Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- multilingual
|
| 4 |
+
- bg
|
| 5 |
+
- en
|
| 6 |
+
- fr
|
| 7 |
+
- de
|
| 8 |
+
- ru
|
| 9 |
+
- es
|
| 10 |
+
- sw
|
| 11 |
+
- tr
|
| 12 |
+
- vi
|
| 13 |
+
tags:
|
| 14 |
+
- deberta
|
| 15 |
+
- deberta-v3
|
| 16 |
+
- mdeberta
|
| 17 |
+
license: mit
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
# mdeberta-v3-base-lite
|
| 21 |
+
|
| 22 |
+
This model was created through vocabulary pruning of the original [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) model while maintaining full quality for Latin and Cyrillic-based languages.
|
| 23 |
+
|
| 24 |
+
## Supported Languages
|
| 25 |
+
- Bulgarian
|
| 26 |
+
- English
|
| 27 |
+
- French
|
| 28 |
+
- German
|
| 29 |
+
- Russian
|
| 30 |
+
- Spanish
|
| 31 |
+
- Swahili
|
| 32 |
+
- Turkish
|
| 33 |
+
- Vietnamese
|
| 34 |
+
|
| 35 |
+
## Usage
|
| 36 |
+
|
| 37 |
+
```python
|
| 38 |
+
from transformers import AutoTokenizer, AutoModel
|
| 39 |
+
|
| 40 |
+
tokenizer = AutoTokenizer.from_pretrained("rustemgareev/mdeberta-v3-base-lite")
|
| 41 |
+
model = AutoModel.from_pretrained("rustemgareev/mdeberta-v3-base-lite")
|
| 42 |
+
|
| 43 |
+
# Example usage
|
| 44 |
+
text = "This is an example text in English."
|
| 45 |
+
inputs = tokenizer(text, return_tensors="pt")
|
| 46 |
+
outputs = model(**inputs)
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
## Performance Evaluation
|
| 50 |
+
|
| 51 |
+
### Size Comparison
|
| 52 |
+
| Metric | Original Model | Lite Model | Reduction |
|
| 53 |
+
|--------|----------------|------------|-----------|
|
| 54 |
+
| Vocabulary Size | 250,102 tokens | 163,211 tokens | 34.74% |
|
| 55 |
+
| Disk Size | 1.06 GB | 817 MB | 23.23% |
|
| 56 |
+
|
| 57 |
+
### VRAM Usage Comparison
|
| 58 |
+
*Estimated using [Hugging Face Accelerate Model Estimator](https://huggingface.co/docs/accelerate/main/en/usage_guides/model_size_estimator).*
|
| 59 |
+
|
| 60 |
+
| Metric | Original Model | Lite Model | Reduction |
|
| 61 |
+
|--------|----------------|------------|-----------|
|
| 62 |
+
| Largest Layer (float32) | 735.35 MB | 478.16 MB | 34.99% |
|
| 63 |
+
| Total Size (float32) | 1.04 GB | 804.13 MB | 22.68% |
|
| 64 |
+
| Training using Adam (Peak vRAM) | 4.15 GB | 3.14 GB | 24.34% |
|
| 65 |
+
|
| 66 |
+
### Semantic Similarity Comparison
|
| 67 |
+
|
| 68 |
+
**Evaluation Method**: Cosine similarity between embeddings of parallel sentences in different languages, using English as reference.
|
| 69 |
+
|
| 70 |
+
**Test Phrases Used**:
|
| 71 |
+
- English: "Artificial intelligence learns to understand human languages and helps people communicate."
|
| 72 |
+
- Bulgarian: "Изкуственият интелект се учи да разбира човешките езици и помага на хората да общуват."
|
| 73 |
+
- French: "L'intelligence artificielle apprend à comprendre les langages humains et aide les gens à communiquer."
|
| 74 |
+
- German: "Künstliche Intelligenz lernt, menschliche Sprachen zu verstehen und hilft Menschen bei der Kommunikation."
|
| 75 |
+
- Russian: "Искусственный интеллект учится понимать человеческие языки и помогает людям общаться."
|
| 76 |
+
- Spanish: "La inteligencia artificial aprende a entender los idiomas humanos y ayuda a las personas a comunicarse."
|
| 77 |
+
- Swahili: "Akili ya kisasa inajifunza kuelewa lugha za wanadamu na kusaidia watu kuwasiliana."
|
| 78 |
+
- Turkish: "Yapay zeka, insan dillerini anlamayı öğrenir ve insanların iletişim kurmasına yardımcı olur."
|
| 79 |
+
- Vietnamese: "Trí tuệ nhân tạo học cách hiểu ngôn ngữ con người và giúp mọi người giao tiếp."
|
| 80 |
+
|
| 81 |
+
**Similarity Results**:
|
| 82 |
+
|
| 83 |
+
| Language Pair | Original Similarity | Lite Similarity | Difference |
|
| 84 |
+
|---------------|-----------------|-----------------|------------|
|
| 85 |
+
| English-Bulgarian | 0.9276 | 0.9276 | 0.0000 |
|
| 86 |
+
| English-French | 0.9322 | 0.9322 | 0.0000 |
|
| 87 |
+
| English-German | 0.9178 | 0.9178 | 0.0000 |
|
| 88 |
+
| English-Russian | 0.9335 | 0.9335 | 0.0000 |
|
| 89 |
+
| English-Spanish | 0.9228 | 0.9228 | 0.0000 |
|
| 90 |
+
| English-Swahili | 0.9591 | 0.9591 | 0.0000 |
|
| 91 |
+
| English-Turkish | 0.9450 | 0.9450 | 0.0000 |
|
| 92 |
+
| English-Vietnamese | 0.7955 | 0.7955 | 0.0000 |
|
| 93 |
+
|
| 94 |
+
## License
|
| 95 |
+
|
| 96 |
+
This model is distributed under the [MIT License](https://opensource.org/licenses/MIT).
|