File size: 24,515 Bytes
2134603
 
ecc5214
2134603
 
 
 
 
 
 
ecc5214
2134603
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecc5214
 
2134603
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecc5214
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
import torch
import torch.nn as nn
from transformers import AutoModel, AutoConfig,AutoTokenizer
from .fusion import GatedFusion, CrossModalAttention
from .audio_encoder import AudioEncoder
from .time_series_encoder import TimeSeriesEncoder
from .interpretability import compute_feature_importance

class MultimodalStockPredictor(nn.Module):
    def __init__(self, 
                 text_model_name="albert-large-v2",
                 vision_model_name=None,
                 tabular_dim=64,  # <-- Change this to match your data, e.g., tabular_dim=5
                 audio_dim=None,
                 time_series_dim=None,
                 hidden_dim=1024,
                 num_labels=3,
                 fusion_layers=2,
                 activation=nn.ReLU,
                 tabular_dropout=0.1,
                 fusion_dropout=0.2,
                 fusion_layernorm=True,
                 use_attention_fusion=False,
                 use_residual_fusion=False,
                 use_audio=False,
                 use_time_series=False,
                 audio_hidden_dim=128,
                 audio_out_dim=128,
                 time_series_hidden_dim=128,
                 time_series_out_dim=128,
                 audio_encoder=None,
                 time_series_encoder=None,
                 freeze_text_encoder=False,
                 freeze_vision_encoder=False,
                 use_self_attention=True,
                 self_attention_heads=8,
                 self_attention_layers=2,
                 use_dropout_scheduler=True,
                 dropout_scheduler_max=0.5,
                 dropout_scheduler_min=0.1,
                 use_stochastic_depth=True,
                 stochastic_depth_prob=0.2,
                 use_ensemble=False,
                 ensemble_size=3,
                 fusion_type='concat',
                 use_mixed_precision=False):
        """
        Args:
            fusion_type (str): 'concat', 'gated', or 'cross_attention'.
            use_mixed_precision (bool): Enable mixed precision training.
            ...existing code...
        """
          # Load the tokenizer for ALBERT
        self.tokenizer = AutoTokenizer.from_pretrained(text_model_name)
        super().__init__()
        self.tabular_dim = tabular_dim  # Save for runtime check
        # Text encoder (large transformer)
        self.text_config = AutoConfig.from_pretrained(text_model_name)
        self.text_encoder = AutoModel.from_pretrained(text_model_name, config=self.text_config)
        if freeze_text_encoder:
            for param in self.text_encoder.parameters():
                param.requires_grad = False
        
        # Optional: Vision encoder (for chart images, etc.)
        if vision_model_name:
            self.vision_config = AutoConfig.from_pretrained(vision_model_name)
            self.vision_encoder = AutoModel.from_pretrained(vision_model_name, config=self.vision_config)
            if freeze_vision_encoder:
                for param in self.vision_encoder.parameters():
                    param.requires_grad = False
            vision_out_dim = self.vision_config.hidden_size
        else:
            self.vision_encoder = None
            vision_out_dim = 0

        # Tabular (numerical) data encoder with dropout and batchnorm
        self.tabular_encoder = nn.Sequential(
            nn.Linear(tabular_dim, hidden_dim),
            nn.BatchNorm1d(hidden_dim),
            activation(),
            nn.Dropout(tabular_dropout),
            nn.LayerNorm(hidden_dim)
        )

        self.use_attention_fusion = use_attention_fusion
        self.use_residual_fusion = use_residual_fusion

        # --- Fix: Always define attn_fusion (legacy/optional) ---
        self.attn_fusion = None

        # Optional: Audio encoder
        self.use_audio = use_audio
        if use_audio and audio_dim is not None:
            self.audio_encoder = audio_encoder or AudioEncoder(audio_dim, audio_hidden_dim, audio_out_dim)
            audio_out_dim_ = audio_out_dim
        else:
            self.audio_encoder = None
            audio_out_dim_ = 0

        # Optional: Time series encoder
        self.use_time_series = use_time_series
        if use_time_series and time_series_dim is not None:
            self.time_series_encoder = time_series_encoder or TimeSeriesEncoder(time_series_dim, time_series_hidden_dim, time_series_out_dim)
            time_series_out_dim_ = time_series_out_dim
        else:
            self.time_series_encoder = None
            time_series_out_dim_ = 0

        self.fusion_type = fusion_type
        self.use_mixed_precision = use_mixed_precision

