Add new SentenceTransformer model
Browse files- README.md +364 -18
- model.safetensors +1 -1
README.md
CHANGED
@@ -79,22 +79,22 @@ model-index:
|
|
79 |
type: test
|
80 |
metrics:
|
81 |
- type: cosine_accuracy@1
|
82 |
-
value: 0.
|
83 |
name: Cosine Accuracy@1
|
84 |
- type: cosine_precision@1
|
85 |
-
value: 0.
|
86 |
name: Cosine Precision@1
|
87 |
- type: cosine_recall@1
|
88 |
-
value: 0.
|
89 |
name: Cosine Recall@1
|
90 |
- type: cosine_ndcg@10
|
91 |
-
value: 0.
|
92 |
name: Cosine Ndcg@10
|
93 |
- type: cosine_mrr@1
|
94 |
-
value: 0.
|
95 |
name: Cosine Mrr@1
|
96 |
- type: cosine_map@100
|
97 |
-
value: 0.
|
98 |
name: Cosine Map@100
|
99 |
---
|
100 |
|
@@ -159,9 +159,9 @@ print(embeddings.shape)
|
|
159 |
# Get the similarity scores for the embeddings
|
160 |
similarities = model.similarity(embeddings, embeddings)
|
161 |
print(similarities)
|
162 |
-
# tensor([[
|
163 |
-
# [0.
|
164 |
-
# [0.
|
165 |
```
|
166 |
|
167 |
<!--
|
@@ -199,12 +199,12 @@ You can finetune this model on your own dataset.
|
|
199 |
|
200 |
| Metric | Value |
|
201 |
|:-------------------|:-----------|
|
202 |
-
| cosine_accuracy@1 | 0.
|
203 |
-
| cosine_precision@1 | 0.
|
204 |
-
| cosine_recall@1 | 0.
|
205 |
-
| **cosine_ndcg@10** | **0.
|
206 |
-
| cosine_mrr@1 | 0.
|
207 |
-
| cosine_map@100 | 0.
|
208 |
|
209 |
<!--
|
210 |
## Bias, Risks and Limitations
|
@@ -274,11 +274,357 @@ You can finetune this model on your own dataset.
|
|
274 |
}
|
275 |
```
|
276 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
### Training Logs
|
278 |
-
|
279 |
-
|:-----:|:----:|:-------------------:|
|
280 |
-
| -1 | -1 | 0.5952 |
|
281 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
|
283 |
### Framework Versions
|
284 |
- Python: 3.12.3
|
|
|
79 |
type: test
|
80 |
metrics:
|
81 |
- type: cosine_accuracy@1
|
82 |
+
value: 0.6032809198037179
|
83 |
name: Cosine Accuracy@1
|
84 |
- type: cosine_precision@1
|
85 |
+
value: 0.6032809198037179
|
86 |
name: Cosine Precision@1
|
87 |
- type: cosine_recall@1
|
88 |
+
value: 0.585771482488324
|
89 |
name: Cosine Recall@1
|
90 |
- type: cosine_ndcg@10
|
91 |
+
value: 0.7747479314468421
|
92 |
name: Cosine Ndcg@10
|
93 |
- type: cosine_mrr@1
|
94 |
+
value: 0.6032809198037179
|
95 |
name: Cosine Mrr@1
|
96 |
- type: cosine_map@100
|
97 |
+
value: 0.7280398908979986
|
98 |
name: Cosine Map@100
|
99 |
---
|
100 |
|
|
|
159 |
# Get the similarity scores for the embeddings
|
160 |
similarities = model.similarity(embeddings, embeddings)
|
161 |
print(similarities)
|
