File size: 24,515 Bytes
2134603 ecc5214 2134603 ecc5214 2134603 ecc5214 2134603 ecc5214 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 |
import torch
import torch.nn as nn
from transformers import AutoModel, AutoConfig,AutoTokenizer
from .fusion import GatedFusion, CrossModalAttention
from .audio_encoder import AudioEncoder
from .time_series_encoder import TimeSeriesEncoder
from .interpretability import compute_feature_importance
class MultimodalStockPredictor(nn.Module):
def __init__(self,
text_model_name="albert-large-v2",
vision_model_name=None,
tabular_dim=64, # <-- Change this to match your data, e.g., tabular_dim=5
audio_dim=None,
time_series_dim=None,
hidden_dim=1024,
num_labels=3,
fusion_layers=2,
activation=nn.ReLU,
tabular_dropout=0.1,
fusion_dropout=0.2,
fusion_layernorm=True,
use_attention_fusion=False,
use_residual_fusion=False,
use_audio=False,
use_time_series=False,
audio_hidden_dim=128,
audio_out_dim=128,
time_series_hidden_dim=128,
time_series_out_dim=128,
audio_encoder=None,
time_series_encoder=None,
freeze_text_encoder=False,
freeze_vision_encoder=False,
use_self_attention=True,
self_attention_heads=8,
self_attention_layers=2,
use_dropout_scheduler=True,
dropout_scheduler_max=0.5,
dropout_scheduler_min=0.1,
use_stochastic_depth=True,
stochastic_depth_prob=0.2,
use_ensemble=False,
ensemble_size=3,
fusion_type='concat',
use_mixed_precision=False):
"""
Args:
fusion_type (str): 'concat', 'gated', or 'cross_attention'.
use_mixed_precision (bool): Enable mixed precision training.
...existing code...
"""
# Load the tokenizer for ALBERT
self.tokenizer = AutoTokenizer.from_pretrained(text_model_name)
super().__init__()
self.tabular_dim = tabular_dim # Save for runtime check
# Text encoder (large transformer)
self.text_config = AutoConfig.from_pretrained(text_model_name)
self.text_encoder = AutoModel.from_pretrained(text_model_name, config=self.text_config)
if freeze_text_encoder:
for param in self.text_encoder.parameters():
param.requires_grad = False
# Optional: Vision encoder (for chart images, etc.)
if vision_model_name:
self.vision_config = AutoConfig.from_pretrained(vision_model_name)
self.vision_encoder = AutoModel.from_pretrained(vision_model_name, config=self.vision_config)
if freeze_vision_encoder:
for param in self.vision_encoder.parameters():
param.requires_grad = False
vision_out_dim = self.vision_config.hidden_size
else:
self.vision_encoder = None
vision_out_dim = 0
# Tabular (numerical) data encoder with dropout and batchnorm
self.tabular_encoder = nn.Sequential(
nn.Linear(tabular_dim, hidden_dim),
nn.BatchNorm1d(hidden_dim),
activation(),
nn.Dropout(tabular_dropout),
nn.LayerNorm(hidden_dim)
)
self.use_attention_fusion = use_attention_fusion
self.use_residual_fusion = use_residual_fusion
# --- Fix: Always define attn_fusion (legacy/optional) ---
self.attn_fusion = None
# Optional: Audio encoder
self.use_audio = use_audio
if use_audio and audio_dim is not None:
self.audio_encoder = audio_encoder or AudioEncoder(audio_dim, audio_hidden_dim, audio_out_dim)
audio_out_dim_ = audio_out_dim
else:
self.audio_encoder = None
audio_out_dim_ = 0
# Optional: Time series encoder
self.use_time_series = use_time_series
if use_time_series and time_series_dim is not None:
self.time_series_encoder = time_series_encoder or TimeSeriesEncoder(time_series_dim, time_series_hidden_dim, time_series_out_dim)
time_series_out_dim_ = time_series_out_dim
else:
self.time_series_encoder = None
time_series_out_dim_ = 0
self.fusion_type = fusion_type
self.use_mixed_precision = use_mixed_precision
# --- Fusion options ---
fusion_dim = self.text_config.hidden_size + vision_out_dim + hidden_dim + audio_out_dim_ + time_series_out_dim_
self.fusion_input_dims = [
self.text_config.hidden_size,
hidden_dim,
*( [vision_out_dim] if vision_out_dim > 0 else [] ),
*( [audio_out_dim_] if audio_out_dim_ > 0 else [] ),
*( [time_series_out_dim_] if time_series_out_dim_ > 0 else [] ),
]
if fusion_type == 'gated':
self.fusion = GatedFusion(self.fusion_input_dims, fusion_dim)
elif fusion_type == 'cross_attention':
# Only supports two modalities for cross attention
if len(self.fusion_input_dims) != 2:
raise ValueError("CrossModalAttention fusion requires exactly two modalities.")
