rmanzo28 commited on
Commit
cd7d7d2
·
verified ·
1 Parent(s): 6af9449

Upload 4 files

Browse files
Files changed (4) hide show
  1. fusion.py +40 -0
  2. requirements.txt +6 -0
  3. time_series_encoder.py +17 -0
  4. training_utils.py +29 -0
fusion.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ class GatedFusion(nn.Module):
5
+ """
6
+ Gated fusion for two or more modalities.
7
+ """
8
+ def __init__(self, input_dims, output_dim):
9
+ super().__init__()
10
+ self.gates = nn.ModuleList([nn.Linear(d, output_dim) for d in input_dims])
11
+ self.fcs = nn.ModuleList([nn.Linear(d, output_dim) for d in input_dims])
12
+
13
+ def forward(self, features):
14
+ # features: list of tensors [batch, dim]
15
+ gated = []
16
+ for i, feat in enumerate(features):
17
+ gate = torch.sigmoid(self.gates[i](feat))
18
+ proj = self.fcs[i](feat)
19
+ gated.append(gate * proj)
20
+ return sum(gated)
21
+
22
+ class CrossModalAttention(nn.Module):
23
+ """
24
+ Cross-modal attention for two modalities.
25
+ """
26
+ def __init__(self, dim_q, dim_kv, dim_out):
27
+ super().__init__()
28
+ self.query = nn.Linear(dim_q, dim_out)
29
+ self.key = nn.Linear(dim_kv, dim_out)
30
+ self.value = nn.Linear(dim_kv, dim_out)
31
+ self.softmax = nn.Softmax(dim=-1)
32
+
33
+ def forward(self, q, kv):
34
+ # q: (batch, dim_q), kv: (batch, dim_kv)
35
+ Q = self.query(q).unsqueeze(1) # (batch, 1, dim_out)
36
+ K = self.key(kv).unsqueeze(1) # (batch, 1, dim_out)
37
+ V = self.value(kv).unsqueeze(1) # (batch, 1, dim_out)
38
+ attn = self.softmax(torch.bmm(Q, K.transpose(1,2)))
39
+ out = torch.bmm(attn, V).squeeze(1)
40
+ return out
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ torch>=2.0.0
2
+ transformers>=4.40.0
3
+ scikit-learn
4
+ pandas
5
+ numpy
6
+ tqdm
time_series_encoder.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ class TimeSeriesEncoder(nn.Module):
5
+ """
6
+ Simple time series encoder using LSTM.
7
+ """
8
+ def __init__(self, input_dim, hidden_dim, output_dim, num_layers=1):
9
+ super().__init__()
10
+ self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True)
11
+ self.fc = nn.Linear(hidden_dim, output_dim)
12
+
13
+ def forward(self, x):
14
+ # x: (batch, seq_len, input_dim)
15
+ _, (h_n, _) = self.lstm(x)
16
+ out = self.fc(h_n[-1])
17
+ return out
training_utils.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ class EarlyStopping:
4
+ """
5
+ Early stops the training if validation loss doesn't improve after a given patience.
6
+ """
7
+ def __init__(self, patience=5, delta=0):
8
+ self.patience = patience
9
+ self.delta = delta
10
+ self.counter = 0
11
+ self.best_loss = None
12
+ self.early_stop = False
13
+
14
+ def __call__(self, val_loss):
15
+ if self.best_loss is None or val_loss < self.best_loss - self.delta:
16
+ self.best_loss = val_loss
17
+ self.counter = 0
18
+ else:
19
+ self.counter += 1
20
+ if self.counter >= self.patience:
21
+ self.early_stop = True
22
+
23
+ def get_scheduler(optimizer, scheduler_type='plateau', **kwargs):
24
+ if scheduler_type == 'plateau':
25
+ return torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, **kwargs)
26
+ elif scheduler_type == 'step':
27
+ return torch.optim.lr_scheduler.StepLR(optimizer, **kwargs)
28
+ else:
29
+ raise ValueError(f"Unknown scheduler type: {scheduler_type}")