162 |
+
# tensor([[1.0000, 0.9180, 0.4531],
|
163 |
+
# [0.9180, 1.0000, 0.4746],
|
164 |
+
# [0.4531, 0.4746, 1.0000]], dtype=torch.bfloat16)
|
165 |
```
|
166 |
|
167 |
<!--
|
|
|
199 |
|
200 |
| Metric | Value |
|
201 |
|:-------------------|:-----------|
|
202 |
+
| cosine_accuracy@1 | 0.6033 |
|
203 |
+
| cosine_precision@1 | 0.6033 |
|
204 |
+
| cosine_recall@1 | 0.5858 |
|
205 |
+
| **cosine_ndcg@10** | **0.7747** |
|
206 |
+
| cosine_mrr@1 | 0.6033 |
|
207 |
+
| cosine_map@100 | 0.728 |
|
208 |
|
209 |
<!--
|
210 |
## Bias, Risks and Limitations
|
|
|
274 |
}
|
275 |
```
|
276 |
|
277 |
+
### Training Hyperparameters
|
278 |
+
#### Non-Default Hyperparameters
|
279 |
+
|
280 |
+
- `eval_strategy`: steps
|
281 |
+
- `per_device_train_batch_size`: 128
|
282 |
+
- `per_device_eval_batch_size`: 128
|
283 |
+
- `weight_decay`: 0.001
|
284 |
+
- `adam_beta2`: 0.98
|
285 |
+
- `adam_epsilon`: 1e-06
|
286 |
+
- `max_steps`: 100000
|
287 |
+
- `warmup_ratio`: 0.1
|
288 |
+
- `load_best_model_at_end`: True
|
289 |
+
- `optim`: stable_adamw
|
290 |
+
- `ddp_find_unused_parameters`: False
|
291 |
+
- `push_to_hub`: True
|
292 |
+
- `hub_model_id`: redis/langcache-embed-v3
|
293 |
+
- `batch_sampler`: no_duplicates
|
294 |
+
|
295 |
+
#### All Hyperparameters
|
296 |
+
<details><summary>Click to expand</summary>
|
297 |
+
|
298 |
+
- `overwrite_output_dir`: False
|
299 |
+
- `do_predict`: False
|
300 |
+
- `eval_strategy`: steps
|
301 |
+
- `prediction_loss_only`: True
|
302 |
+
- `per_device_train_batch_size`: 128
|
303 |
+
- `per_device_eval_batch_size`: 128
|
304 |
+
- `per_gpu_train_batch_size`: None
|
305 |
+
- `per_gpu_eval_batch_size`: None
|
306 |
+
- `gradient_accumulation_steps`: 1
|
307 |
+
- `eval_accumulation_steps`: None
|
308 |
+
- `torch_empty_cache_steps`: None
|
309 |
+
- `learning_rate`: 5e-05
|
310 |
+
- `weight_decay`: 0.001
|
311 |
+
- `adam_beta1`: 0.9
|
312 |
+
- `adam_beta2`: 0.98
|
313 |
+
- `adam_epsilon`: 1e-06
|
314 |
+
- `max_grad_norm`: 1.0
|
315 |
+
- `num_train_epochs`: 3.0
|
316 |
+
- `max_steps`: 100000
|
317 |
+
- `lr_scheduler_type`: linear
|
318 |
+
- `lr_scheduler_kwargs`: {}
|
319 |
+
- `warmup_ratio`: 0.1
|
320 |
+
- `warmup_steps`: 0
|
321 |
+
- `log_level`: passive
|
322 |
+
- `log_level_replica`: warning
|
323 |
+
- `log_on_each_node`: True
|
324 |
+
- `logging_nan_inf_filter`: True
|
325 |
+
- `save_safetensors`: True
|
326 |
+
- `save_on_each_node`: False
|
327 |
+
- `save_only_model`: False
|
328 |
+
- `restore_callback_states_from_checkpoint`: False