        # --- Fusion options ---
        fusion_dim = self.text_config.hidden_size + vision_out_dim + hidden_dim + audio_out_dim_ + time_series_out_dim_
        self.fusion_input_dims = [
            self.text_config.hidden_size,
            hidden_dim,
            *( [vision_out_dim] if vision_out_dim > 0 else [] ),
            *( [audio_out_dim_] if audio_out_dim_ > 0 else [] ),
            *( [time_series_out_dim_] if time_series_out_dim_ > 0 else [] ),
        ]
        if fusion_type == 'gated':
            self.fusion = GatedFusion(self.fusion_input_dims, fusion_dim)
        elif fusion_type == 'cross_attention':
            # Only supports two modalities for cross attention
            if len(self.fusion_input_dims) != 2:
                raise ValueError("CrossModalAttention fusion requires exactly two modalities.")
            self.fusion = CrossModalAttention(self.fusion_input_dims[0], self.fusion_input_dims[1], fusion_dim)
        else:
            self.fusion = None  # fallback to concat

        # Fusion and prediction head (deeper, configurable)
        fusion_head_layers = []
        in_dim = fusion_dim
        for i in range(fusion_layers - 1):
            fusion_head_layers.append(nn.Linear(in_dim, hidden_dim))
            fusion_head_layers.append(nn.BatchNorm1d(hidden_dim))
            fusion_head_layers.append(activation())
            fusion_head_layers.append(nn.Dropout(fusion_dropout))
            if fusion_layernorm:
                fusion_head_layers.append(nn.LayerNorm(hidden_dim))
            in_dim = hidden_dim
        fusion_head_layers.append(nn.Linear(in_dim, num_labels))

        # Self-attention block after fusion (optional)
        self.use_self_attention = use_self_attention
        if self.use_self_attention:
            encoder_layer = nn.TransformerEncoderLayer(
                d_model=fusion_dim,
                nhead=self_attention_heads,
                dim_feedforward=fusion_dim * 2,
                dropout=fusion_dropout,
                activation="gelu",
                batch_first=True
            )
            self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=self_attention_layers)
        else:
            self.transformer_encoder = None

        # Stochastic depth (optional)
        self.use_stochastic_depth = use_stochastic_depth
        self.stochastic_depth_prob = stochastic_depth_prob

        # Dropout scheduler (optional)
        self.use_dropout_scheduler = use_dropout_scheduler
        self.dropout_scheduler_max = dropout_scheduler_max
        self.dropout_scheduler_min = dropout_scheduler_min
        self.current_dropout = fusion_dropout

        # Ensemble (optional)
        self.use_ensemble = use_ensemble
        if self.use_ensemble:
            self.ensemble = nn.ModuleList([
                nn.Sequential(*fusion_head_layers) for _ in range(ensemble_size)
            ])
        else:
            self.fusion_head = nn.Sequential(*fusion_head_layers)

    def stochastic_depth(self, x, p, training):
        if not training or p == 0.0:
            return x
        keep_prob = 1 - p
        shape = [x.shape[0]] + [1] * (x.ndim - 1)
        random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
        binary_tensor = torch.floor(random_tensor)
        return x.div(keep_prob) * binary_tensor

    def set_dropout(self, epoch=None, max_epochs=None):
        """
        Optionally schedule dropout rate during training.
        """
        if self.use_dropout_scheduler and epoch is not None and max_epochs is not None:
            ratio = epoch / max_epochs
            self.current_dropout = self.dropout_scheduler_max - (self.dropout_scheduler_max - self.dropout_scheduler_min) * ratio
            for m in self.fusion_head.modules():
                if isinstance(m, nn.Dropout):
                    m.p = self.current_dropout

    def _validate_inputs(self, text_inputs, tabular_inputs, vision_inputs, audio_inputs, time_series_inputs):
        # Robust input validation for required modalities
        if text_inputs is None:
            raise ValueError("text_inputs is required (tokenized text batch).")
        if tabular_inputs is None:
            raise ValueError("tabular_inputs is required (tabular tensor batch).")
        if self.vision_encoder and vision_inputs is None:
            raise ValueError("vision_inputs required but not provided.")
        if self.audio_encoder and audio_inputs is None:
            raise ValueError("audio_inputs required but not provided.")
        if self.time_series_encoder and time_series_inputs is None:
            raise ValueError("time_series_inputs required but not provided.")