self.fusion = CrossModalAttention(self.fusion_input_dims[0], self.fusion_input_dims[1], fusion_dim)
else:
self.fusion = None # fallback to concat
# Fusion and prediction head (deeper, configurable)
fusion_head_layers = []
in_dim = fusion_dim
for i in range(fusion_layers - 1):
fusion_head_layers.append(nn.Linear(in_dim, hidden_dim))
fusion_head_layers.append(nn.BatchNorm1d(hidden_dim))
fusion_head_layers.append(activation())
fusion_head_layers.append(nn.Dropout(fusion_dropout))
if fusion_layernorm:
fusion_head_layers.append(nn.LayerNorm(hidden_dim))
in_dim = hidden_dim
fusion_head_layers.append(nn.Linear(in_dim, num_labels))
# Self-attention block after fusion (optional)
self.use_self_attention = use_self_attention
if self.use_self_attention:
encoder_layer = nn.TransformerEncoderLayer(
d_model=fusion_dim,
nhead=self_attention_heads,
dim_feedforward=fusion_dim * 2,
dropout=fusion_dropout,
activation="gelu",
batch_first=True
)
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=self_attention_layers)
else:
self.transformer_encoder = None
# Stochastic depth (optional)
self.use_stochastic_depth = use_stochastic_depth
self.stochastic_depth_prob = stochastic_depth_prob
# Dropout scheduler (optional)
self.use_dropout_scheduler = use_dropout_scheduler
self.dropout_scheduler_max = dropout_scheduler_max
self.dropout_scheduler_min = dropout_scheduler_min
self.current_dropout = fusion_dropout
# Ensemble (optional)
self.use_ensemble = use_ensemble
if self.use_ensemble:
self.ensemble = nn.ModuleList([
nn.Sequential(*fusion_head_layers) for _ in range(ensemble_size)
])
else:
self.fusion_head = nn.Sequential(*fusion_head_layers)
def stochastic_depth(self, x, p, training):
if not training or p == 0.0:
return x
keep_prob = 1 - p
shape = [x.shape[0]] + [1] * (x.ndim - 1)
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
binary_tensor = torch.floor(random_tensor)
return x.div(keep_prob) * binary_tensor
def set_dropout(self, epoch=None, max_epochs=None):
"""
Optionally schedule dropout rate during training.
"""
if self.use_dropout_scheduler and epoch is not None and max_epochs is not None:
ratio = epoch / max_epochs
self.current_dropout = self.dropout_scheduler_max - (self.dropout_scheduler_max - self.dropout_scheduler_min) * ratio
for m in self.fusion_head.modules():
if isinstance(m, nn.Dropout):
m.p = self.current_dropout
def _validate_inputs(self, text_inputs, tabular_inputs, vision_inputs, audio_inputs, time_series_inputs):
# Robust input validation for required modalities
if text_inputs is None:
raise ValueError("text_inputs is required (tokenized text batch).")
if tabular_inputs is None:
raise ValueError("tabular_inputs is required (tabular tensor batch).")
if self.vision_encoder and vision_inputs is None:
raise ValueError("vision_inputs required but not provided.")
if self.audio_encoder and audio_inputs is None:
raise ValueError("audio_inputs required but not provided.")
if self.time_series_encoder and time_series_inputs is None:
raise ValueError("time_series_inputs required but not provided.")
def forward(self, text_inputs, tabular_inputs, vision_inputs=None, audio_inputs=None, time_series_inputs=None, epoch=None, max_epochs=None):
"""
Forward pass for the model.
Args:
text_inputs (dict): Tokenized text inputs for transformer.
tabular_inputs (Tensor): Tabular features.
vision_inputs (dict or None): Vision transformer inputs.
audio_inputs (Tensor or None): Audio features.
time_series_inputs (Tensor or None): Time series features.
epoch (int or None): Current epoch for dropout scheduling.
max_epochs (int or None): Maximum number of epochs for dropout scheduling.