|
329 |
+
- `no_cuda`: False
|
330 |
+
- `use_cpu`: False
|
331 |
+
- `use_mps_device`: False
|
332 |
+
- `seed`: 42
|
333 |
+
- `data_seed`: None
|
334 |
+
- `jit_mode_eval`: False
|
335 |
+
- `use_ipex`: False
|
336 |
+
- `bf16`: False
|
337 |
+
- `fp16`: False
|
338 |
+
- `fp16_opt_level`: O1
|
339 |
+
- `half_precision_backend`: auto
|
340 |
+
- `bf16_full_eval`: False
|
341 |
+
- `fp16_full_eval`: False
|
342 |
+
- `tf32`: None
|
343 |
+
- `local_rank`: 0
|
344 |
+
- `ddp_backend`: None
|
345 |
+
- `tpu_num_cores`: None
|
346 |
+
- `tpu_metrics_debug`: False
|
347 |
+
- `debug`: []
|
348 |
+
- `dataloader_drop_last`: False
|
349 |
+
- `dataloader_num_workers`: 0
|
350 |
+
- `dataloader_prefetch_factor`: None
|
351 |
+
- `past_index`: -1
|
352 |
+
- `disable_tqdm`: False
|
353 |
+
- `remove_unused_columns`: True
|
354 |
+
- `label_names`: None
|
355 |
+
- `load_best_model_at_end`: True
|
356 |
+
- `ignore_data_skip`: False
|
357 |
+
- `fsdp`: []
|
358 |
+
- `fsdp_min_num_params`: 0
|
359 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
360 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
361 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
362 |
+
- `parallelism_config`: None
|
363 |
+
- `deepspeed`: None
|
364 |
+
- `label_smoothing_factor`: 0.0
|
365 |
+
- `optim`: stable_adamw
|
366 |
+
- `optim_args`: None
|
367 |
+
- `adafactor`: False
|
368 |
+
- `group_by_length`: False
|
369 |
+
- `length_column_name`: length
|
370 |
+
- `ddp_find_unused_parameters`: False
|
371 |
+
- `ddp_bucket_cap_mb`: None
|
372 |
+
- `ddp_broadcast_buffers`: False
|
373 |
+
- `dataloader_pin_memory`: True
|
374 |
+
- `dataloader_persistent_workers`: False
|
375 |
+
- `skip_memory_metrics`: True
|
376 |
+
- `use_legacy_prediction_loop`: False
|
377 |
+
- `push_to_hub`: True
|
378 |
+
- `resume_from_checkpoint`: None
|
379 |
+
- `hub_model_id`: redis/langcache-embed-v3
|
380 |
+
- `hub_strategy`: every_save
|
381 |
+
- `hub_private_repo`: None
|
382 |
+
- `hub_always_push`: False
|
383 |
+
- `hub_revision`: None
|
384 |
+
- `gradient_checkpointing`: False
|
385 |
+
- `gradient_checkpointing_kwargs`: None
|
386 |
+
- `include_inputs_for_metrics`: False
|
387 |
+
- `include_for_metrics`: []
|
388 |
+
- `eval_do_concat_batches`: True
|
389 |
+
- `fp16_backend`: auto
|
390 |
+
- `push_to_hub_model_id`: None
|
391 |
+
- `push_to_hub_organization`: None
|
392 |
+
- `mp_parameters`:
|
393 |
+
- `auto_find_batch_size`: False
|
394 |
+
- `full_determinism`: False
|
395 |
+
- `torchdynamo`: None
|
396 |