    def forward(self, text_inputs, tabular_inputs, vision_inputs=None, audio_inputs=None, time_series_inputs=None, epoch=None, max_epochs=None):
        """
        Forward pass for the model.
        Args:
            text_inputs (dict): Tokenized text inputs for transformer.
            tabular_inputs (Tensor): Tabular features.
            vision_inputs (dict or None): Vision transformer inputs.
            audio_inputs (Tensor or None): Audio features.
            time_series_inputs (Tensor or None): Time series features.
            epoch (int or None): Current epoch for dropout scheduling.
            max_epochs (int or None): Maximum number of epochs for dropout scheduling.
        Returns:
            logits (Tensor): Output logits.
            last_attn_weights (Tensor or None): Attention weights if available.
        """
        self._validate_inputs(text_inputs, tabular_inputs, vision_inputs, audio_inputs, time_series_inputs)
        # Ensure tabular_inputs is 2D [batch, tabular_dim]
        if tabular_inputs is not None and tabular_inputs.ndim > 2:
            tabular_inputs = tabular_inputs.view(tabular_inputs.shape[0], -1)
        # Add runtime check for feature dimension
        if tabular_inputs is not None and tabular_inputs.shape[1] != self.tabular_dim:
            raise ValueError(f"tabular_inputs.shape[1] ({tabular_inputs.shape[1]}) does not match model tabular_dim ({self.tabular_dim}).")
        # Mixed precision context if enabled
        if self.use_mixed_precision:
            from torch.cuda.amp import autocast
            autocast_ctx = autocast
        else:
            autocast_ctx = None
        if autocast_ctx is not None:
            with autocast_ctx():
                # Text encoding
                text_outputs = self.text_encoder(**text_inputs)
                text_feat = text_outputs.last_hidden_state[:, 0, :]  # [CLS] token

                # Tabular encoding
                tabular_feat = self.tabular_encoder(tabular_inputs)

                features_list = [text_feat, tabular_feat]

                # Vision encoding (optional)
                if self.vision_encoder and vision_inputs is not None:
                    vision_outputs = self.vision_encoder(**vision_inputs)
                    vision_feat = vision_outputs.last_hidden_state[:, 0, :]
                    features_list.append(vision_feat)

                # Audio encoding (optional)
                if self.audio_encoder and audio_inputs is not None:
                    audio_feat = self.audio_encoder(audio_inputs)
                    features_list.append(audio_feat)

                # Time series encoding (optional)
                if self.time_series_encoder and time_series_inputs is not None:
                    ts_feat = self.time_series_encoder(time_series_inputs)
                    features_list.append(ts_feat)

                # --- Fusion ---
                if self.fusion_type == 'gated':
                    fused = self.fusion(features_list)
                elif self.fusion_type == 'cross_attention':
                    fused = self.fusion(features_list[0], features_list[1])
                else:
                    fused = torch.cat(features_list, dim=1)

                features = fused

                # Self-attention block (optional)
                if self.transformer_encoder is not None:
                    features = features.unsqueeze(1)  # (batch, seq=1, dim)
                    features = self.transformer_encoder(features)
                    features = features.squeeze(1)

                # Attention-based fusion (optional, legacy)
                if self.attn_fusion is not None:
                    features_seq = features.unsqueeze(1)
                    attn_out, attn_weights = self.attn_fusion(features_seq, features_seq, features_seq)
                    features = attn_out.squeeze(1)
                    self.last_attn_weights = attn_weights
                else:
                    self.last_attn_weights = None

                # Stochastic depth (optional)
                if self.use_stochastic_depth and self.training:
                    features = self.stochastic_depth(features, self.stochastic_depth_prob, self.training)

                # Dropout scheduler (optional)
                self.set_dropout(epoch, max_epochs)

                # Residual connection (optional)
                if self.use_ensemble:
                    logits_list = [head(features) for head in self.ensemble]
                    logits = torch.stack(logits_list, dim=0).mean(dim=0)
                elif self.use_residual_fusion:
                    fusion_input = features
                    logits = self.fusion_head(features)
                    logits += fusion_input[:, :logits.shape[1]]
                else:
                    logits = self.fusion_head(features)
        else:
            # Text encoding
            text_outputs = self.text_encoder(**text_inputs)
            text_feat = text_outputs.last_hidden_state[:, 0, :]  # [CLS] token

            # Tabular encoding
            tabular_feat = self.tabular_encoder(tabular_inputs)

            features_list = [text_feat, tabular_feat]

            # Vision encoding (optional)
            if self.vision_encoder and vision_inputs is not None:
                vision_outputs = self.vision_encoder(**vision_inputs)
                vision_feat = vision_outputs.last_hidden_state[:, 0, :]
                features_list.append(vision_feat)

            # Audio encoding (optional)
            if self.audio_encoder and audio_inputs is not None:
                audio_feat = self.audio_encoder(audio_inputs)
                features_list.append(audio_feat)