Returns:
logits (Tensor): Output logits.
last_attn_weights (Tensor or None): Attention weights if available.
"""
self._validate_inputs(text_inputs, tabular_inputs, vision_inputs, audio_inputs, time_series_inputs)
# Ensure tabular_inputs is 2D [batch, tabular_dim]
if tabular_inputs is not None and tabular_inputs.ndim > 2:
tabular_inputs = tabular_inputs.view(tabular_inputs.shape[0], -1)
# Add runtime check for feature dimension
if tabular_inputs is not None and tabular_inputs.shape[1] != self.tabular_dim:
raise ValueError(f"tabular_inputs.shape[1] ({tabular_inputs.shape[1]}) does not match model tabular_dim ({self.tabular_dim}).")
# Mixed precision context if enabled
if self.use_mixed_precision:
from torch.cuda.amp import autocast
autocast_ctx = autocast
else:
autocast_ctx = None
if autocast_ctx is not None:
with autocast_ctx():
# Text encoding
text_outputs = self.text_encoder(**text_inputs)
text_feat = text_outputs.last_hidden_state[:, 0, :] # [CLS] token
# Tabular encoding
tabular_feat = self.tabular_encoder(tabular_inputs)
features_list = [text_feat, tabular_feat]
# Vision encoding (optional)
if self.vision_encoder and vision_inputs is not None:
vision_outputs = self.vision_encoder(**vision_inputs)
vision_feat = vision_outputs.last_hidden_state[:, 0, :]
features_list.append(vision_feat)
# Audio encoding (optional)
if self.audio_encoder and audio_inputs is not None:
audio_feat = self.audio_encoder(audio_inputs)
features_list.append(audio_feat)
# Time series encoding (optional)
if self.time_series_encoder and time_series_inputs is not None:
ts_feat = self.time_series_encoder(time_series_inputs)
features_list.append(ts_feat)
# --- Fusion ---
if self.fusion_type == 'gated':
fused = self.fusion(features_list)
elif self.fusion_type == 'cross_attention':
fused = self.fusion(features_list[0], features_list[1])
else:
fused = torch.cat(features_list, dim=1)
features = fused
# Self-attention block (optional)
if self.transformer_encoder is not None:
features = features.unsqueeze(1) # (batch, seq=1, dim)
features = self.transformer_encoder(features)
features = features.squeeze(1)
# Attention-based fusion (optional, legacy)
if self.attn_fusion is not None:
features_seq = features.unsqueeze(1)
attn_out, attn_weights = self.attn_fusion(features_seq, features_seq, features_seq)
features = attn_out.squeeze(1)
self.last_attn_weights = attn_weights
else:
self.last_attn_weights = None
# Stochastic depth (optional)
if self.use_stochastic_depth and self.training:
features = self.stochastic_depth(features, self.stochastic_depth_prob, self.training)
# Dropout scheduler (optional)
self.set_dropout(epoch, max_epochs)
# Residual connection (optional)
if self.use_ensemble:
logits_list = [head(features) for head in self.ensemble]
logits = torch.stack(logits_list, dim=0).mean(dim=0)
elif self.use_residual_fusion:
fusion_input = features
logits = self.fusion_head(features)
logits += fusion_input[:, :logits.shape[1]]
else:
logits = self.fusion_head(features)
else:
# Text encoding
text_outputs = self.text_encoder(**text_inputs)
text_feat = text_outputs.last_hidden_state[:, 0, :] # [CLS] token
# Tabular encoding
tabular_feat = self.tabular_encoder(tabular_inputs)
features_list = [text_feat, tabular_feat]
# Vision encoding (optional)
if self.vision_encoder and vision_inputs is not None:
vision_outputs = self.vision_encoder(**vision_inputs)
vision_feat = vision_outputs.last_hidden_state[:, 0, :]