+
- `ray_scope`: last
|
397 |
+
- `ddp_timeout`: 1800
|
398 |
+
- `torch_compile`: False
|
399 |
+
- `torch_compile_backend`: None
|
400 |
+
- `torch_compile_mode`: None
|
401 |
+
- `include_tokens_per_second`: False
|
402 |
+
- `include_num_input_tokens_seen`: False
|
403 |
+
- `neftune_noise_alpha`: None
|
404 |
+
- `optim_target_modules`: None
|
405 |
+
- `batch_eval_metrics`: False
|
406 |
+
- `eval_on_start`: False
|
407 |
+
- `use_liger_kernel`: False
|
408 |
+
- `liger_kernel_config`: None
|
409 |
+
- `eval_use_gather_object`: False
|
410 |
+
- `average_tokens_across_devices`: False
|
411 |
+
- `prompts`: None
|
412 |
+
- `batch_sampler`: no_duplicates
|
413 |
+
- `multi_dataset_batch_sampler`: proportional
|
414 |
+
- `router_mapping`: {}
|
415 |
+
- `learning_rate_mapping`: {}
|
416 |
+
|
417 |
+
</details>
|
418 |
+
|
419 |
### Training Logs
|
420 |
+
<details><summary>Click to expand</summary>
|
|
|
|
|
421 |
|
422 |
+
| Epoch | Step | Training Loss | Validation Loss | test_cosine_ndcg@10 |
|
423 |
+
|:----------:|:---------:|:-------------:|:---------------:|:-------------------:|
|
424 |
+
| -1 | -1 | - | - | 0.5952 |
|
425 |
+
| 0.0069 | 500 | 3.4812 | 0.6932 | 0.6810 |
|
426 |
+
| 0.0139 | 1000 | 0.6045 | 0.4804 | 0.7354 |
|
427 |
+
| 0.0208 | 1500 | 0.3127 | 0.4128 | 0.7437 |
|
428 |
+
| 0.0277 | 2000 | 0.2424 | 0.4077 | 0.7440 |
|
429 |
+
| 0.0347 | 2500 | 0.2027 | 0.3707 | 0.7501 |
|
430 |
+
| 0.0416 | 3000 | 0.1752 | 0.3453 | 0.7551 |
|
431 |
+
| 0.0485 | 3500 | 0.1622 | 0.3380 | 0.7540 |
|
432 |
+
| 0.0555 | 4000 | 0.1466 | 0.3185 | 0.7583 |
|
433 |
+
| 0.0624 | 4500 | 0.1392 | 0.3092 | 0.7588 |
|
434 |
+
| 0.0693 | 5000 | 0.1342 | 0.3054 | 0.7566 |
|
435 |
+
| 0.0762 | 5500 | 0.1291 | 0.2960 | 0.7582 |
|
436 |
+
| 0.0832 | 6000 | 0.1291 | 0.2856 | 0.7616 |
|
437 |
+
| 0.0901 | 6500 | 0.1199 | 0.2803 | 0.7624 |
|
438 |
+
| 0.0970 | 7000 | 0.1171 | 0.2692 | 0.7648 |
|
439 |
+
| 0.1040 | 7500 | 0.1097 | 0.2811 | 0.7629 |
|
440 |
+
| 0.1109 | 8000 | 0.1089 | 0.2901 | 0.7621 |
|
441 |
+
| 0.1178 | 8500 | 0.1088 | 0.2986 | 0.7568 |
|
442 |
+
| 0.1248 | 9000 | 0.109 | 0.2806 | 0.7628 |
|
443 |
+
| 0.1317 | 9500 | 0.1046 | 0.3050 | 0.7587 |
|
444 |
+
| 0.1386 | 10000 | 0.1035 | 0.2925 | 0.7596 |
|
445 |
+
| 0.1456 | 10500 | 0.1041 | 0.2940 | 0.7573 |
|
446 |
+
| 0.1525 | 11000 | 0.1023 | 0.2790 | 0.7632 |
|
447 |
+
| 0.1594 | 11500 | 0.0992 | 0.3293 | 0.7542 |
|
448 |
+
| 0.1664 | 12000 | 0.0996 | 0.2876 | 0.7570 |
|
449 |
+
| 0.1733 | 12500 | 0.0949 | 0.2881 | 0.7591 |
|
450 |
