
83
+ Depression:
84
+ Precision: 0.7286
85
+ Recall: 0.4626
86
+ F1-score: 0.5659
87
+
88
+ Bipolar:
89
+ Precision: 0.7997
90
+ Recall: 0.4487
91
+ F1-score: 0.5748
92
+
93
+ OCD:
94
+ Precision: 0.8222
95
+ Recall: 0.5957
96
+ F1-score: 0.6908
97
+
98
+ ADHD:
99
+ Precision: 0.8856
100
+ Recall: 0.5711
101
+ F1-score: 0.6944
102
+
103
+ Schizophrenia:
104
+ Precision: 0.7540
105
+ Recall: 0.6153
106
+ F1-score: 0.6777
107
+
108
+ Asperger:
109
+ Precision: 0.6743
110
+ Recall: 0.6335
111
+ F1-score: 0.6533
112
+
113
+ PTSD:
114
+ Precision: 0.7724
115
+ Recall: 0.6235
116
+ F1-score: 0.6900
117
+