features_list.append(vision_feat)
# Audio encoding (optional)
if self.audio_encoder and audio_inputs is not None:
audio_feat = self.audio_encoder(audio_inputs)
features_list.append(audio_feat)
# Time series encoding (optional)
if self.time_series_encoder and time_series_inputs is not None:
ts_feat = self.time_series_encoder(time_series_inputs)
features_list.append(ts_feat)
# --- Fusion ---
if self.fusion_type == 'gated':
fused = self.fusion(features_list)
elif self.fusion_type == 'cross_attention':
fused = self.fusion(features_list[0], features_list[1])
else:
fused = torch.cat(features_list, dim=1)
features = fused
# Self-attention block (optional)
if self.transformer_encoder is not None:
features = features.unsqueeze(1) # (batch, seq=1, dim)
features = self.transformer_encoder(features)
features = features.squeeze(1)
# Attention-based fusion (optional, legacy)
if self.attn_fusion is not None:
features_seq = features.unsqueeze(1)
attn_out, attn_weights = self.attn_fusion(features_seq, features_seq, features_seq)
features = attn_out.squeeze(1)
self.last_attn_weights = attn_weights
else:
self.last_attn_weights = None
# Stochastic depth (optional)
if self.use_stochastic_depth and self.training:
features = self.stochastic_depth(features, self.stochastic_depth_prob, self.training)
# Dropout scheduler (optional)
self.set_dropout(epoch, max_epochs)
# Residual connection (optional)
if self.use_ensemble:
logits_list = [head(features) for head in self.ensemble]
logits = torch.stack(logits_list, dim=0).mean(dim=0)
elif self.use_residual_fusion:
fusion_input = features
logits = self.fusion_head(features)
logits += fusion_input[:, :logits.shape[1]]
else:
logits = self.fusion_head(features)
return logits
def extract_features(self, text_inputs, tabular_inputs, vision_inputs=None, audio_inputs=None, time_series_inputs=None):
"""
Extract intermediate features before the final prediction head.
Returns:
features (Tensor): Concatenated feature vector.
"""
self._validate_inputs(text_inputs, tabular_inputs, vision_inputs, audio_inputs, time_series_inputs)
# Ensure tabular_inputs is 2D [batch, tabular_dim]
if tabular_inputs is not None and tabular_inputs.ndim > 2:
tabular_inputs = tabular_inputs.view(tabular_inputs.shape[0], -1)
text_outputs = self.text_encoder(**text_inputs)
text_feat = text_outputs.last_hidden_state[:, 0, :]
tabular_feat = self.tabular_encoder(tabular_inputs)
features_list = [text_feat, tabular_feat]
if self.vision_encoder and vision_inputs is not None:
vision_outputs = self.vision_encoder(**vision_inputs)
vision_feat = vision_outputs.last_hidden_state[:, 0, :]
features_list.append(vision_feat)
if self.audio_encoder and audio_inputs is not None:
audio_feat = self.audio_encoder(audio_inputs)
features_list.append(audio_feat)
if self.time_series_encoder and time_series_inputs is not None:
ts_feat = self.time_series_encoder(time_series_inputs)
features_list.append(ts_feat)
features = torch.cat(features_list, dim=1)
return features
def get_attention_weights(self):
"""
Returns last attention weights (if available).
"""
return getattr(self, "last_attn_weights", None)
def compute_feature_importance(self, batch_inputs, batch_targets, loss_fn):
"""
Computes feature importance using input gradients.
Args:
batch_inputs (dict): Dictionary with keys matching forward() args.
batch_targets (Tensor): Target labels.
loss_fn (callable): Loss function.
Returns:
importances (dict): Feature importance per modality.