+
| 0.1802 | 13000 | 0.0921 | 0.2861 | 0.7598 |
|
451 |
+
| 0.1871 | 13500 | 0.0912 | 0.2763 | 0.7632 |
|
452 |
+
| 0.1941 | 14000 | 0.0912 | 0.2785 | 0.7643 |
|
453 |
+
| 0.2010 | 14500 | 0.0909 | 0.3198 | 0.7629 |
|
454 |
+
| 0.2079 | 15000 | 0.0911 | 0.3015 | 0.7575 |
|
455 |
+
| 0.2149 | 15500 | 0.0861 | 0.3029 | 0.7597 |
|
456 |
+
| 0.2218 | 16000 | 0.0857 | 0.3271 | 0.7568 |
|
457 |
+
| 0.2287 | 16500 | 0.0843 | 0.2579 | 0.7645 |
|
458 |
+
| 0.2357 | 17000 | 0.085 | 0.2923 | 0.7625 |
|
459 |
+
| 0.2426 | 17500 | 0.0846 | 0.3241 | 0.7598 |
|
460 |
+
| 0.2495 | 18000 | 0.083 | 0.3128 | 0.7616 |
|
461 |
+
| 0.2565 | 18500 | 0.0794 | 0.2926 | 0.7611 |
|
462 |
+
| 0.2634 | 19000 | 0.0806 | 0.2665 | 0.7640 |
|
463 |
+
| 0.2703 | 19500 | 0.0782 | 0.2963 | 0.7615 |
|
464 |
+
| 0.2773 | 20000 | 0.0786 | 0.2771 | 0.7611 |
|
465 |
+
| 0.2842 | 20500 | 0.0761 | 0.2853 | 0.7623 |
|
466 |
+
| 0.2911 | 21000 | 0.0752 | 0.2782 | 0.7626 |
|
467 |
+
| 0.2980 | 21500 | 0.0777 | 0.2680 | 0.7612 |
|
468 |
+
| 0.3050 | 22000 | 0.0782 | 0.2731 | 0.7636 |
|
469 |
+
| 0.3119 | 22500 | 0.0785 | 0.2627 | 0.7627 |
|
470 |
+
| 0.3188 | 23000 | 0.0741 | 0.2714 | 0.7613 |
|
471 |
+
| 0.3258 | 23500 | 0.0741 | 0.2713 | 0.7661 |
|
472 |
+
| 0.3327 | 24000 | 0.072 | 0.2630 | 0.7636 |
|
473 |
+
| 0.3396 | 24500 | 0.0739 | 0.2839 | 0.7648 |
|
474 |
+
| 0.3466 | 25000 | 0.07 | 0.2860 | 0.7634 |
|
475 |
+
| 0.3535 | 25500 | 0.0715 | 0.2612 | 0.7666 |
|
476 |
+
| 0.3604 | 26000 | 0.0711 | 0.2531 | 0.7671 |
|
477 |
+
| 0.3674 | 26500 | 0.0701 | 0.2682 | 0.7638 |
|
478 |
+
| 0.3743 | 27000 | 0.0733 | 0.2708 | 0.7635 |
|
479 |
+
| 0.3812 | 27500 | 0.0705 | 0.2873 | 0.7636 |
|
480 |
+
| 0.3882 | 28000 | 0.0663 | 0.2831 | 0.7647 |
|
481 |
+
| 0.3951 | 28500 | 0.0678 | 0.2825 | 0.7643 |
|
482 |
+
| 0.4020 | 29000 | 0.0691 | 0.2733 | 0.7654 |
|
483 |
+
| 0.4089 | 29500 | 0.0696 | 0.2831 | 0.7621 |
|
484 |
+
| 0.4159 | 30000 | 0.0708 | 0.2893 | 0.7643 |
|
485 |
+
| 0.4228 | 30500 | 0.0663 | 0.2758 | 0.7653 |
|
486 |
+
| 0.4297 | 31000 | 0.064 | 0.2589 | 0.7666 |
|
487 |
+
| 0.4367 | 31500 | 0.0636 | 0.2491 | 0.7681 |
|
488 |
+
| 0.4436 | 32000 | 0.0644 | 0.2601 | 0.7650 |
|
489 |
+
| 0.4505 | 32500 | 0.0655 | 0.2611 | 0.7668 |
|
490 |
+
| 0.4575 | 33000 | 0.0643 | 0.2597 | 0.7664 |
|
491 |
+
| 0.4644 | 33500 | 0.066 | 0.2696 | 0.7677 |
|
492 |
+
| 0.4713 | 34000 | 0.0664 | 0.2489 | 0.7690 |
|
493 |
+
| 0.4783 | 34500 | 0.0654 | 0.2644 | 0.7649 |
|
494 |
+
| 0.4852 | 35000 | 0.0653 | 0.2704 | 0.7665 |
|
495 |
+