            # Time series encoding (optional)
            if self.time_series_encoder and time_series_inputs is not None:
                ts_feat = self.time_series_encoder(time_series_inputs)
                features_list.append(ts_feat)

            # --- Fusion ---
            if self.fusion_type == 'gated':
                fused = self.fusion(features_list)
            elif self.fusion_type == 'cross_attention':
                fused = self.fusion(features_list[0], features_list[1])
            else:
                fused = torch.cat(features_list, dim=1)

            features = fused

            # Self-attention block (optional)
            if self.transformer_encoder is not None:
                features = features.unsqueeze(1)  # (batch, seq=1, dim)
                features = self.transformer_encoder(features)
                features = features.squeeze(1)

            # Attention-based fusion (optional, legacy)
            if self.attn_fusion is not None:
                features_seq = features.unsqueeze(1)
                attn_out, attn_weights = self.attn_fusion(features_seq, features_seq, features_seq)
                features = attn_out.squeeze(1)
                self.last_attn_weights = attn_weights
            else:
                self.last_attn_weights = None

            # Stochastic depth (optional)
            if self.use_stochastic_depth and self.training:
                features = self.stochastic_depth(features, self.stochastic_depth_prob, self.training)

            # Dropout scheduler (optional)
            self.set_dropout(epoch, max_epochs)

            # Residual connection (optional)
            if self.use_ensemble:
                logits_list = [head(features) for head in self.ensemble]
                logits = torch.stack(logits_list, dim=0).mean(dim=0)
            elif self.use_residual_fusion:
                fusion_input = features
                logits = self.fusion_head(features)
                logits += fusion_input[:, :logits.shape[1]]
            else:
                logits = self.fusion_head(features)
        return logits

    def extract_features(self, text_inputs, tabular_inputs, vision_inputs=None, audio_inputs=None, time_series_inputs=None):
        """
        Extract intermediate features before the final prediction head.
        Returns:
            features (Tensor): Concatenated feature vector.
        """
        self._validate_inputs(text_inputs, tabular_inputs, vision_inputs, audio_inputs, time_series_inputs)
        # Ensure tabular_inputs is 2D [batch, tabular_dim]
        if tabular_inputs is not None and tabular_inputs.ndim > 2:
            tabular_inputs = tabular_inputs.view(tabular_inputs.shape[0], -1)
        text_outputs = self.text_encoder(**text_inputs)
        text_feat = text_outputs.last_hidden_state[:, 0, :]
        tabular_feat = self.tabular_encoder(tabular_inputs)
        features_list = [text_feat, tabular_feat]
        if self.vision_encoder and vision_inputs is not None:
            vision_outputs = self.vision_encoder(**vision_inputs)
            vision_feat = vision_outputs.last_hidden_state[:, 0, :]
            features_list.append(vision_feat)
        if self.audio_encoder and audio_inputs is not None:
            audio_feat = self.audio_encoder(audio_inputs)
            features_list.append(audio_feat)
        if self.time_series_encoder and time_series_inputs is not None:
            ts_feat = self.time_series_encoder(time_series_inputs)
            features_list.append(ts_feat)
        features = torch.cat(features_list, dim=1)
        return features

    def get_attention_weights(self):
        """
        Returns last attention weights (if available).
        """
        return getattr(self, "last_attn_weights", None)

    def compute_feature_importance(self, batch_inputs, batch_targets, loss_fn):
        """
        Computes feature importance using input gradients.
        Args:
            batch_inputs (dict): Dictionary with keys matching forward() args.
            batch_targets (Tensor): Target labels.
            loss_fn (callable): Loss function.
        Returns:
            importances (dict): Feature importance per modality.
        """
        # Prepare inputs for interpretability utility
        inputs = {
            'text_inputs': batch_inputs.get('text_inputs'),
            'tabular_inputs': batch_inputs.get('tabular_inputs'),
            'vision_inputs': batch_inputs.get('vision_inputs'),
            'audio_inputs': batch_inputs.get('audio_inputs'),
            'time_series_inputs': batch_inputs.get('time_series_inputs'),
        }
        # Remove None values
        inputs = {k: v for k, v in inputs.items() if v is not None}
        return compute_feature_importance(self, inputs, batch_targets, loss_fn)

# Example usage:
"""
Example usage:

from stock_ai import MultimodalStockPredictor
import torch
from transformers import AutoTokenizer