"""
# Prepare inputs for interpretability utility
inputs = {
'text_inputs': batch_inputs.get('text_inputs'),
'tabular_inputs': batch_inputs.get('tabular_inputs'),
'vision_inputs': batch_inputs.get('vision_inputs'),
'audio_inputs': batch_inputs.get('audio_inputs'),
'time_series_inputs': batch_inputs.get('time_series_inputs'),
}
# Remove None values
inputs = {k: v for k, v in inputs.items() if v is not None}
return compute_feature_importance(self, inputs, batch_targets, loss_fn)
# Example usage:
"""
Example usage:
from stock_ai import MultimodalStockPredictor
import torch
from transformers import AutoTokenizer
# Initialize model with gated fusion and mixed precision
model = MultimodalStockPredictor(fusion_type='gated', use_mixed_precision=True)
tokenizer = AutoTokenizer.from_pretrained("bert-large-uncased")
text_inputs = tokenizer(["AAPL earnings beat expectations"], return_tensors="pt", padding=True, truncation=True)
tabular_inputs = torch.randn(1, 64)
logits = model(text_inputs, tabular_inputs)
attn_weights = model.get_attention_weights()
# Feature importance:
import torch.nn.functional as F
batch_targets = torch.tensor([1])
importances = model.compute_feature_importance(
{'text_inputs': text_inputs, 'tabular_inputs': tabular_inputs},
batch_targets,
F.cross_entropy
)
print(importances)
"""
# =========================
# Unit Tests for Components
# =========================
def _dummy_text_inputs(batch=2, dim=768):
# Simulate HuggingFace tokenizer output
return {'input_ids': torch.ones(batch, 8, dtype=torch.long), 'attention_mask': torch.ones(batch, 8, dtype=torch.long)}
def _dummy_tabular_inputs(batch=2, dim=64):
return torch.randn(batch, dim)
def _dummy_targets(batch=2, num_classes=3):
return torch.randint(0, num_classes, (batch,))
def _dummy_model(fusion_type='concat', use_audio=False, use_time_series=False, use_mixed_precision=False):
return MultimodalStockPredictor(
fusion_type=fusion_type,
use_audio=use_audio,
use_time_series=use_time_series,
use_mixed_precision=use_mixed_precision,
tabular_dim=64,
hidden_dim=32,
num_labels=3,
fusion_layers=2,
activation=nn.ReLU,
tabular_dropout=0.1,
fusion_dropout=0.1,
fusion_layernorm=True,
use_attention_fusion=False,
use_residual_fusion=False,
audio_dim=8 if use_audio else None,
time_series_dim=8 if use_time_series else None,
audio_hidden_dim=16,
audio_out_dim=16,
time_series_hidden_dim=16,
time_series_out_dim=16,
freeze_text_encoder=True, # For speed
freeze_vision_encoder=True
)
def test_fusion_concat():
model = _dummy_model(fusion_type='concat')
text_inputs = _dummy_text_inputs()
tabular_inputs = _dummy_tabular_inputs()
out = model(text_inputs, tabular_inputs)
assert out.shape[0] == 2, "Batch size mismatch for concat fusion"
print("test_fusion_concat passed.")
def test_fusion_gated():
model = _dummy_model(fusion_type='gated')
text_inputs = _dummy_text_inputs()
tabular_inputs = _dummy_tabular_inputs()
out = model(text_inputs, tabular_inputs)
assert out.shape[0] == 2, "Batch size mismatch for gated fusion"
print("test_fusion_gated passed.")
def test_fusion_cross_attention():
model = _dummy_model(fusion_type='cross_attention')
text_inputs = _dummy_text_inputs()
tabular_inputs = _dummy_tabular_inputs()
out = model(text_inputs, tabular_inputs)
assert out.shape[0] == 2, "Batch size mismatch for cross_attention fusion"
print("test_fusion_cross_attention passed.")
def test_input_validation():
model = _dummy_model()
try:
model(None, _dummy_tabular_inputs())
assert False, "Should raise error for missing text_inputs"
except ValueError:
pass
try:
model(_dummy_text_inputs(), None)
assert False, "Should raise error for missing tabular_inputs"
except ValueError:
pass
print("test_input_validation passed.")
def test_interpretability():
model = _dummy_model()
text_inputs = _dummy_text_inputs()
tabular_inputs = _dummy_tabular_inputs()
targets = _dummy_targets()
import torch.nn.functional as F
importances = model.compute_feature_importance(
{'text_inputs': text_inputs, 'tabular_inputs': tabular_inputs},
targets,
F.cross_entropy
)
assert 'text_inputs' in importances and 'tabular_inputs' in importances, "Feature importance keys missing"
print("test_interpretability passed.")
def test_mixed_precision():
model = _dummy_model(use_mixed_precision=True)
text_inputs = _dummy_text_inputs()
tabular_inputs = _dummy_tabular_inputs()
try:
out = model(text_inputs, tabular_inputs)
assert out.shape[0] == 2
print("test_mixed_precision passed.")
except Exception as e:
print("test_mixed_precision failed:", e)
if __name__ == "__main__":
test_fusion_concat()
test_fusion_gated()
test_fusion_cross_attention()
test_input_validation()
test_interpretability()
test_mixed_precision() |