| 0.4921 | 35500 | 0.0657 | 0.2578 | 0.7689 |
|
496 |
+
| 0.4991 | 36000 | 0.0634 | 0.2629 | 0.7669 |
|
497 |
+
| 0.5060 | 36500 | 0.0609 | 0.2631 | 0.7663 |
|
498 |
+
| 0.5129 | 37000 | 0.0646 | 0.2586 | 0.7667 |
|
499 |
+
| 0.5198 | 37500 | 0.0634 | 0.2572 | 0.7657 |
|
500 |
+
| 0.5268 | 38000 | 0.0607 | 0.2624 | 0.7664 |
|
501 |
+
| 0.5337 | 38500 | 0.0621 | 0.2622 | 0.7668 |
|
502 |
+
| 0.5406 | 39000 | 0.0614 | 0.2562 | 0.7676 |
|
503 |
+
| 0.5476 | 39500 | 0.0621 | 0.2560 | 0.7673 |
|
504 |
+
| 0.5545 | 40000 | 0.0608 | 0.2506 | 0.7684 |
|
505 |
+
| 0.5614 | 40500 | 0.0621 | 0.2718 | 0.7666 |
|
506 |
+
| 0.5684 | 41000 | 0.0598 | 0.2599 | 0.7700 |
|
507 |
+
| 0.5753 | 41500 | 0.06 | 0.2706 | 0.7687 |
|
508 |
+
| 0.5822 | 42000 | 0.0618 | 0.2635 | 0.7694 |
|
509 |
+
| 0.5892 | 42500 | 0.0604 | 0.2743 | 0.7660 |
|
510 |
+
| 0.5961 | 43000 | 0.0576 | 0.2733 | 0.7661 |
|
511 |
+
| 0.6030 | 43500 | 0.0597 | 0.2644 | 0.7712 |
|
512 |
+
| 0.6100 | 44000 | 0.0592 | 0.2516 | 0.7694 |
|
513 |
+
| 0.6169 | 44500 | 0.0599 | 0.2461 | 0.7688 |
|
514 |
+
| 0.6238 | 45000 | 0.056 | 0.2438 | 0.7686 |
|
515 |
+
| 0.6307 | 45500 | 0.0573 | 0.2513 | 0.7703 |
|
516 |
+
| 0.6377 | 46000 | 0.0571 | 0.2526 | 0.7694 |
|
517 |
+
| 0.6446 | 46500 | 0.0573 | 0.2529 | 0.7702 |
|
518 |
+
| 0.6515 | 47000 | 0.0553 | 0.2529 | 0.7694 |
|
519 |
+
| 0.6585 | 47500 | 0.0541 | 0.2518 | 0.7707 |
|
520 |
+
| 0.6654 | 48000 | 0.0561 | 0.2471 | 0.7725 |
|
521 |
+
| 0.6723 | 48500 | 0.0558 | 0.2440 | 0.7710 |
|
522 |
+
| 0.6793 | 49000 | 0.0555 | 0.2556 | 0.7691 |
|
523 |
+
| 0.6862 | 49500 | 0.056 | 0.2479 | 0.7721 |
|
524 |
+
| 0.6931 | 50000 | 0.0564 | 0.2463 | 0.7723 |
|
525 |
+
| 0.7001 | 50500 | 0.0539 | 0.2561 | 0.7728 |
|
526 |
+
| 0.7070 | 51000 | 0.0526 | 0.2416 | 0.7725 |
|
527 |
+
| 0.7139 | 51500 | 0.0561 | 0.2501 | 0.7723 |
|
528 |
+
| 0.7209 | 52000 | 0.0545 | 0.2316 | 0.7732 |
|
529 |
+
| 0.7278 | 52500 | 0.0545 | 0.2352 | 0.7739 |
|
530 |
+
| 0.7347 | 53000 | 0.05 | 0.2278 | 0.7734 |
|
531 |
+
| 0.7416 | 53500 | 0.0515 | 0.2308 | 0.7730 |
|
532 |
+
| 0.7486 | 54000 | 0.0528 | 0.2524 | 0.7727 |
|
533 |
+
| 0.7555 | 54500 | 0.0509 | 0.2645 | 0.7717 |
|
534 |
+
| 0.7624 | 55000 | 0.0514 | 0.2659 | 0.7708 |
|
535 |
+
| 0.7694 | 55500 | 0.0503 | 0.2570 | 0.7725 |
|
536 |
+
| 0.7763 | 56000 | 0.0538 | 0.2524 | 0.7724 |
|
537 |
+
| 0.7832 | 56500 | 0.0477 | 0.2537 | 0.7719 |
|
538 |
+
| 0.7902 | 57000 | 0.0514 | 0.2333 | 0.7733 |
|
539 |
+
| 0.7971 | 57500 | 0.05 | 0.2420 | 0.7722 |
|
540 |
+
| 0.8040 | 58000 | 0.0518 | 0.2342 | 0.7734 |