# Initialize model with gated fusion and mixed precision
model = MultimodalStockPredictor(fusion_type='gated', use_mixed_precision=True)
tokenizer = AutoTokenizer.from_pretrained("bert-large-uncased")
text_inputs = tokenizer(["AAPL earnings beat expectations"], return_tensors="pt", padding=True, truncation=True)
tabular_inputs = torch.randn(1, 64)
logits = model(text_inputs, tabular_inputs)
attn_weights = model.get_attention_weights()

# Feature importance:
import torch.nn.functional as F
batch_targets = torch.tensor([1])
importances = model.compute_feature_importance(
    {'text_inputs': text_inputs, 'tabular_inputs': tabular_inputs},
    batch_targets,
    F.cross_entropy
)
print(importances)
"""

# =========================
# Unit Tests for Components
# =========================
def _dummy_text_inputs(batch=2, dim=768):
    # Simulate HuggingFace tokenizer output
    return {'input_ids': torch.ones(batch, 8, dtype=torch.long), 'attention_mask': torch.ones(batch, 8, dtype=torch.long)}

def _dummy_tabular_inputs(batch=2, dim=64):
    return torch.randn(batch, dim)

def _dummy_targets(batch=2, num_classes=3):
    return torch.randint(0, num_classes, (batch,))

def _dummy_model(fusion_type='concat', use_audio=False, use_time_series=False, use_mixed_precision=False):
    return MultimodalStockPredictor(
        fusion_type=fusion_type,
        use_audio=use_audio,
        use_time_series=use_time_series,
        use_mixed_precision=use_mixed_precision,
        tabular_dim=64,
        hidden_dim=32,
        num_labels=3,
        fusion_layers=2,
        activation=nn.ReLU,
        tabular_dropout=0.1,
        fusion_dropout=0.1,
        fusion_layernorm=True,
        use_attention_fusion=False,
        use_residual_fusion=False,
        audio_dim=8 if use_audio else None,
        time_series_dim=8 if use_time_series else None,
        audio_hidden_dim=16,
        audio_out_dim=16,
        time_series_hidden_dim=16,
        time_series_out_dim=16,
        freeze_text_encoder=True,  # For speed
        freeze_vision_encoder=True
    )

def test_fusion_concat():
    model = _dummy_model(fusion_type='concat')
    text_inputs = _dummy_text_inputs()
    tabular_inputs = _dummy_tabular_inputs()
    out = model(text_inputs, tabular_inputs)
    assert out.shape[0] == 2, "Batch size mismatch for concat fusion"
    print("test_fusion_concat passed.")

def test_fusion_gated():
    model = _dummy_model(fusion_type='gated')
    text_inputs = _dummy_text_inputs()
    tabular_inputs = _dummy_tabular_inputs()
    out = model(text_inputs, tabular_inputs)
    assert out.shape[0] == 2, "Batch size mismatch for gated fusion"
    print("test_fusion_gated passed.")

def test_fusion_cross_attention():
    model = _dummy_model(fusion_type='cross_attention')
    text_inputs = _dummy_text_inputs()
    tabular_inputs = _dummy_tabular_inputs()
    out = model(text_inputs, tabular_inputs)
    assert out.shape[0] == 2, "Batch size mismatch for cross_attention fusion"
    print("test_fusion_cross_attention passed.")

def test_input_validation():
    model = _dummy_model()
    try:
        model(None, _dummy_tabular_inputs())
        assert False, "Should raise error for missing text_inputs"
    except ValueError:
        pass
    try:
        model(_dummy_text_inputs(), None)
        assert False, "Should raise error for missing tabular_inputs"
    except ValueError:
        pass
    print("test_input_validation passed.")

def test_interpretability():
    model = _dummy_model()
    text_inputs = _dummy_text_inputs()
    tabular_inputs = _dummy_tabular_inputs()
    targets = _dummy_targets()
    import torch.nn.functional as F
    importances = model.compute_feature_importance(
        {'text_inputs': text_inputs, 'tabular_inputs': tabular_inputs},
        targets,
        F.cross_entropy
    )
    assert 'text_inputs' in importances and 'tabular_inputs' in importances, "Feature importance keys missing"
    print("test_interpretability passed.")

def test_mixed_precision():
    model = _dummy_model(use_mixed_precision=True)
    text_inputs = _dummy_text_inputs()
    tabular_inputs = _dummy_tabular_inputs()
    try:
        out = model(text_inputs, tabular_inputs)
        assert out.shape[0] == 2
        print("test_mixed_precision passed.")
    except Exception as e:
        print("test_mixed_precision failed:", e)

if __name__ == "__main__":
    test_fusion_concat()
    test_fusion_gated()
    test_fusion_cross_attention()
    test_input_validation()
    test_interpretability()
    test_mixed_precision()