neilmodel-rvc / modeling_rvc.py
rubel09's picture
Upload modeling_rvc.py with huggingface_hub
c4d7aed verified
import torch
import torch.nn as nn
import torch.nn.functional as F
import json
import os
class ResidualBlock(nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
super().__init__()
self.convs1 = nn.ModuleList([
nn.Conv1d(channels, channels, kernel_size, 1, dilation=d, padding=d)
for d in dilation
])
self.convs2 = nn.ModuleList([
nn.Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=1)
for _ in dilation
])
def forward(self, x):
for c1, c2 in zip(self.convs1, self.convs2):
xt = F.leaky_relu(x, 0.1)
xt = c1(xt)
xt = F.leaky_relu(xt, 0.1)
xt = c2(xt)
x = xt + x
return x
class RVCModel(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
model_cfg = config["model"]
self.encoder = nn.Sequential(
nn.Conv1d(128, model_cfg["upsample_initial_channel"], 7, 1, 3),
*[ResidualBlock(model_cfg["upsample_initial_channel"]) for _ in range(3)]
)
self.decoder = nn.Sequential(
nn.Conv1d(model_cfg["upsample_initial_channel"], 128, 7, 1, 3),
)
def forward(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return decoded
def convert_voice(self, audio_path):
return audio_path
@classmethod
def from_pretrained(cls, model_path):
config_path = os.path.join(model_path, "config.json")
with open(config_path, "r") as f:
config = json.load(f)
model = cls(config)
model_file = os.path.join(model_path, "model.pth")
if os.path.exists(model_file):
model.load_state_dict(torch.load(model_file, map_location="cpu"))
return model