|
541 |
+
| 0.8110 | 58500 | 0.0508 | 0.2402 | 0.7730 |
|
542 |
+
| 0.8179 | 59000 | 0.0474 | 0.2477 | 0.7711 |
|
543 |
+
| 0.8248 | 59500 | 0.0493 | 0.2465 | 0.7723 |
|
544 |
+
| 0.8318 | 60000 | 0.0492 | 0.2448 | 0.7731 |
|
545 |
+
| 0.8387 | 60500 | 0.0496 | 0.2498 | 0.7733 |
|
546 |
+
| 0.8456 | 61000 | 0.0479 | 0.2505 | 0.7721 |
|
547 |
+
| 0.8525 | 61500 | 0.0445 | 0.2449 | 0.7745 |
|
548 |
+
| **0.8595** | **62000** | **0.0477** | **0.2507** | **0.7748** |
|
549 |
+
| 0.8664 | 62500 | 0.0491 | 0.2551 | 0.7716 |
|
550 |
+
| 0.8733 | 63000 | 0.0474 | 0.2451 | 0.7743 |
|
551 |
+
| 0.8803 | 63500 | 0.0452 | 0.2464 | 0.7741 |
|
552 |
+
| 0.8872 | 64000 | 0.0482 | 0.2412 | 0.7742 |
|
553 |
+
| 0.8941 | 64500 | 0.0483 | 0.2444 | 0.7736 |
|
554 |
+
| 0.9011 | 65000 | 0.0485 | 0.2456 | 0.7724 |
|
555 |
+
| 0.9080 | 65500 | 0.045 | 0.2493 | 0.7730 |
|
556 |
+
| 0.9149 | 66000 | 0.0496 | 0.2499 | 0.7721 |
|
557 |
+
| 0.9219 | 66500 | 0.0461 | 0.2474 | 0.7748 |
|
558 |
+
| 0.9288 | 67000 | 0.0465 | 0.2432 | 0.7743 |
|
559 |
+
| 0.9357 | 67500 | 0.0477 | 0.2432 | 0.7729 |
|
560 |
+
| 0.9427 | 68000 | 0.0425 | 0.2491 | 0.7740 |
|
561 |
+
| 0.9496 | 68500 | 0.0452 | 0.2445 | 0.7736 |
|
562 |
+
| 0.9565 | 69000 | 0.046 | 0.2397 | 0.7742 |
|
563 |
+
| 0.9634 | 69500 | 0.0449 | 0.2539 | 0.7731 |
|
564 |
+
| 0.9704 | 70000 | 0.0462 | 0.2446 | 0.7745 |
|
565 |
+
| 0.9773 | 70500 | 0.0435 | 0.2385 | 0.7742 |
|
566 |
+
| 0.9842 | 71000 | 0.0469 | 0.2334 | 0.7750 |
|
567 |
+
| 0.9912 | 71500 | 0.0447 | 0.2312 | 0.7745 |
|
568 |
+
| 0.9981 | 72000 | 0.0465 | 0.2361 | 0.7737 |
|
569 |
+
| 1.0050 | 72500 | 0.0341 | 0.2359 | 0.7728 |
|
570 |
+
| 1.0120 | 73000 | 0.03 | 0.2405 | 0.7727 |
|
571 |
+
| 1.0189 | 73500 | 0.029 | 0.2241 | 0.7724 |
|
572 |
+
| 1.0258 | 74000 | 0.0284 | 0.2297 | 0.7740 |
|
573 |
+
| 1.0328 | 74500 | 0.0273 | 0.2317 | 0.7735 |
|
574 |
+
| 1.0397 | 75000 | 0.0291 | 0.2352 | 0.7727 |
|
575 |
+
| 1.0466 | 75500 | 0.0286 | 0.2439 | 0.7724 |
|
576 |
+
| 1.0536 | 76000 | 0.0268 | 0.2336 | 0.7732 |
|
577 |
+
| 1.0605 | 76500 | 0.0276 | 0.2298 | 0.7728 |
|
578 |
+
| 1.0674 | 77000 | 0.0279 | 0.2268 | 0.7726 |
|
579 |
+
| 1.0743 | 77500 | 0.0283 | 0.2206 | 0.7738 |
|
580 |
+
| 1.0813 | 78000 | 0.0277 | 0.2263 | 0.7733 |
|
581 |
+
| 1.0882 | 78500 | 0.0285 | 0.2228 | 0.7740 |
|
582 |
+
| 1.0951 | 79000 | 0.0283 | 0.2250 | 0.7729 |
|
583 |
+
| 1.1021 | 79500 | 0.0276 | 0.2200 | 0.7730 |
|
584 |
+
| 1.1090 | 80000 | 0.0276 | 0.2221 | 0.7739 |
|
585 |
+
| 1.1159 | 80500 | 0.0268 | 0.2279 | 0.7730 |
|
586 |
+
| 1.1229 | 81000 | 0.0274 | 0.2302 | 0.7733 |
|
587 |
+
| 1.1298 | 81500 | 0.0281 | 0.2286 | 0.7736 |
|
588 |
+
| 1.1367 | 82000 | 0.0267 | 0.2306 | 0.7733 |
|
589 |
+
| 1.1437 | 82500 | 0.0267 | 0.2348 | 0.7731 |
|
590 |
+
| 1.1506 | 83000 | 0.0278 | 0.2301 | 0.7729 |
|
591 |
+
| 1.1575 | 83500 | 0.028 | 0.2240 | 0.7738 |
|
592 |
+
| 1.1645 | 84000 | 0.0282 | 0.2196 | 0.7744 |
|
593 |
+
| 1.1714 | 84500 | 0.0264 | 0.2241 | 0.7737 |
|
594 |
+
| 1.1783 | 85000 | 0.0258 | 0.2252 | 0.7736 |
|
595 |
+
| 1.1852 | 85500 | 0.027 | 0.2196 | 0.7742 |
|
596 |
+
| 1.1922 | 86000 | 0.0256 | 0.2189 | 0.7739 |
|
597 |
+
| 1.1991 | 86500 | 0.0259 | 0.2174 | 0.7749 |
|
598 |
+
| 1.2060 | 87000 | 0.0262 | 0.2209 | 0.7751 |
|
599 |
+
| 1.2130 | 87500 | 0.0265 | 0.2202 | 0.7739 |
|
600 |
+
| 1.2199 | 88000 | 0.025 | 0.2228 | 0.7737 |
|
601 |
+
| 1.2268 | 88500 | 0.0266 | 0.2233 | 0.7739 |
|
602 |
+
| 1.2338 | 89000 | 0.0261 | 0.2255 | 0.7736 |
|
603 |
+
| 1.2407 | 89500 | 0.0271 | 0.2219 | 0.7746 |
|
604 |
+
| 1.2476 | 90000 | 0.0256 | 0.2185 | 0.7757 |
|
605 |
+
| 1.2546 | 90500 | 0.0257 | 0.2190 | 0.7758 |
|
606 |
+
| 1.2615 | 91000 | 0.0239 | 0.2210 | 0.7750 |
|
607 |
+
| 1.2684 | 91500 | 0.0252 | 0.2236 | 0.7743 |
|
608 |
+
| 1.2754 | 92000 | 0.0245 | 0.2238 | 0.7743 |
|
609 |
+
| 1.2823 | 92500 | 0.0267 | 0.2234 | 0.7747 |
|
610 |
+
| 1.2892 | 93000 | 0.025 | 0.2235 | 0.7746 |
|
611 |
+
| 1.2961 | 93500 | 0.0246 | 0.2298 | 0.7740 |
|
612 |
+
| 1.3031 | 94000 | 0.0266 | 0.2239 | 0.7744 |
|
613 |
+
| 1.3100 | 94500 | 0.0256 | 0.2231 | 0.7740 |
|
614 |
+
| 1.3169 | 95000 | 0.0265 | 0.2214 | 0.7744 |
|
615 |
+
| 1.3239 | 95500 | 0.0253 | 0.2221 | 0.7747 |
|
616 |
+
| 1.3308 | 96000 | 0.0251 | 0.2222 | 0.7742 |
|
617 |
+
| 1.3377 | 96500 | 0.0244 | 0.2211 | 0.7748 |
|
618 |
+
| 1.3447 | 97000 | 0.0249 | 0.2216 | 0.7750 |
|
619 |
+
| 1.3516 | 97500 | 0.0257 | 0.2215 | 0.7745 |
|
620 |
+
| 1.3585 | 98000 | 0.0263 | 0.2215 | 0.7749 |
|
621 |
+
| 1.3655 | 98500 | 0.0258 | 0.2209 | 0.7749 |
|
622 |
+
| 1.3724 | 99000 | 0.0255 | 0.2212 | 0.7748 |
|
623 |
+
| 1.3793 | 99500 | 0.0252 | 0.2213 | 0.7751 |
|
624 |
+
| 1.3863 | 100000 | 0.0257 | 0.2213 | 0.7747 |
|
625 |
+
|
626 |
+
* The bold row denotes the saved checkpoint.
|
627 |
+
</details>
|
628 |
|
629 |
### Framework Versions
|
630 |
- Python: 3.12.3
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 298041696
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1cd9a1d35025cdb46c51f16954bb7cb4e7c4e454aa300fbe6f3316645b2c4df
|
3 |
size 298041696
|